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The precessing vortex core (PVC) is a coherent structure that can arise in swirling
jets from a global instability. In this work, the PVC is investigated under highly
turbulent conditions. The goal is to characterize the receptivity of the PVC to active
flow control, both theoretically and experimentally. Based on stereoscopic particle
image velocimetry and surface pressure measurements, the experimental studies
are facilitated by Fourier decomposition and proper orthogonal decomposition. The
frequency and the mode shape of the PVC are extracted and a very good agreement
with the theoretical prediction by global linear stability analysis (LSA) is found. By
employing an adjoint LSA, it is found that the PVC is particularly receptive inside the
duct upstream of the swirling jet. Open-loop zero-net-mass-flux actuation is applied
at different axial positions inside the duct with the goal of frequency synchronization
of the PVC. The actuation is shown to have the strongest effect close to the exit
of the duct. There, frequency synchronization is reached primarily through direct
mode-to-mode interaction. Applying the actuation farther upstream, synchronization
is only achieved by a modification of the mean flow that manipulates the swirl
number. These experimental observations match qualitatively well with the theoretical
receptivity derived from adjoint LSA. Although the process of synchronization is very
complex, it is concluded that adjoint LSA based on mean-field theory sufficiently
predicts regions of high and low receptivity. Furthermore, the adjoint framework
promises to be a valuable tool for finding ideal locations for flow control applications.

Key words: flow control, instability, jets

1. Introduction
Turbulent swirling flows undergoing vortex breakdown have a wide range of

application in engineering flows. Amongst others, they occur on delta wings at high
angle of attack (Peckham & Atkinson 1957), they are exploited for aerodynamically
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stabilizing the reaction zone of lean premixed flames in combustion chambers of
modern gas turbines (Syred & Beer 1974), and they emerge in hydro turbines at
off-design conditions (Nishi et al. 1980).

Vortex breakdown is often accompanied by a strong coherent structure, which is
known as the precessing vortex core (PVC). It is characterized by a single-helical
vortex that winds around the vortex breakdown bubble in the downstream direction,
thereby oscillating at a well-defined precession frequency.

The PVC may be a desired structure or it may be detrimental to the purpose of
the application. In combustion systems, the PVC has been investigated in numerous
studies. The PVC may alter the flame stability and dynamics (Stöhr et al. 2012, 2017;
Oberleithner, Paschereit & Wygnanski 2014), it may couple with thermoacoustic
instabilities (Moeck et al. 2012; Ghani et al. 2016; Terhaar et al. 2016) or it may
influence the mixing of fuel and air (Stöhr, Arndt & Meier 2015; Terhaar, Krüger
& Paschereit 2015). So far, only qualitative trends on these different phenomena
could be determined, and the quantitative impact of the PVC is still unclear. The
question remains whether the PVC can be used in a beneficial way to reduce pollutant
emissions or increase flame stability. Hydropower is another important application
where the PVC plays a crucial role. It occurs in the outflow of Francis turbines
running at part load. Several studies confirm that the PVC, also known as the
part-load vortex rope, may couple with the hydroacoustics of the pipe system and
induce severe pressure pulsations that hinder the safe operation of the hydropower
plant (Pasche, Avellan & Gallaire 2017). This results in low turbine flexibility and
small operational range, severely affecting the usability of hydro turbines, which are
increasingly used to balance the transient natural fluctuations of renewable energy
sources such as wind and solar power (see e.g. Dörfler, Sick & Coutu (2012)).
Hence, from an application point of view, the PVC is an important fluid-dynamical
phenomenon that needs to be controlled in an effective manner. For this purpose it is
vital to understand how the PVC is generated, what the mechanisms of manipulation
are, and how control is most effectively achieved.

In recent years the fundamental understanding of the origin of the PVC has
substantially increased. Based on experimental studies, Liang & Maxworthy (2005)
were among the first to demonstrate that the PVC is the manifestation of a global
hydrodynamic instability that occurs from a supercritical Hopf bifurcation. They
further suggested that this global mode is triggered by a region of absolute instability
enclosed in the vortex breakdown bubble. Further evidence of this hypothesis was
provided by the direct numerical simulations of laminar vortex breakdown conducted
by Ruith et al. (2003) and the subsequent local spatio-temporal stability analysis
conducted by Gallaire et al. (2006). An extension to turbulent vortex breakdown was
provided by Oberleithner et al. (2011), where the stability analysis was applied to the
turbulent mean flow. Rukes et al. (2015) extended this study to a wider swirl number
range. Despite some differences regarding the detailed mechanisms driving the PVC,
all these studies indicate that the recirculation bubble induced by vortex breakdown
at strong swirl levels is the main requirement for the formation of the PVC that is
directly linked to absolute and global instability.

In recent years, local and global linear stability analysis (LSA) performed on
the time-averaged mean flow turned out to be a very useful approach to study
the formation of the PVC in turbulent flows. Within the framework of the local
LSA, Chomaz (2005) derived a frequency selection criterion for linear global
modes in spatially developing flows, under the assumption of a parallel or weakly
non-parallel flow. This criterion was extended to nonlinear steep global modes by
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Pier & Huerre (2001). Considering a laminar base-flow solution of the axisymmetric
vortex breakdown bubble, Gallaire et al. (2006) showed that the nonlinear criterion
enables one to reproduce the oscillation frequency of a PVC determined from a
direct numerical simulation. They concluded that the PVC spiral instability is the
manifestation of a nonlinear steep global mode that arises in the wake of the
breakdown bubble. Qadri, Mistry & Juniper (2013) computed the structural sensitivity
of the same base flow based on a global framework and concluded that the linear
global mode that is selected upstream of the breakdown bubble is more influential.
Oberleithner et al. (2011) utilized the local LSA on experimental data of a turbulent
swirling jet and found good agreement between the spatial modes obtained by local
LSA and the modes obtained by proper orthogonal decomposition (POD). In follow-up
studies related to turbulent flows, it was shown that an eddy viscosity closure is
crucial to correctly predict the PVC frequency and mode structure (Oberleithner et al.
2014; Rukes, Paschereit & Oberleithner 2016). To clarify the discussion about the
selection mechanism that applies to the PVC, Rukes et al. (2015) conducted transient
experiments and tracked the wavemaker location as a function of swirl number. In
agreement with Qadri et al. (2013), they determined the PVC to be selected at a
position shortly upstream of the breakdown bubble.

Abandoning the parallel flow assumption, which is not rigorously justified for
swirling flows, the global LSA requires much higher computational cost. As these
demands are increasingly met, global LSA has found a wider application in recent
decades (Theofilis 2011). Based on experimental data, Paredes et al. (2016) were
able to reproduce the global mode shapes downstream of the mixing section of a
combustor with global LSA. Tammisola & Juniper (2016) as well as Kaiser, Poinsot
& Oberleithner (2018) followed in demonstrating the applicability and validity of
global LSA on highly turbulent flows with a dominating PVC instability. Overall, the
excellent match between global mean-flow eigenmodes and the PVC structure clearly
confirms that the PVC is indeed the manifestation of a global mode, which can be
very well determined from global and local stability analysis based on the mean of
the fully turbulent flow. Inconsistency remains with regard to the mechanisms that
generate the PVC, which is related either to nonlinear mechanisms in the wake of
the vortex breakdown bubble or to linear mechanisms upstream of the bubble.

Within the framework of the global LSA, the adjoint mean flow and the adjoint
modes have become the focus of interest in understanding the driving mechanisms
and guiding future control strategies. They have been used by Giannetti & Luchini
(2007), Marquet, Sipp & Jacquin (2008), Meliga, Pujals & Serre (2012) and Meliga,
Boujo & Gallaire (2016a) in the context of wake flow vortex shedding of different
cylinder geometries to investigate the impact of passive flow control devices on
the frequency of the shedding or its suppression. They validated their results using
experimental data from Strykowski & Sreenivasan (1990), Parezanović & Cadot
(2012) and Meliga et al. (2016a), and showed that primarily the adjoint mean flow
can be contemplated for estimating the impact of these devices. Higher values in the
adjoint corresponded to greater changes in the modal structure when a very small
solid body was placed at this particular location. The results imply that the impact of
a passive control device essentially acts through a steady forcing of the mean flow,
which in turn changes the modes. Specifically considering active control measures,
Magri & Juniper (2014) used the adjoint modes to investigate a simple numerical
thermoacoustic system comprising a diffusion flame to find regions of the flame
that are most receptive to open-loop, i.e. unsteady and periodic, forcing. Regarding
the PVC, Qadri et al. (2013) considered the laminar base-flow solution of vortex
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breakdown and determined the maximum structural sensitivity to be located between
the domain inlet and the breakdown bubble. The same configuration was later used by
Pasche, Gallaire & Avellan (2018) to develop predictive control based on the adjoint
of the global mode. They found that axial air injection along the jet centreline may
effectively suppress the PVC, which is in line with experiments conducted in swirl
combustors (Terhaar et al. 2013) and hydro turbines (Kirschner et al. 2010).

An open question with regard to the modelling of the PVC concerns the correct
treatment of the domain boundary upstream of the vortex breakdown. Some works
demonstrate that this region is crucial for the formation of the PVC. Tammisola
& Juniper (2016) conducted direct numerical simulations of a fuel injector system
and determined the PVC to be also located inside the fuel injector. Moreover, they
showed that the receptivity to open-loop forcing reaches far upstream of the injector.
Kaiser et al. (2018) calculated the adjoint modes of the PVC in a more complex swirl
injector geometry based on large-eddy simulations. Within their study, regions of high
receptivity were also found inside the injector. Overall, the adjoint modes reveal the
importance of the upstream region for the generation of the PVC and, additionally,
identify the best location for its control. Inconsistency between different studies
related to the PVC formation may, therefore, stem from the different treatments
of the upstream boundary conditions or from different placement of the domain
boundaries.

Owing to the high relevance of the PVC for technical applications, several control
methods have been employed. Within the scope of hydropower, passive control
methods succeeded to suppress the instability by reducing the swirl intensity but
they are only applicable for a very narrow operational regime and create additional
undesirable hydraulic losses (Kurokawa, Imamura & Choi 2010). The most effective
active control solution uses constant water or air injection to suppress the PVC.
Experiments, however, show that the suppression requires more than 10 % of the
total main-flow discharge, which implies an unacceptably large loss of the turbine
efficiency (Kirschner et al. 2010). For combustion applications, the PVC may be
controlled via axial air injection (Terhaar et al. 2015), acoustic forcing (Terhaar et al.
2016) or through modification of the flame shape (Oberleithner et al. 2015). In all
cases, suppression of the PVC was achieved through modification of the mean-flow
field, as justified a posteriori by LSA. Another recent control approach is tailored
to suppress the instability by phase-opposition control (Kuhn et al. 2016). Active
control was exerted by a thin actuator lance placed at the jet centreline. The actuator
was traversed in the axial direction and the receptivity of the PVC to the forcing
was determined from lock-in experiments. The study indicated the highest receptivity
upstream of the vortex breakdown bubble, but ambiguities remained due to the passive
influence of the actuator on the PVC frequency. In a consecutive study, the same
control method was employed to control the PVC in a swirl combustor (Lückoff et al.
2018, 2019). It was found that both axial and radial actuation close to the combustor
inlet were highly efficient.

