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Set differential equations are usually formulated in terms of the Hukuhara
differential. As a consequence, the theory of set differential equations is perceived as
an independent subject, in which all results are proved within the framework of the
Hukuhara calculus. We propose to reformulate set differential equations as ordinary
differential equations in a Banach space by identifying the convex and compact
subsets of Rd with their support functions. Using this representation, standard
existence and uniqueness theorems for ordinary differential equations can be applied
to set differential equations. We provide a geometric interpretation of the main
result, and demonstrate that our approach overcomes the heavy restrictions that the
use of the Hukuhara differential implies for the nature of a solution.
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1. Introduction

A set differential equation is an equation of the form

DHA(t) = f(t, A(t)), A(0) = A0, (1.1)

where t �→ A(t) is a curve in the space Kc(Rd) of non-empty convex and compact
subsets of Rd, the right-hand side is a mapping

f : [0, T ] × Kc(Rd) → Kc(Rd)

and DHA(t) is the so-called Hukuhara differential of the curve at t ∈ (0, T ). Set
differential equations have been investigated in a considerable number of papers.
For an overview of the literature we refer the reader to [11]. The use of the Hukuhara
differential in (1.1) implies heavy restrictions on the nature of the solution, which
can, for example, only grow in diameter, but not shrink (see [11, proposition 1.6.1]).

Recently, there have been attempts to modify the underlying Hukuhara differ-
ence to allow more flexibility of the solution curves (see [13, 14] and the references
therein). The resulting differential is called the second-type Hukuhara differen-
tial. In this setting, solution curves of (1.1) can shrink, but not grow. There exist,
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however, curves in Kc(Rd) with d � 2, which expand in some directions and con-
tract in others simultaneously. Both Hukuhara-based approaches fail to capture
this behaviour.

The Hukuhara differential is not the only approach to handling set evolutions.
In particular, the abstract framework named mutational analysis, presented in [1]
and further developed in [12] generalizes evolution equations from vector spaces to
metric spaces and can handle evolutions not only in Kc(Rd), but also in spaces of
more general sets, such as the compact subsets of Rd.

The aim of our paper is to show that a large family of evolutions in Kc(Rd),
containing the problems investigated in [11, 13, 14], can be written and treated as
ordinary differential equations in a Banach space with the usual Fréchet derivative
in time. We do not apply the apparatus from [1, 12], but obtain very satisfactory
results by exploiting the intrinsic features of Kc(Rd).

Identifying convex sets with their support functions yields an embedding of the
space Kc(Rd) into the Banach space C(Sd−1) of continuous real-valued functions
on the sphere (see [9]). As it is well known that any Hukuhara differentiable curve
is Fréchet differentiable in support function representation (see [3, lemma 4.1]), it
seems natural to consider set differential equations in a support function represen-
tation:

d
dt

σA(t) = f(t, σA(t)), σA(0) = σA0 , (1.2)

where t �→ A(t) is a curve in Kc(Rd), t �→ σA(t) is a curve in C(Sd−1) and dσA(t)/dt
is the Fréchet differential of the curve at t ∈ (0, T ).

There are some technical difficulties when standard results on ordinary differential
equations are applied to equations of the form (1.2). As we have to guarantee that
solutions stay in the manifold Σ ⊂ C(Sd−1) of all support functions associated
with sets from Kc(Rd), we need to understand the structure of the tangent cone
TΣ(σ) to Σ at any σ ∈ Σ. To transfer the existence and uniqueness theorems for
ordinary differential equations in Banach spaces with a non-Lipschitz right-hand
side to (1.2), we need the compactness properties of Σ and a characterization of
the semi-inner product on (C(Sd−1), ‖·‖∞). Some of these preliminary results can be
taken from the literature; others are developed in this paper. In particular, we give
a geometric interpretation of the one-sided Lipschitz condition in Kc(Rd), which is
a surprisingly mild condition on the behaviour of f .

This paper is organized as follows. In § 2, we collect the basic definitions and
the preliminary results mentioned above, which we use in § 3 to transfer standard
existence and uniqueness results to (1.2). In § 4, we briefly show that second-type
Hukuhara differentiable curves are a special case of (1.2). The example discussed in
§ 5 illustrates that both Hukuhara approaches fail to capture very simple dynamics
in Kc(R2), while the support function calculus is applicable and yields reasonable
solutions.

