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Abstract

We show that for all large enough x the interval [x, x + x1/2 log1.39 x] contains numbers
with a prime factor p> x18/19. Our work builds on the previous works of Heath–Brown
and Jia (1998) and Jia and Liu (2000) concerning the same problem for the longer intervals
[x, x + x1/2+ε].We also incorporate some ideas from Harman’s book Prime-detecting sieves
(2007). The main new ingredient that we use is the iterative argument of Matomäki and
Radziwiłł (2016) for bounding Dirichlet polynomial mean values, which is applied to obtain
Type II information. This allows us to take shorter intervals than in the above-mentioned
previous works. We have also had to develop ideas to avoid losing any powers of log x when
applying Harman’s sieve method.

2010 Mathematics Subject Classification: 11N05

1. Introduction and results

The current best result for prime numbers in short intervals is the theorem of Baker,
Harman and Pintz [2] from 2001, which states that for all large enough x the inter-
val [x, x + x1/2+1/40] contains prime numbers. It is well known that conditionally on the
Lindelöf Hypothesis, for instance, there are prime numbers in the intervals [x, x + x1/2+ε]
for any ε > 0 for all large enough x .

Since showing that the short intervals [x, x + x1/2+ε] contain prime numbers seems to be
beyond the current methods, it is sensible to consider the easier problem of finding numbers
with a large prime factor. Consider intervals [x, x + x1/2+ε], where the aim is to show that
the interval contains an integer with a prime factor p> x1−γ for as small γ > 0 as possible;
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this problem has attracted the attention of many authors. In 1973, Jutila [13] obtained this
for γ = 1/3 + ε by considering numbers pn, where n � xγ is very smooth. This was then
improved to γ = 0.18 by Balog, Harman and Pintz [6] in 1983 (improving the earlier works
[3, 4, 5] of the same authors). In 1996, Heath–Brown [9] combined Jutila’s method with
sieve arguments to obtain γ = 1/12 + ε, which was then improved by Heath–Brown and Jia
[10] to γ = 1/18 + ε in 1998. Harman, in an unpuplished manuscript, got γ = 1/20. The
current record is γ = 1/26 + ε by Jia and Liu [12] from 2000.

In comparison, for slightly shorter intervals [x, x + x1/2] the best exponent is γ = 0.2572
by Baker and Harman [1], which is much larger. A natural question then is that at what point
does this significant change in the exponent γ become neccesary. This is interesting espe-
cially in light of the recent result of Matomäki and Radziwiłł [15] (given there as a corollary
of their much more general theorem on multiplicative functions) that for all ε > 0 there is
a constant C = C(ε) such that the intervals [x, x + C

√
x] contain x ε-smooth numbers (this

was previously known only for intervals [x, x + x1/2 log7/3+δ x], cf. [14]). The main idea
in this paper is to combine their argument with the methods used for finding numbers with
large prime factors in [x, x + x1/2+ε], so that we can reduce the length of the interval as
much as possible. Unfortunately, it appears that the intervals [x, x + C

√
x] remain out of

our reach; our main theorem is:

THEOREM 1. Let β := 1.388 . . . denote the minimum of the function

r �→ log(1 − log(r − 1))− log(− log(r − 1))+ log 2

2 log r
− 1

2

for 1< r < 2, which is obtained at r := 1.625 . . . Then, for all δ > 0 and for all large
enough x, the interval [x, x + x1/2 logβ+δ x] contains numbers with a prime factor p> x1−γ

for γ = 1/19.

We now sketch the main ideas in the proof. The argument is based on that of Heath–
Brown and Jia [10] (also described in chapter 5 of Harman’s book [8]), so we first describe
the argument they use for finding numbers with large prime factors on intervals I := [x, x +
x1/2+ε]; the aim is to show that pn ∈ I for some prime p and for some integer n � xγ .
Heath–Brown and Jia consider n which are very smooth, of the form n = q1 · · · qK , for
primes qi ∼ Q := xγ /K and K ≥ 4/ε (this idea is originally from Jutila’s work [13]). The
task is then to obtain a lower bound for ∑

pq1···qK ∈I, qi ∼Q

1p∈P.

By applying Harman’s sieve we can obtain a lower bound for this sum if we have an
asymptotic formula for sums over xγ -almost-primes of the form∑

uvnq1···qK ∈I, qi ∼Q

aubv1(n,P(xγ ))=1,

for any (say, bounded) coefficients au, bv supported on u < x1/4, v < x1/2−γ (cf. Harman [8,
chapter 5], for instance). This in turn can be reduced to obtaining asymptotic formulae for
the so-called Type I/II and Type II sums (in the language of Harman [8])

Type I/II:
∑

uvnq1···qK ∈I, qi ∼Q

aubv, Type II:
∑

uvq1···qK ∈I, qi ∼Q

aubv.
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For the Type I/II sum the coefficients au, bv are supported on u < x1/4, v < x1/2−γ , and for
the Type II sum the coefficients are supported on the Type II range u, v ∈ [x1/2−γ , x1/2]. The
name for the Type II sum comes from the bilinear structure of the sum; the idea is that at
some suitable stage we can use Cauchy–Schwarz to separate the variables u and v. In the
name Type I/II, the ‘I’ refers to the fact that we have a long smooth variable n, and the
‘II’ again refers to the bilinear structure which permits the use of Cauchy–Schwarz at some
point.

In the Type I/II sum we can apply Perron’s formula to reduce matters to obtaining a mean
value estimate for Dirichlet polynomials. Since we have a long smooth variable n, we can
use methods from the theory of the zeta function (e.g. reflection principle or the fourth
moment estimate) to handle these sums; see the beginning of Section 4 below for a sketch
of an argument of this type.

We now describe the argument used for the Type II sums in more detail (for intervals
[x, x + x1/2+ε]), since obtaining the Type II estimate sets the restriction for the length of the
interval in our main theorem; by applying Perron’s formula, this can be reduced to obtaining
a mean value estimate of the form∫ x1/2−ε

T0

|A(1 + i t)B(1 + i t)Q(1 + i t)K | dt 
 log−C x,

where T0 = log100C x, and

A(s)=
∑
u∼U

auu−s, B(s)=
∑
v∼V

bvv
−s, Q(s)=

∑
q∼Q, q∈P

q−s

for U, V ∈ [x1/2−γ , x1/2], UV � x1−γ , Q � xγ /K , K ≥ 4/ε. By Vinogradov’s zero-free
region, we see that the integral is bounded by.

(log−2C x)
∫ x1/2−ε

T0

|A(1 + i t)B(1 + i t)Q(1 + i t)K−1| dt.

Since K is large enough, we can find L ≤ K − 1 such that UQL , VQK−L−1 � x1/2−ε .Hence,
by Cauchy–Schwarz and the Mean value theorem for Dirichlet polynomials (cf. Lemma 3
below)∫ x1/2−ε

T0

|A(1 + i t)B(1 + i t)Q(1 + i t)K−1| dt ≤
(∫ x1/2−ε

T0

|A(1 + i t)Q(1 + i t)L |2 dt

)1/2 (∫ x1/2−ε

T0

|B(1 + i t)Q(1 + i t)K−L−1|2 dt

)1/2



(

x1/2−ε

UQL
+ 1

)1/2 (
x1/2−ε

VQK−L−1
+ 1

)1/2

logC x 
 logC x, (1·1)

which is sufficient.
Consider then the shorter intervals [x, x + x1/2 logε x]. Here the upper integration limit in

the above mean value becomes x1/2 log−ε x instead of x1/2−ε . Hence, to make the above argu-
ment work, we now need to factor the product A(1 + i t)B(1 + i t)Q(1 + i t)K−1 into almost
equally long parts, with a much greater accuracy of logε x ; this is because we now need both
of the polynomials in the factorisation to have length greater than x1/2 log−ε x . This means
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that K must be very large, which in turn means that our set {pq1 · · · qK } becomes very
sparse. This causes losses in the Mean value theorem for Dirichlet polynomials, which now
need to be gained back. For short intervals [x, x + x1/2 logε x] we must apply the method
of Matomäki and Radziwiłł, which can only give a small saving of log−ε/5 x over the mean
value estimate, which is insufficient to gain back the losses. To put it simply, we have a
situation of two competing requirements, a high density versus a strong factorisation prop-
erty, which forces a compromise. By taking interval of the form y = x1/2 logB x, we can
work with a set of density of some power of log x, which gives us just enough room to
obtain the factorization property.

To maximise the density, we must take our small prime factors on intervals longer than
dyadic intervals (cf. intervals I j below). This makes the computations in the Type II esti-
mate much trickier. We must also exercise great care in every step so that we do not lose
any additional powers of log x; for this purpose we have had to develop some new ideas,
especially for the Type I/II estimtate (cf. Section 4 below) and in the framework of Harman’s
sieve (cf. Sections 6 and 7 below). Optimising the set-up we find that the argument works for
y = (logβ+δ x)

√
x with β as in Theorem 1. The value of γ in the theorem is not necessarily

the best that one can obtain, but we do not pursue this issue further here since our main focus
is on the length of the interval.

The paper is structured as follows: in Section 2 we give the set-up, and in Section 3 we
have collected some basic lemmata which will be used in the proofs. Section 4 contains the
proof of our Type I/II estimate (Proposition 13). In Section 5 we prove our Type II esti-
mate (Proposition 16), which is the heart of the matter; Lemma 20 there gives the restriction
for the length of the interval (cf. line (5·15) in particular, which yields the function of r in
Theorem 1 which is minimized to optimise the result). In Section 6 we prove the so-called
Fundamental proposition (Proposition 22), which combines the Type I/II and Type II esti-
mates to give an asymptotic formula for certain sums over almost-primes (this corresponds to
[8, lemma 5·3]); we note that the proofs in Sections 4, 5 and 6 work for any 0< γ < 1/2. In
Section 7 we use Buchstab’s identity along with the Fundamental proposition and the Type
II estimate to give a lower bound for a sum over numbers with large prime factors; there we
encounter sums for which we cannot obtain an asymptotic formula. The contribution from
these sums is bounded by numerical computations, which ultimately determines the expo-
nent γ in Theorem 1. These numerical computations are performed using Python 3.7; for
the code see the codepad links at the end of the paper.

While it is not a prerequisite, the reader will find the proofs easier to digest if they are
familiar with the contents of [8, chapters 3 and 5]. However, we have tried to sketch the
relevant ideas before giving the full proofs in each situation. It may also be helpful at the
first pass to read only the statements of the Type I/II and Type II estimates (Propositions 13
and 16), and after reading Section 6 return to the proofs of these estimates; this should help
to motivate the exact form of these propositions.

Notation

We use the following asymptotic notation: for positive functions f, g, we write f 
 g or
f =O(g) if there is a constant C such that f ≤ Cg. f � g means g 
 f 
 g. The constant
may depend on some parameter, which is indicated in the subscript (e.g. 
ε). We write
f = o(g) if f/g → 0 for large values of the variable.

It is useful for us to introduce the following unconventional notation: f � g means that
there is some positive function ψ = logo(1) x so that f ≤ψg (e.g. a common estimate we
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use is (log log x)O(1) � 1). A recurring theme is that we are interested in estimates only up
to factors � 1.

In general, C stands for some large constant, which may not be the same from place
to place. For variables we write n ∼ N meaning N < n ≤ eN (an e-adic interval), and
n � N meaning N/C < n <C N (a C2-adic interval) for some constant C > 1 which is large
enough depending on the situation; for example, we write∑

m�M

∑
n�N

|am ||bn| 

∑

mn�M N

|am ||bn|

meaning that the implied constants are C, C ′ and CC ′. If not otherwise stated the symbols
p, q, r denote primes and c, d, k, l,m, n denote integers.

For a statement E we denote by 1E the characteristic function of that statement. For
complex numbers we use the notation s = σ + i t, σ, t ∈R.

We define P(w) :=∏
p≤w p, and for any integer d we write P−(d) := min{p : p|d},

P+(d) := max{p : p|d}. The divisor function is denoted by τ(d). We denote by τ (k) the
k-fold divisor function (i.e. τ (k+1) = 1 ∗ τ (k), τ (1) ≡ 1, where ∗ is the Dirichlet convolution).
We set τw(d) := (1(·,P(w))=1 ∗ 1)(d), which equals one plus the number of divisors whose
prime factors are >w.

2. Set-up and conventions

Let K , L > 0 denote large and ε > 0 small constants, with K , L � 1/ε. We will abuse
the notation so that we write K −1, L−1, ε = o(1) meaning that we will eventually choose
each constant to be large or small enough. In addition, we let δ > 0 denote a fixed small
constant. We choose ε small and K , L large enough so that E(ε, K , L)= o(δ) for certain
error terms E(ε, K , L) that occur below.

We now give our basic set-up; to collect all of the definitions in one place, we postpone
the motivation for this construction to the paragraphs following Proposition 2 below. Let
r = 1.625 . . . and β = 1.388 . . . be as in Theorem 1. Set

θ := r − 1 + ε, ω := xγ (r−1), w := x1/(log log x)2,

J :=
⌈

1

log r
log

(
logω

log K

)⌉
, H :=

⌈
(log log x)1/2

10δ

⌉
,

Q1 := log10δ x, Q2 := Q H
1 , Q3 := exp(2�log9/10 x�),

and define intervals

I := [1, x ε], I j :=
{
(ω(1−2ε)r− j

, ω(1−ε)r− j ], j = 1, 2, . . . , K

(ωθr− j
, ω(1−ε)r− j ], j = K + 1, . . . , J.

Note that, since r > (1 + √
5)/2 = 1.618..., we have θ > 1/r so that the intervals I j are

disjoint. Note also that ωr−J ∈ [K 1/r , K ] by the choice of J . Similarly as in [15, section 10],
we define the piecewise linear smoothing of the indicator function of [1 − η, 1 + η] by

fη,ξ (z) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, 1 − η≤ z ≤ 1 + η,

(1 − z + η+ ξ)/ξ, 1 + η < z ≤ 1 + η+ ξ,

(z − 1 + η+ ξ)/ξ, 1 − η− ξ ≤ z ≤ 1 − η,

0 otherwise.

(2·1)
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Define (this definition is made so that the bound (5·15) in Section 5 is satisfied)

y : = x1/2(log−1/2+10δ x)2J/2(1 + log 1/θ)J/2(log 1/θ)−J/2 (2·2)

= x1/2 exp

((
log(1 + log(1/θ))− log(log(1/θ))+ log 2

2 log r
− 1

2
+ 10δ + o(1)

)
log log x

)
= x1/2 logβ+10δ+o(1) x

and

ηA := y/x, ξA := (log−ε x)y/x, fA(z) := fηA,ξA(z),

ηB := log−100 x, ξB := log−100−ε x, fB(z) := fηB,ξB(z),

WA(n) :=
∑

ncc′q1q2q3 p1···pJ r1···rL �x

fA(ncc′q1q2q3 p1 · · · pJ r1 · · · rL/x),

WB(n) :=
∑

ncc′q1q2q3 p1···pJ r1···rL �x

fB(ncc′q1q2q3 p1 · · · pJ r1 · · · rL/x),

S(A, z) :=
∑

(n,P(z))=1

WA(n), S(B, z) :=
∑

(n,P(z))=1

WB(n),

where in the summations c, c′ are w-smooth integers (that is, P+(c), P+(c′)≤w), qi , p j , rl

are primes, q1 ∼ Q1, q2 ∼ Q2, Q1/2
3 < q3 ≤ Q3 and

c, c′ ∈ I, p j ∈ I j for j = 1, 2, . . . , J, rl ∼ logε x for l = 1, 2, . . . , L . (2·3)

From here on until Section 6, the above conditions will always apply to the corresponding
variables and will usually be suppressed in the notation. Same applies to q ′

i , p′
j , r ′

l . Note that
by definitions pJ ∈ IJ ⊂ [K (r−1)/r , K ]. We also note that since the intervals I j are short for
j ≤ K , we have

cc′q1q2q3 p1 · · · pJ r1 · · · rL = xγ (r−1)(r−1+r−2+··· )+o(1) = xγ+o(1). (2·4)

We remark that by the Prime Number Theorem

log100 x

x

∑
p

WB(p)= 2 + o(1)

log(x1−γ+o(1))

∑
c,c′,q1,q2,q3,

p1,··· ,pJ ,
r1,··· ,rL

(cc′q1q2q3 p1 · · · pJ r1 · · · rL)
−1

= (2 + o(1))


(1 − γ ) log x
, (2·5)

where 
 is⎛⎝ ∑
c≤D, P+(c)≤w

c−1

⎞⎠2 ⎛⎝ ∑
q1∼Q1

q−1
1

⎞⎠⎛⎝ ∑
q2∼Q2

q−1
2

⎞⎠⎛⎝ ∑
Q1/2

3 ≤q3≤Q3

q−1
3

⎞⎠⎛⎝ ∑
r∼logε x

r−1

⎞⎠L
J∏

j=1

⎛⎝∑
p∈I j

p−1

⎞⎠
= (log2+o(1) x)

J∏
j=K+1

(
(1 +O(log−1 K )) log((1 − ε)/θ)

)
= (log2+o(1) x)(log 1/θ)J ,
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since for j ≤ K we have
∑

p∈I j
p−1 � 1, and for j > K by the Prime Number Theorem

(recall that ωr−J ∈ [K 1/r , K ])∑
p∈I j

p−1 = (1 +O(log−1(ωθr− j

)))(log log(ω(1−ε)r− j

)− log log(ωθr− j

))

= (1 +O(log−1 K )) log((1 − ε)/θ).

