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Likelihood and Consilience: On Forster’s
Counterexamples to the Likelihood

Theory of Evidence
Jiji Zhang and Kun Zhang*y

Forster presented some interesting examples having to do with distinguishing the di-
rection of causal influence between two variables, which he argued are counterexam-
ples to the likelihood theory of evidence. In this article, we refute Forster’s arguments by
carefully examining one of the alleged counterexamples.We argue that the example is not
convincing as it relies on dubious intuitions that likelihoodists have forcefully criticized.
More important, we show that contrary to Forster’s contention, the consilience-based
methodology he favored is accountable within the framework of the likelihood theory of
evidence.

1. Introduction. Forster presented some putative counterexamples to what
he called the likelihood theory of evidence: “The Likelihood Theory of Ev-
idence ðLTEÞ: The observed data are relevant to the comparison of simple
hypotheses ðor modelsÞ only via the likelihoods of the simple hypotheses
being compared ðor the likelihood functions of the models under compar-
isonÞ” ð2006, 321Þ. The LTE entails that if the likelihood of one hypothesis
relative to a given body of data ði.e., the probability of obtaining the data
given the hypothesisÞ is the same as that of another hypothesis, then the
hypotheses cannot be distinguished on the basis of the data alone. Forster
challenged this consequence with examples in which the data, he argued,
favor one hypothesis over another even though the two have the same
likelihood.
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For those concerned with causal inference, Forster’s examples are par-
ticularly interesting because they have to do with distinguishing the direc-
tion of causal influence between two random variables. Forster contended
that his examples demonstrate a distinctive methodology based on Whe-
well’s notion of consilience of inductions ðWhewell 1858; Forster 1988Þ,
which cannot be captured by a likelihoodist or Bayesian philosophy of sci-
ence that subscribes to the LTE.

Our purpose in this article is twofold, one critical and one positive. First,
in section 2, we argue that Forster’s challenge to the LTE is based on deny-
ing a basic, well-argued thesis of likelihoodism. The thesis is that the evi-
dential bearing of a body of data on a given statistical hypothesis is essen-
tially relative, depending on the alternative against which the hypothesis is
assessed. The apparent force of Forster’s counterexamples, we argue, relies
on embracing an intuition that likelihoodists ðe.g., Hacking 1965; Royall
1997; Sober 2008Þ have forcefully criticized—the intuition that a statistical
hypothesis, taken alone, can be rejected or shown to be false by data. At best,
therefore, Forster’s argument begs an important question against the like-
lihoodist.

Second, and more important, we aim to vindicate Forster’s preferred meth-
odology using likelihoods. We show in section 3 that there is a systematic
connection between likelihood and the kind of consilience Forster empha-
sized. Forster is right that considerations of consilience are evidentially rel-
evant. However, such relevance, we contend, is reflected in likelihoods.
Due to the space limit, we focus on Forster’s example featuring discrete var-
iables, but our points extend straightforwardly to his example with contin-
uous variables, as we will briefly comment in section 4.

2. On Forster’s Challenge to the LTE. For the likelihoodist, a thesis of
fundamental importance is what Royall ð1997Þ called the “relativity of ev-
idence.” A body of data constitutes evidence for or against a statistical
hypothesis only relative to some alternative hypothesis. For example, get-
ting 10 heads straight in tossing a coin is not evidence against the coin be-
ing fair simpliciter. It disconfirms the fair-coin hypothesis in reference to
some alternative hypothesis, for example, the hypothesis that the coin is a
trick coin with heads on both sides or that the coin is so biased toward one
side that the chance of landing heads in each flip is 0.9. But when compared
to certain other alternatives, for example, the hypothesis that the coin is a
trick coin with tails on both sides, the observations favor the fair-coin hy-
pothesis. The evidential bearing of the data on the fair-coin hypothesis is
thus relative to the alternative being considered; evidential statements are
essentially contrastive in form.

Detailed and compelling arguments for this view were elegantly pre-
sented by, among others, Royall ð1997, 65–68Þ and Sober ð2008, 48–52Þ,
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and we do not repeat them here. Suffice it to say that objections to the
likelihood account of evidence that rely on denying the relativity of evi-
dence begs an important question. We will argue that Forster’s challenge
ends up question-begging in this way.