2. Preliminaries

After introducing basic notation in § 2.1, we shall collect some known results about
support functions and tangent cones in §§ 2.2 and 2.3. Section 2.4 investigates dual-
ity concepts, which are the ingredients for standard results on ordinary differential
equations in Banach spaces in the particular case of set differential equations.
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2.1. Basic definitions

Let R+
0 be the set of all non-negative real numbers. Throughout this paper,

Sd−1 ⊂ Rd will denote the sphere with respect to the Euclidean norm ‖·‖ : Rd → R+
0 ,

and the modulus will be denoted by | · | : R → R+
0 . Let C(Sd−1) be the space

of continuous real-valued functions on Sd−1 equipped with the maximum norm
‖ · ‖∞ : C(Sd−1) → R+

0 . If (X, ‖ · ‖X) is a normed space, x ∈ X and r > 0, then

Br(x) := {x′ ∈ X : ‖x′ − x‖ � r}

is the closed ball of radius r centred at x.
The non-empty compact subsets of Rd will be denoted K(Rd), and Kc(Rd) will

stand for the non-empty convex and compact subsets of Rd. For any λ ∈ R and
A, B ∈ K(Rd), let

A + B := {a + b : a ∈ A, b ∈ B} and λA := {λa : a ∈ A}

denote Minkowski addition and multiplication. For any A, B ∈ Kc(Rd), let

dist(A, B) := sup
a∈A

inf
b∈B

‖a − b‖,

distH(A, B) := max{dist(A, B), dist(B, A)}

denote the one-sided and the symmetric Hausdorff distance. For a, b ∈ Rd, we write
dist(a, B) and dist(A, b) instead of dist({a}, B) and dist(A, {b}). The projection of
a point a ∈ Rd to a set B ∈ K(Rd) is the non-empty set

projB(a) := {b ∈ B : ‖a − b‖ = dist(a, B)}.

When B ∈ Kc(Rd), a �→ projB(a) is a single-valued mapping (see [5, lemma 7.3]),
and it follows from [5, proposition 7.4] that this mapping is 1-Lipschitz.

We associate convex and compact subsets A ∈ Kc(Rd) with their support func-
tions

σA : Sd−1 → R, σA(p) := sup
a∈A

〈p, a〉.

Sometimes, it is useful to consider their positive homogeneous extensions

σ̄A : Rd → R, σA(p) := sup
a∈A

〈p, a〉,

which obviously coincide with σA(·) on Sd−1. We define

Σ(Rd) := {σA : A ∈ Kc(Rd)}

to be the set of all support functions of convex and compact subsets of Rd, and we
set

Σ̂(Rd) := Σ(Rd) − Σ(Rd) = {σA − σB : A, B ∈ Kc(Rd)}.

2.2. Elementary facts about support functions

The following proposition is [15, corollary 13.2.2].

Proposition 2.1. A bounded function σ : Sd−1 → R is a support function of some
A ∈ Kc(Rd) if and only if its positive homogeneous extension σ̄ : Rd → R is convex.
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Recall that every convex function σ̄ : Rd → R is continuous (see [15, theo-
rem 10.1]). We may therefore interpret the set Σ(Rd) of all support functions as a
subset of C(Sd−1).

The following facts are well known (see [9, 10]).

Proposition 2.2. If A, B ∈ Kc(Rd) and λ � 0, then

(a) σA+B = σA + σB and σλA = λσA,

(b) dist(A, B) = maxp∈B1(0)(σ̄A(p) − σ̄B(p)),

(c) distH(A, B) = maxp∈Sd−1 |σA(p) − σB(p)|.

In particular, Σ(Rd) is a convex subcone of C(Sd−1).

The cone Σ(Rd) is locally compact.

Proposition 2.3. The cone Σ(Rd) is closed as a subset of C(Sd−1), and for any
σ ∈ Σ(Rd) and r > 0 the intersection Σ(Rd) ∩ Br(σ) ⊂ C(Sd−1) is compact with
respect to the maximum norm.

Proof. Let σ ∈ C(Sd−1), and let (σn)n∈N ⊂ Σ(Rd) be a sequence of support func-
tions with ‖σn − σ‖∞ → 0 as n → ∞. By proposition 2.1, the extensions σ̄n are
convex. Hence, for any λ ∈ [0, 1] and x, y ∈ Rd we have that

σ̄(λx + (1 − λ)y) ← σ̄n(λx + (1 − λ)y)
� λσ̄n(x) + (1 − λ)σ̄(y) → λσ̄(x) + (1 − λ)σ̄(y) (2.1)

as n → ∞, so that σ̄ is convex. Therefore, proposition 2.1 implies that σ ∈ Σ(Rd).
By Blaschke’s selection theorem (see [8, ch. 4]), the set Σ(Rd) ∩ B‖σ‖∞+r(0) is

compact. As Σ(Rd)∩Br(σ) is the intersection of two closed sets, it is a closed subset
of the compact set Σ(Rd) ∩ B‖σ‖∞+r(0), and hence compact.

2.3. Tangent cones

We are interested in C(Sd−1)-valued solutions of differential equations that do
not leave Σ(Rd). The concept of tangency is central for existence theorems under
state constraints.