Since z �→ fA(z/x) is supported on [x − 2y, x + 2y], and S(C, x (1−γ )/2+δ)=∑
p WC(p) for

C =A and C =B, Theorem 1 follows once we prove:

PROPOSITION 2. For every γ ≥ 1/19 there exists C(γ ) > 0, such that for all large enough x

S(A, x (1−γ )/2+δ) > C(γ ) · y log100 x

x
S(B, x (1−γ )/2+δ).

We can take C(1/19)= 0.007.

The above definitions are tailored with the Type II estimate in mind. To obtain our Type II
estimate, we roughly speaking must require that for any x1/2−γ+δ < u, v < x1/2−δ such that
uvcc′q1q2q3 p1 · · · pJ r1 · · · rL ∼ x,we can form a partition of the product q1q2q3 p1 · · · pJ =
(π) · (τ ) in such a way that ucπ, vc′τ � √

x/ logLε/2 x . The w-smooth parameters c, c′ are
added to boost the density; the restriction tow-smooth numbers will be useful in the Type I/II
estimate (cf. Lemma 15, this is a kind of ‘arithmetic smoothing’ of 1[1,xε ]). We will choose L
large to make Lε sufficiently large and then use the primes rl to balance the partition suitably
(with an accuracy logε x). The primes q1, q2, q3 will be used in the Type II estimate to bound
a Dirichlet polynomial mean value by using the method of Matomäki and Radziwiłł [15]. It
is technically easier to include them separately, even though the primes p j could in principle
be used to the same effect. Note that the ranges Q1, Q2 are small enough so that

∑
q∼Q1

q−1,
∑

q∼Q2

q−1,

⎛⎝∑
q∼Q1

q−1

⎞⎠H

,
∑

r∼logε x

r−1 = logo(1) x, (2·6)

that is, using e-adic intervals does not cause significant losses. The range for q3 is large (in
particular, log Q3 �= logo(1) x), which forces us to take a longer interval q3 ∈ (Q1/2

3 , Q3].
Remark 1. Those familiar with the well-factorability of weights in the linear sieve will note
a similarity with our construction (cf. Friedlander and Iwaniec’s book [7, chapter 12]). An
integer d is said to be well-factorable of level D if for any D1 D2 = D, D1 ≥ 1, D2 ≥ 1,
there are d1 ≤ D1, d2 ≤ D2 such that d = d1d2. If d = p1 · · · pJ , p1 > p2 > · · ·> pJ , then a
sufficient condition is that for all j ≤ J

p1 · · · p j−1 p2
j ≤ D (2·7)

(see the proof in [7, lemma 12·16]). This becomes stricter as D decreases, and if D ≤
Cp1 · · · pJ , then d has to have a factor on every C-adic interval [z,Cz] ⊂ [1, d]. We require
a very strong level of well-factorability, that is, of level D 
 p1 · · · pJ . Thus, the criteria
(2·7) becomes

p j+1 · · · pJ � p j ,

which motivates the definition of the intervals I j with θ = r − 1 + ε in our situation.
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3. Preliminaries

We have gathered here some basic results for reference. The first two lemmata are mean
value estimates for Dirichlet polynomials. The proof of the first can be found in [11, chapter
9] by Iwaniec and Kowalski, for instance.

LEMMA 3. Let N ≥ 1 and F(s)=∑
n∼N ann−s for some an ∈C. Then

∫ T

0
|F(i t)|2 dt 
 (T + N )

∑
n∼N

|an|2.

The following mean value theorem improves the above bound for sparse sequences, as is
noted in the work of Teräväinen [19]. Similarly as in there, we note that the lemma follows
from [11, lemma 7·1] by taking Y = 10T there.

LEMMA 4 (Improved mean value theorem). Let N ≥ 1 and F(s)=∑
n∼N ann−s for some

an ∈C. Then

∫ T

0
|F(i t)|2 dt 
 T

∑
n∼N

|an|2 + T
∑

1≤h≤N/T

∑
m−n=h
m,n∼N

|am ||an|.

Remark 2. Suppose that an is the indicator function of some well-behaved sparse set with a
density ρ around N . Then we expect that

∑
n∼N |an||an+h| 
h ρ

2 N , so that the second term
is 
 ρ2 N , saving a factor of ρ in the second term compared to Lemma 3.

We will also need the following large values result for Dirichlet polynomials supported on
primes (cf. [15, lemma 8] for the proof). We say that T ⊂R is well-spaced if for all distinct
t, u ∈ T we have |t − u| ≥ 1.

LEMMA 5. Let P(s)=∑
p∼P ap p−s with |ap| ≤ 1. Let T ⊂ [−T, T ] be a set of well-spaced

points such that |P(1 + i t)| ≥ P−α for all t ∈ T . Then

|T | 
 T 2αP2α exp

{
2 log T

log log T

log P

}
.

Similarly as in [15], the above lemma will be used in co-operation with the Halász–
Montgomery inequality below (cf. [11, theorem 9·6] for the proof, for instance).

LEMMA 6 (Halász–Montgomery inequality). Let F(s)=∑
n∼N ann−s and let T ⊂ [−T, T ]

be a set of well-spaced points. Then∑
t∈T

|F(i t)|2 
 (N + |T |√T ) log(2T )
∑
n∼N

|an|2.

For any compactly supported g :R→C of bounded variation, define the Mellin transform

ĝ(s) := −
∫ ∞

0
zsdg(z).
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For any such g we have for all z > 0 the Mellin inversion formula

g(z)= 1

2π i

∫ σ+i∞

σ−i∞

z−s

s
ĝ(s) ds

for any σ such that the integrand z−s ĝ(s)/s is analytic for all s = σ + i t, and the integral
converges absolutely. We give here properties of the Mellin transform of fη,ξ (z) as defined
in (2·1). The proof is a straightforward computation.

LEMMA 7. Suppose that η, ξ > 0, 1 − η− ξ > 0. Denote s = σ + i t. Then

f̂η,ξ (s)= (1 + η+ ξ)s+1 − (1 + η)s+1 + (1 − η− ξ)s+1 − (1 − η)s+1

ξ(s + 1)
.

For σ ≥ 1/2 we also have the asymptotics (uniformly for all ξ, η)

f̂η,ξ (s)/s = (2η+ ξ)+O
(
(1 + |s|)(η3 + ξ 3)/ξ

)
,

| f̂η,ξ (s)/s| 
 η+ ξ, | f̂η,ξ (s)/s| 
 ξ−1|s|−1|1 + s|−1.

We also require the following lemma, which follows from the Vinogradov zero-free region
by using Perron’s formula (cf. Harman [8, chapter 1]).

LEMMA 8. For all large enough T, P, and s = σ + i t, |t | ∼ T, we have∣∣∣∣∣∣
∑
p∼P

p−s

∣∣∣∣∣∣
 P1−σ exp

(
− log P

log7/10 T

)
+ P1−σ log3 P

T
.

We will need the approximate functional equation for ζ(s) for the Type I/II estimate. See
Tao’s blog post [17, theorem 38] for a proof of the result in this form.

LEMMA 9 (approximate functional equation). Let g :R→C be C∞-smooth, bounded, and
compactly supported. Then∑

n

g(log(n/N ))n−s = χ(s)
∑

m

ms−1g(log(M/m))+Og,ε

(|t |−3/4+ε)
for s = 1/2 + i t, M, N � 1, 2πM N = |t |, where χ :C→C is such that |χ(1/2 + i t)| = 1.

We also require a smoothing of the characteristic funtion of [N , N 1+δ]; fix a function
g :R→ [0, 1] which is C∞-smooth and such that g(x)≡ 0 for x < 1, g(x)≡ 1 for x > 2.
For N �δ 1, define

φN (x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g(x/N ), N < x ≤ 2N ,

1, 2N < x < N 1+δ/2,

1 − g(2x/N 1+δ), N 1+δ/2 ≤ x < N 1+δ,

0, otherwise.

(3·1)

Notice that φN is also C∞-smooth and satisfies φ(k)N (x)
k,g x−k . We have gathered some of
the properties of φN (x) in the following:
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LEMMA 10. Let 0< δ < 1, N �δ 1. Then:

(i) for |t | � 1 the Mellin transform of φN satisfies

|φ̂N (s)| 
 N σ(1+δ)|t |−1;

(ii) we have |φ̂N (i z)| 
 min{1, |z| log N } and∫ ∞

−∞
|φ̂N (i z)|dz

z
� 1;

(iii) for |t | ≤ N we have

∑
n

φN (n)n
−s = φ̂N (1 − s)

1 − s
+O(N−σ+O(δ));

(iv) for s = 1/2 + i t, |t | > N we have∑
n

φN (n)n
−s = χ(s)

∑
n

φN

( |t |
2πn

)
ns−1 + E(N , |t |).

where χ is as in Lemma 9 so that |χ(1/2 + i t)| = 1, and

|E(N , |t |)| 
 N−1/2+O(δ)1|t |≤N 1+δ + |t |−2 N 1/2+O(δ) + |t |−3/4+o(1).

Proof. (i) We integrate by parts to get (for |t | � 1)

|φ̂N (s)| =
∣∣∣∣ 1

1 + s

∫ ∞

0
zs+1φ′′

N (z) dz

∣∣∣∣
 |t |−1

(∫ 2N

N
+

∫ N 1+δ

N 1+δ/2

)
zσ−1 dz 
 N σ(1+δ)|t |−1.

(ii) We have

φ̂N (s)= −
∫ ∞

0
zsφ′

N (z) dz = s
∫ ∞

0
zs−1φN (z) dz,

where clearly the first integral gives 
 1 and the second gives 
 |s| log N for �s = 0. Thus,
by part (i) applied to the large z∫ ∞

−∞
|φ̂N (i z)|dz

z



∫ log−1 N

0
log N dz +

∫ 1

log−1 N

dz

z
+

∫ ∞

1

dz

z2

 log log N .

(iii) This follows directly from [11, lemma 8·8].
(iv) We partition φN (x) smoothly e-adically into

∑
k ψk(x), where each ψk is of the form

x �→ gk(log x − k) for some C∞-smooth, bounded and compactly supported gk . Clearly we
can choose ψk(x) so that |ψ ′′

k (x)| 
k e−2k (by a similar smoothing as in (3·1) but for e-adic
intervals). If N < |t | ≤ ek/100, we have, again by using [11, lemma 8·8],

∑
n

ψk(n)n
−s = ψ̂k(1 − s)

1 − s
+O(N−σ+O(δ)),
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where integration by parts yields∣∣∣∣∣ ψ̂k(1 − s)

1 − s

∣∣∣∣∣=
∣∣∣∣ 1

(1 + s)(1 − s)

∫
ψ ′′

k (z)z
s+1 dz

∣∣∣∣ 
 |t |−2 N σ+O(δ).

For |t | > ek/100 we apply Lemma 9 to each ψk, and recombine the functions ψk(|t |/(2πn))
to get the sum over φN (|t |/(2πn)).

We also require the following bound for exceptionally smooth numbers (for the proof, see
[18, chapter III·5, theorem 1], for instance):

LEMMA 11. For 2 ≤ Z ≤ X we have∑
n∼X, P+(n)<Z

1 
 Xe−u/2,

where u := log X/ log Z .

We will make use of the following result of Shiu [16]. Note that most of the cases where
we apply Shiu’s bound could also be handled by direct computations, not unlike some which
we will have to carry out (cf. proof of Lemma 20 below for instance); we use the more
general result to sidestep these calculations whenever possible.

LEMMA 12. Let η > 0, and let g be a non-negative multiplicative function such that there
exists a constant C > 0 such that

g(pk) ≤ Ck, and g(n) 
ε nε, ∀ε > 0.

Then, for Xη 
 Y 
 X, ∑
X−Y≤n≤X

g(n) 
 Y
∏
p≤X

(
1 + g(p)− 1

p

)
.

4. Type I/II estimate

In this section we prove our Type I/II estimate. Before this we briefly discuss the strategy
used in [8, chapter 5] (used in the case of intervals [x, x + x1/2+ε]). There one considers
Type I/II sums of the form ∑

uvnq1···qK ∈[x,x+x1/2+ε ]
u∼U, v∼V, qi ∼Q

aubv,

where V ≤ x1/2−γ , U ≤ x1/4, and Q = xγ /K (the condition U ≤ x1/4 can actually be loose-
nend to V U 2 ≤ x1−γ , which is the form given in Harman’s book, but the estimate is needed
only for U ≤ x1/4, cf. [8, lemma 5·3]). By applying Perron’s formula, these sums have an
asymptotic formula if we can obtain a mean value estimate of the form∫ 1/2+i x1/2−ε

1/2+i N
|N (s)A(s)B(s)Q(s)K ||ds| 
 x1/2 log−C x,

where for N � x1−γ /(UV )≥ x1/4

N (s)=
∑
n∼N

n−s, A(s)=
∑
u∼U

auu−s, B(s)=
∑
v∼V

bvv
−s, Q(s)=

∑
q∼Q, q∈P

q−s .
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By applying the approximate functional equation of ζ(s) (a variant of Lemma 9), the poly-
nomial N (s) can essentially be replaced by Nt(s)=∑

n∼|t |/(2πN ) n−s . By applying Perron’s
formula to remove the cross-condition between n and |t |, this can be replaced by

M(s)=
∑

n≤x1/2−ε/N

cnn−s .

We now note that U x1/2−ε/N 
 x1/2−ε, and VQK 
 x1/2. Hence, by Cauchy–Schwarz and
Lemma 3∫ 1/2+i x1/2−ε

1/2+i N
|M(s)A(s)B(s)Q(s)K ||ds|



(∫ 1/2+i x1/2−ε

1/2+i N
|B(s)Q(s)K |2|ds|

)1/2 (∫ 1/2+i x1/2−ε

1/2+i N
|M(s)A(s)|2|ds|

)1/2


 (
x1/2−ε + VQK

)1/2 (
x1/2−ε + U x1/2−ε/N

)1/2
logC x 
 x1/2−ε/2 logC x


 x1/2 log−C x,

as was required.
In our case we must tread more carefully to avoid losing of powers of log x ; for instance,

we cannot divide the variables u and v into dyadic ranges U, V, as this would cause the
density to drop too much. Instead, we divide the variables into longer ranges [U 1−ε,U ] and
[V 1−ε, V ]. This means that N (s)must also be replaced by a longer polynomial; by choosing
ε small enough in terms of δ, we can replace N (s) by

∑
n φN (n)n−s, where φN (n) is as

in (3·1). Notice that in Harman’s argument, applying Perron’s formula to remove the cross-
condition n ∼ |t |/(2πN ) causes a loss of size log x .By using the smooth function φN (n) and
Lemma 10, this cross-condition is replaced by a smoothed cross-condition φN (|t |/(2πn)),
which can be removed with losses bounded by � 1.

Having the variables u, v in longer ranges instead of dyadic means that the condition
U ≤ x1/4 must be strengthened slightly to U ≤ x1/4−10δ. This also allows us to weaken the
condition V < x1/2−γ to V < x1/2−γ+δ; this will be important as the Type II information we
can obtain in the next section covers only coefficients supported on [x1/2−γ+δ/2, x1/2−δ/2]
instead of the full range [x1/2−γ , x1/2]. Precisely, our Type I/II estimate takes the form

PROPOSITION 13 (Type I/II estimate). Let 1 ≤ U ≤ x1/4−10δ and 1 ≤ V ≤ x1/2−γ+δ . Let
au, bv be complex coefficients satisfying |au|� 1(u,P(w))=1, |bv|� 1(v,P(w))=1. Then∣∣∣∣∣∣∣∣∣

1

y

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]
(n,P(w))=1

WA(uvn)aubv − log100 x

x

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]
(n,P(w))=1

WB(uvn)aubv

∣∣∣∣∣∣∣∣∣

 (log−δ x)




log x
,

where 
 is as in (2·5).

The reason we study sums with the additional condition (n, P(w))= 1 (instead of n
smooth) is that we require the coefficients au, bv in the Type I/II and Type II sums to be
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supported on w-almost-primes (cf. beginning of Section 6). However, recall that in the
weight WA we sum over a w-smooth variable c. This means that we can obtain a long
smooth variable by writing m = cn (cf. proof of Lemma 15 below).

With this in mind, define for C =A or C =B the modified weights (without c)

W̃C(n) :=
∑

nc′q1q2q3 p1···pJ r1···rL �x

fC(nc′q1q2q3 p1 · · · pJ r1 · · · rL/x),

where the summation runs over the same ranges as before (cf. (2·3)). Then Lemma 15 below
reduces Proposition 13 to the following:

PROPOSITION 14. Suppose that the assumptions of Proposition 13 hold. Then∣∣∣∣∣∣∣
1

y

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]

W̃A(uvn)aubv − log100 x

x

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]

W̃B(uvn)aubv

∣∣∣∣∣∣∣

 (log−δ x)




log x
,

where 
 is as in (2·5).

LEMMA 15. Proposition 14 implies Proposition 13.