It is not obvious that Forster ran afoul of the relativity of evidence. His
counterexamples apparently pit a hypothesis against another. Here is the
first version of the example we focus on in this article. Suppose that two
variables X and Y are related by a simple law: Y 5 X 1 U, where X is a
variable taking positive integer values, and U is an unobserved variable—
error term—taking one of two values: 0.5 or 20.5, with equal probability.
Suppose also that data are generated by 20 independent trials, with X 5 4
in each trial. As it happens, in 10 of the 20 trials, Y is observed to be equal
to 3.5 ði.e., the values of U in those trials are 20.5Þ, and in the other 10
trials, Y is observed to be equal to 4.5 ði.e., the values of U in those trials are
0.5Þ.

Let us use Xi, Yi, and so on, to model the ith trial. Consider now two
hypotheses. One is the true hypothesis, which Forster referred to as hy-
pothesis A: Yi 5 Xi 1 Ui ði 5 1, . . . , 20Þ, and the error terms Ui’s are
independently and identically distributed ði.i.d.Þ such that PðUi 5 20.5Þ5
PðUi 5 0.5Þ5 1/2.
The other hypothesis is referred to as hypothesis B ðfor backwardÞ: Xi 5

Yi 1 Vi ði 5 1, . . . , 20Þ, and the error terms Vi’s are i.i.d. such that PðVi 5
20.5Þ 5 PðVi 5 0.5Þ 5 1/2.1

In the first version of the example, Forster considered these two hy-
potheses as such and treated the exogenous variable in each hypothesis
as nonrandom or given. Specifically, in A, Xi’s are not treated as random
variables, but Yi’s are ðbecause Ui’s areÞ; in B, Yi’s are not treated as random
variables, but Xi’s are ðbecause Vi’s areÞ. For these hypotheses, as Forster
pointed out, only conditional likelihoods are well defined. For A, the con-
ditional likelihood is the probability of obtaining the observed values of
Yi under hypothesis A, given the values of Xi, which is ð1/2Þ20; for B, the
conditional likelihood is the probability of obtaining the observed values
of Xi under hypothesis B, given the values of Yi, which is also ð1/2Þ20.

According to Forster, “The example is already a counterexample to LTE
in the following sense: We are told that either A or B is true, and we can
tell from the data that A is true and B is false. But there is nothing in the
likelihoods that distinguishes between them” ð2006, 328Þ. We will return to
Forster’s claim that one can tell from the data that A is true and B is false.
1. Forster used the same symbol U to denote the error terms in both hypotheses, which is
potentially misleading. To avoid confusion, we use V to denote the error term postu-
lated by the backward hypothesis.
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For now let us focus on a more basic problem with this version of the ex-
ample. The problem is that the two hypotheses concern different random
variables: the random variable in A is Y ðor more accurately, hY1, . . . , Y20iÞ,
and the random variable in B is X ðor hX1, . . . , X20iÞ. However, a pre-
supposition of LTE is that the hypotheses in question concern a common
set of random variables: the hypotheses imply probability distributions over
these variables, and the data are observations of their values. Royall, for
example, made it explicit in his influential formulation of the law of like-
lihood: “If hypothesis A implies that the probability that a random variable
X takes the value x is pAðxÞ, while hypothesis B implies that the probabil-
ity is pBðxÞ, then the observation X 5 x is evidence supporting A over B
if and only if pAðxÞ > pBðxÞ” ðRoyall 1997, 3Þ.2 Clearly the current version
of the example does not satisfy the presupposition. Thus, for likelihoodists
like Royall, it does not make sense to talk about the evidential support of A
versus B.

To be fair, Forster was quick to acknowledge that a subscriber to LTE
could easily respond to this version of the example by denying that LTE
should apply to such “incomplete” hypotheses. He put the subscriber’s
complaint in the following terms: “They might insist that the example vio-
lates the principle of total evidence because the likelihoods are not rela-
tive to the full data, even though there are no data ‘hidden from view,’ or
withheld in any way” ðForster 2006, 328Þ. This, in our view, is a misdi-
agnosis on behalf of the friends of LTE. The principle of total evidence is
about what evidence to take into account, but the LTE is about the evi-
dential bearing of given evidence on the comparison of hypotheses. It is
perfectly sensible to ask whether a certain part of the data supports one
hypothesis against another ðalthough one should take total evidence into
account, if possible, when updating beliefs or judgmentsÞ. In the current
case, for example, there is no problem comparing, on the basis of con-
ditional likelihoods, hypothesis A with, say, A*: Yi 5 Xi 1 Ui ði 5 1, . . . ,
20Þ and PðUi 5 20.5Þ 5 1/4 and PðUi 5 0.5Þ 5 3/4. Hypotheses A and
A* are as “incomplete” as A and B are, but they are about the same ran-
dom variables, and hence are comparable given the data. By contrast, A and
B as such are incomparable because they concern entirely different ran-
dom variables.3
2. Royall seemed to attribute this formulation to Hacking ð1965Þ, but as far as we can
see, Hacking did not formulate his law of likelihood in precisely these terms.