As demonstrated by this brief review, the control of the PVC is, on the one hand,
subject to research due to its high relevance for different technical applications and,
on the other hand, poses significant fundamental questions on the analysis and control
of coherent structures in turbulent flows based on global linear stability theory.

In this work, we address two central questions: firstly, we investigate where the
PVC is most receptive to open-loop forcing within a fully turbulent flow. In contrast
to previous work, we focus our attention on the flow region far upstream of the
vortex breakdown bubble, which is expected to be most influential for the formation
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of the PVC, as indicated by previous studies (Kuhn et al. 2016; Tammisola & Juniper
2016; Kaiser et al. 2018; Lückoff et al. 2018). Moreover, we validate the receptivity
maps using active flow control, which directly leads to the second, more fundamental,
question posed in this work: To what extent can the adjoint global mode based on the
mean of a highly turbulent flow be used to guide and interpret flow control? Inspired
by the work of Meliga, Cadot & Serre (2016b), we directly compare the results from
flow control to the adjoint global modes. In an extension to their work, we consider
experimental data of a highly three-dimensional flow and the impact of active flow
control. Such a set-up provokes significant interactions between the applied actuation,
the global mode and the mean flow.

To answer both of these open questions, detailed experimental measurements are
conducted in a generic turbulent swirling jet set-up and an upstream inflow duct
of constant cross-section, similar to the set-up of Kuhn et al. (2016). In relation
to combustion research, the geometry resembles a generic combustion chamber,
including a generic mixing section (the duct). In order to experimentally validate the
receptivity determined from the adjoint LSA, zero-net-mass-flux (ZNMF) actuation is
employed inside the duct at different axial locations. The required forcing input for
synchronization of the actuation and the PVC then quantifies the receptivity of the
PVC at the selected actuator positions. The experimental results are compared to the
results of the adjoint LSA. In addition, a thorough study of the physical mechanisms
leading to synchronization is conducted.

The present paper is structured as follows. First, the experimental methods
and set-up are introduced. Then, the flow at natural, non-forced conditions is
examined in detail, including a global direct and adjoint LSA. The results of the
mean-flow analyses are discussed. Subsequently, the impact of open-loop forcing and
synchronization are evaluated and compared to the results of the adjoint LSA. In
the conclusion, key observations and findings are summarized and the results are
critically reviewed.

2. Experimental methods
In this section, the experimental set-up of the swirling jet facility, including the

ZNMF actuator, is presented. Furthermore, the utilized measurement techniques are
explained.

A sketch of the overall experimental set-up is shown in figure 1 in a sectional view.
The swirling flow is depicted moving from bottom to top. The swirl is introduced
upstream of the nozzle by radial vanes with continuously adjustable vane angles
(further details may be found in Kuhn et al. (2016)). Downstream of the swirler, the
flow passes through the nozzle with an area contraction ratio of 9 : 1 and then enters
a duct of constant diameter D = 51 mm and of length L = 153 mm, which equals
three duct diameters. The flow then exits the duct and emanates into unconfined
ambient air. The exit plane is bordered by an endplate.

The used coordinate system originates at the intersection of the exit plane with the
duct axis. The x-coordinate coincides with the jet axis and is positive in the main-flow
direction with the y- and z-coordinates being orthogonal. In this study, the Cartesian
coordinates y and z are used interchangeably with the cylindrical coordinates r (radius)
and θ (azimuth). The duct represents the generic mixing section of a combustor for
premixed combustion, while the area downstream of the duct corresponds to the flow
field inside a combustion chamber.

All experiments are conducted for three different mass flow rates of ṁ = 37.5,
50 and 75 kg h−1. These correspond to Reynolds numbers of Re = u0D/ν = 15 000,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1063


888 A3-6 J. S. Müller and others

SPIV domain,
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FIGURE 1. Experimental set-up, sectional view, with stereoscopic particle image
velocimetry domains and actuator position xa/D=−2 (not to scale).

20 000 and 30 000 based on the bulk velocity u0 = ṁ/(ρπD2/4) at the duct exit.
A constant swirl number was ensured for all three non-forced cases. The swirl
number is defined as the ratio of axial flux of azimuthal momentum Gθ to the axial
flux of axial momentum Gx according to Chigier & Beer (1964):

S=
Gθ

D/2Gx
, (2.1)

with

Gθ =

∫
∞

0
uwr2 dr, (2.2)

Gx =

∫
∞

0
(u2
−w2/2)r dr. (2.3)

The swirl number S in (2.1) is calculated close to the duct exit from x/D= 0.05 to
0.15 and the values are then averaged, obtaining a swirl number of S = 1.18. This
corresponds to vane angles of µ = 64.4◦, 63◦ and 62◦ for the respective Reynolds
numbers, which was verified by preliminary laser Doppler velocimetry measurements.

The critical swirl number for the PVC to occur was determined for Re= 15 000. In
general, it is difficult to precisely determine the bifurcation point in highly turbulent
conditions, as is the case here. Intermittency of the PVC is treated as an indicator
that the flow is at least very close to the bifurcation point, since the oscillations are
then likely to be merely noise-driven only (Noiray & Schuermans 2013). Based on
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Camera no. 1

Pressure taps

Duct exit

Laser sheet

Optics

Camera no. 2

0.75D 0.25D

0.25D

y
z

FIGURE 2. Experimental set-up, top view showing endplate, with pressure tap positions,
laser sheet and camera arrangement (not to scale).

this notion, the critical swirl number is estimated as follows: stereoscopic particle
image velocimetry (SPIV) and pressure measurements are conducted for a range of
different vane angles between µ = 64.4◦ and 51.4◦ in steps of 1◦. For every case,
the swirl number is calculated as just described above in (2.1). Additionally, a short-
time Fourier transform in time is conducted on the recorded pressure signals for the
azimuthal wavenumber m= 1 with a rectangular window with a size of 1 s. Below the
critical swirl number, the PVC occurs only intermittently and the short-time Fourier
spectra are characterized by the disappearance and reappearance of a dominant peak.
Above the critical swirl number, the PVC is present over the entire length of the
measurement (10 s) and the peak appears to be steady at one frequency.

All three components of the velocity field are captured by SPIV, for the xa/D=−2
configuration inside and downstream of the duct, and for xa/D = −0.5 only
downstream of the duct. This allows for the characterization of the non-forced
flow field in general and the forced flow field for these particular actuator positions.
A Quantel EverGreen double-pulse Nd:YAG laser with a wavelength of 532 nm and
light sheet optics is used to generate a laser sheet of approximately 2 mm thickness.
Two PCO 2000 charge-coupled device cameras in forward scattering configuration
are used for image recording, as illustrated in figure 2. A total number of N = 1000
double images per measurement are recorded at a sampling frequency of 5.89 Hz.
The SPIV measurements are not time-resolved with regard to the PVC. The pulse
distances are set according to the respective resulting out-of-plane velocities, which
depend on the Reynolds number. Flow seeding is achieved with an aerosol of liquid
diethylhexyl sebacate. The snapshots with a resolution of 2048 pixels × 2048 pixels
are post-processed with PIVTEC PIVview. The images are de-warped with the aid of
a multi-level calibration target (Willert 1997), including disparity correction (Wieneke
2005). Standard digital particle image velocimetry (PIV) processing (Willert & Gharib
1991) with an iterative multigrid cross-correlation scheme (Soria 1996), a final window
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size of 32 pixels × 32 pixels, a window overlap of 50 % and a subpixel peak fit are
employed.

The SPIV domains are separated into an external domain downstream of the duct
and an internal domain inside the duct, as shown in figure 1. The two domains are
not recorded simultaneously. For the internal domain, the light sheet is introduced
from the downstream direction of the duct exit plane. Owing to reflections in the
actuator plane, the effectively resolved internal SPIV domain only reaches upstream
to x/D≈−1.75. Furthermore, there is an unresolved section between the internal and
external domains due to the finite thickness of the endplate ranging from x/D≈−0.08
to 0. For the mean flow, the separated domains are merged by linearly interpolating
the unresolved section. In the case of the POD modes, a similar approach is performed
by calculating the modes for each domain separately, then matching their phases and
finally linearly interpolating between the modes. Owing to the rather large extent of
both SPIV domains, the resulting camera resolution is insufficient to accurately capture
the boundary layers. The missing velocities very close to the walls are therefore
extrapolated from the resolved domains onto a no-slip condition u= v=w= 0 on the
walls.

The natural frequency of the PVC is extracted via time-resolved pressure
measurements at a sampling rate of 50 kHz, obtained through pressure taps on
the endplate. They are arranged concentrically around the duct exit, as displayed
in figure 2. The differential pressure sensors connected to the taps can resolve
pressure fluctuations as small as 0.1 Pa. The fluctuating parts of the jth sensors,
p′j(t)= pj(t)− pj, are decomposed into azimuthal Fourier modes with

P̂m(t)=
4∑

j=1

p′j(t)e
−ijm2π/4, (2.4)

where m = 0, 1 and 2 refer to the azimuthal wavenumbers, which can be resolved
with a total of four sensors per circumference. The modes are then transformed into a
power spectrum with Welch’s method (Welch 1967) combined with a Hann windowed
sliding average at 50 % overlap. To obtain the instantaneous phase angle of the PVC,
the time signal of azimuthal mode m= 1, i.e. P̂1(t), is filtered first with a Butterworth
bandpass filter of order 20. The filtered signal is then used to calculate the phase angle
via

ϕPVC(t)= arctan

(
Im(P̂1(t)|filt)

Re(P̂1(t)|filt)

)
. (2.5)

2.1. Open-loop control and synchronization studies
The PVC is a self-excited oscillator. The oscillatory motion is nearly harmonic with a
characteristic natural frequency. When the system is harmonically perturbed or forced
by open-loop control, a phenomenon called frequency synchronization may occur
where the system stops oscillating at its natural frequency and starts to oscillate at
the forcing frequency instead. For this, the forcing frequency needs to be sufficiently
close to the natural frequency of the system, and the forcing amplitude needs to be
of sufficient magnitude. In this work, only 1 : 1 forced synchronizations are of interest.
This means that the PVC and the forcing are unidirectionally coupled oscillators: the
forcing influences the PVC, but not vice versa; and the synchronized frequency of
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FIGURE 3. Experimental set-up, top view, cross-section of actuator plane (not to scale).

the PVC is equal to the forcing frequency instead of a (reciprocal) integer multiple
of the forcing frequency (Balanov et al. 2008).

In order to force the PVC with the goal of reaching synchronization, eight ZNMF
actuation units are used, capable of exciting azimuthal modes of m= 0 to ±4. Each
unit consists of one loudspeaker with a rated input power of 15 W connected by small
channels to the duct, as sketched in figure 3. Each stroke period of the speaker creates
a ZNMF jet at the slot exit of the actuator channel with a rectangular cross-section
of 1 mm× 22 mm. Addressing each speaker with a different phase lag at a specific
time allows periodic excitation. The actuation is applied at the azimuthal wavenumber
of m= 1, equal to the azimuthal wavenumber of the PVC. The input actuation signal
Ak of speaker k is, therefore, given by

Ak = Af sin
(

2π

[
ff t+

k− 1
8

])
, (2.6)

with Af being the forcing amplitude and ff being the forcing frequency.
All speakers are calibrated at no-flow conditions with a microphone placed at

r = 0 in the actuation plane for the relevant frequency range in order to produce
repeatable sound pressure levels. Moreover, preliminary hot-wire measurements at
no-flow conditions show that the transfer function of input voltage to output peak
velocity is linear within the utilized frequency and amplitude ranges. Nonetheless, the
amplitudes in the actuation experiments are still given in terms of voltage since the
peak velocities at no-flow conditions are likely to be overestimated compared to flow
conditions, thus not being directly proportional. Therefore, forcing and synchronization
amplitudes are simply quantified by the input voltage of the speakers.