Proof. Consider the sum over A first. Recall that in the weight WA we sum over c ∈ [1, x ε]
with P+(c)≤w. Hence, by combining the variables n and c we get∑

u,v,n
u∈[U 1−ε ,U ]
v∈[V 1−ε ,V ]
(n,P(w))=1

WA(uvn)aubv =
∑

uvncc′q1q2q3 p1···pJ r1···rL�x
u∈[U 1−ε ,U ]
v∈[V 1−ε ,V ]
(n,P(w))=1

aubv fA(uvncc′q1q2q3 p1 · · · pJ r1 · · · rL/x)

=
∑
u,v,n

u∈[U 1−ε ,U ]
v∈[V 1−ε ,V ]

W̃A(uvn)aubv −
∑

uvncc′q1q2q3 p1···pJ r1···rL�x
u∈[U 1−ε ,U ]
v∈[V 1−ε ,V ]
(n,P(w))=1

c>xε , P+(c)≤w

aubv fA(uvncc′q1q2q3 p1 · · · pJ r1 · · · rL/x)

Let τ (k) denote the k-fold divisor function (i.e. τ (k+1) = 1 ∗ τ (k), τ (1) ≡ 1). Then (using the
disjointness of the intervals I j , and combining the variables u, v, n, c′, q1q2q3, p1 · · · pJ

and r1 · · · rL )∣∣∣∣∣∣∣∣∣
1

y

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]

W̃A(uvn)aubv − 1

y

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]
(n,P(w))=1

WA(uvn)aubv

∣∣∣∣∣∣∣∣∣
� 1

y

∑
uvncc′q1q2q3 p1···pJ r1···rL ∈[x−2y,x+2y]

c>xε , P+(c)≤w

1 ≤ L!
y

∑
cn∈[x−2y,x+2y]
c>xε P+(c)≤w

τ (7)(n). (4·1)
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Since c in (4·1) is w-smooth, it must have a divisor d|c such that x ε/2 < d < x ε and
P+(d)≤w (since c has a divisor on every interval of the form [z, wz] ⊂ [1, c]) Hence,
(4·1) is bounded by


 1

y

∑
dcn∈[x−2y,x+2y]

xε/2<d<xε , P+(d)≤w

τ (7)(n) =
∑

xε/2<d<xε
P+(d)≤w

∑
n∈[(x−2y)/d,(x+2y)/d]

τ (8)(n)


 (logC x)
∑

xε/2<d<xε
P+(d)≤w

d−1 
 log−C x

by Lemmata 12 and 11. A similar argument yields∣∣∣∣∣∣∣∣∣
log100 x

x

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]

W̃B(uvn)aubv − log100 x

x

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]
(n,P(w))=1

WB(uvn)aubv

∣∣∣∣∣∣∣∣∣
� log−C x .

Thus, it remains to prove Proposition 14.
Proof of Proposition 14. Let N be such that N 1+δ/2UV = x1−γ (recall (2·4)), and let φN (x)

be as in (3·1). Then

1

y

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]

W̃A(uvn)aubv = 1

y

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]

W̃A(uvn)aubvφN (n), (4·2)

if ε is small enough compared to δ.
If N ≥ x1/2, then the claim is trivial, since in that case UV ≤ x1/2−γ N−δ/2 and (using (2·4)

and the short-hand notation m= uvc′q1q2q3 p1 · · · pJ r1 · · · rL )

1

y

∑
u,v,n

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]

W̃A(uvn)aubv = 1

y

∑
uvc′q1q2q3 p1···pJ r1···rL ≤x1/2−ε

u∈[U 1−ε ,U ], v∈[V 1−ε ,V ]

aubv
∑

n

fA(nm/x),

so that the smooth variable n runs over an interval of length y/m> x ε and we get an
asymptotic formula.

Hence, we may assume N < x1/2. If we write SA for the quantity in (4·2), we have by
Mellin inversion

SA = 1

y2π i

∫ 1/2+i∞

1/2−i∞
xs f̂A(s)N (s)F(s)

ds

s
, (4·3)

where

N (s)=
∑

n

φN (n)n
−s, F(s)= A(s)B(s)C(s)
(s),
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for

A(s)=
∑

u∈[U 1−ε ,U ]
auu−s, B(s)=

∑
v∈[V 1−ε ,V ]

bvv
−s

C(s)=
∑

c≤D, P+(c)≤w
c−s, 
(s)= Q1(s)Q2(s)Q3(s)R(s)

L
J∏

j=1

Pj (s),

where the polynomials defining 
(s) have the obvious definitions so that 
(s) has length
around xγ+o(1) (cf. (2·4)) and 
(1)C(1)2 =
 as in (2·5). Suppose then that N < x/y (if
N ≥ x/y, a similar but easier argument works). Split the integration in (4·3) into three parts
(writing s = 1/2 + i t)

SA = 1

y2π i

(∫
|t |≤N

+
∫

N<|t |≤x/y
+

∫
|t |>x/y

)
xs f̂A(s)N (s)F(s)

ds

s

=: I1 + I2 + I3,

say. The main term will be recovered from the first integral, and the two other integrals
will be bounded by an argument similar to that which was sketched at the beginning of this
section.

Integral I1 For |t | ≤ N , s = 1/2 + i t, we have, by Lemma 10,

N (s)=
∑

n

φN (n)n
−s = φ̂N (1 − s)

1 − s
+O(N−1/2+O(δ)),

where φ̂N is the Mellin transform of φN . We also have for σ = 1/2, by Lemma 7,

xs f̂A(s)/s = (2ηA + ξA)x
s +O

(
x−1/2+o(1)(1 + |s|)) , ∣∣∣ f̂A(s)/s

∣∣∣
 x−1/2+o(1),

where ηA = y/x and ξA = (log−ε x)y/x . Thus, I1 =J1 +J2 +J3, where

J1 = 2ηA + ξA

y2π i

∫ 1/2+i N

1/2−i N
xs φ̂N (1 − s)

1 − s
F(s) ds,

J2 
 1

y
N−1/2+O(δ)x1/2

∫ 1/2+i N

1/2−i N
|F(s)|| f̂A(s)/s||ds| and

J3 
 1

y

∫ 1/2+i N

1/2−i N
|F(s)|

∣∣∣∣∣ φ̂N (1 − s)

1 − s

∣∣∣∣∣ x−1/2+o(1)(1 + |s|)|ds|.

If we denote F(s)=∑
m cmm−s, then by combining variables (using disjointness of the

intervals I j ) we obtain |cm | � τ (5)(m), so that
∑

m |cm |2m−1 
 logC x . For J3 note that by
Lemma 10 |φ̂N (1/2 + i t)| 
 N 1/2+O(δ). Thus, by Cauchy–Schwarz and Lemma 3,

|J2| 
 y−1 N−1/2+O(δ)x1/2

∫ 1/2+i N

1/2−i N
|F(s)|| f̂A(s)/s||ds|


 y−1xO(δ)
(∫ 1/2+i N

1/2−i N
|F(s)|2|ds|

)1/2


 y−1xO(δ)(N + x1+O(δ)/N )1/2 
 x−ε
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and

|J3| 
 y−1

∫ 1/2+i N

1/2−i N
|F(s)|

∣∣∣∣∣ φ̂N (1 − s)

1 − s

∣∣∣∣∣ x−1/2+o(1)(1 + |s|)|ds|


 x−1+o(1)N 1/2+O(δ)
∫ 1/2+i N

1/2−i N
|F(s)||ds| 
 x−1+O(δ)N

(∫ 1/2+i N

1/2−i N
|F(s)|2|ds|

)1/2


 x−1+O(δ)N (N + x1+O(δ)/N )1/2 
 x−ε,

since by the assumptions on U and V we have x1/4 ≤ x1/2−2δ/U ≤ N ≤ x1/2. For the main
term we obtain by the change of variables s �→ 1 − s and Mellin inversion applied to φN

J1 = (2 + log−ε x)
1

2π i

∫ 1/2+i N

1/2−i N
x−s φ̂N (s)F(1 − s)

ds

s

= (2 + log−ε x)
∑

u,v,c′,q1,q2,q3,
p1,...pJ ,r1,...,rL

u∈(U 1−ε ,U ], v∈(V 1−ε ,V ]

aubvφN (x/(uvc′q1q2q3 p1 · · · pJ r1 · · · rL))

uvc′q1q2q3 p1 · · · pJ r1 · · · rL
+O(E),

(4·4)

where the error term is

E = x−1/2

∫ 1/2+i∞

1/2+i N
|F(1 − s)||φ̂N (s)| |ds|

|s| .

The first term in (4·4) can be evaluated asymptotically as the sum over B in the proposition,
since φN ≡ 1 in the sum, and

∫
fB(z) dz = (2 + log−ε x) log−100 x . By Lemma 10 we have

|φ̂N (s)| 
 N σ+O(δ)|t |−1. We also have the trivial bound |F(1/2 + i t)| 
 (x/N )1/2+O(δ).

Thus,

E 
 xO(δ)
∫ ∞

N

dt

t2

 xO(δ)/N 
 x−ε,

so that from the integral I1 we obtain the main term with sufficient bounds for the error
terms.

Integral I2 We have | f̂A(s)/s| 
 y/x by Lemma 7. Thus,

I2 
 x−1/2

∫ 1/2+i x/y

1/2+i N
|N (s)F(s)||ds|.

Lemma 10 yields

N (s)= χ(s)Nt(1 − s)+ E(N , |t |),
for

Nt(1 − s) :=
∑

n

φN

( |t |
2πn

)
ns−1, |χ(1/2 + i t)| = 1 and

|E(N , |t |)| 
 N−1/2+O(δ)1|t |≤N 1+δ + |t |−2 N 1/2+O(δ) + |t |−3/4+o(1).
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We have

x−1/2

∫ 1/2+i x/y

1/2+i N
|F(s)E(N , |t |)||ds|


 x−1/2 N−1/2+O(δ)
∫ 1/2+i N 1+δ

1/2+i N
|F(s)||ds| + x−1/2 N 1/2+O(δ)

∫ 1/2+i x/y

1/2+i N

|F(s)||ds|
t2

+ x−1/2

∫ 1/2+i x/y

1/2+i N

|F(s)||ds|
t3/4+o(1)

,


 x−ε,

where the last bound follows from applying Cauchy–Schwarz and Lemma 3. Thus,

I2 
 x−1/2

∫ 1/2+i x/y

1/2+i N
|Nt(s)||F(s)||ds| + x−ε. (4·5)

We now remove the cross-condition between n and t : by Mellin inversion, we have

φN

( |t |
2πn

)
= 1

2π i

∫ ∞

−∞
φ̂N (i z)(2π)i z|t |−i zniz dz

z
.

Hence, by the second part of Lemma 10 the integral in (4·5) bounded by∫ ∞

−∞
|φ̂N (i z)|

∫ 1/2+i x/y

1/2+i N
|Mz(s)||F(s)||ds| dz

z
� sup

z∈R

∫ 1/2+i x/y

1/2+i N
|Mz(s)||F(s)||ds|,

where

Mz(s)=
∑

n≤x N−1 y−1

nizn−s .

Fix a z such that the integral ∫ 1/2+i x/y

1/2+i N
|Mz(s)||F(s)||ds|

is at least half of the supremum over all z, and write Mz(s)= M(s).
Recall now that V ≤ x1/2−γ+δ, U ≤ x1/4−10δ, and by the definition of N

U <
x1−γ−10δ

V U
= N 1+δ/2x−10δ. (4·6)

We now factor
(s) into a product
1(s)
2(s) suitably: recall the definition of the intervals
I j , and let J1 ≤ J be the largest index such that ωr−1+···+r−J1 ≤ xγ−2δ, so that ωr−1+···+r−J1−1

>

xγ−2δ. Then by (2·4) we have (since r < 2 and J1 
δ 1)

ωr−J1−1+···+r−J
<ωr−J1−1(1−δ)/(r−1)ωr−J1−2+···+r−J

<
(
ωr−J1−2+···+r−J

)2
< x6δ.

Therefore, if K large enough in terms of δ, we have

ωr−1+···+r−J1
ωr−K−1+···+r−J ≤ xγ−2δ+o(δ), ωr−J1−1+···+r−K

< x6δ.
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18 JORI MERIKOSKI

Hence, if we define


1(s) := Q1(s)Q2(s)Q3(s)R(s)
L

J1∏
j=1

Pj (s)
J∏

j=K+1

Pj (s), 
2(s) :=
K∏

j=J1+1

Pj (s)

F1(s) := B(s)C(s)
1(s), F2(s) := A(s)
2(s),

then the length of F1(s) is less than V xo(1)xγ−2δ+o(δ) < x/y, and the length of F2(s) is less
than U x6δ < N x−δ by (4·6), so that the length of M(s)F2(s) is less than x/y. Thus, I2 �
E + x−ε, where

E := x−1/2

∫ 1/2+i x/y

1/2+i N
|M(s)F1(s)F2(s)||ds|.

Applying Cauchy–Schwarz and Lemma 3 we obtain

E ≤ x−1/2

(∫ 1/2+i x/y

1/2+i N
|F1(s)|2|ds|

)1/2 (∫ 1/2+i x/y

1/2+i N
|M(s)F2(s)|2|ds|

)1/2


 x1/2

y

(∑
k

|h1(k)|2k−1

)1/2 (∑
k

|h2(k)|2k−1

)1/2

,

where

h1(k)=
∑

k=vcq1q2q3 p1···pJ r1···rL

bv, h2(n)=
∑
k=un

auniz.

To simplify the notation, we have in the above written all of the primes coming from

(s) into the first term (if 
(s) �=
1(s), a similar argument as below works). Then, since
(u, P(w))= 1 always, we have |h2(k)|� τw(k). Thus, by Lemma 12∑

k

|h2(k)|2k−1 � (log x)
∏

w<p≤x

(
1 + τw(p)2 − 1

p

)
� log x .

For the sum over h1, recall that the intervals I j are disjoint. On average an integer n has
log(1/θ) prime factors from any given interval I j , so that the collisions between a smooth
variable and the primes p j are expected to contribute a factor (1 + log 1/θ)J . This is now
made rigorous: c isw-smooth, and (v, P(w))= 1, so that by combining the variables vc = n
we get

|h1(k)| �
∑

k=nq1q2q3 p1···pJ r1···rL

1.

Thus, for any M < x1/2, we have to give a bound for (combining n with qi , rl)

∑
k∼M

⎛⎝ ∑
k=nq1q2q3 p1···pJ r1···rL

1

⎞⎠2

�
∑

np1···pJ ∼M

∑
np1···pJ =n′ p′

1···p′
J

g(n)g(n′), (4·7)

where

g(n) := 1 +
∑

n=mq1q2q3r1···rL

1.
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In 4·7 we have g(n′)� g(n), since g(n)− 1 counts the number of factors q1q2q3r1 · · · rL |n,
and there exists only a bounded number of indices j such that p j can be in the same range as
one of the primes q1, q2, q3, rl . Recall that the intervals I j are disjoint. We split the sum (4·7)
into a sum over subsets ρ ⊆ {1, 2, . . . , J }, where ρ is the set of indices for which p j �= p′

j .

Note that p j �= p′
j implies that p′

j |n. Thus, (4·7) is bounded by∑
p1,p2,...,pJ

∑
ρ⊆{1,2,...,J }

∑
p′

j , j∈ρ
p′

j �=p j

∑
n∼M/(p1···pJ ),

p′
j |n ∀ j∈ρ

g(n)2

�
∑

p1,p2,...,pJ

∑
ρ⊆{1,2,...,J }

∑
p′

j , j∈ρ
p′

j �=p j

∑
n∼M/(p1···pJ

∏
j∈ρ p′

j )

g(n)2, (4·8)

since g(n)� g(n/(
∏

j∈ρ p′
j )). We have g(n)≤ L!g̃(n), where g̃(n) is the multiplicative

function defined by

g̃(pk) :=
{
(k + 1), p ∼ logε x, p ∼ Q1, p ∼ Q2, or Q1/2

3 ≤ p ≤ Q3

1, otherwise,
.

Thus, by Lemma 12 the sum (4·8) is bounded by∑
p1,p2,...,pJ

∑
ρ⊆{1,2,...,J }

∑
p′

j , j∈ρ

∑
n∼M/(p1···pJ

∏
j∈ρ p′

j )

g̃(n)2

� M
∏
p≤x

(
1 + g̃(p)2 − 1

p

) ∑
p1,p2,...,pJ

∑
ρ⊆{1,2,...,J }

∑
p′

j , j∈ρ
(p1 · · · pJ )

−1

⎛⎝ ∏
p′

j , j∈ρ
p′

j

⎞⎠−1

� M
J∏

j=1

⎛⎝⎛⎝∑
p∈I j

p−1

⎞⎠⎛⎝1 +
∑
q∈I j

q−1

⎞⎠⎞⎠ � M(log 1/θ)J (1 + log 1/θ)J .

Thus, the sum over |h1(k)|2k−1 is bounded by (log x)(log 1/θ)J (1 + log 1/θ)J .

Combining the two above estimates we obtain

I2 �
x1/2

y
(log x)(log 1/θ)J/2(1 + log 1/θ)J/2 = log−0.7...+o(1) x,

while




log x
= (log1+o(1) x)(log 1/θ)J = log−0.5...+o(1) x,

so that the estimate is sufficient for the proposition.
Integral I3 We still have to estimate the integral over |t | ≥ x/y. By Lemma 7 we have the

bound

| f̂A(s)/s| 
 ξ−1|s|−1|1 + s|−1 � x/y|s|−1|1 + s|−1.
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Hence, by a dyadic decomposition of the integral we obtain

I3 �
x1/2

y
· x

y

∫ ∞

x/y
|N (1/2 + i t)||F(1/2 + i t)|dt

t2


 x−1/2 · x

y
max
T>x/y

1

T

∫ 2T

T
|N (1/2 + i t)||F(1/2 + i t)| dt.

Now a similar argument as for the integral over I2 gives the bound.

4·1. Discussion of Type I estimates

We note that in the above proof of Proposition 14 we needed to factorise the polynomial

(s) only with an accuracy of x ε. This can be done using just finitely many primes p j .