3. By “incomparable” we mean only that the hypotheses are not subject to evidential
comparison. They may still be comparable in terms of rational credences or someone’s
personal credences.
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Why are hypotheses incomparable if they are about different random
variables? This is connected to the thesis of evidential relativity. To see the
matter clearly, it helps to consider a simpler case. Suppose two coins are
each flipped independently for 20 times. Of the first coin, all of the 20 flips
turn up heads; of the second coin, half of the flips turn up heads and half
turn up tails. Consider two hypotheses: ð1Þ the first coin is fair, and ð2Þ the
second coin is fair. The observations on the first coin—call them D1—are
irrelevant to hypothesis 2 ðin the absence of any background knowledge or
assumption linking the two coinsÞ. So it does not make sense to say that D1

provide evidence for or against 1 versus 2. Similarly, we cannot say that D2,
the data on the second coin, provide evidence for or against 2 versus 1.

However, it may be tempting to think that the degree to whichD2 support
2 is greater than the degree to which D1 support 1. After all, it seems intu-
itive that 1 fits D1 very poorly while 2 fits D2 rather well. If so, it would be
fair to say that 1 and 2 are comparable after all, given the combined data
D 5 hD1, D2i. But according to the relativity of evidence, there is no such
thing as the degree to which D2 support 2 simpliciter or that to which D1

support 1 simpliciter. Observations D1 confirm or disconfirm 1 only in con-
trast to some other hypothesis concerning the outcomes of flipping coin 1,
and D2 confirm or disconfirm 2 only in contrast to some other hypothesis
concerning the outcomes of flipping coin 2. Hence, it does not make sense
to say that D2 support 2 better than D1 support 1.

Therefore, from the likelihoodist point of view, the basic problem with
the current ‘counterexample’ is not so much a violation of the principle of
total evidence as a juxtaposition of incomparable hypotheses, and the in-
comparability is closely related to the relativity of evidence. Forster’s ne-
glect of this point signals his denial of the relativity of evidence.

In any case, Forster did develop the example into one with comparable
hypotheses. Treat both Xi’s and Yi’s as random variables. To A add the as-
sumption that Xi and Ui are statistically independent and that PðXi 5 xiÞ 5
1, where xi is the observed value of X on the ith trial. To B add the as-
sumption that Yi and Vi are statistically independent and that PðYi 5 yiÞ5 1,
where yi is the observed value of Y on the ith trial. That is, the marginal
distributions are specified in an ad hoc way to the effect that whatever val-
ues the hypothesized exogenous variables actually take, the ðconstructedÞ
hypotheses entail that they take those values with probability 1. Such mar-
ginals are objectionable and useless in practice for a number of reasons, but
we leave them aside. Following Forster, call the resulting hypotheses A0 and
B0. They have the same likelihood.4
4. Throughout the article, we use uppercase letters to denote variables and the cor-
responding lowercase letters to denote values of the variables.
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LðA0Þ5P
i

PA0 ðXi 5 xi; Yi 5 yiÞ

5P
i

PA0 ðYi 5 yi j Xi 5 xiÞPA0 ðXi 5 xiÞ5 ð1=2Þ20:

LðB0Þ5P
i

PB0 ðXi 5 xi; Yi 5 yiÞ

5P
i

PB0 ðXi 5 xi j Yi 5 yiÞPB0 ðYi 5 yiÞ5 ð1=2Þ20:

According to Forster, this constitutes a counterexample to the LTE because
despite the equality of likelihoods, one can tell from the data that B0 is false
and A0 is true. Here is his argument. Hypothesis B0 entails that Vi and Yi are
independent ðfor every iÞ:

