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Abstract. Two measure-preserving dynamical systems are weakly disjoint if some
pointwise convergence property is satisfied by ergodic averages on their direct product.
Disjointness implies weak disjointness. We start studying this new concept, both by stating
some general properties and by giving various examples.

1. Introduction
1.1. Definition. In this article we call a dynamical system any probability measure-
preserving dynamical system on a Lebesgue space: a dynamical system is a quadruple
(X,A, µ, T ) where (X,A, µ) is a Lebesgue probability space and T is a measurable
transformation of (X,A) which preserves the measure µ. When there is no ambiguity,
this dynamical system will be denoted by the symbol T alone.

Definition 1. Two dynamical systems (X,A, µ, T ) and (Y,B, ν, S) are weakly disjoint if,
given any function f in L2(µ) and any function g in L2(ν), there exist a set A in A and a
set B in B such that
• µ(A) = ν(B) = 1;
• for all x ∈ A and all y ∈ B, the sequence(

1

N

N−1∑
n=0

f (T nx)g(Sny)

)
N>0

(1.1)

converges.

Note that, by Birkhoff’s Ergodic Theorem applied to the Cartesian product of the
dynamical systems T × S, we know that for µ ⊗ ν-almost all (x, y) the sequence (1.1)
converges. However, a set of full measure for the product measure does not necessarily
contain a ‘rectangle’ A× B of full measure.
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1.2. Motivation. The weak disjointness concept appears for the first time in [21] under
the name ‘propriété ergodique produit forte’. The aim was to study a well-known
open problem in pointwise ergodic theory: given two commuting measure-preserving
transformations T and S of the same probability space (X,A, µ), is it true that for any
functions f and g in L2(µ), the sequence(

1

N

N−1∑
n=0

f (T nx)g(Snx)

)
N>0

converges for µ-almost all x? (If T and S are weakly disjoint, the answer is positive.)
This weak disjointness property is also interesting to study for the following reasons.

• It defines a new invariant in the theory of metric isomorphisms of dynamical systems.
(If T and S are weakly disjoint and if T ′ is a measure theoretic factor of T , then T ′
and S are weakly disjoint.)

• It has strong links with the rich theory of joinings in ergodic theory.
• It gives an opportunity to describe an interesting variety of examples.

1.3. Brief description of the content. Let us give a few useful definitions.

Definitions. If a dynamical system is weakly disjoint from itself, we say that this
dynamical system is self-weakly disjoint. A natural generalization of the notion of weak
disjointness of a pair of dynamical systems is the notion of weak disjointness of a finite
family of dynamical systems (see the discussion at the end of §2). If k copies of a given
dynamical system are weakly disjoint, we say that this dynamical system is self-weakly
disjoint of order k. Finally a dynamical system is called universal if it is weakly disjoint
from any dynamical system.

We prove in §2 that, if T and S are disjoint, then they are weakly disjoint. This already
gives a large number of examples; below we present some others.
• It is very easy to see that every discrete spectrum dynamical system is universal.

This is still true for quasi-discrete spectrum dynamical systems (see §4.1).
• As a direct consequence of del Junco–Keane’s study of generic points in the

Cartesian square of Chacon’s dynamical system [4], we observe that Chacon’s
dynamical system is self-weakly disjoint. We prove in §4.2 that this dynamical
system is in fact universal.

• As a direct consequence of Ratner’s study of pointwise properties of unipotent
transformations (see [20] and the survey [10]), we observe that unipotent
transformations are self-weakly disjoint. We show in §4.3 that these transformations
are universal.

• On the other hand, we prove that two dynamical systems with positive entropy are
never weakly disjoint and we give several constructions of zero entropy dynamical
systems which are not self-weakly disjoint, including some systems with minimal
self-joinings (see §5).

We prove that Chacon’s dynamical system and unipotent transformations are universal
as consequences of some general results stated in §3, where we describe links between the
disjointness of dynamical systems and existence of common factors. We use the notion
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of relative disjointness of two dynamical systems and we obtain two results on weak
disjointness.
• If an ergodic dynamical system is weakly disjoint from any ergodic joining of a finite

number of copies of itself, then it is weakly disjoint from any ergodic dynamical
system.

• If an ergodic dynamical system is self-weakly disjoint of all orders then it is
universal.

Thanks to these results, it is also possible to prove that the symbolic dynamical system
associated with the Morse sequence is weakly disjoint from any ergodic dynamical system
[17]. Let us also note here that we know an example of an ergodic isometric extension of
a discrete spectrum dynamical system which is not self-weakly disjoint [17].

1.4. Questions. Let T and S be two dynamical systems. If T is ergodic and weakly
disjoint from any ergodic component of S, are T and S weakly disjoint? (We know
an example of a dynamical system which is weakly disjoint from any of its ergodic
components, but which is not self-weakly disjoint, cf. §4.4 and [17].)

If a dynamical system is self-weakly disjoint, is it necessarily universal? In this article
we give a positive answer to this question for simple dynamical systems (see §4.2).

2. Maximal inequality, disjointness and weak disjointness
The classical ergodic maximal inequality is used to show that the weak disjointness
property can be tested on dense sets of functions.

PROPOSITION 2.1. Let (X,A, µ, T ) and (Y,B, ν, S) be two dynamical systems.
A sufficient (and obviously necessary) condition for these systems to be weakly disjoint
is the following: there exist a dense subset F of L2(µ) and a dense subset G of L2(ν),
such that, for any f ∈ F and any g ∈ G, there exist a set A in A and a set B in B such
that:
• µ(A) = ν(B) = 1;
• for all x ∈ A and all y ∈ B, the sequence

(
1

N

N−1∑
n=0

f (T nx)g(Sny)

)
N>0

converges.

We say that a dynamical system (X,A, µ, T ) is regular if X is a compact metric space,
equipped with its Borel σ -algebra A, a regular probability measure µ and a continuous
transformation T . It is well known that any dynamical system is metrically isomorphic to
a regular one (see, e.g., [9]).

If E is a set and e an element of E, we denote by δ(e) the measure on E which is the
Dirac mass at point e.

Let (X,A, µ, T ) and (Y,B, ν, S) be two regular dynamical systems. The algebras
C(X) and C(Y ) of continuous functions on these spaces, equipped with the topology of
uniform convergence, are separable. Let F and G be countable dense subsets of C(X)
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and C(Y ), respectively. Using the fact that F and G are dense in, respectively, L2(µ) and
L2(ν), and the fact that the set {f ⊗ g : f ∈ F, g ∈ G} generates a dense linear subspace
of C(X × Y ), we deduce from Proposition 2.1 the following corollary.

COROLLARY 2.2. Two regular dynamical systems (X,A, µ, T ) and (Y,B, ν, S) are
weakly disjoint if and only if there exist X0 ∈ A and Y0 ∈ B such that µ(X0) = ν(Y0) = 1
and, for all (x, y) ∈ X0 × Y0, the sequence of probability measures (on X × Y )(

1

N

N−1∑
n=0

δ((T nx, Sny))

)
N>0

is weakly convergent.

In the remainder of this article we use the following notation:

�N(x, y) := 1

N

N−1∑
n=0

δ((T nx, Sny)).

Let us recall some definitions.
A joining of two dynamical systems (X,A, µ, T ) and (Y,B, ν, S) is a T × S-invariant

probability measure λ on the product space (X×Y,A⊗B) whose projections on X and Y
are µ and ν, respectively. We also use the word joining to designate the dynamical system
(X × Y,A⊗ B, λ, T × S). The product measure µ⊗ ν is always a joining.

Two dynamical systems are disjoint if the product measure is their only joining.
This notion has been introduced and studied by Furstenberg in [8].