Then we would be spared of the losses coming from the density. This means that the Type
I/II estimate can be made to work even for the much shorter intervals, at least of type [x, x +
x1/2(log log x)B] for some constant B. We will need a stronger factorisation property for the
Type II sums below, which means that we require the number of primes J � log log x,
causing a loss of some power of log x .

Unfortunately in our case we cannot make use of the more advanced mean value estimates
such as Watt’s Theorem or the Deshouillers-Iwaniec Theorem (cf. [12, lemma 3] for exam-
ple). The reason for this is the T o(1) term in these estimates. For longer intervals y = x1/2+ε,
we have that the critical range in the mean values is T = x/y = x1/2−ε, so that the x−ε is
sufficient to cancel T o(1). A possible way one might try to implement these estimate is to
try to ‘boost’ these estimates by dividing the integration into T ∪U , where T is a range
where some polynomial is small and U is the complement, and then use eg. Watt’s Theorem
only for the integral over U . See, for example, [19, proposition 8] for such an argument. The
difference compared to our case is that we do not have a square mean value of a Dirichlet
polynomial to begin with, so that the same argument is not applicable.

In [8, chapter 5], one has also the so-called ‘two dimensional’ Type I2 estimate. In our
case this corresponds to a sum of the form∑

v,n,m
(nm,P(w))=1

bvWA(vnm).

It appears that a similar argument as with the Type I/II estimate works here also (at least
for v ≤ x1/2−γ−δ); by symmetry we may assume that n >m, and then apply the argument
with u = m, au = 1(u,P(w))=1. Some complications occur when we want use this result (com-
bined with the Type II estimate of the next section) to obtain a two dimensional version of
Proposition 22 (cf. Section 6 below). However, these problems are probably not too severe,
requiring only some extra care. In any case, we expect that the improvement in the value of
γ that this additional estimate would give is not very large (cf. Sum S8(C) in Section 7). We
do not pursue this issue further here, since the most important aspect for us is the length of
the interval y, and having the Type I2 estimate does not affect this.

5. Type II estimate

Define τw(d) := (1(·,P(w))=1 ∗ 1)(d). Our aim in this section is to obtain

PROPOSITION 16 (Type II estimate). Let au, bv be complex coefficients supported for u, v ∈
[x1/2−γ+δ/2, x1/2−δ/2], such that |au|� τw(u)1(u,P(w))=1, |bv|� τw(v)1(v,P(w))=1. Then
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y

∑
u,v

WA(uv)aubv − log100 x

x

∑
u,v

WB(uv)aubv

∣∣∣∣∣
 (log−δ x)



log x
.

By symmetry and (2·4), we may assume that au is supported for u ≤ x1/2−γ /2+δ. We will
assume this systematically throughout this section.

For the proof we require the following technical lemma, which will be used to obtain
a suitable factorisation for Dirichlet polynomials. To motivate it, recall from Section 1 the
argument described for the Type II sums; to obtain the last the bound (1·1) we chose L ≤
K − 1 in such a way that UQL and VQK−L−l are roughly of the same size. In our situation
we have primes p j in various different ranges I j , which means that we need to consider all
possible factorisations

p1 p2 · · · pJ =
⎛⎝∏

j∈π
p j

⎞⎠⎛⎝∏
j∈τ

p j

⎞⎠,
where π � τ = {1, 2, . . . , J } is a partition of the indices. In the lemma below the quantities
eg, eg′

correspond to e-adic ranges so that uc ∼ eg, and vc′ ∼ eg′
. We also will divide the

range for q3 into e-adic parts of the form q3 ∼ eα for �log9/10 x� ≤ α < 2�log9/10 x�. Giving
the lemma below in terms of the e-adic ranges gives us great flexibility which simplifies the
calculations. For any subset ρ ⊆ {1, 2, . . . , J }, we denote by (p j ) j∈ρ the tuple of primes p j

such that j ∈ ρ. Recall that for θ := r − 1 + ε

p j ∈ I j =
{
(ω(1−2ε)r− j

, ω(1−ε)r− j ], j = 1, 2, . . . , K ,

(ωθr− j
, ω(1−ε)r− j ], j = K + 1, . . . , J.

Recall also that r1 · · · rL � logLε x .

LEMMA 17 (Partition algorithm). Let z := x/ logLε x, and let α, g, g′ denote inte-
gers such that �log9/10 x� ≤ α < 2�log9/10 x�, eg ∈ [x1/2−γ+δ/4, x1/2−γ /2+2δ], and eg′ ∈
[x1/2−γ+δ/4, x1/2−δ/4]. If the primes p j ∈ I j are such that

eg+g′
Q1 Q2eα p1 · · · pJ � z,

then there exists a partition of the indices π � τ = {1, 2, . . . , J } so that

eg+αQ1 Q2

∏
j∈π

p j � z1/2, eg′ ∏
j∈τ

p j � z1/2. (5·1)

Furthermore, there is an algorithm (which we call the partition algorithm)

(g, g′, α, p1, . . . , pJ ) �→ π � τ = {1, 2, . . . , J }
such that the following holds:

for any g, g′, α, p1, . . . , pJ as above and any partition π � τ = {1, 2, . . . , J }, there are
intervals D((p j ) j∈π), D((p j ) j∈τ ) such that if

eg+g′
Q1 Q2eα p1 · · · pJ � z,
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then

eg+αQ1 Q2 ∈ D((p j ) j∈π) and eg′ ∈ D((p j ) j∈τ ) (5·2)

holds if and only if the partition algorithm produces the corresponding partition π � τ =
{1, 2, . . . , J }. The intervals D((p j ) j∈π), D((p j ) j∈τ ) are always contained in some C-adic
intervals around z1/2/(

∏
j∈π p j ), z1/2/(

∏
j∈τ p j ), respectively, so that (5·2) implies (5·1).

Remark 3. We need the partition algorithm and the intervals D((p j ) j∈π), D((p j ) j∈τ ) so
that we know which partition to apply for each product; by uniqueness of the partition that
the algorithm produces, for any given (g, g′, α, p1, . . . , pJ ) there is exactly one partition
such that (5·2) holds. It will be crucial for us that the interval D((p j ) j∈π) (resp. D((p j ) j∈τ ))
depends only on those primes p j such that j ∈ π (resp. p j such that j ∈ τ ).

Note that the above lemma does not include the primes rl . This is because we want to
reserve a possibility to skew each partition one way or another by some power of log x . That
is, for any partition π � τ = {1, 2, . . . , J }, we will later choose some suitable L(π, τ )≤ L
and write r1 · · · rL = (r1 · · · rL(π,τ )) · (rL(π,τ )+1 · · · rL).

Proof. We first construct a suitable partition by using an iterative algorithm, and after-
wards recover the intervals D((p j ) j∈π), D((p j ) j∈τ ). Let �log9/10 x� ≤ α < 2�log9/10 x� and
eg, eg′ ∈ [x1/2−γ+δ/4, x1/2−δ/4] be given, and let p1, . . . , pJ be such that

eg+g′
Q1 Q2eα p1 · · · pJ � z.

Since eg ≤ x1/2−γ /2+2δ, we can choose 1 ∈ π, since by definitions for any p1 ∈ I1 (using
r < 2)

eg+αQ1 Q2 p1 ≤ x1/2−γ /2+δ+γ (1−1/r) < x1/2−δ < z1/2.

Let j1 ≤ J be the smallest index such that

eg+αQ1 Q2 p1 · · · p j1ω
εr− j1 ≤ z1/2 < eg+αQ1 Q2 p1 · · · p j1ω

r− j1−1
.

There must exist such an index since

eg+αQ1 Q2 p1 p2 . . . pJ > x εz1/2

and, if

eg+αQ1 Q2 p1 p2 . . . p jω
r− j−1 ≤ z1/2,

we can then multiply by p j+1 also; we choose 1, 2, . . . , j1 ∈ π. Then there is some large C =
C(ε) such that if j1 ≤ J − C, then eg′

p j1+1 < z1/2, because otherwise (using θ = r − 1 + ε)

z � (eg+αQ1 Q2 p1 · · · p j1 p j1+2 · · · pJ ) · (eg′
p j1+1)

> eg+αQ1 Q2 p1 · · · p j1ω
θ(r− j1−2+r− j1−3···+r−J )z1/2

� eg+αQ1 Q2 p1 · · · p j1ω
r− j1−1

ωεr
− j1−2

z1/2 >ωεr
− j1−2

z,

which is clearly impossible if C is large enough. If j1 > J − C, then eg Q(α, π)p1 · · · p j1 �
z1/2, which implies that also eg′

p j1+1 · · · pJ � z1/2 so that we are done. Hence, we can
assume j1 ≤ J − C and in that case there exists j2 > j1, which is the smallest index such
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that

eg′
p j1+1 p j1+2 . . . p j2ω

εr− j2 ≤ z1/2 < eg′
p j1+1 p j1+2 · · · p j2ω

r− j2−1
.

We may now iterate the above process to get j1 < j2 < · · ·< jR where jR−1 > J − C, for
some suitably large C, and jR := J, so that (5·1) is satisfied.

Remark that since we have included the factor ωεr
− j

in the above, we have ji+1 − ji 
ε 1
for all i. For example, to see that j2 − j1 is bounded, we just have to note that

eg′
p j1+1 · · · pJ � z/(eg+αQ1 Q2 p1 · · · p j1)≥ωεr− j1 z1/2.

We can now recover the intervals D((p j ) j∈π), D((p j ) j∈τ ) from the above procedure. Fix
(g, g′, α, p1, . . . , pJ ) and π, τ such that the above algorithm produces the partition π, τ.
Denote

π0 := { j ∈ π : j + 1 /∈ π} and τ0 := { j ∈ τ : j + 1 /∈ τ }.
For any subset ρ ⊂ {1, 2, . . . , J } and i ≤ J define �(ρ, i) :=∏

j∈ρ, j≤i p j . Then, for all
i ∈ π0, we obtain from the above algorithm

eg+αQ1 Q2�(π, i)ωεr
−i ≤ z1/2 < eg+αQ1 Q2�(π, i)ωr−i−1

(5·3)

and, if i − 1 ∈ π, we also have (since at each stage we chose the smallest ji )

eg+αQ1 Q2�(π, i)p−1
i ωr−i ≤ z1/2. (5·4)

In this case, the above is stricter than the left-hand side inequality in (5·3). If also i − 2 ∈ π,
then

eg+αQ1 Q2�(π, i)p−1
i p−1

i−1ω
r−i+1 ≤ z1/2,

but this is already implied by the inequality (5·4) since (using 1.5< r < 2 for the last
inequality below)

p−1
i−1ω

r−i+1 ≤ωr−i+1(1−θ) < ωr−i (2−r)r <ωr−i

.

Thus, the inequalities corresponding to each i ∈ π0 are

eg+αQ1 Q2�(π, i)ωεr
−i ≤ z1/2 < eg+αQ1 Q2�(π, i)ωr−i−1

, if i − 1 /∈ π,
eg+αQ1 Q2�(π, i)p−1

i ωr−i ≤ z1/2 < eg+αQ1 Q2�(π, i)ωr−i−1
, if i − 1 ∈ π,

which can be written in the form eg+αQ1 Q2 ∈J (π, i), where

J (π, i) :=

⎧⎪⎨⎪⎩
(

z1/2

�(π,i)ωr−i−1 ,
z1/2

�(π,i)ωεr−i

]
, if i − 1 /∈ π,(

z1/2

�(π,i)ωr−i−1 ,
pi z1/2

�(π,i)ωr−i

]
, if i − 1 ∈ π.

Similarly, we obtain from the algorithm conditions eg′ ∈J (τ, i) for each i ∈ τ0. Hence, we
can set

D((p j ) j∈π) :=
⋂
i∈π0

J (π, i), D((p j ) j∈τ ) :=
⋂
i∈τ0

J (τ, i).
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Then (5·2) is satisfied if and only if the partition algorithm produces the partition π � τ =
{1, 2, . . . , J }. Since ji+1 − ji 
ε 1, the intervals are always contained in some C-adic
intervals around z1/2/(

∏
j∈π p j ) and z1/2/(

∏
j∈τ p j ), respectively.

We now apply the above lemma to obtain a suitable factorisation: let C =A or C =B and
suppose that the assumptions of Proposition 16 are satisfied. Then by dividing e-adically the
ranges for uc, vc′, and q3, we obtain∑

u,v

WC(uv)aubv =
∑
g,g′,α

∑
uc∼eg

∑
vc′∼eg′

∑
q1∼Q1
q2∼Q2
q3∼eα

∑
p1,...,pJ ,r1,...,rL

eg+g′
Q1 Q2eα p1···pJ r1···rL�x

aubv fC,

where fC := fC(uvcc′q1q2q3 p1 · · · pJ r1 . . . rL/x). By applying Lemma 17 and the remark
following the lemma, we can partition this sum into∑

g,g′,α

∑
uc∼eg

∑
vc′∼eg′

∑
q1∼Q1
q2∼Q2
q3∼eα

∑
π�τ={1,...,J }

∑
p1,...,pJ ,r1,...,rL

eg+g′
Q1 Q2eα p1···pJ r1···rL �x

eg+αQ1 Q2∈D((p j ) j∈π )
eg′ ∈D((p j ) j∈τ )

aubv fC

=
∑

π�τ={1,...,J }

∑
r1,...,rL

∑
α

∑
q1∼Q1
q2∼Q2
q3∼eα

∑
p j , j∈π

∑
g

eg+αQ1 Q2∈D((p j ) j∈π )

×
∑

uc∼eg

∑
p j , j∈τ

∑
g′

eg′∈D((p j ) j∈τ )

∑
vc′∼eg′

aubv fC

Let us now define

I(α, (p j ) j∈π) :=
⋃

g
eg+αQ1 Q2∈D((p j ) j∈π )

(eg, eg+1], (5·5)

I ′((p j ) j∈τ ) :=
⋃

g′

eg′ ∈D((p j ) j∈τ )

(eg′
, eg′+1]. (5·6)

Note that by Lemma 17 these are either empty or C-adic intervals. By using the Mellin
inversion formula for fC, we obtain

LEMMA 18. Let C =A or C =B, and suppose that the assumptions of Proposition 16 hold.
Then ∑

u,v

WC(uv)aubv = 1

2π i

∫ 1+i∞

1−i∞
F(s)xs f̂C(s)

ds

s
, (5·7)

where

F(s) :=
∑

π�τ={1,2,...J }
R(s)L Gτ (s)Q1(s)Q2(s)

∑
α

∑
q∼eα

q−s Fπ,α(s),
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where the sum over α runs over �log9/10 x� ≤ α < 2�log9/10 x�, Qi(s) :=∑
q∼Qi

q−s,

R(s) :=∑
r∼logε x r−s and

Fπ,α(s) :=
∑

p j , j∈π

∑
uc∈I(α,(p j ) j∈π )

au

(
uc

∏
j∈π

p j

)−s

Gτ (s) :=
∑

p j , j∈τ

∑
vc′∈I ′((p j ) j∈τ )

bv
(
vc′ ∏

j∈τ
p j

)−s
.

Remark 4. We have separated the sums over qi to make the use of the method of Matomäki–
Radziviłł [15] easier; this spares us the need for [15, lemma 12] in our situation. Dividing
the ranges for uc, vc′ into e-adic has the benefit that the sums over uc, vc′ always run over
either a C-adic interval, or no interval at all (cf. proof of Lemma 20 for why this is helpful).

We now divide the integration in (5·7) into two parts: let T0 := log50 x, and define

UC := 1

2π i

∫
|t |≤T0

F(s)xs f̂C(s)
ds

s
VC := 1

2π i

∫
|t |>T0

F(s)xs f̂C(s)
ds

s
.

Then by the same argument as in [15, section 10] (or by using Lemma 7 similarly as in the
proof of the Type I/II estimate) we find that∣∣∣∣1

y
UA − log100 x

x
UB

∣∣∣∣
 log−20 x

and∣∣∣∣1

y
VA − log100 x

x
VB

∣∣∣∣� ∫ x/y

T0

|F(1 + i t)| dt+ x

y
max
T>x/y

1

T

∫ 1+i2T

1+iT
|F(1 + i t)| dt +

+ (log100 x) max
T>log100 x

1

T

∫ 1+i2T

1+iT
|F(1 + i t)| dt.

The second term is handled by a similar argument as the first, and the third term is trivially
bounded by the sum of the first two. The difficult part is to prove

PROPOSITION 19. Let T0 = log50 x and let F(s) be as in Lemma 18. Then∫ x/y

T0

|F(1 + i t)| dt � (log−δ x)



log x
.

For the proof need the following lemma, which states that we can obtain an estimate for
the integral, which is of the correct order up to a factor of logo(1) x, that is,∫ x/y

T0

|F(1 + i t)| dt � 


log x
.

After proving the lemma we can use the method of Matomäki and Radziwiłł [15] to get a
saving log−δ x over this. For all partitions π � τ, we will choose suitable L(π, τ )≤ L and
write R(s)L = R(s)L(π,τ )R(s)L−L(π,τ ) (cf. last case in the proof of Lemma 20 below). Then,
once we use the triangle inequality to bring out the sum over the partitions, we can use
Cauchy–Schwarz to the integral to obtain a sum over products of mean squares of Dirichlet
polynomials (writing s = 1 + i t)
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∑
π�τ={1,2,...J }

⎛⎝∫ x/y

T0

∣∣∣∣∣R(s)L(π,τ )Q1(s)Q2(s)
∑
α

∑
q∼eα

q−s Fπ,α(s)

∣∣∣∣∣
2

dt

⎞⎠1/2

×
(∫ x/y

T0

∣∣R(s)L−L(π,τ )Gτ (s)
∣∣2 dt

)1/2

.