PðVi 5 0:5 j Yi 5 3:5Þ5 PðVi 5 0:5 j Yi 5 4:5Þ5 1=2;

or equivalently, PðXi 5 4 j Yi 5 3:5Þ5 PðXi 5 5 j Yi 5 4:5Þ5 1=2. Call
this consequence B0

1. However, from the data we see that the relative fre-
quency of X 5 4 in the trials in which Y 5 3.5 is 1, and the relative
frequency of X5 5 in the trials in which Y5 4.5 is 0. Hence, the data show
that B0

1 is false, and so B0 is false.
Formulated this way, the argument is clearly not contrastive and seems

akin to the probabilistic modus tollens that has been resolutely refuted by
likelihoodists ðSober 2008, 51–53Þ. It is not impossible, just very improb-
able, to obtain the data as they are even if B0

1 is true. A more charitable
reading is that Forster did not literally mean that B0

1 is shown to be false but
that the data overwhelmingly disconfirm B0

1 relative to not-B0
1. However,

not-B0
1 is a complex class of hypotheses. Relative to some members in the

class, the data are evidence against B0
1, but relative to others, for example,

that PðXi 5 4 j Yi 5 3:5Þ5 0 ≠ PðXi 5 5 j Yi 5 4:5Þ5 1, the data are argu-
ably evidence for B0

1. In the absence of a well-grounded prior over these
members, it is hard to make sense of the sweeping claim that the data
seriously disconfirm B0

1 in favor of its logical negation.
Therefore, if we take the relativity of evidence seriously, the right way

to state Forster’s intuition is that the data provide evidence against B0
1 in

reference to the given alternative A0. More accurately, the data disconfirm B0
1

relative to A0
1: PðXi 5 4 j Yi 5 3:5Þ5 1 ≠ PðXi 5 5 j Yi 5 4:5Þ5 0, which is

entailed by A0. Indeed, the evidence against B0
1 versus A

0
1 is overwhelming,

judged either intuitively or by a formal measure such as a likelihood ratio.
But the fact that the data constitute weighty evidence against B0

1 versus
A0

1 does not entail that the data are weighty evidence against B0 versus A0.
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Hypotheses A0
1 and B0

1 are just parts of what A0 and B0 have to say about
the data at hand; they are about the conditional probability of Xi given Yi.
But A0 and B0 also have implications for the marginal probability of Yi.
Hypothesis A0 entails A0

2: PðYi 5 3:5Þ5 PðYi 5 4:5Þ5 1=2 ðfor every iÞ,
whereas B0 entails B0

2: PðYi 5 yiÞ5 1, where yi is the actual observed value
of Yi. How do the data bear on A0

2 versus B
0
2?

Essentially the same question was addressed very early on in Royall’s
ð1997Þ elaborate defense of likelihoodism. Shortly after he described the
law of likelihood, he considered and refuted a putative counterexample
ð13–15Þ. Suppose an ordinary-looking deck of 52 cards is well shuffled. We
turn over the top card and find it to be the ace of diamonds. According to the
law of likelihood, the observation supports the hypothesis that it is a trick
deck consisting of 52 aces of diamonds against the hypothesis that the
deck is ordinary. This may sound counterintuitive; intuitively the trick-deck
hypothesis is not rendered more probable or believable than the ordinary-
deck hypothesis based on the observation. But the evidential judgment is
perfectly consistent with the intuition, for the question of credence is dif-
ferent from that of evidence. Even though the observation supports the
trick-deck hypothesis against the ordinary-deck hypothesis, the former, in
ordinary circumstances, is much less credible before the observation and
may well end up less credible overall despite the positive evidence.

By the same token, for every trial in Forster’s example, the observation
of Yi 5 yi supports the hypothesis that PðYi 5 yiÞ 5 1 against the hypothe-
sis that PðYi 5 3.5Þ 5 PðYi 5 4.5Þ 5 1/2, and overall the data favor B0

2

over A0
2. Again, this evidential judgment should not be conflated with the

judgment that the data render B0
2 more credible than A0

2. In normal circum-
stances, there are a number of reasons to regard B0

2 as much less plausible
than A0

2, before considering the evidence, and the evidential support may
well be insufficient to overcome the initial implausibility.

The upshot is that the data are evidence for A0
1 versus B

0
1 but also con-

stitute evidence against A0
2 versus B0

2. There is no compelling reason to
think that the data alone favor the conjunction of A0

1 and A0
2 over that of B

0
1

and B0
2 ðor the other way aroundÞ. The LTE, we conclude, is not threat-

ened by the example.