Five actuation positions are tested for the open-loop control studies. Measured from
the exit plane of the duct, these are xa/D=−2, −1.5, −1, −0.75 and −0.5. Actuation
is applied within the range of ±10 % of the natural frequency. The maximum
frequency increments are ±2.5 % fn or lower between the selected forcing frequencies
ff . One of these five actuation positions is exemplarily illustrated in figure 1. The
experimental parameters are summarized in table 1.
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ṁ (kg h−1) u0 (m s−1) Re µ (deg.) S xa/D

37.5 4.3 15 000 64.4 1.18
}
−2, −1.5,

50 5.7 20 000 63 1.18 −1, −0.75,
75 8.6 30 000 62 1.18 −0.5

TABLE 1. Overview of experimental parameters.

A viable criterion as to whether synchronization has been reached can be defined
by considering the phase angle difference 1ϕ between the instantaneous phase of the
PVC, ϕPVC, and the phase of the forcing, ϕf :

1ϕ = ϕPVC − ϕf +1ϕ0, (2.7)

with 1ϕ0 as the initial phase difference at t = 0, arbitrarily set to 1ϕ0 = 0 here.
Synchronization is established when

1ϕ ≈ 0, for t→∞, (2.8)

i.e. when the PVC and forcing frequency are approximately equal for the time of
measurement of 10 s. Exact equality is not possible in this highly turbulent set-up.
The forcing amplitude where synchronization is reached is called the ‘synchronization
amplitude’.

3. Theoretical methods
The theoretical methods employed in this work are explained in this section. On

the one hand, POD is used to extract the PVC as an empirical mode directly from
the time series of the velocity fields. On the other hand, global direct LSA is used to
calculate the eigenmode of the PVC from the mean flow. Furthermore, global adjoint
LSA is employed in order to characterize the receptivity and structural sensitivity of
the PVC.

One common method to describe coherent structures is the triple decomposition
technique (Reynolds & Hussain 1972):

q(x, t)= q(x)+ q̃(x, t)+ q′′(x, t), (3.1)

where q is an arbitrary space- and time-dependent quantity of the flow, q is the time
average or mean part, q̃ is the coherent fluctuation part (time average subtracted
from phase average) and q′′ is the stochastic fluctuation part. By that, the triple
decomposition is basically a refined version of the Reynolds decomposition where
all turbulent fluctuations are absorbed into a single fluctuation part q′ = q̃ + q′′.
The coherent part quantifies all those structures in the turbulence spectrum that are
periodic in time and space.

3.1. Empirical modes by proper orthogonal decomposition
The PVC is a coherent structure and, therefore, typically described with the triple
decomposition technique. To extract dominant coherent velocity fluctuations from a
turbulent velocity field, POD is a well-tested technique (Berkooz, Holmes & Lumley
1993). In the POD, an ensemble of N velocity fields is projected onto an orthogonal
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N-dimensional basis that maximizes the turbulent kinetic energy for any subspace.
Thus, POD provides an optimal set of spatial modes with which the energy-containing
structures can be described in the most efficient way with as few modes as possible.
The POD of a velocity field u is determined with

u(x, t)= u(x)+
N∑

j=1

aj(t)Φj(x)+ ures(x, t) (3.2)

by minimizing the residual ures. The aj(t) are the POD time coefficients, while the
Φj(x) are the spatial POD modes. In the case of SPIV, N is the number of snapshots.
The POD modes Φj provide the spatial shape of the mode and the time coefficients aj
provide the time-dependent amplitude of the modes. Furthermore, the mean specific
turbulent kinetic energy of the associated modes can be calculated via λj = a2

j . The
POD modes are energy ranked such that λ1 > λ2 > · · ·> λN . In the case of the PVC,
the global mode is typically captured by two modes with the highest energy content
at similar energy level. Examining the phase portraits of the corresponding time
coefficients reveals whether the modes are indeed periodic. When two such modes
occur, the coherent velocity fluctuation of the PVC can be reconstructed by

ũ(x, t)=Re
{√

a2
1 + a2

2 (Φ1(x)+ iΦ2(x))e−2πi fPVC t

}
, (3.3)

where Re is the real part and fPVC is the frequency of the global mode. Since the
SPIV measurements are not time-resolved with regard to the PVC oscillations, the
frequency cannot be obtained via a spectral analysis of the time coefficients. Instead,
the frequency is determined from the time-resolved pressure measurements.

3.2. Eigenmodes by global direct linear stability analysis
The LSA in turbulent flows is used to obtain modes of coherent velocity fluctuation. In
incompressible flows, the governing equations for the hydrodynamic LSA are derived
from the incompressible Navier–Stokes equations and the incompressible continuity
equation. The triple decomposition ansatz (3.1) is substituted into both equations and
both are time-averaged and phase-averaged. By subtracting the time-averaged set of
equations from the phase-averaged set of equations, the governing equations for the
coherent velocity fluctuations are obtained (Reynolds & Hussain 1972):

∂ũ
∂t
+ (ũ · ∇)u+ (u · ∇)ũ = −

1
ρ
∇p̃+∇ · (ν(∇+∇>)ũ)

−∇ · (τR + τN︸︷︷︸
≈0

), (3.4)

∇ · ũ= 0. (3.5)

The term τN describes the nonlinear interactions of the perturbation with its higher
harmonics. Under the assumption that these interactions are very weak, this term
is neglected in the following. The term τR = 〈u′′u′′〉 − u′′u′′ = ũ′′u′′ describes the
fluctuation of the stochastic Reynolds stresses due to the passage of a coherent
perturbation (Reynolds & Hussain 1972). This term has to be modelled in order to
close equation (3.4). In the context of the LSA in swirling flows with a PVC, it
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FIGURE 4. Eddy viscosity νt normalized with molecular viscosity ν, calculated via least-
squares fit (3.7), Re= 20 000.

is well established to use Boussinesq’s eddy viscosity model as a closure (Reau &
Tumin 2002a,b; Crouch, Garbaruk & Magidov 2007; Paredes et al. 2016; Rukes et al.
2016; Tammisola & Juniper 2016; Kaiser et al. 2018). This approach is used here as
well. It is assumed that the coherent fluctuations of the turbulent kinetic energy are
small enough to be negligible (Reynolds & Hussain 1972). With that assumption, the
Reynolds stresses are expressed as

τR = ũ′′u′′ =−νt(∇+∇
>)ũ. (3.6)

The unknown eddy viscosity is calculated from the known velocity field of the
experiment. As the turbulence of the swirling jet is highly anisotropic (Rukes et al.
2016), the approach in (3.6) yields six independent eddy viscosities. A reasonable
compromise among the six eddy viscosities can be achieved by using a least-squares
fit over all resolved stochastic Reynolds stresses (Ivanova, Noll & Aigner 2013):

νt =
〈−u′′u′′ + 2

3 k′′I, S〉F
2〈S, S〉F

, (3.7)

where 〈 · , · 〉F is the Frobenius inner product, k′′ is the turbulent-stochastic kinetic
energy, I is the identity tensor and S = 1

2(∇ + ∇
>)u is the mean strain-rate tensor.

The eddy viscosity is then simply added to the kinematic viscosity in (3.4) to form
an effective viscosity νeff = ν + νt.

Figure 4 shows the eddy viscosity obtained with (3.7). The eddy viscosity is
particularly high in the inner and outer shear layers of the swirling jet, with
increasing eddy viscosity in the downstream direction. This is adequate to describe the
downstream dissipation of the coherent structures that occur due to the interaction with
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small-scale turbulence. Owing to measurement noise, calculation of the discretized
gradients in (3.7) is exposed to that same noise. In order to ameliorate the noisy
gradient fields, a box blur low-pass filter is used with a discrete kernel size of
3 corresponding to every neighbouring point, prior to the calculation of the eddy
viscosity. Very small negative values only occur at 4 × 10−3 % of the nodes of the
entire domain and are confined to the boundary layer flow inside the duct. All of
these negative values are rigorously set to zero.

The linearized Navier–Stokes and continuity equation for the coherent fluctuation
become

∂ũ
∂t
+ (ũ · ∇)u+ (u · ∇)ũ=−

1
ρ
∇p̃+∇ · (νeff (∇+∇

>)ũ), (3.8)

∇ · ũ= 0. (3.9)

These equations can be rewritten as

B
∂ q̃
∂t
−A q̃= 0, (3.10)

where A and B represent the operators of (3.8) and (3.9) and q̃ = [ũ, p̃]> is the
combined vector of the velocities and pressure.

The global LSA examines flows that are inhomogeneous in two or three spatial
dimensions. These are typically named biglobal and triglobal LSA, respectively
(Theofilis 2003). Within the scope of the PVC, a biglobal analysis suffices due to the
homogeneity in the azimuthal direction. Equation (3.10) is solved with a normal-mode
ansatz in cylindrical coordinates:

q̃(x, t)=Re{q̂(x, r)ei(mθ−ωt)
}, (3.11)

where m is the azimuthal wavenumber and ω is the complex angular frequency.
Since the PVC is a single-helical mode, the azimuthal wavenumber is set to m = 1.
Discretization and rearrangement lead to a generalized eigenvalue problem with ω as
the eigenvalue, which can be written in the form of

Aq̂=ωBq̂ (3.12)

in which A and B are the discretized operators of (3.10), including (3.11). Solving
(3.12) provides the eigenmodes q̂, each accompanied with one complex eigenvalue ω,
respectively.

It consists of a real part Re(ω) that corresponds to the angular frequency of
the mode and an imaginary part Im(ω) that corresponds to the growth rate of the
mode. The mode is stable when Im(ω) < 0, marginally stable when Im(ω) = 0 and
unstable when Im(ω) > 0. In the eigenspectrum, an oscillator mode at limit cycle,
such as the PVC, is expected to be represented by an eigenvalue isolated from
any continuous eigenvalue branch and ideally marginally stable (Im(ω) = 0) since
the instability neither grows nor decays (Barkley 2006). With that criterion and the
known frequency from the experiment, the PVC mode can be identified and written
as

ũ(x, t)=Re{û(x, r)ei(θ−Re(ω)t)
}. (3.13)

For discretizing and solving the generalized eigenvalue problem (3.12) a Fortran
code by Paredes (2014) is employed that uses the Arnoldi algorithm. The domain is
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FIGURE 5. Mesh grid of the discretized domain for the global LSA including the
boundaries Γ ; the three rectangular subdomains with conforming interfaces are marked
in terms of black/grey shade.

decomposed into three rectangular subdomains with conforming interfaces (Demaret
& Deville 1991). A high-order finite difference scheme with non-uniformly distributed
nodes is used for the discretization of the axial and radial directions, which is able
to provide a converged solution at comparatively low mesh resolution (Paredes et al.
2013). Figure 5 shows the grid for the final resolution with a total number of 70 104
grid nodes. The three subdomains are marked in terms of colour. The grid spacing
in the axial and radial directions is particularly small inside the duct (domain 1) and
in the vicinity of the duct exit (lower part of domains 2 and 3) to accurately capture
the PVC mode. The grid spacing is then expanded in the downstream and far-field
directions.