Let (X,A, µ, T ) be a regular dynamical system. A point x in X is called (µ, T )-
generic if the sequence of probability measures

(
(1/N)

∑
n<N δ(T nx)

)
converges weakly

to µ. From the Birkhoff ergodic theorem and the separability of the space of continuous
functions on X, we deduce that, if T is ergodic, then the set X0 of generic points has
full measure. Let (X,A, µ, T ) and (Y,B, ν, S) be two ergodic regular dynamical systems
and let X0 and Y0 be the sets of generic points in each of these systems. If x ∈ X0 and
y ∈ Y0, then any weak limit point of the sequence of probabilities (�N(x, y))N>0 is a
joining of the two systems. Hence, if there is at most one joining, this sequence converges.
(Recall that on a compact metric space, the set of Borel probabilities equipped with the
topology of weak convergence is compact metrizable.)

Using the fact that any dynamical system has a regular model, we obtain the following
consequence of Corollary 2.2.

COROLLARY 2.3. If two ergodic dynamical systems are disjoint, then they are weakly
disjoint.

Proof of Proposition 2.1. We will use the ‘weak-(1, 1) ergodic maximal inequality’: for all
h ∈ L1(µ) and all ε > 0,

µ

({
x ∈ X : sup

N>0

1

N

∣∣∣∣
N−1∑
n=0

h(T nx)

∣∣∣∣ > ε

})
≤ 1

ε
‖h‖1.

Let us suppose that the condition stated in Proposition 2.1 is satisfied and consider
f ∈ L2(µ), g ∈ L2(ν). We fix a sequence (fj ) in F which converges to f in L2(µ)

and a sequence (gk) in G which converges to g in L2(ν).
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The ergodic maximal inequality implies that the sequence

sup
N>0

1

N

N−1∑
n=0

|f − fj |2 ◦ T n

goes to zero in probability when j goes to infinity. Extracting a subsequence if necessary,
we can suppose that this convergence holds almost everywhere. Similarly, we can suppose
that

lim
k→∞ sup

N>0

1

N

N−1∑
n=0

|g − gk|2 ◦ Sn = 0 ν-a.e.

There exist subsets of full measure A ⊂ X and B ⊂ Y such that, for all x ∈ A and for all
y ∈ B,

lim
j→∞ sup

N>0

1

N

N−1∑
n=0

|(f − fj )(T
nx)|2 = 0,

lim
k→∞ sup

N>0

1

N

N−1∑
n=0

|(g − gk)(S
ny)|2 = 0,

for all j, k, lim
N→∞

1

N

N−1∑
n=0

fj (T
nx)gk(S

ny) exists,

for all j, sup
N>0

1

N

N−1∑
n=0

|fj (T nx)|2 < ∞, and

sup
N>0

1

N

N−1∑
n=0

|g(Sny)|2 <∞.

Using a simple inequality of the type

|ab − cd| ≤ |(a − aj )b| + |aj (b − bk)| + |ajbk − cjdk| + |cj (dk − d)| + |(cj − c)d|,

we can write, for any positive integers L, M , j and k,

∣∣∣∣ 1

L

L−1∑
(=0

f (T (x)g(S(y)− 1

M

M−1∑
m=0

f (T mx)g(Smy)

∣∣∣∣
≤ 2 sup

N>0

∣∣∣∣ 1

N

N−1∑
n=0

(f − fj )(T
nx)g(Sny)

∣∣∣∣ + 2 sup
N>0

∣∣∣∣ 1

N

N−1∑
n=0

fj (T
nx)(g − gk)(S

ny)

∣∣∣∣
+

∣∣∣∣ 1

L

L−1∑
(=0

fj (T
(x)gk(S

(y)− 1

M

M−1∑
m=0

fj (T
mx)gk(S

my)

∣∣∣∣.
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We choose x ∈ A and y ∈ B. The last term of the preceding sum goes to zero when L and
M go to infinity. Using the Cauchy–Schwarz inequality, we obtain

lim sup
L,M→∞

∣∣∣∣ 1

L

L−1∑
(=0

f (T (x)g(S(y)− 1

M

M−1∑
m=0

f (T mx)g(Smy)

∣∣∣∣
≤ 2

(
sup
N>0

1

N

N−1∑
n=0

|(f − fj )(T
nx)|2

)1/2(
sup
N>0

1

N

N−1∑
n=0

|g(Sny)|2
)1/2

+ 2

(
sup
N>0

1

N

N−1∑
n=0

|fj (T nx)|2
)1/2(

sup
N>0

1

N

N−1∑
n=0

|(g − gk)(S
ny)|2

)1/2

.

Because of the conditions given on A and B, this quantity can be made arbitrarily small
for well-chosen j and k. The Cauchy criteria gives the desired conclusion. ✷

The definition of the weak disjointness of a finite family of k (≥3) dynamical systems
is a straightforward generalization of the definition in the introduction, except that we have
to take functions in Lk of each probability space in order to have a natural use of Hölder’s
inequality and the proper extension of Proposition 2.1. Of course, in the case of regular
dynamical systems, the characterization given by Corollary 2.2 extends straightforwardly
to the case of more than two systems.

3. Common factors and relative disjointness
3.1. Some facts about factors and joinings. A joining of a countable family of
dynamical systems is a measure on the Cartesian product of these spaces, whose marginals
are the given measures and which is invariant under the product transformation.

A factor of a dynamical system (Y,B, ν, S) is a sub-σ -algebra F of B which is stable
under S, i.e. which satisfies, for any F ∈ F , S−1F ∈ F . Let (X,A, µ, T ) and (Y,B, ν, S)
be two dynamical systems and F be a factor of S. We say that F is a common factor of S
and T if there exists a joining λ of T and S such that

{∅,X} ⊗F ⊂ A⊗ {∅, Y } mod λ.

(If C and D are two sub-σ -algebras of A⊗ B, we write ‘C ⊂ D mod λ’ if, for any C in C,
there exists D in D such that λ(C�D) = 0. We write ‘C = D mod λ’ if ‘C ⊂ D mod λ’
and ‘D ⊂ C mod λ’.)

Note that if F is a common factor of S and T , then there exists a sub-σ -algebra G of A
such that

{∅,X} ⊗F = G ⊗ {∅, Y } mod λ.

We say that the joining λ identifies the σ -algebras F and G.
Let F be a common factor of S and T . Let λ be a joining and G be a σ -algebra as above.

The relatively independent joining of T and S over F is the joining denoted by µ ⊗F ν

and defined by

(µ⊗F ν)(A× B) :=
∫
X×Y

Pµ[A|G](x)Pν[B|F ](y) dλ(x, y),

for A ∈ A and B ∈ B.
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Note that, since the two σ -algebras F and G are identified by the joining λ, we can
identify the restriction ρ of ν to F with the restriction of µ to G. Using these identifications
we write

(µ⊗F ν)(A× B) =
∫

Pµ[A|F ]Pν[B|F ] dρ.
This formula shows that the relatively independent joining over the common factor does
not depend on the choice of the joining λ.

This notion of relatively independent joining of two dynamical systems over a common
factor can be extended in a straightforward way to the case of a countable family of
dynamical systems.

With this construction of relatively independent joining, it is clear that if two dynamical
systems have a common non-trivial factor, then they are not disjoint. The reverse is known
to be false [23] but we have the following result, which can be found in [14].

THEOREM 3.1. If the dynamical systems T and S are not disjoint, then S has a non-trivial
common factor with a joining of a countable family of copies of T .

We give a sketch of a proof of this theorem which will be used in the rest of this
article. Let λ be a joining of S and T , distinct from the product measure. We consider
the relatively independent joining of a countable family of copies of the dynamical system
(Y ×X,B⊗A, λ, S × T ) over their common factor (Y,B, ν, S). This joining is naturally
seen as the probability λ∞ on the space Y×XN, which is invariant under the transformation
S × T × T × T × · · · , and which is defined by

λ∞(B ×A0 ×A1 × · · · ×Ak ×X×X× · · · ) =
∫
B

Pλ[A0|B]Pλ[A1|B] · · ·Pλ[Ak|B] dν,

for B ∈ B and A0, A1, . . . , Ak ∈ A. This probability λ∞ is invariant under the shift
transformation on each y-fiber, (y, x0, x1, x2, . . . ) �→ (y, x1, x2, x3, . . . ), and on each
fiber it is like a product measure. A relative version of the Kolmogorov 0–1 law
([14, Lemma 9]) gives us that, modulo λ∞, the σ -algebra of shift-invariant events
coincides with B ⊗ {∅,XN}.