The quantity estimated in Lemma 20 is then the result of applying the Improved mean value
theorem (Lemma 4). We note that obtaining this lemma is what determines the length of
the interval y (cf. line (5·15) in the proof below). For the lemma, define the range for the
combined variable ucq3

I((p j ) j∈π) :=
⋃
g,α

eg+αQ1 Q2∈D((p j ) j∈π )

(eg+α, eg+α+2]. (5·8)

Clearly I((p j ) j∈π) is a C-adic interval and for any α we have I(α, (p j ) j∈π) �= ∅ if and only
if I((p j ) j∈π) �= ∅.

LEMMA 20 (Correct-order estimate). Suppose that the assumptions of Proposition 16 hold.
There exists a function L(·, ·) : {(π, τ ) : π � τ = {1, 2, . . . , J }} → {1, 2, . . . , L} such that
the following holds:

Let

E :=
∑

π�τ={1,...,J }

(
Sπ,1 + Sπ,2

)1/2 (
Sτ,1 + Sτ,2

)1/2
,

W (π, τ ) := (log x)ε(L(π,τ )−L/2),

where

Sπ,1 := W (π, τ )2

y

∑
m�W (π,τ )−1

√
x

∣∣∣∣∣∣∣∣
∑

m=ucq1q2q3r1...rL(π,τ )
∏

j∈π p j

ucq3∈I((p j ) j∈π )

au

∣∣∣∣∣∣∣∣
2

,

Sπ,2 := W (π, τ )2

y

�yx−1/2W (π,τ )−1�∑
h=1

∑
ucq1q2q3r1...rL(π,τ )

∏
j∈π p j −u′c′q ′

1q ′
2q ′

3r ′
1...r

′
L(π,τ )

∏
j∈π p′

j =h
ucq3∈I((p j ) j∈π )

u′c′q ′
3∈I((p′

j ) j∈π )

|au||au′ |,

Sτ,1 := 1

yW (π, τ )2

∑
m�W (π,τ )

√
x

∣∣∣∣∣∣∣∣∣
∑

m=vcr1...rL−L(π,τ )
∏

j∈τ p j

vc∈I ′((p j ) j∈τ )

bv

∣∣∣∣∣∣∣∣∣
2

,

Sτ,2 := 1

yW (π, τ )2

�yx−1/2W (π,τ )�∑
h=1

∑
vcr1...rL−L(π,τ )

∏
j∈τ p j −v′c′r ′

1...r
′
L−L(π,τ )

∏
j∈τ p′

j =h
vc∈I ′((p j ) j∈τ ), v′c′∈I ′((p′

j ) j∈τ )

|bv||bv′ |.

Then E � 
/log x .
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Furthermore, the same bound holds in both of the following modified cases (with the same
choice of L(·, ·)):

(i) in the definitions of Sπ,1, Sπ,2, the primes q1 and q ′
1 are replaced by 1, and the factor

W (π, τ ) is replaced by W (π, τ )Q1;
(ii) in the definitions of Sπ,1, Sπ,2, the primes q2 and q ′

2 are respectively replaced by the
product of H primes q1,1, . . . , q1,H ∼ Q1, and q ′

1,1, . . . , q ′
1,H ∼ Q1 (recall that Q2 = Q H

1 ).

Remark 5. The first modified case corresponds to a situation where the polynomial Q1(s)
has been removed from F(s). The second modified case corresponds to a situation where the
polynomial Q2(s) has been replaced by Q1(s)H in F(s) (cf. definition of F(s) in Lemma 18,
and the proof of Proposition 19 below).

Proof of Lemma 20. By using
√

a + b ≤ √
a + √

b, we get

E ≤
∑

π�τ={1,...,J }
(Sπ,1Sτ,1)

1/2 + (Sπ,2Sτ,2)
1/2 + (Sπ,1Sτ,2)

1/2 + (Sπ,2Sτ,1)
1/2.

We now estimate the four sums separately. In each case we first do the unmodified case and
then explain how to get the estimate for the cases (i) and (ii).

Sum over (Sπ,1Sτ,1)1/2. We need to estimate Sπ,1 and Sτ,1; our aim is to eventually use
Cauchy–Schwarz to the sum

∑
π�τ={1,...,J }, and then regroup using Lemma 17.

Consider first Sπ,1. Since we assume that |au|� τw(u)1(u,P(w))=1 and c is w-smooth, we
may estimate uc from above by one smooth variable n. Let

g(n) := 1 +
∑

n=mq1q2q3r1···rL(π,τ )

1.

Then

∑
m�W (π,τ )−1

√
x

∣∣∣∣∣∣∣∣
∑

m=ucq1q2q3r1...rL(π,τ )
∏

j∈π p j

ucq3∈I((p j ) j∈π )

au

∣∣∣∣∣∣∣∣
2

�
∑

m�W (π,τ )−1
√

x

⎛⎜⎜⎝ ∑
m=nq1q2q3r1...rL(π,τ )

∏
j∈π p j

nq3∈I((p j ) j∈π )

τw(n)

⎞⎟⎟⎠
2

�
∑

m�W (π,τ )−1
√

x

⎛⎜⎜⎝ ∑
m=n

∏
j∈π p j

I((p j ) j∈π )�=∅

g(n)τw(n)

⎞⎟⎟⎠
2

.

Hence, we need to bound∑
n
∏

j∈π p j �W (π,τ )−1√x
I((p j ) j∈π )�=∅

∑
n
∏

j∈π p j =n′ ∏
j∈π p′

j

I((p′
j ) j∈π )�=∅

g(n)g(n′)τw(n)τw(n′). (5·9)

We have τw(n′)� τw(n), since by the definition of the intervals I j if p j ≥w, then j 

log log log x, so that if e.g. p1 · · · p j |n′ and pi � n′ for other indices i, then

τw(n
′)≤ τw(p1 · · · pJ0)τw(n

′/(p1 · · · pJ0))≤ 2C log log log xτw(n)� τw(n).

We also have g(n′)� g(n), since g(n)− 1 counts the number of factors q1q2q3r1 · · · rL |n,
and there exists only a bounded number of indices j such that p j can be in the same range
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as one of the primes q1, q2, q3, rl . Thus, (5·9) is bounded by

∑
n
∏

j∈π p j �W (π,τ )−1√x
I((p j ) j∈π )�=∅

g(n)2τw(n)
2

⎛⎜⎜⎜⎝ ∑
n
∏

j∈π p j =n′ ∏
j∈π p′

j

I((p′
j ) j∈π )�=∅

1

⎞⎟⎟⎟⎠ . (5·10)

To make progress, we drop the condition I((p′
j ) j∈π) �= ∅. This causes a loss of some

small power of log x but we do not know how to avoid this. We then divide the sum into a
sum over subsets ρ ⊆ π, where ρ is the set of indices j such that p j �= p′

j . Notice that this
implies that p′

j |n. That is, we have to give a bound for

∑
p j , j∈π

I((p j ) j∈π )�=∅

∑
ρ⊆π

∑
p′

j , j∈ρ
p′

j �=p j

∑
n�W (π,τ )−1√x/(

∏
j∈π p j )

p′
j |n, j∈ρ

g(n)2τw(n)
2

�
∑

p j , j∈π
I((p j ) j∈π )�=∅

∑
ρ⊆π

∑
p′

j , j∈ρ

∑
n�W (π,τ )−1√x/(

∏
j∈π p j

∏
j∈ρ p′

j )

g(n)2τw(n)
2,

(5·11)

since g(n)� g(n/
∏

j∈ρ p′
j ) and τw(n)� τw(n/

∏
j∈ρ p′

j ). We have g(n)≤ L!g̃(n), where
g̃(n) is the multiplicative function defined by

g̃(pk) :=
{
(k + 1), p ∼ logε x, p ∼ Q1, p ∼ Q2, or Q1/2

3 ≤ p ≤ Q3

1, otherwise,
.

Thus, by Lemma 12 the sum (5·11) is bounded by

(L!)2
∑

p j , j∈π
I((p j ) j∈π )�=∅

∑
ρ⊆π

∑
p′

j , j∈ρ

∑
n�W (π,τ )−1√x/(

∏
j∈π p j

∏
j∈ρ p′

j )

g̃(n)2τw(n)
2


 W (π, τ )−1√x
∏
p≤x

(
1 + g̃(p)2τw(p)2 − 1

p

) ∑
p j , j∈π

I((p j ) j∈π )�=∅

∑
ρ⊆π

∑
p′

j , j∈ρ

⎛⎝∏
j∈π

p−1
j

⎞⎠⎛⎝∏
j∈ρ
(p′

j )
−1

⎞⎠

� W (π, τ )−1√x
∏
j∈π

⎛⎝1 +
∑
p∈I j

p−1

⎞⎠ ∑
p j , j∈π

I((p j ) j∈π )�=∅

⎛⎝∏
j∈π

p−1
j

⎞⎠ . (5·12)

Recall now (by definitions) that for any α the set I(α, (p j ) j∈π) is always either empty or a
C-adic interval around

√
z/(Q1 Q2eα

∏
j∈π p j ) for some C ≥ e, and that I(α, (p j ) j∈π)= ∅
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if and only if I((p j ) j∈π)= ∅. Recall also (2·6) for the contributions of the small primes
q1, q2, q3. Then (5·12) is bounded by (using the definition (5·8) of I((p j ) j∈π))

W (π, τ )−1√x√
z

(1 + log 1/θ)|π | ∑
nq1q2q3

∏
j∈π p j �√

z
n∈I(�log q3�,(p j ) j∈π )

1,

so that

Sπ,1 � W (π, τ )
√

x

y
√

z
(1 + log 1/θ)|π | ∑

nq1q2q3
∏

j∈π p j �√
z

n∈I(�log q3�,(p j ) j∈π )

1. (5·13)

Similarly, we obtain

Sτ,1 �
√

x

yW (π, τ )
√

z
(1 + log 1/θ)|τ |

∑
m

∏
j∈τ p j �√

z
m∈I((p j ) j∈τ )

1. (5·14)

Hence, by Cauchy–Schwarz, and by applying Lemma 17 to regroup∑
π�τ={1,...,J }

(Sπ,1Sτ,1)
1/2

�
√

x

y
√

z
(1 + log 1/θ)J/22J/2

⎛⎜⎜⎜⎝ ∑
π�τ={1,...,J }

∑
nq1q2q3

∏
j∈π p j �√

z
n∈I(�log q3�,(p j ) j∈π )

∑
m

∏
j∈τ p j �√

z
m∈I((p j ) j∈τ )

1

⎞⎟⎟⎟⎠
1/2

≤
√

x

y
√

z
(1 + log 1/θ)J/22J/2

( ∑
nmq1q2q3 p1···pJ �z

1

)1/2

�
√

x

y
(1 + log 1/θ)J/22J/2

(



log x

)1/2

�
√

x

y
(1 + log 1/θ)J/22J/2(log 1/θ)J/2 log1/2 x � 


log x
, (5·15)

where the last bound follows from the definition (2·2) of y and the definition (2·5) of 
.We
now discuss the modified cases:

Modified case (i) There are two changes: firstly, the function g(n) gets replaced by

f (n) := 1 +
∑

n=mq2q3r1···rL(π,τ )

1,

which clearly satisfies f (n)
 g̃(n); secondly, since the factor W (π, τ ) is replaced by
W (π, τ )Q1, the final bound we obtain is∑

π�τ={1,...,J }
(Sπ,1Sτ,1)

1/2 � Q1x1/2

y
(1 + log 1/θ)J/22J/2(log 1/θ)J/2 log1/2 x .

Since Q1 = log10δ x and y = x1/2 logβ+10δ+o(1) x, the claim follows.
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Modified case (ii) Here the only change is that the function g(n) is replaced by

f (n) := 1 +
∑

n=n′q1q1,1···q1,H q3r1...rL(π,τ )

1 ≤ 2(H + 1)!L!g̃(n)� g̃(n),

since H 
 (log log x)1/2. Thus, the claim follows.
Sum over (Sπ,2Sτ,2)1/2. We need to estimate Sπ,2 and Sτ,2. These sums are essentially

averages over h of correlations of some sequence gn , of the form N−1
∑

n∼N gngn+h . The
aim is to show that these correlations behave as expected, so that we get (on average over h)

N−1
∑
n∼N

gngn+h �
(

N−1
∑
n∼N

gn

)2

.

Then the square cancels the square root in (Sπ,2Sτ,2)1/2, so that we may use the partition
algorithm to regroup the sums, giving us an estimate of the correct order.

Consider first Sπ,2. Note that if yx−1/2W (π, τ )−1 < 1, then the bound is trivial, so assume
the opposite. Recall that for any integers a, b, h such that (a, b)|h, the number of integer
solutions (c, c′) to the diophantine equation ac + bc′ = h with ac ∼ M is bounded by∑

c∼M/a
x≡c0 (mod b/(a,b))

1 
 1 + M(a, b)

ab
,

where (c0, c′
0) is any given solution to the equation. Hence, for a fixed h we have (here we

drop the usual restrictions for c, c′, and count the number of solutions (c, c′))∑
ucq1q2q3r1...rL(π,τ )

∏
j∈π p j −u′c′q ′

1q ′
2q ′

3r ′
1...r

′
L(π,τ )

∏
j∈π p′

j =h
ucq3∈I((p j ) j∈π )

u′c′q ′
3∈I((p′

j ) j∈π )

|au||au′ |

≤
∑
u,u′

|au||au′ |
∑
qi ,q ′

i

∑
rl ,r ′

l

∑
p j ,p′

j j∈π
I((p j ) j∈π )�=∅
I((p′

j ) j∈π )�=∅

∑
c,c′

cuq1q2q3r1...rL(π,τ )
∏

j∈π p j �W (π,τ )−1x1/2

cuq1q2q3r1...rL(π,τ )
∏

j∈π p j −c′u′q ′
1q ′

2q ′
3r ′

1...r
′
L(π,τ )

∏
j∈π p′

j =h

1

� 1 + W (π, τ )−1x1/2
∑
u,u′

|au||au′ |
uu′

∑
qi ,q ′

i

(q1q2q3q ′
1q ′

2q ′
3)

−1 (5·16)

×
∑
rl ,r ′

l

(r1 · · · rL(π,τ )r
′
1 · · · r ′

L(π,τ ))
−1

∑
p j , j∈π

I((p j ) j∈π )�=∅

∑
p′

j , j∈π
I((p′

j ) j∈π )�=∅

G · 1G|h∏
j∈π p j p′

j

,

where G := gcd
(

uq1q2q3r1 · · · rL(π,τ )
∏

j∈π p j , u′q ′
1q ′

2q ′
3r ′

1 · · · r ′
L(π,τ )

∏
j∈π p′

j

)
. The con-

tribution from the ‘+1’ is trivially small enough, so that we may ignore it. Averaging over h
we have

W (π, τ )x1/2

y

�yx−1/2W (π,τ )−1�∑
h=1

G · 1G|h 
 1.
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Since |au|� 1(u,P(w))=1τw(u), we have∑
u,u′

|au||au′ |
uu′ � 1.

Hence,

Sπ,2 �

⎛⎜⎜⎝ ∑
p j , j∈π

I((p j ) j∈π )�=∅

∏
j∈π

p−1
j

⎞⎟⎟⎠
2

�

⎛⎜⎜⎜⎝ 1√
z

∑
nq1q2q3

∏
j∈π p j �√

z
n∈I(�log q3�,(p j ) j∈π )

1

⎞⎟⎟⎟⎠
2

, (5·17)

where the last bound again follows from the facts that I(α, (p j ) j∈π) is always either empty
or a C-adic interval around � W (π, τ )−1√x/(Q1 Q2eα

∏
j∈π p j ) for some C ≥ e, and that

for all any α we have I(α, (p j ) j∈π)= ∅ if and only if I((p j ) j∈π)= ∅.
Similarly, we obtain

Sτ,2 �

⎛⎜⎜⎜⎝ 1√
z

∑
m

∏
j∈τ p j �√

z
m∈I ′((p j ) j∈τ )

1

⎞⎟⎟⎟⎠
2

. (5·18)

Thus, by using Lemma 17 to regroup we obtain∑
π�τ={1,...,J }

(Sπ,2Sτ,2)
1/2 � 1

z

∑
nmq1q2q3 p1···pJ �z

1 � 


log x
.

The modified cases (i) and (ii) clearly follow by a similar argument, since in (i) every relevant
factor is scaled similarly throughout by factor Q1 or Q−1

1 (note the averaging over h), and the

modification in (ii) is harmless since H 
 (log log x)1/2 so that
(∑

q∼Q1
q−1

)H = logo(1) x .

Sum over (Sπ,1Sτ,2)1/2 + (Sπ,2Sτ,1)1/2. Let us denote

Eπ,1 := W (π, τ )
√

x

y
(1 + log 1/θ)|π | ∑

p j , j∈π
I((p j ) j∈π )�=∅

∏
j∈π

p−1
j , Eπ,2 :=

⎛⎜⎜⎝ ∑
p j , j∈π

I((p j ) j∈π )�=∅

∏
j∈π

p−1
j

⎞⎟⎟⎠
2

,

Eτ,1 :=
√

x

W (π, τ )y
(1 + log 1/θ)|τ |

∑
p j , j∈τ

I ′((p j ) j∈τ )�=∅

∏
j∈τ

p−1
j , Eτ,2 :=

⎛⎜⎜⎝ ∑
p j , j∈τ

I ′((p j ) j∈τ )�=∅

∏
j∈τ

p−1
j

⎞⎟⎟⎠
2

so that by (5·13), (5·14), (5·17) and (5·18) we have

Sπ,1 � Eπ,1, Sπ,2 � Eπ,2, Sτ,1 � Eτ,1, Sτ,2 � Eτ,2.