Homogeneous Neumann boundary conditions for velocity and pressure are imposed
at the inlet Γin. This is necessary since the coherent perturbations are low but not zero
at the upstream boundary, as observed in the experiments (figure 10). For the same
reason, homogeneous Neumann boundary conditions for the velocity and pressure are
set at the axial outlet Γout,x in the direct LSA case. Here, the computational domain
is truncated at a position with remaining non-zero perturbations. In the adjoint LSA
case, homogeneous Dirichlet conditions are set at the axial outlet Γout,x since no
adjoint perturbations are allowed to enter the domain. At the radial outlet Γout,r,
homogeneous Dirichlet boundary conditions are set. For all walls Γwall, homogeneous
Dirichlet boundary conditions are imposed for the velocity due to the no-slip and
no-penetration conditions. For the pressure, no physical boundary conditions exist.
However, a compatibility condition from the governing momentum equations can
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Γin Γout,x Γout,x Γout,r Γwall Γaxis

(direct and (direct) (adjoint) (direct and (direct and (direct and
adjoint) adjoint) adjoint) adjoint)

∂ û/∂n= 0 ∂ û/∂n= 0 û= 0 û= 0 û= 0 û= 0
∂v̂/∂n= 0 ∂v̂/∂n= 0 v̂ = 0 v̂ = 0 v̂ = 0 ∂v̂/∂r= 0
∂ŵ/∂n= 0 ∂ŵ/∂n= 0 ŵ= 0 ŵ= 0 ŵ= 0 ∂ŵ/∂r= 0
∂ p̂/∂n= 0 ∂ p̂/∂n= 0 p̂= 0 p̂= 0 ∂ p̂/∂n= 0 p̂= 0

TABLE 2. Boundary conditions of the global LSA.

be derived (Theofilis, Duck & Owen 2004). The homogeneous Dirichlet conditions
for the velocity are substituted into the linearized Navier–Stokes equation for the
coherent perturbation (3.8). Knowing that the eddy viscosity is zero per definition on
the wall and taking the inner product with the unit normal vector n at the respective
boundaries, rearrangement leads to

∂p
∂n
= ρν

∂2un

∂n2
, x ∈ Γwall. (3.14)

Assuming ∂2un/∂n2
≈ 0 provides homogeneous Neumann conditions for the pressure

on the walls. Since the global LSA is conducted in a cylindrical coordinate system, the
del operator ∇ in (3.8) and (3.9) exhibits a singularity at r= 0. To ensure smoothness
and boundedness on the centreline, the boundary conditions are set in agreement with
Khorrami, Malik & Ash (1989). Homogeneous Neumann boundary conditions are set
for v̂ and ŵ on the axis Γaxis, whereas homogeneous Dirichlet conditions are set for
û and p̂. All boundary conditions are summarized in table 2.

3.3. Receptivity and structural sensitivity by global adjoint linear stability analysis
The global adjoint LSA is employed to estimate the receptivity of the PVC. This
provides a theoretical prediction where the PVC is most efficiently controlled by
periodic forcing. Furthermore, the adjoint LSA enables one to calculate the structural
sensitivity, which reveals the location of the wavemaker of the PVC that is responsible
for the continuous self-excitation of the instability.

The discretized operator A in (3.12) is typically non-normal, especially in shear
flows. This non-normality causes the eigenvectors of the system to be strongly
non-orthogonal (Sipp et al. 2010). When an arbitrary vector is expanded in the basis
of eigenvectors, a dual basis is required due to this non-orthogonality (Salwen &
Grosch 1972; Tumin & Fedorov 1984; Tumin 1996; Oden & Demkowicz 2017). In
the case of the global LSA, the dual of the direct eigenbasis is the basis of adjoint
eigenvectors. These are obtained from the generalized adjoint eigenvalue problem
(Luchini & Bottaro 2014)

AHq̂+ =ω+BHq̂+, (3.15)

where (·)H denotes the Hermitian transpose and (·)+ denotes an adjoint quantity (note
that ω+=ωH). In the case of a converged adjoint solution, the adjoint eigenvalue ω+j
of the adjoint eigenmode q̂+j is the complex conjugate of the direct eigenvalue ωj. By
that, the pair of mutual direct and adjoint eigenmodes, q̂j and q̂+j , are identified.

The bases of the direct and adjoint eigenvectors form a biorthogonal system (Oden
& Demkowicz 2017). Let the Hermitian inner product on a complex vector space
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be defined by 〈Mx, y〉 = (Mx)Hy = 〈x, MHy〉. Considering the generalized direct
eigenvalue problem of (3.12) and the generalized adjoint eigenvalue problem of
(3.15), the biorthogonality condition can be easily derived and reads (Luchini &
Bottaro 2014)

(ωk − (ω
+

j )
H)〈q̂+j , Bq̂k〉 = 0. (3.16)

If k = j, the expression inside the round brackets vanishes since ωk = (ω+j )
H. If

k 6= j, it directly follows that 〈q̂+j , Bq̂k〉 = 0. In other words, all direct and adjoint
eigenvectors are pairwise orthogonal with regard to B, except if k = j. This property
of biorthogonality can be used (a) to expand the solution of the inhomogeneous
linearized Navier–Stokes equation for the coherent fluctuation (equation (3.10)
including a source term on the right-hand side) in order to characterize the receptivity
of an instability, and (b) to expand the solution of the perturbed generalized eigenvalue
problem (equation (3.12) including small perturbations of the discretized operator A)
in order to localize the wavemaker of an instability.

For (a) characterizing the receptivity to periodic open-loop forcing, a momentum
source on the right-hand side of (3.10) is introduced. The source term is assumed to
be helical in the azimuthal direction, to be harmonic in time and not to interact with
the homogeneous system. Hence, the eigenspectrum is not modified by the source and
the source can be interpreted as an open-loop forcing. The initial value problem (3.10)
is then modified and written as

B
∂ q̃
∂t
−A q̃= f̂ei(θ−ωf t), (3.17)

with f̂ being the spatial structure of the forcing and ωf being the angular forcing
frequency. The solution is derived making use of the biorthogonality condition in
(3.16). The derivation is not shown here for brevity and the interested reader is
referred to Chandler (2011) for a complete derivation.

Let q̂1 be the eigenmode of the PVC and q̂0 be the initial condition. It is assumed
that the system already oscillates with the PVC eigenmode in the natural state, prior
to applying open-loop forcing, i.e. q̂0 = q̂1. When oscillating close to limit cycle, the
decay rate is much smaller than the decay rate of all the remaining modes, |Im(ω1)|�

|Im(ωj6=1)|. Also, the forcing is assumed to be of constant amplitude, thus Im(ωf )= 0.
For t becoming very large, the discrete solution of (3.17) can then be approximated
by

q̃≈Re
{(

1 −

Rf︷ ︸︸ ︷
〈q̂+1 , f̂ 〉

(ωf −ω1)〈q̂
+

1 ,Bq̂1〉

)
q̂1ei(θ−ω1t)

+
〈q̂+1 , f̂ 〉

(ωf −ω1)〈q̂
+

1 ,Bq̂1〉︸ ︷︷ ︸
Rf

q̂1ei(θ−ωf t)

}
. (3.18)

The resulting spatial mode shape of the system is not altered by the forcing f̂ and
is the PVC mode q̂1 itself. The temporal response is both at the PVC frequency ω1
and at the forcing frequency ωf and proportional to |Rf |. The |Rf | value increases
when the spatial structure of the forcing f̂ approaches the spatial structure of the
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adjoint PVC mode q̂+1 . Additionally, |Rf | increases when the forcing frequency ωf
approaches the PVC frequency ω1. According to the Cauchy–Schwarz inequality,
|Rf | ∝ |〈q̂

+

1 , f̂ 〉|6 |q̂+1 || f̂ | holds. Therefore, the magnitude of the adjoint mode can be
physically interpreted as the receptivity of the system to a given open-loop periodic
forcing. Note that, for f̂ = 0, the original PVC mode as an eigensolution of (3.10),
i.e. q̃= q̂1, is retrieved.

It has to be noted that the receptivity to open-loop forcing defined by (3.18) is
only valid in the sense it was mathematically introduced. The most severe restriction
is the assumption that open-loop actuation only acts as a source term in the coherent
momentum equation, without interacting with the PVC mode itself and without
modifying the mean flow. As will be shown later, this assumption is not valid in
general, and nonlinear interaction and mean-flow modifications do indeed occur in
the process of synchronization. The adjoint theory has, therefore, its limits within
this assumption, and will only give a gradient-like estimation but not a complete
description of the synchronization process.

In order to locate the wavemaker of the PVC instability, the region of strongest
intrinsic feedback is sought. The feedback can be modelled as a source term in (3.12),
similar to (3.17) but this time proportional to the perturbation q̃ itself such that

B
∂ q̃
∂t
−A q̃= C q̃. (3.19)

This results in a perturbed generalized eigenvalue problem due to a structural
perturbation of the linear operator A . This is equivalent to a modification of the base
or mean flow and results in a change of the eigenvalue. Considering only spatially
localized structural perturbations, the region where the resulting eigenvalue change is
the highest is the region where the intrinsic feedback is the strongest. This eigenvalue
change can be calculated at first order, and a bound of this change at every position
is obtained by utilizing the Cauchy–Schwarz inequality. The upper bound is typically
called ‘structural sensitivity’ and, in L2-norm, reads (Giannetti & Luchini 2007)

Λ(x, r)= |û+(x, r)||û(x, r)|. (3.20)

The position of the wavemaker, which drives the self-excitation of the instability,
corresponds to the region where the structural sensitivity is significantly high.

4. The precessing vortex core in natural state
This section examines the baseline case of the PVC without applied open-loop

control. First, the mean flow is briefly characterized. Subsequently, the PVC is
investigated by inspecting the results from Fourier decomposition and POD as well
as global LSA. The main features and mechanisms of the PVC are discussed and
the agreement between POD and LSA is evaluated. Furthermore, the receptivity and
structural sensitivity of the PVC is examined via the global adjoint LSA in order to
reveal where the PVC can be efficiently manipulated and where the wavemaker is
located.

By choosing the normalization parameters bulk velocity u0 and duct diameter
D, the mean-flow field can be non-dimensionalized. In the case of the coherent
structures, the normalization is performed with the maximum magnitude of the
coherent velocity vector. Using this normalization, the results for all three Reynolds
numbers Re= 15 000, 20 000 and 30 000 exhibit a strong similarity. Furthermore, the
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Strouhal number is also nearly the same for all three cases. Therefore, for brevity,
most of the following discussions can be reduced to considering the results at one
Reynolds number only. Unless otherwise stated, Re= 20 000 is selected.

Owing to the Reynolds number independence of the flow, it is to be expected
that the following results apply to flows at even higher Reynolds numbers as well.
Therefore, the PVC can be treated as an inviscid instability. Only compressibility
effects may play an increasing role when the Mach number is equally increased as
the Reynolds number.