3. Likelihood and Consilience. Forster’s positive insight, however, is not
to be ignored. As he put it, hypothesis B0 suffers from a lack of “con-
silience.” Given B0, the probability distribution of the error term V can be
measured or estimated under two conditions ðwhen Y 5 3.5 and when Y 5
4.5Þ, but the two estimates do not “jump together”: the empirical distri-
bution of V estimated from the group of Y 5 3.5 is very different from that
of V estimated from the group of Y 5 4.5. In contrast, Hypothesis A0 does
not have this problem ðalthough in this case it does not display interesting
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consilience due to the lack of variation in XÞ. We agree with Forster that
this kind of consilience or lack thereof is evidentially significant, but we
submit that the contrast is reflected in the comparison of likelihoods.

To show this, it helps to consider yet another version of the example
Forster discussed. This version specifies the two hypotheses in the standard
and perhaps most natural way, which assumes that Xi’s and Yi’s are i.i.d.
Under the i.i.d. assumption, the best fitting marginal of X is PðX 5 4Þ 5 1.
Add this marginal of X, together with the i.i.d. assumption and that of the
independence between X and U, to A, and call the resulting hypothesis A00.
Similarly, the best fitting marginal of Y is PðY 5 3.5Þ 5 PðY 5 4.5Þ 5 1/2.
Add this marginal of Y, together with the i.i.d. assumption and that of the
independence between Yand V, to B, and call the resulting hypothesis B00. In
this example, A00 happens to be the same as A0, so LðA00Þ5 ð1/2Þ20. But B00 is
different from B0 and has a much lower likelihood:

LðB00Þ5P
i

PB00 ðXi 5 xi; Yi 5 yiÞ

5P
i

PB00 ðXi 5 xi j Yi 5 yiÞPB00 ðYi 5 yiÞ5 ð1=2Þ40:

The difference in likelihoods accords well with the intuition that the data
favor A00 over B00. But there is a “mystery” according to Forster. The like-
lihoods seem to differ just because of the difference in the parts contributed
by the added marginals, but why should that matter? Intuitively, “the
generation of the independent or exogenous variable ½is� an inessential part
of the causal hypothesis” ðForster 2006, 332Þ.

We share the latter intuition. In particular, we are sympathetic with the
view that a defining feature of a causal relationship is that the relationship
remains invariant under suitable interventions on an exogenous cause that
change its marginal distribution ðWoodward 2003Þ. But it does not follow
that marginals are irrelevant in causal inference. They are especially rele-
vant to the kind of problems under discussion: distinguishing the direc-
tion of causal influence. In the current case, for example, X is hypothesized
as the cause in only one of the hypotheses; in the other hypothesis it is
modeled as the effect. The marginal distribution of X is relevant to judging,
for example, how well the other hypothesis, by treating X as endogenous,
fits the observations on X, compared to the former hypothesis that treats X as
exogenous.

In our view, the right explanation of the difference between the like-
lihoods actually agrees nicely with Forster’s consideration of consilience.
Notice that the lack of consilience under B highlighted by Forster corre-
sponds to the statistical dependence of V on Y as shown in the data. A
convenient measure of statistical dependence between random variables is
86/683342 Published online by Cambridge University Press
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known as mutual information ðCover and Thomas 1991, 18Þ. The mutual
information between two random variables Z and W is defined as

IðZ; W Þ5 Elog
PðZ; W Þ
PðZÞPðW Þ

5 EðlogPðZ; W Þ2 logPðZÞ2 logPðW ÞÞ;

where Eð˙Þ denotes the expectation ðwith respect to PðZ, WÞÞ. The mutual
information is a way to measure the difference between the joint distribu-
tion PðZ,WÞ and the product of the marginals PðZÞPðWÞ and, hence, a way
to measure the statistical dependence between Z and W. It is nonnegative
and is equal to zero just in case Z and W are independent.
Given i.i.d. samples from the joint distribution PðZ, WÞ, we can use the

following sample approximation of the mutual information, by replacing the
expectation with the sample mean and P with the corresponding empirical
distribution P̂ ðwhere probabilities are estimated by sample frequenciesÞ:

ÎðZ; W Þ5 1

n oi ðlog P̂ðzi; wiÞ2 log P̂ðziÞ2 logP̂ ðwiÞÞ;

where n is the sample size. This provides a measure of dependence as
shown in the samples. Accordingly, in Forster’s example, ÎðX ; UÞ and
ÎðY ; V Þ can be regarded as plausible measures of the lack of consilience in
A00 and B00, respectively.