Our strategy here is to choose L(π, τ ) so that Eπ,1 Eτ,2 ≈ Eπ,2 Eτ,1, and then use Cauchy–
Schwarz to reduce the estimate to the previous cases.
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We must first deal separately with partitions π � τ such that one of Eπ,i , Eτ,i is
exceptionally small. We note that trivially (since (log 1/θ)(1 + log 1/θ) < 1)

Eπ,1W (π, τ )−1 � ((log 1/θ)(1 + log 1/θ))|π | ≤ 1

and similarly Eτ,1W (π, τ )� 1. Note also that Eπ,2 � 1, Eτ,2 � 1. Suppose then that π � τ
is such that

min
{

Eπ,1 Eτ,2W (π, τ )−1, Eπ,2 Eτ,1W (π, τ )
}≤ log−100 x .

Recall that W (π, τ )= (log x)ε(L(π,τ )−L/2). If L > 100/ε, then we may clearly choose
L(π, τ ) so that Eπ,1 Eτ,2 and Eπ,2 Eτ,1 are both bounded by log−40 x . Thus, the sum over
such π � τ is trivially bounded by 2J log−20 x < log−10 x, which is clearly sufficient.

Hence, we may assume that

Eπ,1 Eτ,2W (π, τ )−1 and Eπ,2 Eτ,1W (π, τ )

are within a factor of log100 x of each other. Choose L large enough so that L > 200/ε. We
may then choose L(π, τ ) so that Eπ,1 Eτ,2 and Eπ,2 Eτ,1 are equal up to a factor bounded by
logε x = logo(1) x . We then obtain by Cauchy–Schwarz∑
π�τ={1,...,J }

(Eπ,1 Eτ,2)
1/2+(Eπ,2 Eτ,1)

1/2 �
∑

π�τ={1,...,J }
(Eπ,1 Eτ,1 Eπ,2 Eτ,2)

1/4

≤
⎛⎝ ∑
π�τ={1,...,J }

(Eπ,1 Eτ,1)
1/2

⎞⎠1/2 ⎛⎝ ∑
π�τ={1,...,J }

(Eπ,2 Eτ,2)
1/2

⎞⎠1/2

,

which reduces the bound to the previous cases. The modified cases (i) and (ii) again follow
by a similar argument.

We also require the following variant of the above lemma, which will be used after apply-
ing Lemma 6. Here we care about the partition only up to an accuracy of xo(1), since we will
apply Lemma 6 with T 1/2|T | 
 (x/y)1−ε.

LEMMA 21. For any partition π � τ = {1, 2, . . . , J }, and any �log9/10 x� ≤ α <
2�log9/10 x�, define

Sπ(α) :=
∑

m�e−α(logLε/2 x)
√

x

∣∣∣∣∣∣∣∣
∑

m=ucq1q2r1...rL
∏

j∈π p j

uc∈I(α,(p j ) j∈π )

au

∣∣∣∣∣∣∣∣
2

,

Sτ :=
∑

m�(log−Lε/2 x)
√

x

∣∣∣∣∣∣∣∣∣
∑

m=vc
∏

j∈τ p j

vc∈I ′((p j ) j∈τ )

bv

∣∣∣∣∣∣∣∣∣
2

.

Then, for any �log9/10 x� ≤ α < 2�log9/10 x� and partition π � τ = {1, 2, . . . , J },
eα

x
Sπ(α)Sτ � 1.
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Proof. We use the same argument as with the first case in the proof of Lemma 20 (compare
with (5·13) and (5·14)) to obtain

Sπ(α) � e−α(logLε/2 x)
√

x (1 + log 1/θ)|π | ∑
p j , j∈π

∏
j∈π

p−1
j � e−α(logLε/2 x)

√
x

Sτ � (log−Lε/2 x)
√

x (1 + log 1/θ)|τ |
∑

p j , j∈τ

∏
j∈τ

p−1
j � (log−Lε/2 x)

√
x,

since (log 1/θ)(1 + log 1/θ) < 1.

Proof of Proposition 19. Write

[T0, x/y] = T1 ∪ T2 ∪U ,

where

T1 := {t ∈ [T0, x/y] : |Q1(1 + i t)| ≤ Q−1/4+2ε
1 },

T2 := {t ∈ [T0, x/y] : |Q2(1 + i t)| ≤ Q−1/4+ε
2 } \ T1

and U := [T0, x/y] \ (T1 ∪ T2). We estimate the integral over each region separately.
Integral over T1. We have (for s = 1 + i t)∫

T1

|F(s)|dt ≤ Q−1/4+2ε
1

∑
π�τ={1,2,...J }

∫ x/y

T0

∣∣∣∣∣R(s)L Gτ (s)Q2(s)
∑
α

∑
q∼eα

q−s Fπ,α(s)

∣∣∣∣∣ dt.

Choose L(π, τ ) as in Lemma 20, and use Cauchy–Schwarz to obtain∫ x/y

T0

∣∣∣∣∣R(s)L−L(π,τ )Gτ (s)R(s)
L(π,τ )Q2(s)

∑
α

∑
q∼eα

q−s Fπ,α(s)

∣∣∣∣∣ dt ≤
⎛⎝∫ x/y

T0

∣∣∣∣∣R(s)L(π,τ )Q2(s)
∑
α

∑
q∼eα

q−s Fπ,α(s)

∣∣∣∣∣
2

dt

⎞⎠1/2(∫ x/y

T0

∣∣R(s)L−L(π,τ )Gτ (s)
∣∣2 dt

)1/2

.

We now apply Lemma 4 and the modified case (i) of Lemma 20 to obtain∫
T1

|F(s)| dt � Q−1/4+2ε
1




log x

 (log−δ x)




log x
.

Integral over T2. Since |Q1(1 + i t)|> Q−1/4+2ε
1 on T2, we obtain (for s = 1 + i t)∫

T2

|F(s)|dt ≤ Q−1/4+ε
2 Q H(1/4−2ε)

1

∑
π�τ={1,2,...J }

∫ x/y

T0

∣∣∣∣∣R(s)L Gτ (s)Q1(s)
H+1

∑
α

∑
q∼eα

q−sFπ,α(s)

∣∣∣∣∣dt,

where Q−1/4+ε
2 Q H(1/4−2ε)

1 = Q−ε
2 ≤ log−2δ x . By the same argument as with the integral over

T1, applying the modified case (ii) of Lemma 20, we obtain∫
T2

|F(s)| dt � (log−δ x)



log x
.
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Integral over U . Let T ⊂U be a set of well-spaced points such that∫
U

|F(1 + i t)| dt 

∑
t∈T

|F(1 + i t)|.

By Lemma 5 applied to Q2(s) we have

|T | 
 (x/y)1/2−2εQ1/2
2 exp

(
2 log(x/y)

log log(x/y)

log Q2

)
≤ (x/y)1/2−ε,

since Q2 ∼ exp((log log x)3/2). By Lemma 8 we have for any �log9/10 x� ≤ α < 2�log9/10 x�
and any t ∈ [log50 x, x]∣∣∣∣∣∑

q∼eα

q−1−i t

∣∣∣∣∣
 exp

(
− α

log7/10 t

)
+ α3

t

 log−40 x .

Hence, by Cauchy–Schwarz (for s = 1 + i t)∑
t∈T

|F(1 + i t)| 
 log−39 x
∑

π�τ={1,2,...J }
max
α

∑
t∈T

∣∣R(s)L Q1(s)Q2(s)Fπ,α(s)Gτ (s)
∣∣

≤ log−30 x max
π�τ max

α

(∑
t∈T

∣∣R(s)L Q1(s)Q2(s)Fπ,α(s)
∣∣2)1/2 (∑

t∈T
|Gτ (s)|2

)1/2

.

Thus, applying Lemma 6 (with T = x/y, |T | 
 (x/y)1/2−ε) we obtain

∑
t∈T

|F(1 + i t)| 
 (log−30 x)max
π�τ max

α

((
eα logLε/2 x√

x
+ e2α(logLε x)x−1/2−ε

)
Sπ(α)

)1/2

×
((

1

(logLε/2 x)
√

x
+ x−1/2−ε

logLε x

)
Sτ

)1/2

,

where Sπ(α) and Sτ are as in Lemma 21. Thus, by Lemma 21

∑
t∈T

|F(1 + i t)| 
 (log−30 x)max
π�τ max

α

(
eα

x
Sπ(α)Sτ

)1/2


 log−20 x,

which is sufficient for the proposition.
Conclusion of the proof of Proposition 16. Recall that∣∣∣∣1

y
VA − log100 x

x
VB

∣∣∣∣� ∫ x/y

T0

|F(1 + i t)| dt+ x

y
max
T>x/y

1

T

∫ 1+i2T

1+iT
|F(1 + i t)| dt +

+ (log100 x) max
T>log100 x

1

T

∫ 1+i2T

1+iT
|F(1 + i t)|dt.

The first integral can be bounded using Proposition 19. The second term is bounded by using
the same argument as for the first, since the integral is multiplied by the factor T −1x/y, and
the sum over h in the off-diagonal term from applying Lemma 4 is now shorter than with the
first integral. The third term is trivially bounded by the sum of the first and second terms.
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5·1. Discussion of the loss

As can be seen from the above, the reason we cannot make the interval shorter than
(logβ+δ x)

√
x is due to losses in the correct-order estimate Lemma 20. To see how this

loss occurs, consider a sequence an, n ∼ N , which is the characteristic function of some
well-behaved set of density ρ around N . Then we expect

1

N

∑
nm∈[N 2,N 2+N ]

n,m∼N

anam � ρ2,

but estimate for the corresponding mean value is∫ N

0

∣∣∣∣∣∑
n∼N

ann−1−i t

∣∣∣∣∣
2

dt 
 1

N

∑
n∼N

|an|2 = ρ.

Hence, we have already lost a square root of the density. This is of course because the
diagonal term in the mean value theorem corresponds to square root cancellation on average.

At first it may seem that including the variables c, c′ causes a loss of a factor (1 +
log 1/θ)J/2 = log0.39···+o(1) x . However, without these variables we would lose a factor log x
due to a smaller density, so that it is beneficial to have them in the mix (not to mention that
we needed one of them in the proof of the Type I/II estimate).

As was noted in the proof of Lemma 20, some of our losses come from our inability to
handle the cross-conditions in the sum (5·10), but this inaccuracy contributes definitely no
more than (1 + log 1/θ)J/2 = log0.39···+o(1) x . Another potential loss is the use of Cauchy–
Schwarz in the case of the sums (Sπ,1Sτ,1)1/2 in the proof; the Cauchy-Schwarz is optimal if
most of the terms Sπ,1Sτ,1 are of the same size, but this may not be the case (depending on
the partition π � τ, some of the cross-conditions are expected to be more strict than others).
We do not pursue these issues here, as they would require a significant effort with relatively
small improvements.

An alternative construction one might consider is to let the primes p j vary more freely
by installing some cross-conditions, eg. of the form p j+1 · · · pJ � p j . This would indeed
increase the density of our sequence. However, to be able to use Cauchy–Schwarz, we would
need to remove the cross-conditions going between π and τ. At best (using smooth cross-
conditions), removing one cross-condition causes a loss of a constant C > 1, and there are
typically � log log x cross-conditions to be removed, causing an additional loss of logC ′

x .
We expect that more is lost than gained in this approach.

Yet another set-up would be to make the intervals I j narrower, so that we could get a
better control over the number of partitions needed (e.g. we could get jl+1 − jl ≤ N for
some fixed N in the partition algorithm). This improves the factor 2J/2, but the losses from
the narrowness of I j grow faster, making the bound worse.

6. Fundamental proposition

From here on we shall not need the precise structure of the weights WA,WB. Hence, we
can freely use summation variables of type p j , q j , r j in the sieve decompositions below
without risk of confusion. The aim of this section is to prove a proposition, which combines
the previous estimates Type I/II and Type II, by using Harman’s iterative argument (cf. [8,
chapter 3]). The proposition plays the same role as [8, lemma 5·3].
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For any natural number d and any U ≥ 1, define

S(Ad,U ) :=
∑

n

1(n,P(U ))=1WA(dn), S(Bd,U ) :=
∑

n

1(n,P(U ))=1WB(dn).

The basic idea is as follows: suppose that we want to estimate S(A, xγ−2δ). By using the
elementary identity (μ ∗ 1)(n)= 1n=1, we have

S(A, xγ−2δ)=
∑

d|P(xγ−2δ)

μ(d)S(Ad, 1)

=
∑

n
d|P(xγ−2δ)

d<x1/2−γ+δ

μ(d)WA(nd)+
∑

n,
d|P(xγ−2δ)

d≥x1/2−γ+δ

μ(d)WA(nd)=:�I +�I I ,

say. In �I we have obtained a long smooth variable n so that we have a Type I sum (cf.
Proposition 13). On the other hand, in �I I we can write d = p1 · · · pk with p j ≤ xγ−2δ for
j = 1, 2, . . . , k. Then there is some j ≤ k such that p1 · · · p j ∈ [x1/2−γ+δ, x1/2−δ], which
means that we have a Type II sum (cf. Proposition 16). Here we come across a problem:
in the Type II sum we also have a smooth variable n, which means that the sum could be
at least one factor of log x larger than the original sum (if we ignore the cancellations from
μ(d)). To overcome this problem, we must add a cut-off to the Buchstab’s identity from
below, so that we write

S(A, xγ−2δ)=
∑

d|P(xγ−2δ)/P(w)

μ(d)S(Ad, w)

with w= x1/(log log x)2 . This solves our problems, except that now in the Type I/II sum we
also have (n, P(w))= 1. However, as was noted in Section 4, this is not a problem since the
weight WA contains a w-smooth variable c which can be combined with n to form a long
smooth variable.

In practice, we need a result of a more general from:

PROPOSITION 22. (Fundamental proposition). Let Z = xγ−2δ, X = x1/2−γ /2+δ, and let
U, V ≥ 1, U ≤ x1/4−10δ, V ≤ x1/2−γ+δ. Let au, bv 
 1 be some non-negative coefficients,
supported for (u, P(Z))= 1, (v, P(Z))= 1. Define λ := y log100 x/x . Then∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

aubvS(Auv, Z)= λ
∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

aubvS(Buv, Z)+O
(
λS(B, X) log−δ/2 x

)
.

Proof. Define W = x1/2−γ+δ, and let C =A or C =B. Using Buchstab’s identity we obtain∑
u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

aubvS(Cuv, Z)

=
∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

aubv
∑

d|P(Z)/P(w)
vd<W

μ(d)S(Cuvd, w)+
∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

aubv
∑

d|P(Z)/P(w)
vd≥W

μ(d)S(Cuvd, w)

=:�I (C)+�I I (C),
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say. We will apply the Type I/II estimate (Proposition 13) to �I (C) and the Type II estimate
(Proposition 16) to �I I (C).

Sums �I (C). We let v′ = vd, and

b′
v′ = 1v′<W

∑
v′=vd

d|P(Z)/P(w)

μ(d)bv.

Since bv is supported on (v, P(Z))= 1, we have |b′
v′ | 
 1, and b′

v′ is supported on
(v′, P(w))= 1. Thus, by Proposition 13 we have

�I (A)= λ�I (B)+O
(
λS(B, X) log−δ/2 x

)
.

Sums �I I (C). We write

�I I (C)=
∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

aubv
∑

k

(−1)k
∑

w≤p1<p2<···<pk<Z
vp1···pk≥W

S(Cuvp1···pk , w)

=
∑

k

(−1)k

k!
∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

∑
w≤p1,p2,··· ,pk<Z

vp1···pk≥W

aubvS(Cuvp1···pk , w)+O(E(C)),

where the sum over k runs over k 
 (log log x)2, and the error term is for C =A bounded
by (using the notation τ (4)(n) := (1 ∗ 1 ∗ 1 ∗ 1)(n))

k2
∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

∑
w≤p1,p2,··· ,pk<Z ,

p1=p2

aubvS(Auvp1···pk , w)

�
∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

∑
w≤p1,p2,··· ,pk<Z ,

p1=p2

∑
n, (n,P(w))=1

WA(uvp1 · · · pkn)


 k!
∑

n,w≤p<Z

τ (4)(n)WA(p2n)


 k!y logC x
∑

w≤p<Z

p−2 
 y log−C x,

where we have applied Shiu’s bound (Lemma 12) for the penultimate inequality. Similarly,
we obtain a sufficient error term if C =B. Hence, we need to handle the sums

1

k!
∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

∑
w≤p1,p2,··· ,pk<Z

vp1···pk≥W

aubvS(Cuvp1···pk , w).

To this end we note that for all vp1 · · · pk ≥ W in the above sum, there exists exactly one
j ≤ k such that

W ≤ vp1 · · · p j ≤ x1/2−δ and vp1 · · · p j−1 <W.