4.1. Mean flow and frequency spectra of the swirling jet
Figure 6 shows the non-dimensionalized mean flow for all three velocity components
as contours overlaid with in-plane streamlines. The axial component displays the
strong jet discharging into the unconfined ambience with a slow decay downstream
of the duct exit. The surrounding air is entrained by the jet into the outer shear
layer, which becomes particularly visible on inspecting the transverse mean velocity
component. The transverse component also reveals the strong initial cross-sectional
spreading of the jet in the radial direction when the flow exits the duct. From
x/D = 0.19 to 1.71 a prominent breakdown bubble can be made out in which
recirculation occurs. It entails a wake-like velocity deficit downstream. The jet
encloses the bubble, and an inner shear layer between bubble and jet is formed.
Inside the confined duct, a long extending region of axial velocity deficit in the
upstream direction exists as well. This significantly reduced velocity around the
centreline is related to the fact that the global mode of the PVC also reaches far
upstream into the duct, as will be discussed further below. To the knowledge of the
authors, this important property has not been observed in any similar swirling jet
set-up. However, this is definitely not a necessary condition for the onset of a PVC
instability. For example, in Rukes et al. (2016), upstream of the breakdown bubble,
the axial centreline velocity has indeed an excess instead of a deficit compared to
the axial velocities at greater radial positions. The out-of-plane component of the
mean flow shows the high rate of azimuthal rotation in the positive θ -direction inside
the duct. Downstream of the duct exit, the out-of-plane momentum decays and is
spread in the radial direction due to the cross-sectional expansion, similar to the axial
momentum.

In the following, the PVC mode is examined in detail. In figure 7, the power
spectra are considered for all resolvable azimuthal modes of m = −2, −1, 0, 1 and
2, as a function of the non-dimensional frequency, the Strouhal number St = fD/u0.
The spectra are based on the time-resolved pressure measurements, as explained
in § 2. For m = 1, a dominant peak at St ≈ 0.7 is evident for all three Reynolds
numbers, corresponding to dimensional frequencies of f = 60 Hz, 78 Hz and 115 Hz,
respectively. These are the frequencies of the global, single-helical PVC mode. The
first harmonic of the PVC manifests in the double-helical mode m = 2 at double
the natural PVC frequency, St ≈ 1.4, with lesser amplitude. A slight residual peak
also appears at the natural PVC frequency for m = 2. This is due to an imperfect
calibration of the pressure transducers. For the counter-rotating azimuthal mode of
m = −1, no distinct peak exists. For m = −2, the same spectrum as for m = 2
shows up. This is due to the indeterminate phase at the limiting Nyquist wavenumber.
However, it can be assumed that the rotational direction is in the positive θ -direction.

Another smaller peak is apparent for m = 1. It occurs at St ≈ 0.4 and is possibly
related to another global mode, which has also been observed in previous works
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FIGURE 6. Normalized mean flow: (a) axial, (b) transverse and (c) out-of-plane; Re =
20 000.
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FIGURE 7. Power spectral density over Strouhal number St for azimuthal modes m=−2
to 2 and varied Reynolds numbers Re.

(Terhaar et al. 2013; Sieber, Paschereit & Oberleithner 2017). In the present
configuration, this mode appears to be subcritical and it occurs in the data due
to stochastic forcing. Since the peak is around two orders of magnitude lower than
the PVC peak, the impact on the PVC dynamics is presumably low. At m = 0, a
small peak is visible at St≈ 0.35. It is presumably related to a weak pumping motion
of the vortex breakdown bubble that has also been observed in previous studies
(Oberleithner et al. 2011).

4.2. The precessing vortex core and mechanisms of its formation
For Re = 20 000, figure 8 shows that the first POD mode pair contains much more
kinetic energy than the rest of any single mode or mode pair. This applies to the
coefficients inside and outside of the duct. Furthermore, the phase portrait of the time
coefficients in figure 9 demonstrates the harmonic nature of the first POD mode pair,
which is linked to the dominant peak observed in the power spectrum of figure 7. It
also explicitly shows that the harmonic nature of the PVC is clearly present inside
the duct. Since the SPIV measurements are not time-resolved, the POD modes cannot
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FIGURE 8. The POD mode energy λj normalized with total turbulent kinetic energy
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k λk,
Re= 20 000 (u, external domain with x/D> 0;@, internal domain with x/D< 0).
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FIGURE 9. Phase portrait of normalized POD time coefficients for the first two most
energetic POD modes, Re= 20 000 (u, external domain with x/D> 0;@, internal domain
with x/D< 0).

be spectrally decomposed, in contrast to spectral POD (as e.g. proposed in Sieber,
Paschereit & Oberleithner (2016) or Towne, Schmidt & Colonius (2018)). However,
the energy optimality of the POD combined with the energy separation of the PVC
relative to all other modes ensures that the leading mode pair will mainly contain
spectral parts that are related to the PVC and nothing else significant. This has been
demonstrated in previous studies, such as in Terhaar et al. (2013) and Tammisola &
Juniper (2016).

The spatial mode shape of the mode pair, according to (3.3), is shown in figure 10
at arbitrary phase angle. The mode features non-zero velocity fluctuations in the
transverse and out-of-plane component at the jet axis. For a kinematic reason, this is
solely possible for azimuthal modes of m = 1 (Khorrami et al. 1989). This further
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FIGURE 10. Normalized POD mode: (a) axial, (b) transverse and (c) out-of-plane; Re=
20 000.
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FIGURE 11. Normalized LSA mode: (a) axial, (b) transverse and (c) out-of-plane; Re=
20 000.

establishes that the structure of this POD mode pair is associated with the dominant
peak identified in the pressure spectrum at m= 1 (figure 7).

The PVC can be conceived as a global precession instability with which the
convective Kelvin–Helmholtz instabilities synchronize. Features of both instabilities
are clearly visible in the contour plots. The spatial fluctuation of the axial and
transverse coherent velocity downstream of the duct exit indicates the helical shear
layer vortices of the Kelvin–Helmholtz instabilities. The amplitude of the vortices
decays in the downstream direction after reaching a maximum around x/D ≈ 0.5.
The out-of-plane and transverse coherent velocities along the centreline describe the
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precession motion of the vortex core (Oberleithner et al. 2011). Most strikingly, for
all three components, it is evident that the PVC mode extends far upstream into
the duct, with non-zero amplitudes up to the boundary of the resolved measurement
domain. The spatial amplification of the mode is already initiated here. Similar to the
centreline velocity deficit of the mean flow inside the duct, to the knowledge of the
authors, this important property has not been observed before.

In the following, the term (ũ · ∇)u in the Navier–Stokes equations for the coherent
part (3.4) is examined. This term is directly related to the production of coherent
perturbations (Sipp et al. 2010) and it gives insight into the mechanisms that initiate
and generate the PVC. Figure 12 shows the magnitude of the production of coherent
perturbations for each component separately. A clear spatial separation can be seen
between the bulk of production of axial and the bulk of production of transverse as
well as out-of-plane perturbations. The former are produced in the outer and inner
shear layers of the swirling jet. While the outer shear layer is only present outside of
the duct, the inner shear layer associated with the mean axial velocity deficit on the
centreline is already forming inside the duct. The production of axial perturbations
is attributed to the transverse velocity gradient of the mean axial velocity ∂u/∂y,
which is strong in the shear layers in the vicinity of the duct exit. In contrast,
the transverse velocity gradients of the mean transverse velocity ∂v/∂y and mean
out-of-plane velocity ∂w/∂y are particularly strong on the centreline upstream of the
duct exit. This gradient is responsible for the high production of both transverse and
out-of-plane perturbations in this region. The significant bulk of production starts
around x/D ≈ −0.8. This region is responsible for the initiation of the precession
motion. The impact of the absolute instability region of the wavemaker, which will
be considered further below, apparently reaches this far upstream into the duct.
Comparing the maximum values of production, it further becomes clear that the most
significant contribution appears on the centreline inside the duct. This suggests that
a forcing applied in these regions of high production should have the largest effect
on the PVC dynamics. This will, indeed, be confirmed by the global adjoint LSA
in § 4.4.

4.3. Theoretical prediction of the precessing vortex core
The eigenvalues of the global direct LSA for all three Reynolds numbers are displayed
in figure 13. The entire spectrum exhibits stable eigenvalues only. The identified PVC
modes are clustered around the experimentally measured Strouhal number of St≈ 0.7.
They are discrete and do not belong to any continuous branch. With increasing mesh
resolution, monotonic convergence of the selected modes is not achieved. Instead, the
selected eigenvalues converge to an average value and then start to ‘oscillate’ within
a fixed limit when the mesh resolution is further increased. The lack of asymptotic
convergence of the eigenvalues can be explained by the limited spatial resolution
of the SPIV data. When the mesh of the global LSA is finer than the grid of the
SPIV, the changes of the eigenvalues become small but seemingly ‘random’ since
the addition of grid nodes no longer provides any additional information. These
‘random’ changes are attributed to discretization errors caused by the employed
interpolation scheme coupled with the choice of the finite difference scheme in
the LSA. Therefore, an uncertainty is associated with the eigenvalues. The error
bars in figure 13 designate the standard deviation of the oscillations for both the
non-dimensional frequency Re(St) and growth rate Im(St) for the selected eigenvalues
representing the PVC.
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FIGURE 12. Coherent momentum term associated with production of perturbations:
(a) axial, (b) transverse and (c) out-of-plane; Re= 20 000.

In all three cases, the growth rate is close to the stability limit but below zero.
However, it is more than an order of magnitude smaller than the frequency, which
means that their time scales are well separated. Furthermore, the influence of
inaccuracies in the mean-flow measurements and eddy viscosity estimation further
affect the prediction of the true growth rate. Therefore, within uncertainty, the
eigenmode of the PVC can be assumed to be marginally stable.

Other discrete modes emerge at St ≈ 0.4, isolated from the continuous branches.
This mode is probably related to the small additional peak that is observed in the
pressure spectrum as outlined in § 4.1. This mode may be an actual subcritical mode
that is excited by stochastic forcing (Farrell & Ioannou 1993). All other remaining
modes are identified as numerical, non-physical modes since their corresponding
eigenvalues are much more sensitive with regard to discretization errors than the
physical modes (Sipp et al. 2010). Furthermore, their decay rates increase with
increasing mesh resolution, i.e. they become more stable.

Table 3 lists the explicit eigenvalues of the PVC obtained by the global direct
LSA with their corresponding standard deviations in non-dimensional form. The LSA
frequency converted to a dimensional quantity is compared to the experimentally
measured frequency (as obtained by the pressure measurements, see § 4.1). For all
three cases, the relative error between LSA and experimental frequency is always
below 7 % within the standard deviation range.

The PVC eigenmode is shown in figure 11 for all three components at Re= 20 000.
In comparison to the POD mode in figure 10, a very good match exists, although there
are some minor discrepancies. The amplitude of the precession motion around the
centreline is underestimated inside and outside of the duct, compared to the amplitude
of the Kelvin–Helmholtz vortices in the outer shear layer. However, apart from that,
the overall spatial shape of the mode is captured very well, including the quantitative
growth and decay of the helical Kelvin–Helmholtz vortices. Furthermore, the initiation
of the precession motion inside the duct is also very well predicted by the model.