Consider now a bounded measurable function f on X, and denote f1(y, x) := f (x),
f∞(y, (xk)) := f (x0) for y ∈ Y , x ∈ X and (xk) ∈ XN. Applying the Birkhoff Ergo-
dic Theorem in the dynamical system (Y × XN, λ∞, shift) we obtain, for λ∞-almost all
(y, (xk)),

lim
n→∞

1

n

n−1∑
k=0

f (xk) = Eλ∞[f∞|B ⊗ {∅,XN}] = Eλ[f1|B ⊗ {∅,X}].

Since the joining λ is not the product measure, we can choose f such that the function
Eλ[f1|B ⊗ {∅,X}] is not constant modulo λ. The factor of S generated by this function
is not trivial and can be identified, modulo λ∞, to a factor of a joining of countably many
copies of T .

3.2. T -factors and relative disjointness. If (X,A, µ, T ) and (Y,B, ν, S) are two
dynamical systems, we call a T -factor of S any common factor of S with a joining of
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countably many copies of T . Theorem 3.1 says that if S and T are not disjoint, then S

has a non-trivial T -factor. In fact, the proof of this theorem gives a more precise result:
for any joining λ of S and T , for any bounded measurable function f on X, the factor
of S generated by the function Eλ[f (x)|B] (:= Eλ[f1|B ⊗ {∅,X}]) is a T -factor of S.
This allows us to give the following extension of the previous theorem.

THEOREM 3.2. Given two dynamical systems (X,A, µ, T ) and (Y,B, ν, S), there exists
a maximal T -factor of S, denoted by FT .

Under any joining λ of T and S, the σ -algebras A ⊗ {∅, Y } and {∅,X} ⊗ B are
conditionally independent given the σ -algebra {∅,X} ⊗ FT .

We can say that T and S are relatively disjoint over the maximal T -factor of S.
The proof of the theorem is based on the two following lemmas.

LEMMA 3.3. Let (Bi)i∈I be a countable family of events in B, such that for all i there
exists a T -factor Fi of S containing Bi . Then there exists a T -factor of S containing all
the Bi .

Proof. For each i ∈ I , we have a joining λi of S with a countable family (Ti,n)n∈N of
copies of T , such that Fi ⊂ ⊗

n∈NAi,n mod λi . Let us denote by Zi the dynamical
system defined by λi and by λ the relatively independent joining of all the Zi , i ∈ I ,
over their common factor S. We can view λ as a joining of S with the countable family
(Ti,n)(i,n)∈I×N and, for each i, we have

Fi ⊂
⊗

(i,n)∈I×N
Ai,n mod λ.

We conclude that the factor of S generated by all the Fi is a T -factor, which certainly
contains all the Bi . ✷

LEMMA 3.4. Let F be a factor of S. If there exists a joining λ of T and S under which the
σ -algebras A⊗{∅, Y } and {∅,X}⊗B are not conditionally independent given {∅,X}⊗F ,
then there exists a T -factor F ′ of S, not contained in F .

Proof. The hypothesis of the lemma implies the existence of a bounded measurable
function f on X such that, on a set of positive ν-measure,

Eλ[f (x)|B] �= Eλ[f (x)|F ].
The factor F ′ of S generated by the function Eλ[f (x)|B] is not contained in F . However,
we saw in the proof of Theorem 3.1 that F ′ is a T -factor. ✷

Proof of Theorem 3.2. In order to prove the existence of a maximal T -factor, we define

FT := {B ∈ B : B belongs to a T -factor of S},
and we claim that it is a T -factor. Since (Y,B, ν) is a Lebesgue space, the σ -algebra B
equipped with the metric d(B,C) := ν(B�C) is separable (of course, we identify subsets
B and C of Y when ν(B�C) = 0). There exists a countable family (Bi)i∈I dense in FT ,
and, thanks to Lemma 3.3, there exists a T -factor F containing all the Bi . By density, we
have FT ⊂ F , but, since FT contains all the T -factors, we have FT = F . This proves
the first assertion of Theorem 3.2. The second is just the application of Lemma 3.4 to this
factor F = FT . ✷
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3.3. T -factors and weak disjointness.

THEOREM 3.5. If an ergodic dynamical system T is weakly disjoint from any ergodic
joining of a finite family of copies of itself, then it is weakly disjoint from any other ergodic
dynamical system S.

This theorem can be applied for example to the dynamical system associated with the
Morse sequence (see §4.4).

Proof. Let (X,A, µ, T ) be an ergodic dynamical system weakly disjoint from any ergodic
joining of a finite family of copies of itself. We observe that this system is also weakly
disjoint from any ergodic joining of a countable family of copies of itself, since on XN

equipped with any measure λ the set of those f in L2(λ) which depend only on finitely
many coordinates is dense in L2(λ), so we can use Proposition 2.1.

We choose a regular model for the dynamical system T and we consider another ergodic
regular dynamical system (Y,B, ν, S). We denote byFT the maximal T -factor of S. We fix
a countable dense set D of continuous functions on Y and, for each g ∈ D, we fix a version
of the conditional expectation E[g|FT ]. FT is also a factor of a countable joining τ of T .
Since FT is ergodic (because it is a factor of S), it is also a factor of almost every ergodic
component of τ and, since T is ergodic, almost every ergodic component of τ is a joining
of T . Hence FT is a factor of an ergodic countable joining of T . Weak-disjointness passes
to factors, so FT is weakly disjoint from T . Then there exist sets of full measure X0 and
Y0 of generic points in each of the dynamical systems such that, for any f ∈ C(X) and any
g ∈ D, for all x ∈ X0 and all y ∈ Y0, the sequence(

1

N

∑
n<N

f (T nx)E[g|FT ](Sny)
)

(3.1)

converges.

Let x ∈ X0 and y ∈ Y0. Let λ and λ′ be two weak limit values of the sequence of
probabilities

�N(x, y) = 1

N

∑
n<N

δ((T nx, Sny)). (3.2)

From (3.1) we deduce that the measures λ and λ′ coincide on the σ -algebra A ⊗ FT .
By the genericity condition, both of these measures are joinings of T and S; hence, by
Theorem 3.2, the σ -algebrasA⊗{∅, Y } and {∅,X}⊗B are conditionally independent given
the σ -algebra {∅,X} ⊗ FT . We claim that this implies that λ = λ′ and this is sufficient
to establish the convergence of (3.2) and the weak disjointness of T and S. The claim
can be justified by the following basic lemma, applied to 1 = X × Y , α = A ⊗ {∅, Y },
β = {∅,X} ⊗ B and γ = {∅,X} ⊗ FT . The proof of this lemma is left to the reader. ✷

LEMMA 3.6. Let 1 be a set and α, β, γ be three σ -algebras of subsets of 1. Let λ and λ′
be two probability measures on (1, α ∨ β ∨ γ ). If λ and λ′ coincide on α ∨ γ and β ∨ γ ,
and if under each of these two measures α and β are conditionally independent given γ ,
then λ and λ′ coincide on α ∨ β.
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We do not know if, under the hypothesis of Theorem 3.5, it is possible to conclude
that T is universal (that is to say if it is possible to remove the ergodicity condition on S).
In order to get around this difficulty, we introduce a stronger hypothesis on T .

It is clear from our preceding discussions that a regular system (X,A, µ, T ) is self-
weakly disjoint of order k ≥ 2 if and only if there exists X0 ∈ A, of full measure, such
that, for any (x1, x2, . . . , xk) ∈ X0

k , the sequence of probabilities

�N(x1, x2, . . . , xk) := 1

N

N−1∑
n=0

δ((T nx1, T
nx2, . . . , T

nxk))

converges weakly on the space Xk .

THEOREM 3.7. If an ergodic dynamical system is self-weakly disjoint of all orders, then
it is universal.

This theorem will be applied to Chacon’s dynamical system (§4.2) and to unipotent
transformations (§4.3).