By (2·4) this implies that unp j+1 · · · pk ∈ [x1/2−γ+δ/2, x1/2−δ/2], where n is the implicit vari-
able in S(Cuvp1···pk , w). Let c j,k, j = 1, . . . , k be any positive constants such that c j,k ≤ 1/j !,
c j,kck− j,k = 1/k!. Define then for any j ≤ k
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b′
v′, j,k := 1v′∈[x1/2−γ+δ/2,x1/2−δ/2] c j,k

∑
v′=vp1···p j

v∈(V 1−ε ,V ]
w≤p1,...,p j<Z

W≤vp1···p j ≤x1/2−δ ,
vp1···p j−1<W

bv,

a′
u′, j,k := 1u′∈[x1/2−γ+δ/2,x1/2−δ/2]

∑
u′=unr

u∈(U 1−ε ,U ]

au1(n,P(w))=1 ck− j,k

∑
r=p1...pk− j ,

w≤p1,...,pk− j<Z

1.

Then (by uniqueness of the choice of j)

1

k!
∑

u∈(U 1−ε ,U ]
v∈(V 1−ε ,V ]

∑
w≤p1,p2,...,pk<Z

vp1···pk≥W

aubvS(Cuvp1···pk , w)=
∑
j≤k

∑
u′,v′

a′
u′, j,kb′

v′, j,k WC(u
′v′).

Since c j,k ≤ 1/j !, a trivial bound yields (using (uv, P(Z))= 1)

|a′
u′, j,k | � τw(u

′)1(u′,P(w))=1 and |b′
v′, j,k | � τw(v

′)1(v′,P(w))=1.

Hence, by Proposition 16 we get∑
u′,v′

a′
u′, j,kb′

v′, j,k WA(u
′v′)= λ

∑
u′,v′

a′
u′, j,kb′

v′, j,k WB(u
′v′)+O

(
λS(B, X) log−δ x

)
,

which suffices since we sum over j, k � 1.

7. Buchstab decompositions

The aim of this section is to prove Proposition 2 by obtaining a lower bound for
S(A, x1/2−γ /2+δ). Our argument follows similar lines as that described in [8, chapter 5].
There are also many similarities with Jia’s and Liu’s decompositions in [12].

The general idea of Harman’s sieve is to use Buchstab’s identity to decompose the sum
S(C, x1/2−γ /2+δ) (in parallel for C =A and C =B) into a sum of the form

∑
k εk Sk(C),where

εk ∈ {−1, 1}, and Sk(C)≥ 0 are sums over almost-primes. Since we are interested in a lower
bound, for C =A we can insert the trivial estimate Sk(A)≥ 0 for any k such that the sign
εk = 1; these sums are said to be discarded. For the remaining k we will obtain an asymptotic
formula by using Propositions 16 and 22. That is, if K is the set of indices that are discarded,
then (for λ := y log100 x/x)

S(A, x1/2−γ /2+δ)=
∑

k

εk Sk(A)≥
∑
k /∈K

εk Sk(A)

∼
∑
k /∈K

εkλSk(B)= λS(B, x1/2−γ /2+δ)− λ
∑
k∈K

Sk(B).

We are successful if we can then obtain a bound
∑

k∈K Sk(B)≤ (1 − C(γ ))S(B, x1/2−γ /2+δ)
for some C(γ ) > 0; obtaining this ultimately determines the exponent γ in Proposition 2.

For this last step we require two lemmata, which allow us to transform sums over WB
into so-called Buchstab integrals that can be estimated numerically. Let ω(u) denote the
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Buchstab function (cf. [8, chapter 1], for instance), so that by the Prime Number Theorem
for X ε < Z < X, X log−C X 
 Y 
 X∑

X<n≤X+Y

1(n,P(z))=1 = (1 + o(1))ω

(
log X

log Z

)
Y

log Z

(the same argument as in [8, chapter 1] gives the result for the slightly shorter intervals of
length Y ). Note that for 1< u ≤ 2 we have ω(u)= 1/u. In the numerical computations we
will use the following standard upper bound (cf. the discussion below [12, lemma 4], for
instance) for the Buchstab function

ω(u) ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, u < 1

1/u, 1 ≤ u < 2

(1 + log(u − 1))/u, 2 ≤ u < 3

0.5644, 3 ≤ u < 4

0.5617, u ≥ 4.

In the two lemmata below we assume that the range U ⊂ [x ε, x]k is sufficiently well-
behaved, e.g. an intersection of sets of the type {u : ui < u j } or {u : V < f (u1, . . . , uk) <W }
for some polynomial f and some fixed V,W.

LEMMA 23. Let X = x1/2−γ /2+δ and let U ⊂ [x ε, x]k . Then

log100 x

x

∑
(p1,...,pk )∈U

S(Bp1,...,pk , pk)= S(B, X)(1 + o(1))(1 − γ )

∫
ω(α)

dα1 · · · dαk

α1 · · · αk−1α
2
k

,

where the integral is over the range

{(α : (xα1, . . . , xαk ) ∈U)}
and ω(α)=ω(α1, . . . , αk) :=ω((1 − γ − α1 − · · · − αk)/αk)

Proof. The left-hand side is, by the Prime Number Theorem,

log100 x

x

∑
(p1,...,pk )∈U

∑
q

1(q,P(pk ))=1WB(p1 · · · pkq)

= (2 + o(1))

∑

(p1,...,pk )∈U

1

p1 · · · pk log pk
ω

(
log(x1−γ+o(1)/(p1 · · · pk))

log pk

)

= (2+o(1))

∑

(n1,...,nk)∈U

1

n1 · · · nk(log n1) . . . (log nk−1) log2 nk

ω

(
log(x1−γ+o(1)/(n1 · · · nk))

log nk

)

= (2 + o(1))

∫
U
ω

(
log(x1−γ /(u1 · · · uk))

loguk

)
du1 · · · duk

u1 · · · uk(log u1) . . . (log uk−1) log2 uk

= (2 + o(1))


log x

∫
ω(α)

dα1 · · · dαk

α1 · · · αk−1α
2
k

by the change of variables u j = xα j The claim now follows by the definition (2·5) of 
.
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Remark 6. Similarly as in [12], we call the factor (1 − γ )
∫

dα the deficiency of the cor-
responding sum. By the lemma it is up to the factor 1 + o(1) the ratio of the sum and
S(B, X).

We also need the following variant of the above lemma, which will occur as the result of
using role reversals.

LEMMA 24. Let X = x1/2−γ /2+δ, Z = xγ−2δ, and let U ⊂ [x ε, x)4. Then

log100 x

x

∑
(q,m,p2,p3)∈U
(m,P(q))=1

S(Bqmp2 p3, Z)= S(B, X)(1 + o(1)) · 1 − γ

γ

∫
ω2(α)

dα0dα1dα2dα3

α2
0α2α3

,

where the integral is over {α : (xα0, xα1, xα2, xα3) ∈U}, and

ω2(α) :=ω((1 − γ − α0 − α1 − α2 − α3)/γ )ω(α1/α0).

Proof. The left-hand side equals, by the Prime Number Theorem,

log100 x

x

∑
q,m,p2,p3,n
(q,m,p2,p3)∈U

(n,P(Z))=1,(m,P(q))=1

WB(qmp2 p3n)

= (2 + o(1))


log Z

∑
(q,m,p2,p3)∈U

1(m,P(q))=1

qp2 p3m
ω

(
log(x1−γ+o(1)/(qmp2 p3))

log Z

)

= (2 + o(1))


γ log x

∑
(q,m,p2,p3)∈U

1

qp2 p3m log q
ω

(
log m

log q

)
ω

(
log(x1−γ /(qmp2 p3))

log Z

)

= (2 + o(1))


(1 − γ ) log x
· 1 − γ

γ

∫
ω2(α)

dα1dα2dα3dα4

α1α2α
2
4

.

The claim now follows by the definition (2·5) of 
.

Remark 7. In this instance we call the factor 1 − γ /γ
∫

dα the deficiency of the corre-
sponding sum. By the lemma it is the ratio of the sum and S(B, X), up to the factor
1 + o(1).

We are now ready for the Buchstab decompositions. We fix γ = 1/19, and define

X := x1/2−γ /2+δ, Z := xγ−2δ, W := x1/2−γ+δ,

and write by Buchstab’s identity (for C =A or C =B)

S(C, X)= S(C, Z)−
∑

Z≤p<X

S(Cp, p)

= S(C, Z)−
∑

W≤p<X

S(Cp, p)−
∑

Z≤p<W

S(Cp, Z)+
∑

Z<p2<p1<W
p1 p2

2<X2

S(Cp1 p2, p2)

=: S1(C)− S2(C)− S3(C)+ S4(C).
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7·1. Sum S1(C)
Applying Proposition 22 with U = V = 1, au = bu = 1u=1 we obtain S1(A)= λS1(B)+

O
(
λS(B, X) log−δ/2 x

)
.

7·2. Sum S2(C)
We have (since S(Ap, p)≡ 0 for p ≥ X )

S2(A)=
∑
p≥W

S(Ap, p)=
∑
p,q

q>p≥W

WA(pq)= 1

2

∑
p,q

p,q∈[W,x1/2−δ/2]

WA(pq)+O(y log−C x)

= λS2(B)+O
(
λS(B, X) log−δ/2 x

)
,

by Proposition 16.

7·3. Sum S3(C)
Dividing the sums S3(C) into Oε(1) sums such that p = v ∈ (V 1−ε, V ], and applying

Proposition 22 with U = 1, au = 1u=1, and bv = 1v∈P1Z≤v<W , we obtain S3(A)= λS3(B)+
O

(
λS(B, X) log−δ/2 x

)
.

7·4. Sum S4(C)
We write S4(C)= S5(C)+ S6(C)+ S7(C)+ S8(C), where for V := x1/2−2γ+3δ

S5(C) :=
∑

Z<p2<p1<V
p1 p2<W

S(Cp1 p2, p2), S6(C) :=
∑

Z≤p2<p1<W
W≤p1 p2≤x1/2−δ

S(Cp1 p2, p2)

S7(C) :=
∑

x1/4−δ/2≤p1<W
Z≤p2<x1/4−10δ

p1 p2>x1/2−δ

S(Cp1 p2, p2), S8(C) :=
∑

x1/4−δ/2≤p1<W
x1/4−10δ≤p2<p1

x1/2−δ p2<p1 p2
2≤X2

S(Cp1 p2, p2).

We estimate each sum separately.

7·5. Sum S5(C)
Two applications of Buchstab’s identity yields

S5(C)=
∑

Z<p2<p1<V
p1 p2<W

S(Cp1 p2, Z)−
∑

Z<p3<p2<p1<V
p1 p2<W, p1 p2 p2

3<X2

S(Cp1 p2 p3, Z)

+
∑

Z<p4<p3<p2<p1<V
p1 p2<W, p1 p2 p2

3<X2, p1 p2 p3 p2
4<X2

S(Cp1 p2 p3 p4, p4)

=: S5,1(C)− S5,2(C)+ S5,3(C),

say.

7·5·1. Sum S5,1(C)
Using Proposition 22 with u = 1 and v = p1 p2, we obtain S5,1(A)= λS5,1(B)+

O
(
λS(B, X) log−δ/2 x

)
.
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7·5·2. Sum S5,2(C)
Note that p1 p2 ≤ W, p3 < p2 < p1 implies p3 ≤ W 1/2 < x1/4−20δ. Thus, we wish to apply

Proposition 22 with v= p1 p2, u = p3 but we have cross-conditions p3 < p2, p1 p2 p2
3 < X 2

that need to be removed. We do this by dividing the ranges into shorter ones, that is,

S5,2(C)=
∑

V1,V2,V3

∑
Z<p3<p2<p1<V

p1 p2<W, p1 p2 p2
3<X2

p j ∈(V 1−ε
j ,Vj ], j∈{1,2,3}

S(Cp1 p2 p3, Z),

where the sum over Vj runs over Vj of the form V (1−ε)g , g ∈Z such that V3 ≤ V2, and
(V1V2V 2

3 )
1−ε ≤ X 2 (that is, each condition is loosened if necessary but at most by a factor of

xO(δ)) Note that the overall sign of sums S5,2(C) is negative, so that we only require an upper
bound for S5,2(A). Thus, we can drop the unwanted cross-conditions for C =A so that by
Proposition 22 (since the inner sum is non-empty only if V3 ≤ x1/4−10δ)

S5,2(A)≤
∑

V1,V2,V3
V3≤V2

(V1V2V 2
3 )

1−ε≤X2

∑
Z<p3<V, Z<p2<p1<V

p1 p2<W
p j ∈(V 1−ε

j ,Vj ], j∈{1,2,3}

S(Ap1 p2 p3, Z)

= λ
∑

V1,V2,V3
V3≤V2

(V1V2V 2
3 )

1−ε≤X2

∑
Z<p3<V, Z<p2<p1<V

p1 p2<W
p j ∈(V 1−ε

j ,Vj ], j∈{1,2,3}

S(Bp1 p2 p3, Z)+O
(
λS(B, X) log−δ/2 x

)

= λS5,2(B)+ E(B)+O
(
λS(B, X) log−δ/2 x

)
.

Here

E(B)= λ
∑

V1,V2,V3
V3≤V2

(V1V2V 2
3 )

1−ε≤X2

∑
Z<p3<V, Z<p2<p1<V

p1 p2<W,
p3≥p2 or p1 p2 p2

3≥X2

p j ∈(V 1−ε
j ,Vj ], j∈{1,2,3}

S(Bp1 p2 p3, Z)
 δλS(B, X),

since the conditions in the sum over V1, V2, V3 imply that in the inner sum always either
p3 = p2xo(1) or p1 p2 p2

3 = X 2+o(1), so that by Lemma 23 the Buchstab integral correspondig
to the sum E(B) is of size 
 δ (thus, the deficiency of E(B) is 
 δ). Hence, S5,2(A)≤
(1 +O(δ))λS5,2(B).

We can also obtain a lower bound by a similar argument; instead of dropping the cross-
conditions p3 < p2, p1 p2 p2

3 < X 2 for S5,2(A), we divide the sum over Vj into two parts∑
V1,V2,V3

=∑(1)
V1,V2,V3

+∑(2)
V1,V2,V3

, where the first sum runs over Vj such that V3 < V 1−ε
2 and

V1V2V 2
3 < X 2, and the second sum over the complement. In the range of

∑(1)
V1,V2,V3

we always
have ∑

Z<p3<p2<p1<V
p1 p2<W, p1 p2 p2

3<X2

p j ∈(V 1−ε
j ,Vj ], j∈{1,2,3}

S(Cp1 p2 p3, Z)=
∑

Z<p3<V, Z<p2<p1<V
p1 p2<W

p j ∈(V 1−ε
j ,Vj ], j∈{1,2,3}

S(Cp1 p2 p3, Z),

so that we may apply Proposition 22. In the second sum
∑(2)

V1,V2,V3
we estimate S(Ap1 p2 p3, Z)

trivially by 0 from below, so that we obtain
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S5,2(A)≥ λS5,2(B)− E ′(B)+O
(
λS(B, X) log−δ/2 x

)
.

The error term

E ′(B)= λ
∑(2)

V1,V2,V3

∑
Z<p3<p2<p1<V

p1 p2<W, p1 p2 p2
3<X2

p j ∈(V 1−ε
j ,Vj ], j∈{1,2,3}

S(Bp1 p2 p3, Z)

is again a sum with p3 = p2xo(1) or p1 p2 p2
3 = X 2+o(1), corresponding to a Buchstab integral

of size 
 δ, which yields S5,2(A)≥ (1 −O(δ))λS5,2(B). We will need this version later,
when we have to remove cross-conditions in a sum with a positive overall sign.

By combining the above, we have S5,2(A)= (1 +O(δ))λS5,2(B).

7·5·3. Sum S5,3(C)
We split the sum into three parts depending on the size of p1 p2 p3 p4

S5,3(C)=
∑

(p1,p2,p3,p4)∈U(5,3,1)
S(Cp1 p2 p3 p4, p4)+

∑
(p1,p2,p3,p4)∈U(5,3,2)

S(Cp1 p2 p3 p4, p4)

+
∑

(p1,p2,p3,p4)∈U(5,3,3)
S(Cp1 p2 p3 p4, p4),

where

U(5, 3) := {(p1, p2, p3, p4) : Z < p4 < p3 < p2 < p1 < V, p1 p2 <W,

p1 p2 p2
3 < X 2, p1 p2 p3 p2

4 < X 2}
U(5, 3, 1) :=U(5, 3)∩ {(p1, p2, p3, p4) : p1 p2 p3 p4 <W }
U(5, 3, 2) :=U(5, 3)∩ {(p1, p2, p3, p4) : W ≤ p1 p2 p3 p4 ≤ x1/2−δ}
U(5, 3, 3) :=U(5, 3)∩ {(p1, p2, p3, p4) : p1 p2 p3 p4 > x1/2−δ}.

Sum over U(5, 3, 2). We have the variable p1 p2 p3 p4 in the Type II range [W, x1/2−δ], so
that we may apply Proposition 16; we just need to remove the cross-condition (n, P(p4))=
1 for the implicit variable in S(Cp1 p2 p3 p4, p4). To this end, write n = q1 · · · qk so that∑
(p1,p2,p3,p4)∈U(5,3,2)

S(Cp1 p2 p3 p4, p4)=
∑
k
1

∑
(p1,p2,p3,p4)∈U(5,3,2)

∑
p4<q1≤q2≤···≤qk

WC(p1 p2 p3 p4q1 · · · qk).