Some calculations are in order. Given the data in Forster’s example, the
empirical joint distribution of X and Y puts half of the mass on hX 5 4, Y 5
3.5i and half of the mass on hX 5 4, Y 5 4.5i. It follows that the empirical
joint distribution of X and U5 Y2 X puts half of the mass on hX5 4, U5
20.5i and half of the mass on hX 5 4, U 5 0.5i, and the empirical joint
distribution of Y and V 5 X 2 Y puts half of the mass on hY 5 3.5, U 5
20.5i and half of the mass on hY 5 4.5, U 5 0.5i. From these it is easy to
calculate, taking 2 as the base of the logarithm to simplify the numbers,
that Î X ; Uð Þ5 0 and Î Y ; Vð Þ5 1. These, we repeat, are plausible mea-
sures of the lack of consilience in Forster’s sense.

Consider now the log likelihoods of A00 and B00, taking again 2 as the base
of the logarithm: lðA00Þ5220 and lðB00Þ5240. The difference between them
per datum is 20/20 5 1, which is precisely the difference between Î Y ; Vð Þ
and Î X ; Uð Þ.
This is not a numerical accident. The log likelihood of A00 can be written as

lðA00Þ5 o
i

logPA00 ðxi; yiÞ5 o
i

logPA00 ðxi; uiÞ

5 o
i

ðlogPA00 ðxiÞ1 logPA00 ðuiÞÞ;
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because for each i, hXi 5 xi, Yi 5 yii and hXi 5 xi, Ui 5 ui 5 yi 2 xii are
descriptions of the same event. Since the marginals in A00 are specified as
the corresponding empirical distributions—PA00 ðX Þ5 P̂ðX Þ and PA00 ðUÞ5
P̂ðUÞ—we have

lðA00Þ5 o
i

ðlog P̂ðxiÞ1 log P̂ðuiÞÞ

5 o
i

log P̂ðxi; uiÞ2 o
i

ðlog P̂ðxi; uiÞ2 log P̂ðxiÞ2 logP̂ðuiÞÞ

5 o
i

logP̂ðxi; uiÞ2 nÎðX ; UÞ:

Similarly,

lðB00Þ5 o
i

logP̂ðyi; viÞ2 nÎðY ; V Þ:

Note further that for every i, P̂ðxi; uiÞ5 P̂ð yi; viÞ5 P̂ðxi; yiÞ. Hence,

lðA00Þ2 lðB00Þ5 nðÎðY ; V Þ2 ÎðX ; UÞÞ:

Therefore, there is here a systematic connection between the comparison of
likelihoods and the comparison of how hypotheses fare in terms of “con-
silience of inductions” highlighted by Forster. The evidential significance of
consilience, or at least one plausible interpretation of it, is not beyond the grip
of the LTE.

4. Conclusion. Whether or not the LTE can survive other challenges, For-
ster’s examples, we conclude, are not convincing counterexamples.We have
only examined one of his examples in this article, but the other example, set
up in linear models with continuous variables, employs parallel devices and
arguments, towhich our points in section 2,mutatismutandis, carry over. The
apparent force of his examples hinges on an ðimplicitÞ denial of the basic te-
net of likelihoodism, that is, the thesis of the relativity of evidence. Since
the denial is based on no argument but dubious intuitions that have been
forcefully criticized by likelihoodists, Forster’s criticism is at best question
begging.

More interestingly, we showed a way to vindicate Forster’s preferred
consilience-based methodology within the framework of the LTE, by estab-
lishing a systematic connection between likelihood and ðone plausible in-
terpretation ofÞ consilience. The connection holds much more generally for
such causal models than we can show in this article ðHyvärinen and Smith
2013; Zhang et al. 2015Þ. In particular, Hyvärinen and Smith ð2013, 115Þ
presented a similar result on linear models, which is applicable to Forster’s
86/683342 Published online by Cambridge University Press
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example with continuous variables. Whether similar connections exist in
contexts other than this sort of causal inference problem is worth exploring.
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