We will use the following lemma.

LEMMA 3.8. If T and S are two continuous transformations of the compact metric spaces
X and Y , and if X0 is a Borel subset of X, then the set

CX0 := {y ∈ Y : ∀x ∈ X0, (�N(x, y)) converges}
is universally measurable in Y .

Proof. The complement of CX0 in Y is the projection of the set

{(x, y) ∈ X0 × Y : (�N(x, y)) does not converge}
onto Y . This set is a Borel subset of X×Y and its projection onto Y is analytic in Y , hence
universally measurable (see, e.g., [12]). ✷

Proof of Theorem 3.7. We consider an ergodic regular system (X,A, µ, T ), self-weakly
disjoint of all orders. There exists a Borel subset X0 of X, with µ(X0) = 1, such that,
for k ≥ 2 and x1, x2, . . . , xk ∈ X0, the sequence (�N(x1, x2, . . . , xk)) converges. We can
also suppose that all points in X0 are generic in the dynamical system. For any joining λ

of k copies of T , we have λ(X0
k) = 1. This implies that T is weakly disjoint from any

joining of countably many copies of T . We have even more: for any joining (Z, C, λ,U)
of countably many copies of T , there exists a subset Z0 of Z of full measure such that the
sequence (�N(x, z)) converges for all x ∈ X0 and all z ∈ Z0. Following the proof of
Theorem 3.5, this means that our set X0 will work for any choice of the ergodic dynamical
system S.

Now let (Y,B, ν, S) be any dynamical system, not necessarily ergodic. We write

ν =
∫
ES
η dP (η),

the ergodic decomposition of ν, where P is a probability measure on the set ES of
S-invariant ergodic probability measures on Y . For η ∈ ES , there exists Yη of full
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ν-measure in Y such that, for all x ∈ X0 and all y ∈ Yη, the sequence (�N(x, y))

converges. However, Lemma 3.8 tells us that the set

Y0 := {y ∈ Y : ∀x ∈ X0, (�N(x, y)) converges}
is ν-measurable. Since we have η(Y0) = 1 for all η ∈ ES , we conclude that ν(Y0) = 1,
which implies that T and S are weakly disjoint. ✷

4. Examples of weak disjointness

4.1. Quasi-discrete spectrum dynamical systems. Let (X,A, µ, T ) be a discrete
spectrum dynamical system. The family of T -eigenfunctions in L2(µ) generates a dense
linear subspace of L2(µ). Let f be a T -eigenfunction; there exists λ ∈ C such that
f ◦ T = λf . Let (Y,B, ν, S) be another dynamical system and g ∈ L2(ν). The Birkhoff
Ergodic Theorem applied to the product of the systems gives us that, for µ⊗ ν-almost all
(x, y), the sequence

f (x)
1

N

N−1∑
n=0

λng(Sny) = 1

N

N−1∑
n=0

f (T nx)g(Sny)

converges. However, the convergence does not depend on x. Thus we have that
for ν-almost all y and for all x, the sequence (1.1) converges. By density and by
Proposition 2.1, this implies that T and S are weakly disjoint. We have proved that any
discrete spectrum dynamical system is universal.

This argument can be extended to quasi-discrete spectrum dynamical systems; that is
to say, dynamical systems in which the generalized eigenfunctions, in the sense of [11],
generate a dense linear subspace of L2.

Let us recall this definition more precisely. Let (X,A, µ, T ) be a dynamical system.
We denote by E0 the set of constant complex functions and we define by induction an
increasing sequence (Ek)k≥0, of subsets of L2(µ) by

Ek+1 := {f ∈ L2(µ) : f ◦ T = g · f, with g ∈ Ek, |g| = 1}.
We say that T has quasi-discrete spectrum if

⋃
k≥0 Ek generates a dense linear subspace

of L2(µ).

PROPOSITION 4.1. Any quasi-discrete spectrum dynamical system is universal.

Proof. By Proposition 2.1, it is enough to study the convergence of (1.1) when f belongs to
one of the Ek . If f ∈ Ek, then f (T nx) = f (x) exp(iRx(n)) where Rx is a real polynomial
depending on the point x. The conclusion follows from the following result, which can be
found in [15]. ✷

PROPOSITION. Let (Y,B, ν, S) be a dynamical system. For all g ∈ L1(ν), for ν-almost
all y, for all real polynomial P and all continuous periodic real function φ on R, the
sequence ((1/N)

∑
n<N φ(P (n))g(Sny)) converges.
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4.2. Chacon’s transformation. The Chacon dynamical system is a well-known example
of a weakly mixing but not mixing system. We denote by (X,A, µ, T ) an invertible regular
version of this system. From the result proved in [4], we directly deduce the existence of a
subset X0 of full measure in X such that every point in X0 is generic and such that, for all
x and y in X0, either there exist p ∈ Z such that T px = y, or �N(x, y) −→ µ⊗µ, when
N → ∞. Of course, if x is generic and if T px = y, then �N(x, y) goes to the image
under Id×T p of the diagonal measure on X2.

Therefore this dynamical system is self-weakly disjoint. In fact, we have more.

PROPOSITION 4.2. The Chacon dynamical system is universal.

Proof. By Theorem 3.7, it is sufficient to prove that the Chacon dynamical system is self-
weakly disjoint of all orders.

Let k be an integer greater than or equal to 2 and x1, x2, . . . , xk in X0. Let λ and λ′ be
two limit values of the sequence (�N(x1, x2, . . . , xk)).

Since every point in X0 is generic, λ and λ′ are two joinings of k copies of T . Since for
all (x, y) ∈ (X0)

2 the sequence (�N(x, y)) converges, the restrictions of λ and λ′ to any
sub-σ -algebra generated by two coordinates always coincide. (These restrictions are either
the product measure µ ⊗ µ, or of the form <p, where <p(A × B) := µ(A ∩ T −pB).)
However, we know that Chacon’s dynamical system has minimal self-joinings of all orders
[5] and we conclude that λ = λ′. This proves that the system is self-weakly disjoint of all
orders. ✷

In fact, the proof of Theorem 3.7 shows that, in order to prove that an ergodic dynamical
system T is universal, it is enough to prove the existence of X0 ⊂ X, of full µ-measure,
such that, for any integer k ≥ 1 and any ergodic joining λ of k copies of T , there exists
Y0 ⊂ Xk , of full λ-measure such that, for all x ∈ X0 and all y ∈ Y0, the sequence
(�N(x, y)) converges. This remark allows us to extend the preceding argument to all
simple dynamical systems.

Let us recall that an ergodic dynamical system (X,A, µ, T ) is simple (see [6] or [24])
if, for any positive integer k and any ergodic joining λ of k copies of T , say T1, T2, . . . , Tk ,
the index set {1, 2, . . . , k} can be divided into subsets E1, E2, . . . , Er with the following
properties:
• if i and j are two indices in the same subset El , then the σ -algebras Ai and Aj are

identified by λ;
• if we choose an element il of each subset El , the σ -algebras Ai1 , . . . ,Air are

independent under λ.
This implies that the dynamical system (Xk,A⊗k, λ, T ×k) is isomorphic to the rth
Cartesian power of (X,A, µ, T ).
PROPOSITION 4.3. If a dynamical system is simple and weakly disjoint from itself, then it
is universal.

Proof. Let (X,A, µ, T ) be a simple dynamical system, weakly disjoint from itself.
Thanks to this last property and the ergodicity of T , there exists X0 ⊂ X of full
measure such that any point in X0 is generic and such that, for all (x, y) ∈ (X0)

2, the
sequence (�N(x, y)) converges. Let γ be an ergodic joining of finitely many copies of T .
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Because of the simplicity of T , we can suppose that γ is the product measure µ⊗r on Xr .
By the ergodicity of γ , there exists Y0 ⊂ (X0)

r , with γ (Y0) = 1, such that, for all
(x1, x2, . . . , xr) ∈ Y0, �N(x1, x2, . . . , xr) −→ µ⊗r .