Similarly as in the above for the sum S5,2(C), we divide sums over p4 and q1 into shorter
sums, which yields∑

k
1

∑
V,U

V 1−ε≤U

∑
(p1,p2,p3,p4)∈U(5,3,2)

p4∈(V 1−ε ,V ]

∑
p4<q1≤q2≤···≤qk

q1∈(U 1−ε ,U ]

WC(p1 p2 p3 p4q1 · · · qk).

Applying the argument used with the sum S5,2(C) to handle the cross-conditions, combined
with Proposition 16, we obtain
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44 JORI MERIKOSKI∑
(p1,p2,p3,p4)∈U(5,3,2)

S(Ap1 p2 p3 p4, p4)= λ
∑

(p1,p2,p3,p4)∈U(5,3,2)
S(Bp1 p2 p3 p4, p4)+O (δλS(B, X)) .

Sum over U(5, 3, 1). Here we apply Buchstab’s identity twice, which yields∑
(p1,p2,p3,p4)∈U(5,3,1)

S(Ap1 p2 p3 p4, Z)−
∑

(p1,p2,p3,p4)∈U(5,3,1),
Z≤p5<p4, p1 p2 p3 p4 p2

5<X2

S(Ap1 p2 p3 p4 p5, Z)

+
∑

(p1,p2,p3,p4)∈U(5,3,1),
Z≤p6<p5<p4, p1 p2 p3 p4 p2

5<X2,

p1 p2 p3 p4 p5 p2
6<X2

S(Ap1 p2 p3 p4 p5 p6, p6).

The first two sums have asymptotic formulas by Proposition 22, since p1 p2 p3 p4 <W and
p5 < (p1 p2 p3 p4)

1/4 < x1/4−20δ (the cross-conditions can be handled by the discussion of the
sum S5,2(C) in the above). In the third sum we take out the range where at least one of the
products

∏
j∈I p j (where I ⊆ {1, 2, . . . , 6}) is in the Type II range [W, x1/2−δ] (these can be

dealt with by a similar argument as for the sum over U(5, 3, 2)). We must discard the rest of
the sum, giving us a deficiency (cf. Lemma 23)

O(δ)+ (1 − γ )

∫
f5,3,1(α)ω(α)

dα1dα2dα3dα4dα5dα6

α1α2α3α4α5α
2
6

< 0.006493,

where ω(α)=ω(α1, . . . , α6) :=ω((1 − γ − α1 − · · · − αk)/α6), and f5,3,1(α) is the char-
acteristic function of the six-dimensional set (the various δ’s can be dropped, with an error

 δ)

{α : (xα1, xα2, xα3, xα4) ∈U(5, 3, 1), γ ≤ α6 <α5 <α4, α1 + · · · + α4 + 2α5 < 1 − γ,

α1 + · · · + α5 + 2α6 < 1 − γ,
∑
j∈I

α j /∈ [1/2 − γ, 1/2] for every I ⊆ {1, 2, . . . , 6}}.

For all of the codes for computing upper bounds for the numerical integrals, see the codepad
links at the end of this section.

Sum over U(5, 3, 3), We divide the range U(5, 3, 3) into three parts U(5, 3, 3, 1)∪
U(5, 3, 3, 2)∪U(5, 3, 3, 3), where U(5, 3, 3, 1) :=U(5, 3, 3)∩ {p2 p3 p4 <W }, and
U(5, 3, 3, 3) :=U(5, 3, 3)∩ {p2 p3 p4 > x1/2−δ}, and U(5, 3, 3, 2) is the remaining part
which can be handled as a Type II sum, since p2 p3 p4 ∈ [W, x1/2−δ] (the cross-condition
(n, P(p4))= 1 is again dealt with by a similar argument as with the sum over U(5, 3, 2)).

For U(5, 3, 3, 1) we use Buchstab’s identity in the ‘upwards’ direction (this is called
Process II in Jia and Liu [12, p. 27])

S(Ap1 p2 p3 p4, p4)= S

(
Ap1 p2 p3 p4,

X

(p1 p2 p3 p4)1/2

)
+

∑
p4≤p5<

X
(p1 p2 p3 p4)

1/2

S(Ap1 p2 p3 p4 p5, p5).

By (2·4) the implicit variable in the first sum is of size x1−γ+o(1)/(p1 p2 p3 p4). Thus, we have
a four dimensional sum over primes and a five dimensional sum over p5-almost-primes.

https://doi.org/10.1017/S0305004119000306 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000306


Large prime factors on short intervals 45

In each sum we take out ranges with a Type II variable, and discard the rest. This gives us
deficiencies

O(δ)+ (1 − γ )

∫
f5,3,3,1(α)

dα1dα2dα3dα4

(1 − γ − α1 − α2 − α3 − α4)α1α2α3α4
< 0.1139225

and

O(δ)+ (1 − γ )

∫
g5,3,3,1(α)ω(α)

dα1dα2dα3dα4dα5

α1α2α3α4α
2
5

< 0.0450231.

Here f5,3,3,1 is the characteristic function of the four-dimensional set

V(5, 3, 3, 1)= {α : (xα1, xα2, xα3, xα4) ∈U(5, 3, 3, 1),∑
j∈I

α j /∈ [1/2 − γ, 1/2] for every I ⊆ {1, 2, 3, 4}}

and g5,3,3,1 is the characteristic function of the five-dimensional set

{α : (xα1, xα2, xα3, xα4) ∈ V(5, 3, 3, 1),∑
j∈I

α j /∈ [1/2 − γ, 1/2] for every I ⊆ {1, 2, 3, 4, 5}}.

We discard the sum over U(5, 3, 3, 3) (no combination of the variables is in the Type II
range), which gives a deficiency

(1 − γ )

∫
fV2(α)ω(α)

dα1dα2dα3dα4

α1α2α3α
2
4

< 0.014837,

where fV2 is the characteristic function of {α : (xα1, xα2, xα3, xα4) ∈U(5, 3, 3, 3)}.

7·5·4. Deficiency of S5(C)
Combining the above, the deficiency of S5(C) is < 0.1802756.

7·6. Sum S6(C)
This is almost already a Type II sum, we just need to deal with the cross-condition

(n, P(p2))= 1. Applying the argument used with the sum over U(5, 3, 2), we obtain

S6(A)= λS6(B)+O (δλS(B, X)) .

7·7. Sum S7(C)
We first divide S7(C) into two parts (the exponent 0.36 is optimized by computer for using

role reversal in the first sum)

S7(C)=
∑

x1/4−δ/2≤p1<W,
Z≤p2<x1/4−10δ

p1 p2>x1/2−δ , √
p1 p2<x0.36

S(Cp1 p2, p2)+
∑

x1/4−δ/2≤p1<W,
Z≤p2<x1/4−10δ

p1 p2>x1/2−δ , √
p1 p2≥x0.36

S(Cp1 p2, p2)

=: S7,1(C)+ S7,2(C).
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7·7·1. Sum S7,1(C)
We apply Buchstab’s identity twice to obtain

S7,1(C)=
∑

x1/4−δ/2≤p1<W,
Z≤p2<x1/4−10δ

p1 p2>x1/2−δ , √
p1 p2<x0.36

S(Cp1 p2, Z)−
∑

x1/4−δ/2≤p1<W,
Z≤p3<p2<x1/4−10δ

p1 p2>x1/2−δ , √
p1 p2<x0.36, p1 p2 p2

3<X2

S(Cp1 p2 p3, Z)

+
∑

x1/4−δ/2≤p1<W,
Z≤p4<p3<p2<x1/4−10δ

p1 p2>x1/2−δ , √
p1 p2<x0.36,

p1 p2 p2
3<X2, p1 p2 p3 p2

4<X2

S(Cp1 p2 p3 p4, p4)=: S7,1,1(C)− S7,1,2(C)+ S7,1,3(C).

Sum S7,1,1(C). By Proposition 22 with u = p2, v = p1 (the cross-conditions between p1

and p2 can be removed by the same argument as with the sum S5,2(C))

S7,1,1(A)= λS7,1,1(B)+O (δλS(B, X)) .

Sum S7,1,2(C). The parts with p1 p3 ≤ x1/2−δ/2 or p2 p3 ≤ x1/4−20δ have an asymptotic for-
mula by Proposition 22 (again using the discussion of S5,2(C) to remove cross-conditions).
Write

U(7, 1, 2) := {(p1, p2, p3) : x1/4−δ/2 ≤ p1 <W, Z ≤ p3 < p2 < x1/4−10δ, p1 p3 > x1/2−δ/2,
√

p1 p2 < x0.36, p1 p2 p2
3 < X 2, p2 p3 > x1/4−20δ}

for the complementing region. Here we apply the role reversal device; we write out the
implicit sum and apply Buchstab’s identity to the sum over p1, that is,∑

(p1,p2,p3)∈U(7,1,2)
S(Ap1 p2 p3, Z)=

∑
p1,p2,p3,n

(p1,p2,p3)∈U(7,1,2)
(n,P(Z))=1

WC(p1 p2 p3n)

=
∑

m,p2,p3,n
(m,p2,p3)∈U(7,1,2)

(n,P(Z))=1, (m,P(Z))=1

WC(mp2 p3n)−
∑

q,m,p2,p3,n
(qm,p2,p3)∈U(7,1,2), Z≤q<m
(n,P(Z))=1, (m,P(q))=1

WC(qmp2 p3n)

=: S7,1,2,1(C)− S7,1,2,2(C),

say.
Sum S7,1,2,1(C). Note that mp3 > x1/2−δ/2 implies by (2·4) that p2n < x1/2−γ+δ, and we

have p3 < p2 < x1/4−20δ. Thus, we will apply Proposition 22 with u = p3, v= p2n, and m
as the implicit variable. To justify this properly, we need to remove the cross-conditions
between m and the other variables in such a way, that we use Proposition 22 only to sums
where m is not restricted. Similarly as with S5,2, we write∑

m,p2,p3,n
(m,p2,p3)∈U(7,1,2)

(n,P(Z))=1, (m,P(Z))=1

WC(mp2 p3n)=
∑

U,V2,V3

∑
m,p2,p3,n

(m,p2,p3)∈U(7,1,2)
(n,P(Z))=1, (m,P(Z))=1

n∈(U 1−ε ,U ]
p j ∈(V 1−ε

j ,Vj ], j∈{2,3}

WC(mp2 p3n),
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where the sum is over U, V2, V3 of the form x (1−ε)g , g ∈N, such that (note that m =
x1−γ+o(1)/(UV2V3) by (2·4))

x1/4−δ/2 ≤ x1−γ+δ

UV2V3
≤ W x2δ, Z ≤ V3 ≤ V2, V 1−ε

2 ≤ x1/4−10δ,
x1−γ+δ

UV2V3
V3 ≥ x1/2−δ/2,√

x1−γ−δ

UV2V3
V 1−ε

2 < x0.36,
x1−γ−δ

UV2V3
(V2V 2

3 )
1−ε < X 2, V2V3 ≥ x1/4−20δ

(that is, each condition in the definition of U(7, 1, 2) is loosened appropriately but at most
by a factor of xO(δ)). Since S7,1,2(C) has overall a negative sign, we only require an upper
bound. Thus, we remove the cross-condition for C =A so that by Proposition 22

S7,1,2,1(A) ≤
∑

U,V2,V3

∑
m,p2,p3,n

(n,P(Z))=1, (m,P(Z))=1
n∈(U 1−ε ,U ]

p j ∈(V 1−ε
j ,Vj ], j∈{2,3}

WA(mp2 p3n)

=
∑

U,V2,V3

∑
p2,p3,n

(n,P(Z))=1
n∈(U 1−ε ,U ]

p j ∈(V 1−ε
j ,Vj ], j∈{2,3}

S(Anp2 p3, Z)

= λS7,1,2,1(B)+ E(B)+O
(
λS(B, X) log−δ/2 x

)
,

where the error term E(B) is again a sum where some combination of the variables is fixed
up to a factor xO(δ), so that the sum has a deficiency 
 δ. Therefore,

S7,1,2,1(A)≤ λS7,1,2,1(B)+O (δλS(B, X)) .

Sum S7,1,2,2(C). Write∑
q,m,p2,p3,n

(qm,p2,p3)∈U(7,1,2), Z≤q<m
(n,P(Z))=1, (m,P(q))=1

WC(qmp2 p3n)=
∑

q,m,p2,p3
(qm,p2,p3)∈U(7,1,2), Z≤q<m

(m,P(q))=1

S(Cqmp2 p3, Z).

We first take out the part which has an asymptotic formula by Proposition 22 applied with
n as the implicit variable (cross-conditions again handled by the discussion of S5,2); we are
left with the range {(q,m, p2, p3) : (qm, p2, p3) ∈U(7, 1, 2)} \ V, where (note that always
q < x1/4−20δ)

V ={mp2 p3 < x1/2−γ } ∪ {m < x1/4−20δ, qp2 p3 < x1/2−γ }
∪ {mp1 < x1/4−20δ, qp2 < x1/2−γ } ∪ {mp2 < x1/4−20δ, qp1 < x1/2−γ }
∪ {qp1 < x1/4−20δ, mp2 < x1/2−γ } ∪ {qp2 < x1/4−20δ, mp1 < x1/2−γ }.

We also take out the parts where we have a Type II variable; thus, we are left with

W(7, 1, 2)= {(q,m, p2, p3) : (qm, p2, p3) ∈U(7, 1, 2), Z ≤ q <m,

qp2 p3,mp2 p3, qp j ,mp j /∈ [W, x1/2−δ]} \ V .
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This remaining sum has the right sign so that it can be dropped, with a deficiency (cf. Lemma
24, q = xα0,m = xα1, p2 = xα2, p3 = xα3 )

O(δ)+ 1 − γ

γ

∫
f7,1,2(α)ω2(α)

dα0dα1dα2dα3

α2
0α2α3

< 0.054317,

where ω2(α)=ω((1 − γ − α0 − α1 − α2 − α3)/γ )ω(α1/α0), and f7,1,2 is the characteristic
function of {(xα0, xα1, xα2, xα3) ∈W(7, 1, 2)}.

Sum S7,1,3(C). We take out the range with Type II variables and discard the rest to find a
deficiency

O(δ)+ (1 − γ )

∫
f7,1,3(α)ω(α)

dα1dα2dα3dα4

α1α2α3α
2
4

< 0.113006,

where f7,1,3 is the characteristic function of the four-dimensional set

{α : 1/4 ≤ α1 < 1/2 − γ, γ ≤ α4 <α3 <α2 < 1/4,

α1 + α2 > 1/2, α1/2 + α2 < 0.36, α1 + α2 + 2α3 < 1 − γ,

α1 + α2 + α3 + 2α4 < 1 − γ,
∑
j∈I

α j /∈ [1/2 − γ, 1/2] for every I ⊆ {1, 2, 3, 4}}.

7·7·2. Sum S7,2(C)
We discard the sum S7,2(C), which gives a deficiency

O(δ)+ (1 − γ )

∫
f7,2(α)ω(α)

dα1dα2

α1α
2
2

< 0.4425785,

where f7,2 is the characteristic function of

{α : 1/4 ≤ α1 < 1/2 − γ, γ ≤ α2 < 1/4, α1 + α2 > 1/2, α1/2 + α2 ≥ 0.36}.

7·7·3. Deficiency of S7(C)
The total deficiency of S7(C) is < 0.6099015.

7·8. Sum S8(C)
This corresponds to the part where some ranges can be handled by the Type I2 information

in [8, chapter 5]. In our case, we have not obtained the Type I2 information (cf. discussion
after Proposition 14), so that we have to discard all of the sum. The sum S(Bp1 p2, p2) counts
primes of size x1−γ+o(1)/(p1 p2), since p2 > x1/4+o(1). Thus, the deficiency is

O(δ)+ (1 − γ )

∫ 1/2−γ

1/4

dα1

α1

∫ min{α1,(1−γ−α1)/2}

1/4

dα2

(1 − γ − α1 − α2)α2
< 0.2021922.

Remark 8. Since p2 is large here, the deficiency from this range grows very slowly as gamma
decreases.
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7·9. Conclusion of the proof

Combining the above estimates we obtain

S(A, X)= S1(A)− S2(A)− S3(A)+ S5(A)+ S6(A)+ S7(A)+ S8(A)
≥ λS1(B)− λS2(B)− λS3(B)+ λ(S5(B)− 0.1802756 · S(B, X))

+ λS6(B)+ λ(S7(B)− 0.6099015 · S(B, X))

+ λ(S8(B)− 0.2021922 · S(B, X))−O(δ)λS(B, X)

= (1 − 0.1802756 − 0.6099015 − 0.2021922 −O(δ))λS(B, X)

> 0.007 · λS(B, X),

which completes the proof of Proposition 2 with C(1/19)= 0.007. For γ > 1/19 all of the
deficiencies are strictly smaller, so that C(γ ) > 0.007 for γ > 1/19.

Remark 9. For γ ≥ 1/4 the sum S4(C) is essentially empty, so that we actually get an
asymptotic formula for γ ≥ 1/4.

The Python codes for computing the Buchstab integrals are available at (in the order of
appearance):

U(5, 3, 1) http://codepad.org/rxR2O7Is
V(5, 3, 3, 1), four dimensional prime part http://codepad.org/fQKYi7hg

V(5, 3, 3, 1), five dimensional almost-prime part http://codepad.org/1SaVNuBy
U(5, 3, 3, 3) http://codepad.org/ZiNV3AuH

W(7, 1, 2), with role reversal http://codepad.org/fVJHM3az
Sum S7,1,3(C) http://codepad.org/G6Kx7IMg
Sum S7,2(C) http://codepad.org/4RTwoAPk
Sum S8(C) http://codepad.org/L4n8cLtY.
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