Summarizing, the relative error of the predicted frequency is very small. Further-
more, the spatial eigenmode shape is in good agreement with the experimentally
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FIGURE 13. Eigenvalue spectrum for azimuthal wavenumber m = 1 with real part
of Strouhal number Re(St) denoting the non-dimensional frequency, imaginary part of
Strouhal number Im(St) denoting the non-dimensional growth rate; selected PVC mode
(filled markersu,p,q); error bars designating standard deviation of frequency and growth
rate; stability limit (horizontal dashed line).

Re= 15 000 Re= 20 000 Re= 30 000

Im(StLSA) −0.057± 0.013 −0.050± 0.011 −0.023± 0.005
Re(StLSA) 0.744± 0.024 0.705± 0.022 0.666± 0.021
Re( fLSA) 62.5± 2.0 Hz 78.9± 2.5 Hz 111.8± 3.5 Hz
fexp 60 Hz 78 Hz 115 Hz
(Re( fLSA)− fexp)/fexp 4 %± 3 % 1 %± 3 % −3 %± 3 %

TABLE 3. Eigenvalues of the global direct LSA and comparison of LSA frequency
Re( fLSA) and experimental frequency fexp (see § 4.1); ± denotes standard deviation of the
converged solution that starts ‘oscillating’ around an average value when mesh resolution
is further increased.

obtained POD mode. The results demonstrate the validity of the global LSA in the
context of turbulent swirling jets.

4.4. Receptivity and structural sensitivity
Figure 14(a) shows the magnitude of the adjoint PVC mode. From the start of the
measured domain around x/D ≈ −1.75 downstream to x/D ≈ −1.5, the receptivity
is very low and close to zero. Hence, the PVC should only respond very weakly or
not at all when actuation is applied in these regions, at least when the introduced
perturbations quickly decay in the downstream direction. In this case, advected
residual perturbations do not survive long enough to couple with the PVC in a more
receptive region. A quick decay will occur if there are no convective instabilities.
Owing to the observed trends, even lower receptivities can be expected upstream

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1063


Receptivity of the turbulent precessing vortex core 888 A3-25

x/D

3

2

1

0

-1

y/D
-2 -1 0 1 2

3

2

1

0

-1

y/D
-2 -1 0 1 2

0 0.5 1.0
|u+|/|u+|max |u||u+|/(|u||u+|)max

0 0.5 1.0
^ ^ ^ ^ ^ ^(a) (b)

FIGURE 14. Normalized magnitude of the adjoint LSA mode vector indicating receptivity
to open-loop forcing (a) and normalized structural sensitivity indicating sensitivity to
mean-flow modifications (b); the closed red line denotes regions of high structural
sensitivity > 0.92 (0.21 < x/D < 0.43); the red triangle (q) denotes stagnation point of
breakdown bubble (x/D= 0.19, y/D= 0), Re= 20 000.

of the resolved measurement domain. In the downstream direction, the highest
receptivities are located from x/D ≈ −1 to −0.4. In this region, manipulation of
the PVC should be most efficient via open-loop actuation. It coincides exceptionally
well with the region of maximum production of coherent perturbations (see figure 12).
This also explains why the receptivity is primarily accumulated close to the centreline
while being almost zero close to the walls of the duct. An open-loop forcing
introduced in that region would be subjected to a strong convective amplification. The
largest convective growth occurs when the actuation is introduced at the start of the
production around x/D≈−0.8. This point overlaps with the maximum of the adjoint
magnitude being reached here as well. Further downstream, the receptivity decreases
slowly up to the core of the breakdown bubble. When actuation is applied further
downstream, the decreasing spatial length of convective growth can be interpreted to
be responsible for that trend. Thereafter, the receptivity quickly drops to zero.

The adjoint mode compares well with the adjoint mode obtained by Qadri et al.
(2013), who also studied the PVC in a swirling flow for a Reynolds number two
orders of magnitude lower. In their work, the amplitude of the adjoint mode reaches its
maximum upstream of the breakdown bubble and concentrated around the centreline.
This is also valid for the adjoint mode shown in figure 14. In their work, it is
interpreted that the high receptivity is attributed to conservation of angular momentum.
Any vorticity perturbation introduced in this region of high receptivity is subjected
to a compression of the fluid element in the axial direction and a stretching in the
radial and azimuthal directions (due to deceleration of the flow closely upstream of
the breakdown bubble). Correspondingly, the radial and azimuthal vorticity increases
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while the axial vorticity decreases. This is basically the same mechanism as suggested
above and related to the strong production of coherent fluctuations as shown in
figure 12.

Based on structural perturbation theory, the structural sensitivity (figure 14b) shows
where a perturbation of the linear stability operator induces the strongest change to
the mode. In other words, the structural sensitivity quantifies where in the flow the
mode is most sensitive to a change of the mean flow. This is in a way equivalent to
the adjoint mode which quantifies where in the flow the mode is most sensitive to an
introduction of an open-loop source term.

The structural sensitivity is typically interpreted to reveal how strong the internal
coupling and feedback is between receptivity of the mode and self-excitation of the
mode. In the regions where the highest values are reached, the so-called ‘wavemaker’
can be located. For the PVC, it is situated inside the breakdown bubble closely
downstream of its stagnation point. The position roughly agrees with the determination
of the wavemaker of similar swirling jet configurations from local LSA as well as
global LSA. In Rukes et al. (2016) and Tammisola & Juniper (2016), the wavemaker
is located closely upstream of the stagnation point, whereas in Kaiser et al. (2018)
the wavemaker region is approximately situated at the stagnation point itself.

5. Impact of open-loop control on the precessing vortex core

In this section, it is validated whether the theoretical receptivity obtained by
adjoint LSA coincides with the receptivity from the experiment. Therefore, open-loop
control is applied with the goal of changing the PVC frequency, and the physical
mechanisms leading to this synchronization are studied. The forcing is applied by the
ZNMF actuators at different axial positions and the forcing amplitudes required for
synchronization are determined via the synchronization criterion stated in (2.8).

The markers with solid lines shown in figure 15 depict the synchronization
amplitudes As, which correspond to the minimum forcing amplitude Af where
synchronization is achieved. This is shown for all five actuator positions at the
Reynolds number of Re = 20 000. The amplitudes are quantified as input voltages
of the actuator units. The error bars symmetrically denote the increments of forcing
amplitude used in the experiments, dictating the uncertainty of the synchronization
amplitudes. For the actuator positions xa/D = −2 and −1.5, the incremental
uncertainty is ±0.1 V. For the remaining actuator positions xa/D = −1, −0.75
and −0.5, the incremental uncertainty is only half that value, ±0.05 V.

Generally, two synchronization regimes can be distinguished, which are denoted
as the non-responsive and the responsive regimes. As will be shown later, in the
non-responsive regime, the PVC does not respond directly to the forcing, but is only
indirectly modified through modifications of the mean flow. In the responsive regime,
the PVC is highly responsive, i.e. receptive, to the forcing and the PVC is easily
manipulated.

The two regimes show a qualitatively different behaviour when forcing is applied.
The non-responsive regime can be readily identified by the strongly asymmetric
behaviour when forcing below the natural frequency ( ff /fn < 1) and forcing above
the natural frequency ( ff /fn > 1) are compared. This applies to the actuator positions
xa/D=−2 and −1.5. For below-natural forcing, the synchronization amplitudes tend
to go to zero when the frequency shift 1f = | fn − ff | gets smaller, i.e. when the
forcing frequency gets closer to the natural frequency. Inspecting the power spectral
density (PSD) of the pressure measurements for xa/D=−2 reveals that the peak of
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FIGURE 15. Forcing amplitude Af versus normalized forcing frequency ff /fn for varied
actuator positions xa/D at Re = 20 000; markers with solid lines denote the minimum
amplitude As where synchronization is achieved; error bars quantify the uncertainty for
determining the synchronization amplitude As; insets show power spectral density of the
pressure measurements and phase difference for selected forcing frequencies ff and forcing
amplitudes Af as indicated by the dotted lines.
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the PVC is slightly pulled towards the forcing frequency prior to synchronization.
Examining the phase difference over time further shows that synchronization has not
been reached yet. By increasing the forcing amplitude further (i.e. the input voltage
of the speakers), the peak of the PVC moves closer and closer to the forcing peak.
When synchronization is reached, the two peaks are converged and the PVC stably
oscillates at the forcing frequency. Then, the phase difference of both oscillators is
constant over time.

In the non-responsive regime at above-natural forcing frequency, the synchronization
amplitudes adopt a non-zero value when the frequency shift goes to zero. This
threshold value must be exceeded even for forcing frequencies very close to
the natural frequency in order to reach synchronization. The PSD prior to the
synchronized state evidently shows that the residual peak of the PVC is diminished
and pushed away from the forcing frequency. The phase difference indicates a
non-synchronized state over time. Further increasing the forcing amplitude leads to
the residual peak of the PVC being further decreased until it completely vanishes
below the stochastic fluctuation level and the only dominant oscillation left in the
flow is the actuation mode. Then, the phase difference indicates a synchronized state.
In contrast, the responsive synchronization regime at actuator locations xa/D = −1,
−0.75 and −0.5 shows almost symmetric synchronization amplitudes with regard to
fn. Now, above-natural forcing leads to a pulling of the PVC peak towards the forcing
frequency until synchronization is reached. For below-natural forcing, this pulling also
occurs and is qualitatively similar to the case shown for the non-responsive regime.
In both cases the synchronization amplitudes go to zero when ff → fn. This ‘lock-in’
behaviour is typical for self-excited nonlinear oscillators that have undergone a
supercritical Hopf bifurcation (Juniper, Li & Nichols 2009; Oberleithner et al. 2011).

All of these observed trends for Re = 20 000 are very similar for the other two
Reynolds numbers, except that the synchronization amplitudes are lower for Re =
15 000 and higher for Re= 30 000.

5.1. Modifications to the mean flow
In this section, the changes to the mean flow that are caused by the forcing and the
associated mechanisms leading to synchronization are discussed.

Examining the mean-flow fields for different forcing frequencies at the actuator
position xa/D = −0.5 reveals only small mean-flow changes. Figure 16 indicates
that the mean axial velocity on the centreline is slightly increased for below-natural
forcing whereas it is slightly decreased for above-natural forcing. This is associated
with small shifts of the breakdown bubble stagnation point. Below-natural forcing
displaces the stagnation point downstream, above-natural forcing upstream. The mean
azimuthal velocities do not change significantly. Thus, the changes to the mean flow
are marginal in the responsive regime.

In contrast, figure 17 clearly shows that, for the most upstream actuator position
xa/D = −2 in the non-responsive regime, the mean axial centreline velocity
significantly increases at a given position for both below- and above-natural forcing.
This is associated with the breakdown bubble shrinking and its stagnation point being
displaced downstream. Furthermore, the maximum of the mean out-of-plane velocity
is decreased in both cases.