Let x ∈ X0 and (x1, x2, . . . , xr) ∈ Y0. We want to prove that the sequence
(�N(x, x1, x2, . . . , xr )) has at most one limit point. This will prove that T is weakly
disjoint from any ergodic joining of a finite number of copies of itself and the conclusion
will follow from Theorem 3.7 and the remark above.

Let λ and λ′ be two limit points of the sequence (�N(x, x1, x2, . . . , xr )). For each i

between 1 and r , the points x and xi are in X0, hence

λ|A⊗Ai
= λ′|A⊗Ai

. (4.1)

From the choice of Y0, we deduce that

λ|A1⊗···⊗Ar
= λ′|A1⊗···⊗Ar

= µ⊗r . (4.2)

All the points x and xi being generic, the measures λ and λ′ are joinings of r + 1 copies
of T . Since T is simple, we can write their ergodic decomposition

λ = αµ⊗ µ⊗r + (1 − α)

∫
J

η dP (η) (4.3)

λ′ = α′µ⊗ µ⊗r + (1 − α′)
∫
J

η dP ′(η), (4.4)

where α and α′ are real numbers between 0 and 1, and P , P ′ are two probabilities on the
space J of ergodic (r + 1)-joinings η of T such that:
• η|A1⊗···⊗Ar

= µ⊗r ;
• there exists a unique i ∈ {1, 2, . . . , r} such that A = Ai mod η.
For i ∈ {1, 2, . . . , r}, let us denote Ji := {η ∈ J : A = Ai mod η}; the sets Ji form a
partition of J . A restriction of (4.3) to the σ -algebra A⊗Ai gives

λ|A⊗Ai
= (α + (1 − α)P (J \ Ji))µ⊗ µ+ (1 − α)

∫
Ji

η|A⊗Ai
dP (η). (4.5)

From (4.1), (4.5) and the unicity of the ergodic decomposition, we deduce that

(1 − α)

∫
Ji

η|A⊗Ai
dP (η) = (1 − α′)

∫
Ji

η|A⊗Ai
dP ′(η). (4.6)

However, a probability η ∈ Ji is uniquely determined by its restriction to A⊗Ai , so (4.6)
implies that

(1 − α)

∫
Ji

η dP (η) = (1 − α′)
∫
Ji

η dP ′(η).

If there exists i such that P(Ji) > 0, then we obtain successively α = α′, P = P ′ and
λ = λ′. If, for all i, P(Ji ) = 0, then λ = µ⊗(r+1) and

λ′|A⊗Ai
= λ|A⊗Ai

= µ⊗ µ;
since T is simple, this gives λ′ = µ⊗(r+1). In all cases we conclude that the limit value of
the sequence (�N(x, x1, x2, . . . , xr )) is unique. ✷
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4.3. Unipotent transformations. We refer to the survey [10] for an introduction to this
subject.

Let G be a connected Lie group and A its Lie algebra. Let @ be a lattice in G, i.e. a
discrete subgroup of G such that the homogeneous space G/@ has finite Haar volume.
Any element g of G is associated with its adjoint Ad(g), which is a linear operator of A.
The element g is called unipotent if Ad(g) only has 1 as its eigenvalue. Any g in G

is associated with a dynamical system, which is the translation (on the left) by g on the
homogeneous space G/@. This dynamical system is denoted by (G,@, g). This system is
called a unipotent transformation if g is unipotent.

One well-known example is the horocycle transformation on a Riemannian surface of
curvature −1, which can be represented by the translation by

g =
(

1 1
0 1

)

on the quotient of the group G = SL(2,R) by a lattice @.
The following theorem is due to Ratner [20].

RATNER’S THEOREM. Let (G,@, g) be a unipotent transformation. In this dynamical
system, every element is generic for a measure (which may depend on the
element). Equivalently, for every x ∈ G/@, the sequence of probability measures(
(1/N)

∑N−1
n=0 δ(gnx)

)
is weakly convergent.

The class of unipotent transformations is stable under Cartesian products. Thus, by a
direct application of Ratner’s Theorem, we observe that any unipotent transformation is
self-weakly disjoint of all orders. Then using Theorem 3.7, we obtain the following result.

PROPOSITION 4.4. Any ergodic unipotent transformation is universal.

4.4. The dynamical system associated with the Morse sequence. In this section we
present another example. We announce results that will be described and proved in detail
in [17].

The Morse (or Prouhet–Thue–Morse) sequence u = (un)n≥0 is the sequence of zeroes
and ones inductively defined by u0 = 0, u2n = un and u2n+1 = 1 − un. It admits
many other simple descriptions and serves as a typical example for various objects, in
combinatorics, number theory, symbolic dynamics and geometry. For some historical
comments and a large list of references, refer to [19].

We consider the space {0, 1}N of 0–1 sequences equipped with the product topology
and the shift transformation θ . The closure of the orbit of u under θ in this compact space
is denoted by K:

K := {(un+k)n≥0 : k ≥ 0}.
K is the compact set of all sequences of zeroes and ones whose words are words from the
Morse sequence. It is known that there exists on K , equipped with its Borel σ -algebra,
a unique θ -invariant probability measure, that we denote by µ. The dynamical system
(K,µ, θ) is ergodic and every point is generic. We call this system the Morse dynamical
system. Many things are known on the ergodic and spectral properties of the Morse
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dynamical system. Note that it can be described as a two-point extension of the dyadic
odometer (see, e.g., [16]).

Relating to the weak disjointness property, we have the following results [17].
1. For every continuous function f on the cube K3 the sequence

(
1

N

N−1∑
n=0

f ◦ (θ × θ × θ)n
)

is everywhere convergent. Consequently, the Morse dynamical system is self-weakly
disjoint of order 3 (and hence of order 2).

2. If A is any measurable subset of µ ⊗ µ positive measure in K2, there exist two
elements ((an), (bn)) and ((cn), (dn)) in A such that the sequence

(
1

N

N−1∑
n=0

(−1)an+bn+cn+dn
)

does not converge. Consequently the Cartesian square of the Morse dynamical
system is not self-weakly disjoint. In particular, the Morse dynamical system is not
self-weakly disjoint of order 4 (and hence of any order greater than or equal to 4).

3. Denote by M2 the Cartesian square of the Morse dynamical system. Almost every
ergodic component of M2 is weakly disjoint from M2. Consequently, almost every
pair of ergodic components of M2 is a pair of weakly disjoint dynamical systems.
However some of these ergodic components are not self-weakly disjoint.

4. The Morse dynamical system is weakly disjoint from any ergodic joining of finitely
many copies of itself. By Theorem 3.5, this implies that the Morse dynamical system
is weakly disjoint from any other ergodic dynamical system.

5. Examples of lack of weak disjointness
The following proposition gives a way of showing that two dynamical systems are not
weakly disjoint.

PROPOSITION 5.1. Let (X,A, µ, T ) and (Y,B, ν, S) be two dynamical systems. If there
exist f ∈ L2(µ), g ∈ L2(ν) and a measurable map ϕ from X into Y such that ϕ∗µ ! ν

and

µ

{
x ∈ X : the sequence

(
1

N

N−1∑
n=0

f (T nx)g(Snϕ(x))

)
does not converge

}
> 0,

then T and S are not weakly disjoint.

Proof. The proof is straightforward: if A ∈ A and B ∈ B are such that the averages (1.1)
converge for all x ∈ A and all y ∈ B, then µ(A∩ ϕ−1(B)) < 1; if furthermore µ(A) = 1,
this implies that µ(ϕ−1(B)) < 1, hence ν(B) < 1. ✷

5.1. Positive entropy.

PROPOSITION 5.2. Two dynamical systems of positive entropy are never weakly disjoint.
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Let p ∈ (0, 1/2]. We consider the space Z = {−1, 0, 1}N of sequences on the three
letters −1, 0 and 1. We equip this space with the product measure π = (p, 1 − 2p,p)⊗N
and with the shift transformation θ . The dynamical system (Z, π, θ) is a Bernoulli shift of
entropy 2p lnp + (1 − 2p) ln(1 − 2p) which can be fixed arbitrarily small by choosing p
small enough.

LEMMA 5.3. The dynamical system (Z, π, θ) is not self-weakly disjoint.

Proof. We define a transformation ϕ of Z by the following rule: if z = (zn)n≥0 ∈ Z then
ϕ(z) = (z′n)n≥0 is given by

z′n =
{
zn if 2( ≤ n < 2(+1 with ( even,

−zn if 2( ≤ n < 2(+1 with ( odd.

The map ϕ preserves the product measure π . The sequence (znz
′
n) takes, alternatively,

the values 1 or 0 and the values −1 or 0 in the successive dyadic blocks of indices.
Moreover the asymptotic frequency of non-zero terms in this sequence is given by the
large law of large numbers: for π-almost all z this frequency is equal to 2p > 0. Then it is
easy to see that the sequence (

1

N

N−1∑
n=0

znz
′
n

)

diverges almost everywhere. We can apply Proposition 5.1 to the function f (z) = g(z) =
z0 and we have proved Lemma 5.3. ✷

Proof of Proposition 5.2. By a classical theorem of Sinai, we know that if T is a dynamical
system of entropy h > 0, then any Bernoulli shift of entropy less than or equal to h is a
factor of T . If T and S have positive entropies and if p is small enough, then the dynamical
system (Z, π, θ) is a common factor of T and S. Because the weak-disjointness goes to
factors, Lemma 5.3 directly gives the Proposition. ✷

We have already cited an example for a zero entropy dynamical system which is not self-
weakly disjoint—the Cartesian square of the Morse system. This system is not ergodic. Let
us present now three types of constructions of ergodic examples. The two first mimic the
Bernoulli case. The third gives a great variety of rank one transformations.

5.2. A cutting and stacking procedure. Here is an abstract of what we want to describe:
we consider a cutting and stacking construction of the Bernoulli shift. After each step
of this construction we add a new step, just by cutting each tower into two equal pieces
and stacking these two pieces. This destroys the entropy but stays close enough to the
Bernoulli case. This construction is inspired by a process described in [22]. Let us go into
some detail.

We consider the Bernoulli scheme on two letters, with uniform probability. Let us
recall the cutting and stacking construction of this dynamical system. At the first stage, we
have two intervals (towers of height 1) of the same size, labelled by 0 and 1, respectively.
Then we cut each of these intervals into four parts of equal sizes, that we pairwise
stack in order to obtain four towers of height 2, associated with the labels (0, 0), (0, 1),
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(1, 0) and (1, 1). This gives the second stage. At stage n, we have 22n−1
towers of height

2n−1, all with the same size. We cut each of these towers into 22n−1+1 parts. These new
towers are pairwise stacked, to obtain 22n towers of height 2n, which are labelled by all the
elements of {0, 1}2n . Our space is the union of the intervals at the beginning. Each point of
the space is uniquely determined by the bilateral sequence of zeroes and ones that can be
read above and below it in the tower where it appears. The transformation only consists of
climbing one level in the tower. Via this 0–1 coding, this dynamical system is exactly the
( 1

2 ,
1
2 ) Bernoulli scheme.

Now we follow the preceding procedure, but we insert between each stage a simple
cutting and stacking of each individual tower of our scheme. (A simple cutting and stacking
of a tower consists in stacking two halfs of the tower.) So at the first stage, we have two
towers of height 2, with labels (0, 0) and (1, 1). At the second stage we have four towers
of height 8, with labels 08, (0212)2, (1202)2 and 18. At stage n, we have 22n−1

towers of
height 22n−1.

This procedure defines a measure-preserving dynamical system which can be described
as a shift invariant probability measure µ on the space 1 := {0, 1}N.

This system has zero entropy. Indeed, if we denote by an the number of words
of length 4n which appear with positive µ-measure, it is not difficult to verify that
an+1 ≤ 22n+1an

3; hence we have lim 4−n ln an = 0.

Let us prove that this dynamical system is not self-weakly disjoint. Because of the
repetition of simple cutting and stacking of towers of height 22k, almost all sequences of
our system can be described as an initial word of length less than 22k+1 followed by a
sequence of words of length 22k+1, each of them being a concatenation of two identical
words of length 22k; for µ-almost all ω = (ω(i))i≥0 ∈ 1, for all k ≥ 0, there exists an
integer j = j (k, ω) between 0 and 22k+1 − 1 which marks the initial place of the repeated
blocks of length 22k. More precisely, for all n ≥ 0 and for all i with 0 ≤ i < 22k, we have

ω(i + j + n22k+1) = ω(i + 22k + j + n22k+1).

The repetition of independent choices of (longer and longer) words ensures that, almost
surely, for each k, the integer j is unique. We call the finite sequence (ω(i + j +
n22k+1))0≤i<22k+1 the (n, k)-word of the sequence ω. This word is the concatenation of
two identical words of length 22k.

Given n, k > 0, the transformation of 1 which consists of changing all the letters of
the (n, k)-word and only these ones is an (almost-everywhere defined) involution which
preserves the probability measure µ. More generally, if ((n(, k())(≥0 is a sequence of pairs
of positive integers such that n(22k(+1 −→ ∞ when ( → ∞, then the transformation of
1 which consists of successively changing the letters of all the (n(, k()-words is almost-
everywhere well defined and measure preserving.

Let us consider an increasing sequence (k() of positive integers which goes to infinity
quickly enough (to be made precise later). We denote by ϕ the transformation of 1 which
consists of changing the letters of the (1, k()-words. Note that the (1, k)-word always
begins after the index 22k+1 and that it ends before the index 3 × 22k+1. Hence, if
3 × 22k(−1+1 ≤ i < 22k(+1, then ωi = (ϕ(ω))i . Consequently, if kl is large enough
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with respect to k(−1, then

2−(2k(+1)
∑

i<22k(+1

(−1)ωi+(ϕ(ω))i > 1
2 .

On the other hand, since ωi = 1 − (ϕ(ω))i for the indices i of the (1, k()-word, we have

3−1 × 2−(2k(+1)
∑

i<3×22k(+1

(−1)ωi+(ϕ(ω))i ≤ 1
3 .

The sequence (
1

n

∑
i<n

(−1)ωi+(ϕ(ω))i
)

does not converge, and the proof is finished by Proposition 5.1.

5.3. A skew-product construction. Let (X,A, µ, T ) be an ergodic dynamical system
and a : X → Z a measurable map such that:
(1) there does not exist b : X → Z, measurable, such that, for µ-almost every x,

a(x) = b(T x)− b(x);
(2) for µ-almost every x, there exists n > 0 such that

∑n−1
k=0 a(T

kx) = 0.
Let us denote (1, ν, θ) the two-sided Bernoulli scheme: 1 = {0, 1}Z, ν is the uniform

product measure (1/2, 1/2)⊗Z and θ is the shift. We consider the transformation Ta of the
space X ×1 defined by

Ta(x, ω) := (T x, θa(x)ω).

This transformation preserves the product measure µ⊗ ν.

PROPOSITION 5.4. The dynamical system (X×1,µ⊗ ν, Ta) is not self-weakly disjoint.
If (X,µ, T ) has zero entropy, then (X ×1,µ⊗ ν, Ta) has zero entropy.

Note that condition (2) is satisfied as soon as the function a is integrable and has zero
integral (cf. [2] or [3]). Furthermore, it is a simple consequence of the Rokhlin Lemma and
Baire Theorem that, as soon as the dynamical system (X,µ, T ) is aperiodic, there exist
(a lot of) integrable functions, with zero mean, satisfying condition (1) (see for example
the first theorem in [18]).

As usual, we write a(n)(x) := ∑n−1
k=0 a(T

kx).

LEMMA 5.5. For µ-almost every x ∈ X and for all t ∈ Z,

lim
N→∞

1

N

N−1∑
n=0

1{t}(a(n)(x)) = 0.

Proof. The existence of the limit is a consequence of the ergodic theorem. Let us fix ε > 0
and define

E(x) :=
{
t ∈ Z : lim

N→∞
1

N

N−1∑
n=0

1{t}(a(n)(x)) > ε

}

This set is finite and, if it is not empty, then we have

max(E(T x)) = max(E(x))− a(x).