In figure 18(a) the swirl number of the forced cases S normalized on the natural
swirl number of the baseline case Sn is displayed as a function of normalized
forcing frequency ff /fn for actuator positions xa/D = −2 (non-responsive regime)
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FIGURE 16. Mean velocity profiles at different axial positions x/D for baseline (black
line), below-natural forcing ff /fn = 0.9 (blue line) and above-natural forcing ff /fn = 1.08
(red line) for actuator position xa/D=−0.5 when synchronization is established, for axial
component (a) and out-of-plane component (b), Re= 15 000.
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FIGURE 17. Mean velocity profiles at different axial positions x/D for baseline (black
line), below-natural forcing ff /fn = 0.9 (blue line) and above-natural forcing ff /fn = 1.08
(red line) for actuator position xa/D=−2 when synchronization is established, for axial
component (a) and azimuthal component (b), Re= 15 000.

and xa/D = −0.5 (responsive regime). Strikingly, the asymmetry from the tuning
diagram (figure 15) is also clearly present here for xa/D = −2. For below-natural
forcing, the swirl number decreases almost continuously when the frequency shift
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FIGURE 18. Swirl number modifications S/Sn for synchronization as a function of
normalized forcing frequency ff /fn (a) and as a function of synchronization amplitude
As (b); actuator positions xa/D=−2 and xa/D=−0.5.

| fn− ff | is increased. On the other hand, for above-natural forcing, the swirl number is
significantly reduced for every forcing frequency. The swirl number does not converge
towards the natural swirl number when the frequency shift goes to zero. Furthermore,
for the above-natural branch, the swirl numbers are all close to the critical swirl
number. The critical swirl number defines the bifurcation point that quantifies the
threshold at which a steady PVC can occur for the first time when increasing the
swirl number. Although the critical swirl number of the natural unmodified mean flow
may not be directly comparable to the critical swirl number of the forced modified
mean flow, this observation suggests that the natural PVC is suppressed in these
cases.

In figure 18(b), in semilog scaling, the swirl number is shown as a function of syn-
chronization amplitude. For xa/D = −2, the swirl number decreases approximately
linearly with increasing synchronization amplitude for each Reynolds number, respec-
tively. The stronger the actuation, the lower the swirl number becomes. With
this observation, the asymmetry between below- and above-natural forcing in the
non-responsive regime can be easily explained now. The asymmetry is due to the
fact that the swirl number is a function only of the synchronization amplitude in
the non-responsive regime. For below-natural forcing, the swirl number reduction
favours the goal of reducing the frequency of the PVC. The rotation rate of the jet,
and thus the swirl number, is decreased until the natural frequency associated with
the swirl number matches the forcing frequency. For above-natural forcing, the swirl
number reduction acts adversely to the goal of increasing the frequency of the PVC.
Ultimately, a threshold of forcing amplitude needs to be exceeded in order to reach
the critical swirl number and suppress the natural PVC. At this point the global
oscillations are completely dictated by the actuation itself. What is then seen as a
‘PVC’ are only Kelvin–Helmholtz vortices that still exist in the outer shear layer and
that are excited at the dominating forcing frequency. Furthermore, the precession of
the vortex core is artificially induced by the helical excitation of the actuator. This
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FIGURE 19. Changes to the stagnation-point position xSP/D (a) and changes to the
axial breakdown bubble length Lbubble normalized with baseline bubble length Lbubble,n as
functions of normalized forcing frequency ff /fn (b); actuator positions xa/D = −2 and
xa/D=−0.5.

helical forcing substitutes the precession motion that is otherwise initiated through
self-excitation in the region of absolute instability in the baseline case.

For the actuator positions of the responsive regime, it can be assumed that a
strongly nonlinear interaction occurs between actuation mode and natural PVC mode
due to the high receptivity at the location of actuation (see figure 14). Additionally,
the trends of swirl number modification as a function of forcing frequency are clearly
different from the non-responsive regime (see figure 18a). For above-natural forcing,
the swirl number decreases linearly. For below-natural forcing, the swirl number
even increases with forcing frequencies close to the natural frequency, before linearly
decreasing with a larger frequency shift. Hence, in the responsive regime, there is
an impact on the mean flow, even though small. Inspecting the swirl number as a
function of synchronization amplitude (figure 18b), another qualitative difference from
the non-responsive regime can be made out. Not only is the swirl number a function
of synchronization amplitude but it also depends on whether the forcing is below or
above the natural frequency, constituting two different branches. This suggests that
there is a significant dynamical response, and not only an alteration of the mean flow.
Synchronization is presumably reached by a classical phase lock-in mechanism via an
inverse saddle-node bifurcation (Balanov et al. 2008). Mean-flow modifications occur
but are weak. They are responsible for the persisting slight asymmetry between the
lower and upper branches. Again, below-natural forcing has a favouring effect while
above-natural forcing has an adverse effect.

Further evidence on the differences between responsive and non-responsive regimes
can be determined when changes to the recirculation bubble are evaluated (see
figure 19). For the non-responsive regime, the bubble is displaced in the downstream
direction in every case. Since one main effect of the actuator is to dissipate rotational
energy, which leads to a swirl number decrease, the downstream displacement can
be attributed to a delay of the vortex breakdown when the frequency shift of the
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forcing is increased. Accordingly, the length of the breakdown bubble in the axial
direction (measured from upstream stagnation point to downstream stagnation point
on the centreline) is reduced. Oberleithner et al. (2012) shows that the size of the
breakdown bubble correlates with the size of the region of absolute instability. Thus,
one main effect of the actuation in the non-responsive regime can be hypothesized
to be a reduction of this region of absolute instability. For above-natural forcing in
the non-responsive regime, the actuation is strong enough that it leads to a complete
suppression of the instability. In the responsive regime, the bubble is barely displaced
and the length only changes insignificantly. Therefore, the region of absolute instability
likely remains untouched. This suggests that the natural mechanism is not altered,
apart from the slight swirl number modifications.

The mean-flow modifications occurring in the non-responsive regime clearly suggest
that synchronization is not achieved by a direct interaction between actuation and PVC
mode. Instead, the manipulation of the swirl number is responsible for synchronization.
Either the decrease of the natural PVC frequency (below-natural forcing) or the
suppression of the natural PVC (above-natural forcing) leads to synchronization.
Strictly speaking, in the above-natural case, there is only a substitution of the helical
PVC by the helical actuation and no synchronization takes place, since there is only
one oscillator remaining in the system.

5.2. Global linear stability of the mean flow at synchronization
In the previous section (§ 5.1), it was concluded that synchronization in the non-
responsive regime is dictated by mean-flow modifications. In order to further support
this finding, a global LSA is conducted on the forced, synchronized mean-flow
fields. In the non-responsive regime, the global LSA should predict the correct PVC
frequencies for below-natural forcing (swirl number is reduced until the modified
natural frequency matches the forcing frequency) and incorrect frequencies for
above-natural forcing (PVC is suppressed). Note that the LSA can only be conducted
for the cases with the actuator positioned at xa/D = −2 since these are the only
cases where a sufficient extent of the internal duct flow was measured. This upstream
domain is required for valid results of the global LSA.

Figure 20 shows the results of the global LSA. In figure 20(a), the frequency
obtained by the LSA is compared to the frequency obtained by the experiment. For
below-natural forcing, the predicted PVC frequency approximately coincides with
the measured PVC frequency. The predicted frequencies are closely gathered around
the dashed identity line. Ideally, they would collapse exactly onto the identity line.
However, asymptotic convergence of the solutions is not achieved and the numerical
values are coupled to an uncertainty, as discussed in § 3.2. Furthermore, this effect is
even more pronounced for the forced cases. As will be shown in § 5.3, the coherent
fluctuations are significantly large due to the forcing at the most upstream position
of the SPIV resolved domain. Therefore, the setting of the inlet boundary conditions
to homogeneous Neumann conditions (see § 3.2) is questionable. For above-natural
forcing, the predicted frequencies are not in line with the measured frequencies. While
the measured PVC frequencies are above the natural PVC frequency, the global LSA
predicts frequencies below. This demonstrates that in this case there is no actual
synchronization due to swirl number modification but due to suppression. This fact
is further clarified in figure 20(b). The predicted LSA frequencies for above-natural
forcing are closely gathered around the critical swirl number. This shows that the
PVC is suppressed. For below-natural forcing, the predicted frequencies (S/Sn > 0.8)
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FIGURE 20. Global LSA on synchronized mean flows with predicted PVC frequency
(obtained from LSA) compared to measured PVC frequency (obtained by experiment) (a)
and compared to normalized swirl number (b); xa/D=−2.

increase with increasing swirl number. This is in line with the general relationship
of the PVC frequency scaling proportionally to the swirl number. Both observations
support that, in the non-responsive regime, synchronization is solely reached by mean
flow and, thus, swirl number manipulation.

5.3. Modifications to the coherent flow
In order to gain further insight into the response of the PVC, the modifications to
the coherent fluctuations are now investigated. This will reveal whether the PVC is
significantly influenced by the forcing or not.

At first, the total coherent kinetic energy (KE) of the PVC is used to characterize
its changes caused by the forcing. It is calculated by

K̃(x)= 1
2

∫ 2π

0

∫
∞

0
|ũ|2r dr dθ. (5.1)

Figure 21 shows the total coherent KE for the natural baseline case and for a
representative below- and above-natural forced case at both xa/D = −2 and −0.5,
respectively. In the natural case, the coherent KE is almost zero at the most upstream
position x/D = −1.75 and the amplitude is slowly convectively amplified inside the
entire duct. Outside of the duct, further substantial amplification of the PVC occurs
due to the generation of coherent vortices by Kelvin–Helmholtz instabilities and
saturation is reached at x/D≈ 0.5.

When the actuator forces at xa/D = −2 (non-responsive regime), the introduced
perturbations increase the total coherent KE in the vicinity of the actuator. However,
these perturbations decay downstream. Hence, there are no convective instabilities that
are amplified at this far-upstream location. For below-natural forcing, the coherent
KE decays until it reaches the level of the natural case at x/D ≈ −0.8, before the
coherent KE starts to grow again. This turning point coincides with the start of major
production of azimuthal perturbations observed in figure 12. Downstream of this
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FIGURE 21. Total coherent kinetic energy K̃ as a function of axial coordinate x/D for
natural PVC and synchronized PVC; actuator positions xa/D=−2 and −0.5; Re= 15 000.

position at x/D ≈ −0.8, the convective amplification is very similar to the natural
case, however, with slightly higher saturation amplitude. The similarity corroborates
again that the intrinsic natural instability mechanism is barely manipulated in the case
of below-natural forcing in the non-responsive regime.

For above-natural forcing, the coherent KE generated by the actuator also decays
downstream until around x/D ≈ −1. Thereafter, the energy stays at almost constant
level. When the flow exits the duct, amplification of coherent fluctuations still occurs
as in the natural case. However, the amplification is only related to Kelvin–Helmholtz
vortices in the outer shear layer and the saturation amplitude is significantly reduced
compared to the natural saturation amplitude. This observation supports the notion that
the natural PVC instability mechanism is suppressed since no convective amplification
occurs inside the duct, which is in contrast to the natural and below-natural case. The
precession motion is not self-excited but upheld by the continuous introduction of
helical perturbations by the actuator.

For actuator position xa/D = −0.5 (responsive regime), below-natural forcing
does not alter the coherent energy significantly. For above-natural forcing, the axial
position where saturation sets in is only slightly shifted downstream. In both cases,
the saturation energy is equal to the baseline case. This supports the hypothesis that
in the responsive regime the synchronization is primarily achieved by a nonlinear
modal interaction between actuation and PVC. A significant alteration of the natural
instability mechanism does not occur.