Using condition (1) we obtain that, almost surely, E(x) = ∅. ✷
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Proof of Proposition 5.4. For each x ∈ X, satisfying the property described in Lemma 5.5,
we are going to define a transformation ϕx of 1. We construct, in a measurable way and
by induction, an increasing sequence of non-negative integers (Nk)k≥0 such that N0 = 0
and if

Ek := {a(n)(x) : 0 ≤ n ≤ Nk}, then
1

Nk+1

Nk+1∑
i=1

1Ek (a
(i)(x)) <

1

10
.

If ω = (ω(n))n∈Z ∈ 1, we pose

(ϕx(ω))(n) =



ω(n) if n ≤ 0,

1 − ω(n) if n ∈ Ek+1 \Ek with k even,

ω(n) if n ∈ Ek+1 \Ek with k odd.

For any ω ∈ 1, the sequence

(
1

N

N−1∑
n=0

(−1)ω(a
n(x))+ϕx(ω)(an(x))

)

does not converge.
Now we define a transformation ϕ of X ×1 by

ϕ(x, ω) = (x, ϕx(ω))

and we consider the function f defined on X ×1 by f (x, ω) = (−1)ω(0).
The transformation ϕ preserves the product measure µ⊗ ν and the sequence

(
1

N

N−1∑
n=0

f (Ta
n(x, ω))f (Ta

n(ϕ(x, ω)))

)

does not converge. Using Proposition 5.1, we conclude that Ta is not self-weakly disjoint.
Let us now quickly show why the recurrence hypothesis (2) implies that Ta has zero

entropy as soon as T has.
Let A, B be measurable subsets of X and 1, respectively. We suppose that T has zero

entropy and we choose A such that the partition {A,Ac} is a generator for the action of T
on X. Such sets A form a dense class in the σ -algebra A. We denote by C the σ -algebra
of subsets of X × 1 generated by (Ta

−n({A,Ac} ⊗ {B,Bc}), n > 0). In order to prove
that Ta has zero entropy, it is sufficient to show that the partition {A,Ac} ⊗ {B,Bc} is
C-measurable. We have A⊗ {∅,1} ⊂ C. By hypothesis (2), we can write A = ⋃

n>0 An

(mod µ), where a(n)(x) = 0 for x ∈ An. For each n > 0, the event (x ∈ An and
Ta

n(x, y) ∈ X × B) belongs to C. However, this event is equal to An × B. We conclude
that A× B ∈ C, which gives {A,Ac} ⊗ {B,Bc} ⊂ C.

5.4. Rank one constructions. We now describe a method of construction of rank one
dynamical systems that are not self-weakly disjoint. This method is flexible enough to
give us weakly mixing rigid examples as well as strongly mixing examples.
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5.4.1. Reminder of the cutting and stacking construction of rank one dynamical systems.
Let us recall the general method of rank one system construction. At the first stage we
consider an indexed family of h1 ≥ 2 real disjoint intervals of the same length denoted
B1, T B1, . . . , T

h1−1B1. Such a family is called a tower of base B1 and height h1.
The intervals T kB1 are the levels of the tower. At this stage, the transformation T is
defined on

⋃
0≤k≤h1−2 T

kB1 by the fact that it sends T kB1 onto T k+1B1 by translation.
The transformation T is not defined on T h1−1B1.

Stage n of the construction is given by a tower (Bn, T Bn, . . . , T
hn−1Bn), of base Bn

and height hn, called tower n.
Let us now describe how we go from tower n to tower n + 1. This transition is para-

metrized by natural integers pn ≥ 2 and an,i ≥ 0, 1 ≤ i ≤ pn. We cut the base Bn

in pn intervals In,i , 1 ≤ i ≤ pn, of the same length. The base of tower n + 1 is
Bn+1 := In,1. The levels T kBn+1, 1 ≤ k ≤ hn−1 are the subintervals of levels T kBn given
by the definition of T at stage n. Then we consider an,1 intervals S1, . . . , San,1 with the
same length as Bn+1, pairwise disjoint and disjoint from any of the intervals used before.
These new intervals are called the spacers. For 1 ≤ j ≤ an,1, we pose

T hn+j−1Bn+1 := Sj .

Then we come back into Bn by posing T hn+an,1Bn+1 := In,2. We repeat this procedure
starting from In,2, adding this time an,2 spacers before coming back onto In,3, and so on
until T hn−1In,pn , above which we add an,pn spacers.

Tower n + 1 so defined contains pn slices of tower n, called the n-blocks, which are
the towers In,i , T In,i , . . . , T hn−1In,i . Between these blocks, an,1 + · · ·+ an,pn spacers are
inserted (see Figure 1). The height is

hn+1 = pnhn + an,1 + · · · + an,pn ,

and the definition of the transformation T , on all the last levels of tower n+1, is compatible
with the definition at the preceding stage.

Given the initial height h1 and parameters pn and an,i (n ≥ 1, 1 ≤ i ≤ pn) it is always
possible to construct an infinite sequence of towers. Let us denote by X the union of all
intervals which appear in the construction. Under the condition∑

n≥1

an,1 + · · · + an,pn

pnhn
< +∞, (5.1)

the Lebesgue measure of X is finite and, changing the length of B1 if necessary, we can
suppose that the measure of X is 1. In the following condition (5.1) is supposed to be
satisfied. The transformation T is almost everywhere defined on X and it preserves the
measure: we obtain what is called a rank one dynamical system. Such a system is always
ergodic.

We call transition n the transition from tower n to tower n+ 1.
Let us give a few more useful definitions. If T iBn and T jBn are two levels of tower n,

where i and j are between 0 and hn − 1, we call the height difference in tower n between
these levels the number

dn(T
iBn, T

jBn) := j − i.

https://doi.org/10.1017/S0143385702001505 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385702001505


Weak disjointness of measure-preserving dynamical systems 1193

..

.
..
.

..

.

a
n,1

a
n,2

a
n,pn

..

.

..

.

..

.

..

.

h  −1
T     Bn

...
spacers

Tower n

n −blocks

B

Tower n+1

n

Bn

T        B
h     −1n+1

n+1

n+1

FIGURE 1. From tower n to tower n+ 1.

If x and y are two points belonging to the levels T iBn and T jBn, respectively, we similarly
define the height difference in tower n between x and y by

dn(x, y) := dn(T
iBn, T

jBn) = j − i.

Finally, we denote by µn the measure of the union of the levels of tower n. The sequence
(µn) increases and tends to 1 as n → ∞.

5.4.2. Classical examples. Using different choices for the parameters pn and an,i , we
obtain dynamical systems with various properties, going from discrete spectrum to strong
mixing. Let us now give three classical examples of transitions. We use these examples in
the following.

The flat transition. This transition is the simplest that we can imagine: all an,i are zero,
and we add no spacer. In the first and simplest example of a rank one dynamical system,
the von Neumann–Kakutani transformation, all the transitions are flat and pn = 2 for all n.

It is not difficult to verify that if in the rank one construction there are flat transitions
with pn arbitrarily large, then the dynamical system is rigid.
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Chacon’s transition. In the construction of Chacon’s transformation the transition n is
described for all n by pn = 3, an,1 = an,3 = 0 and an,2 = 1: there is only one spacer and
it is put on the middle column. We give the name of Chacon to this transition. Chacon’s
transformation is weakly mixing but not strongly mixing.

More generally, if in the rank one construction there are infinitely many Chacon’s
transitions, then the dynamical system is weakly mixing and not strongly mixing (see, for
example, [7]).

Staircase transition. The transition n is called a staircase transition if an,i = i − 1, for
1 ≤ i ≤ pn. This transition is the key of the techniques we want to describe.

Adams [1] has shown that if a rank one dynamical system is constructed with staircase
transitions at each step, if limn→∞ pn = +∞ and limn→∞ pn/n

d = 0 for some d > 0,
then the system is strongly mixing.

5.4.3. Construction of a rank one dynamical system which is not self-weakly disjoint.
We want to simultaneously describe the construction of a rank one system following the
method described in §5.4.1 and a measure-preserving transformation ϕ of X, such that, for
almost all x, the sequence

mN(x) := 1

N

N−1∑
k=0

1B1(T
kx)1B1(T

kϕ(x))

does not converge. By Proposition 5.1, such a system is not self-weakly disjoint. We obtain
ϕ as the limit of a sequence (ϕn), where, for each n, ϕn is a permutation of the levels of
tower n. The permutations ϕn must satisfy the following compatibility condition: if En+1

is a level of tower n+ 1 contained in the level En of tower n, then ϕn+1(En+1) ⊂ ϕn(En).
Under this condition the limit ϕ is well defined and measure preserving.

As for the transition from one tower to the next, there exist several methods to construct
ϕn+1 starting from ϕn. We will describe three of these methods and their properties
relatively to the averages mN .

Method 1: the simplest. If the permutation ϕn of the levels of tower n is given, the
simplest method to define ϕn+1 compatible with ϕn is to let each of the n-blocks globally
invariant by ϕn+1, and each of the spacers fixed. Let us denote

γn := max
En

|dn(En, ϕn(En))|.

If we define ϕn+1 starting from ϕn and using method 1, we have γn+1 = γn.

Method 2: to glue T kx and T kϕ(x). This method can be used only if the transition n is
of staircase type. Let En be a level of tower n and d := |dn(En, ϕn(En))|. Let En+1 be
a level of tower n + 1 contained in En. For ϕn+1(En+1), we choose the piece of ϕn(En)

which is shifted d columns to the left (respectively to the right), if ϕn(En) stands below
(respectively above) En in tower n. If this shift is impossible because En+1 is in the first d
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the staircase
After going through

)

FIGURE 2. How to glue T kx and T kϕ(x) together.

or in the last d n-blocks, the shift is calculated modulo pn. When En+1 is a level of tower
n + 1 which is contained in none of the levels of tower n (that is to say, when En+1 is a
spacer), we pose ϕn+1(En+1) := En+1.

Let x be a point of level En+1 which is not a spacer and which is neither in the first γn
n-blocks, nor in the last γn n-blocks. After going through the staircase, the points T kx and
T kϕ(x) come back simultaneously inBn and together climb tower n (see Figure 2). For the
hn indices between k and 2hn+pn−1 which correspond to this first complete climbing, we
have 1B1(T

kx) = 1B1(T
kϕ(x)). Denoting by bn the number of indices k ∈ {0, . . . , hn−1}

such that T kBn ⊂ B1, we have

m2hn+pn(x) ≥
hn

2hn + pn

bn

hn
. (5.2)

We remark that the measure of the set of points x for which this inequality is not satisfied
is bounded by 1 − µn + 2γn/pn. We also remark that

bn/hn = µ(B1)/µn −→ µ(B1),

when n → ∞ and
pn − 1

hn
≤ 1 − µn.

Hence the term on the right-hand side of (5.2) is close to µ(B1)/2 when µn is close to 1.

Method 3: mixing. As in the preceding method, we only consider staircase transitions
here. If En+1 is a level of tower n + 1 contained in the level En of tower n, we choose
ϕn+1(En+1) in ϕn(En) by shifting one column on the left. As in Method 2, we calculate
the shift modulo pn when En+1 is in the first n-block and we let the spacers be fixed under
ϕn+1.
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FIGURE 3. How to decorrelate T kx and T kϕ(x).

Let r be a positive integer and x ∈ En+1 ⊂ En, where En and En+1 are levels of
tower n and tower n+1, respectively. In particular, x is not in a spacer of the preceding step.
We suppose also that x does not belong to the first or the last (r+1) n-blocks. The measure
of the set of points excluded by these conditions is bounded by 1 − µn + (r + 2)/pn.
Let d := dn(En, ϕn(En)). After going through the staircase once, the height difference
between T kx and T kϕ(x) in tower n becomes d + 1; after going through the staircase j
times, it becomes d + j (1 ≤ j ≤ r), see Figure 3.

When k goes from 0 to (r + 1)(hn + pn) − 1, the point T kx climbs tower n (at least)
r times. Denote by G the union of all the levels of tower n, except the first γn ones
and the last r + γn ones, and denote by J the set of the r(hn − r − 2γn) indices
k ∈ {0, . . . , (r + 1)(hn + pn) − 1} which correspond to the times of the first r climbings
of T kx in G. We have

1

|J |
∑
k∈J

1B1(T
kx)1B1(T

kϕ(x)) = r

|J |µ(Bn)

∫
G

1B1(y)

(
1

r

r∑
j=1

1B1(T
d+j y)

)
dµ(y).

(5.3)
Since

|J |
(r + 1)(hn + pn)

= r

r + 1

hn − r − 2γn
hn + pn

,

the term on the left-hand side of (5.3) is a good approximation of m(r+1)(hn+pn)(x) if the
number r is big enough and if hn is big enough with respect to (pn + γn + r). Adding to
these conditions the fact that µn is close to 1, the term on the right-hand side of (5.3) is
close to

Id,r :=
∫
X

1B1(x)

(
1

r

r∑
j=1

1B1(T
d+jx)

)
dµ(x).

By the ergodicity of T , the sequence (1/r)
∑r

j=1 1B1(T
jx) goes to µ(B1) in probability

and we see that, if r is big enough (independently of d), Id,r is close to µ(B1)
2.
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5.4.4. Results. These three methods for the construction of permutations ϕn give us
sufficient conditions for a rank one dynamical system not to be self-weakly disjoint.

THEOREM 5.6. Let T be a rank one dynamical system constructed as in §5.4.1. If, for all
integers M , there exists an integer n such that the transition n is of staircase type with a
number of steps pn > M , then T is not self-weakly disjoint.

Proof. Since there is an infinity of staircase transitions in the construction of T , it is
possible to construct a sequence of permutations (ϕn) using Methods 2 and 3 infinitely
often. Let us describe more precisely the inductive construction of (ϕn). We pose
n0 := 0 and we choose ϕ1 arbitrarily. Suppose that ϕ1, . . . , ϕnk+1 are already constructed.
By hypothesis, there exists n′k ≥ nk+1 such that the transition n′k is of staircase type, with
pn′k > 2kγnk+1 and µn′k > 1 − 2−k. We construct ϕnk+2, . . . , ϕn′k always using Method 1
to keep the value of γn constant, and then we construct ϕn′k+1 by Method 2.

Afterwards we consider an integer rk > 2k such that, for all d , |Irk,d − µ(B1)
2| < 2−k

(this is satisfied by any large enough rk). Let nk+1 be the first integer larger than n′k + 1
such that the transition nk+1 is of staircase type, with pnk+1 > 2krk and hnk+1 >

2k(γn′k+1 + rk + pnk+1). We construct ϕn′k+2, . . . , ϕnk+1 by Method 1, then ϕnk+1+1 by
Method 3.

If we repeat this procedure, the transformation ϕ defined as the limit of the sequence
(ϕn) is such that, for µ-almost every x,

lim sup
N→∞

mN(x) ≥ 1
2µ(B1),

and
lim inf
N→∞ mN(x) ≤ µ(B1)

2.

Since µ(B1) < 1/2, this proves that T is not self-weakly disjoint. ✷

COROLLARY 5.7. There exist strongly mixing rank one dynamical systems which are not
self-weakly disjoint. There exist also weakly mixing and rigid rank one dynamical systems
which are not self-weakly disjoint.

Proof. The mixing rank one systems described in [1] satisfy the hypothesis of Theorem 5.6.
We can also construct rank one systems with an infinity of flat transitions, giving

rigidity, an infinity of Chacon’s transitions, giving weak mixing, and an infinity of staircase
transitions, with pn going to +∞, so that Theorem 5.6 applies. ✷

COROLLARY 5.8. There exist dynamical systems with minimal self-joinings which are not
self-weakly disjoint.

Indeed, any mixing rank one system has minimal self-joinings (see [13]).
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