Now, the alterations to the production mechanism responsible for the spatial growth
of the PVC mode are inspected in more detail. In figure 22 the production term is
shown for below- and above-natural forcing when the actuator is placed at xa/D =
−2. Only the out-of-plane component is considered as representative for the precession
motion (see § 4.2). For below-natural forcing, high production occurs in the vicinity of
the actuator but decreases in the downstream direction, reaching almost zero around
x/D≈−1. Downstream, the production increases again. A very similar distribution to
the natural baseline case is evident, with high levels of production in the inner and
outer shear layers outside of the duct. Furthermore, regions of high production are
found in accordance with the baseline case close to the centreline but slightly shifted
downstream. Thus, the naturally acting production mechanism is not seriously altered.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1063


Receptivity of the turbulent precessing vortex core 888 A3-35

3

2

1

0

-1

-2

Natural Forced
xa/D = -2
ff/fn = 0.9

xa/D = -2
ff/fn = 1.08

Natural Forced

|[(u . ◊)u]z|D/u2
0

¡ |[(u . ◊)u]z|D/u2
0

¡

0 1 3 42 0 1 3 42

y/D
-2 -1 0 1 2

y/D
-2 -1 0 1 2

Plane of
actuation

Plane of
actuation

(a) (b)

FIGURE 22. Impact of forcing at xa/D = −2 (non-responsive regime) on coherent out-
of-plane momentum term associated with production of perturbations, below-natural (a),
ff /fn = 0.9, and above-natural (b), ff /fn = 1.08, forcing; natural case plotted side by side
with forced case; Re= 15 000.

In contrast, for above-natural forcing, the natural production mechanism is
suppressed, as can be observed. The suppression is associated with the subcritical
swirl number mentioned above. The production in the inner and outer shear layers
is reduced. The maximum production occurs upstream where the actuator is situated
and only decreases in magnitude downstream. In contrast to the below-natural case,
there is no recovery and an increase of production in the downstream direction does
not happen. Hence, the bulk of production of helical perturbations originates from
the actuation itself and it serves as a substitute for the self-excited perturbations that
are naturally generated in the baseline case. These substitute perturbations from the
actuator are then simply convected downstream (not shown), artificially sustaining the
precession motion.

Figure 23 displays the production of coherent fluctuations in the responsive
regime for below- and above-natural forcing, respectively, compared side by side
with the natural case. In both cases, the natural mechanism is barely touched. The
almost symmetric response shows that mean-flow modifications play a minor role.
Additionally, the fact that the production mechanism is not significantly altered
suggests that synchronization cannot be attained by mean-flow modification but,
instead, must be reached via nonlinear interactions between actuation and PVC mode.
This poses a strong contrast to the alterations of the production mechanism in the
non-responsive regime.
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FIGURE 23. Impact of forcing at xa/D = −0.5 (responsive regime) on coherent
out-of-plane momentum term associated with production of perturbations, below-natural
(a), ff /fn = 0.9, and above-natural (b), ff /fn = 1.08 forcing; natural case plotted side by
side with forced case, Re= 15 000.

5.4. Comparison of experimental and theoretical receptivities
Since the impact of open-loop control on the flow field has been investigated in detail,
the experimental and theoretical receptivities can now be compared and discussed. The
theoretical receptivity was defined to be proportional to the magnitude of the adjoint
mode according to § 3.3. Consistently, the experimental receptivity is now defined
to be proportional to the gradient of synchronization amplitude As with respect to
the frequency shift 1f = | fn − ff |, i.e. 1As/1f . A larger gradient means that higher
amplitudes are necessary to achieve a defined frequency shift, indicating that the flow
is less receptive at the current actuator position compared to another actuator position
where the gradient is lower.

The results of the synchronization diagram (figure 15) generally agree with the
receptivity obtained via the adjoint PVC mode in § 4.4. The non-responsive regime
corresponds to the adjoint PVC mode being close to zero upstream of x/D ≈ −1.5,
suggesting extremely low receptivity. Therefore, the introduced perturbations decay
before the PVC responds to the open-loop actuation and only the modifications
to the mean flow have a lasting effect. The mean-flow modifications dictate the
new frequency of the system, either by a favourable reduction of the swirl number
(below-natural forcing) or by suppression of the natural PVC in conjunction with
an artificial substitution of the precession motion through the actuation mode
(above-natural forcing).

The responsive regime can be associated with the regions of high magnitude of
the adjoint PVC mode, indicating maximum receptivity in the region of x/D ≈ −1
to −0.4. Likewise, the synchronization amplitudes decrease from x/D = −1 to
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−0.75, suggesting an increasing receptivity of the PVC in the downstream direction.
Within the uncertainty range, the flow seems to have a similar receptivity for
actuator positions xa/D = −0.75 and −0.5. In these regions of high receptivity, the
introduced perturbations couple with the natural production mechanism of the PVC.
The perturbations are convectively amplified and overwhelm the natural dynamics,
overwriting the natural frequency of the system.

The results of the synchronization studies as well as the adjoint mode quantifying
the receptivity coincide with the experimental lock-in results obtained by Kuhn
et al. (2016). With a comparable set-up, but the Reynolds number being an order of
magnitude lower, a similar slightly asymmetrical response of the PVC is observed,
requiring lower synchronization amplitudes for below-natural forcing compared to
above-natural forcing. This is observed for a large number of axial positions. In the
case where the actuator is traversed downstream of the breakdown bubble stagnation
point, the synchronization amplitudes steeply increase. This is in line with the
magnitude of the adjoint mode (figure 14) decreasing downstream of the stagnation
point, indicating a declining receptivity. Likewise, for the actuator located upstream
of the stagnation point within the vicinity of the nozzle exit, the synchronization
amplitudes stay almost constant, indicating that the receptivity of the PVC does
not change much here. This can also be observed for the adjoint mode where the
magnitude is approximately constant for a larger axial extent in the corresponding
region.

5.5. Synchronization mechanisms
In the following, the physical mechanisms that lead to synchronization in the
responsive and non-responsive regimes are summarized. The key mechanisms are
visualized in the flowchart of figure 24. The forcing can have two effects on
the flow: it either modifies the mean flow or it nonlinearly (directly) interacts
with the PVC. The primary mean-flow modification is the reduction of the swirl
number by dissipation of mean azimuthal momentum. For sufficiently weak forcing,
the resulting swirl number stays above the critical swirl number and the PVC
frequency is decreased. This leads to frequency pulling for below-natural forcing
and to frequency pushing for above-natural forcing. When the pulling becomes
strong enough, synchronization can be reached. As for the pushing, synchronization
can never be reached. Instead, the forcing needs to be strong enough such that
the swirl number falls below the critical swirl number and the PVC is suppressed.
Then, the only remaining ‘global mode’ is artificially generated by the continuous
actuation, substituting the PVC. The nonlinear interaction, on the other hand, leads
to a frequency pulling in any case. When the forcing is strong enough, phase lock-in
sets in and synchronization is attained.

In the non-responsive regime, only mean-flow modifications are responsible for
synchronization. This is associated with a region of virtually zero receptivity that
prevents a direct nonlinear interaction. In the responsive regime, a superposition
of mean-flow modification and nonlinear interaction occurs. With higher receptivity
of the PVC, synchronization is increasingly achieved by nonlinear interaction and
mean-flow modifications start to play a less important role.

6. Conclusion
In this work, the receptivity of a PVC in a turbulent swirling jet was characterized

experimentally and theoretically. Theoretically, global adjoint LSA was conducted

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1063


888 A3-38 J. S. Müller and others

Forcing

Mean flow modification

Swirl number reduction Phase lock-in

Nonlinear interaction

Suppression
of PVC

Reduction
of PVC

frequency

Substitution Synchronization

Receptivity

S < Scrit S > Scrit

ff < fn: pulling
ff > fn: pushing

ff < fn: pulling
ff > fn: pulling

Non-responsive Responsive
Mean flow modification only Dominantly nonlinear interaction
xa/D = -2, -1.5 xa/D = -1, -0.75, -0.5

FIGURE 24. Schematic of physical mechanisms leading to synchronization or substitution
of the PVC.

in order to predict locations of high and low receptivity with regard to periodic
forcing. Experimentally, open-loop forcing was applied at different axial positions with
the goal of finding the most efficient positions. Open questions have been tackled
regarding (1) the validity of global adjoint LSA for theoretically determining the
receptivity of global instabilities in the context of highly turbulent flows, and (2) the
physical mechanisms governing the PVC formation upstream of vortex breakdown
in the confined duct, which was already suggested to play a crucial role in previous
investigations.

For the experiment, a generic swirling jet set-up comprising a duct of constant
cross-section was considered. Open-loop forcing was realized by a ZNMF actuator
at different axial positions inside the duct that helically excited the flow in order to
change the frequency of the PVC, achieving synchronization between actuation and
PVC oscillations. Furthermore, a global adjoint LSA was conducted on the natural,
non-forced flow to obtain the theoretical receptivity in the base state.

It was demonstrated that synchronization is established via three different paths,
depending on the actuator location in the duct. For the non-responsive regime,
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corresponding to positions with virtually zero magnitude of the adjoint modes far
upstream of the duct exit, synchronization is achieved by mean-flow modification in
which the swirl number is reduced. For below-natural forcing, the swirl number is
reduced such that the natural frequency at the modified swirl number matches the
forcing frequency. For above-natural forcing, synchronization can only be achieved
by the suppression of the natural PVC mechanism. Thus, the mode induced by
the actuation replaces the natural PVC, artificially sustaining the precession motion
of the vortex core. In the responsive regime, corresponding to positions with high
magnitude of the adjoint modes closer to the duct exit, mean-flow modifications are
also observed. However, the modifications are small and synchronization is achieved
via a classical phase lock-in mechanism in which the PVC and actuation mode
directly and nonlinearly interact, resulting in the two modes oscillating in phase.

The experiments showed that the flow upstream of the breakdown bubble is
crucial for the formation of the PVC. Correspondingly, a finite region upstream
of the duct exit was demonstrated to be very receptive to open-loop control. This
high-receptivity region was also predicted via global adjoint LSA. It was interpreted
that the region of high receptivity correlates with the region of high production of
coherent fluctuations observed on the centreline inside the duct. This region of high
production is responsible for the initiation and amplification of the precession motion.
Additionally, the global adjoint LSA also predicted the non-responsive region further
upstream in which the adjoint mode of the PVC is virtually zero in magnitude.

The fact that the PVC is very receptive for a certain extent inside the duct may
be key for future development of flow control applications. Actuators could be
implemented non-intrusively into the walls of the duct upstream of the PVC. For
combustors this would be particularly beneficial, since the actuator could be placed
sufficiently far away from the reaction zone.

This work demonstrates that global adjoint LSA is a suitable tool to estimate
the receptivity of global modes in turbulent flows. The analysis correctly reveals
where the mode is most receptive to open-loop forcing for flow control purposes.
Although the validation method of choice (open-loop actuation) was tailored to
achieve synchronization, the adjoint mode intrinsically quantifies the receptivity of
the global mode to any periodic forcing. Therefore, it can be safely assumed that
the receptivity also applies to closed-loop forcing where the goal is suppression
through phase-opposition control. What the global adjoint LSA cannot provide is a
quantitative prediction of the required synchronization amplitudes, since the complete
synchronization process is inherently nonlinear and the adjoint mode provides only
a first-order estimate. Regardless, the adjoint mode has proved to be a valuable tool
that provides satisfying estimations for the receptivity of global modes under highly
turbulent conditions.
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