Definition 2.4. Let X be a normed space, let K ⊂ X be a set and let x ∈ K̄.
Then the tangent cone to K at x is given by

TK(x) :=
{

v ∈ X : lim inf
h↘0

h−1 dist(x + hv, K) = 0
}

.

The following proposition is [2, lemma 4.2.5]. It will later be used to characterize
tangency to the convex cone Σ(Rd).
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Proposition 2.5. If X is a normed space and K ⊂ X is a convex cone, then
TK(x) = K + Rx for all x ∈ K.

2.4. The semi-inner product for support functions

In § 3, we shall apply a uniqueness theorem for ordinary differential equations
in Banach spaces to set differential equations in a support function representation.
Its main ingredient is a one-sided Lipschitz condition, which is given in terms of a
so-called semi-inner product. Therefore, we investigate here how this product acts
on Σ̂(Rd) ⊂ C(Sd−1) and what this action means for the corresponding elements
of Kc(Rd).

Definition 2.6. For any Banach space X with dual space X∗, the duality map
J : X ⇒ X∗ is given by

J(x) = {x∗ ∈ X∗ : x∗(x) = ‖x‖2
X = ‖x∗‖2

X∗}.

The mapping 〈·, ·〉− : X × X → R defined by

〈x, y〉− = inf{y∗(x) : y∗ ∈ J(y)}

is called a semi-inner product.

Consider the Banach space X = C(M), where M is a compact metric space and
C(M) denotes the space of all continuous real-valued functions on M equipped with
the maximum norm. Let B(M) denote the space of all signed Borel measures on
M , and let B(M)+ denote the space of all positive Borel measures on M .

Proposition 2.7 (Jordan decomposition). For any µ ∈ B(M), there exists a
unique pair (µP , µN ) ∈ B+(M) × B+(M) supported on Borel sets P, N ⊂ M such
that µ = µP − µN , and M is the disjoint union of P and N .

For a proof, see [7, § III.4, theorem 10 and corollary 11].
As a consequence, the total variation of a signed Borel measure is well defined.

Definition 2.8. The total variation of a Borel measure µ ∈ B(Rd) with Jordan
decomposition µP + µN = µ with associated Borel sets P ∪ N = M is defined by

|‖µ|‖ := µP (P ) + µN (N).

It is well known that the dual space of (C(M), ‖ · ‖∞) is (B(M), |‖ · |‖), which
follows from the Riesz representation theorem (see [7, theorem IV.6.3]).

We shall now characterize the duality map on C(M). For a given function f ∈
C(M), we define the sets

EP
f = {x ∈ M : f(x) = ‖f‖∞}, EN

f = {x ∈ M : f(x) = −‖f‖∞}

on which f attains its maximal modulus. Clearly, EP
f ∪ EN

f �= ∅. Note that either
EP

f ∩ EN
f = ∅ or EP

f ∩ EN
f = M , which happens if and only if f ≡ 0.
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Proposition 2.9. Let M be a compact metric space, let f ∈ C(M) and let µ ∈
B(M). Then µ ∈ J(f) if and only if

|‖µ|‖ = ‖f‖∞ (2.2)

and the Jordan decomposition of µ satisfies

µP (M \ EP
f ) = 0 = µN (M \ EN

f ). (2.3)

Proof. Let µ ∈ J(f). Then, clearly, (2.2) holds. Moreover, if

µP (M \ EP
f ) + µN (M \ EN

f ) > 0,

then

µ(f) =
∫

P

f dµP −
∫

N

f dµN

< (µP (EP
f ) + µP (M \ EP

f ) + µN (EN
f ) + µN (M \ EN

f ))‖f‖∞

= |‖µ|‖‖f‖∞ = ‖f‖2
∞,

which contradicts µ(f) = ‖f‖2
∞. Hence, (2.3) holds.

On the other hand, if (2.2) and (2.3) hold, then

µ(f) =
∫

EP
f

f dµP −
∫

EN
f

f dµN

= (µP (EP
f ) + µN (EN

f ))‖f‖∞

= |‖µ|‖‖f‖∞

= ‖f‖2
∞,

so that µ ∈ J(f).

The following proposition provides an explicit formula for the semi-inner product
on C(M).

Proposition 2.10. Let M be a compact metric space and let f, g ∈ C(M). Then

〈f, g〉− = ‖g‖∞ min
{

min
x∈EP

g

f(x), min
x∈EN

g

−f(x)
}

with the convention min ∅ = ∞.

Note that EP
g = ∅ = EN

g is impossible, and that the right-hand side is therefore
finite.

Proof. Since g is continuous, the sets EP
g and EN

g are non-empty and compact.
Since f is continuous, it attains its minimum over EP

g at some xP
g ∈ EP

g and its
maximum over EN

g at some xN
g ∈ EN

g . As the Dirac measures δxP
g

and δxN
g

satisfy
δxP

g
∈ B(M)+ and δxN

g
∈ B(M)+, and because

δxP
g
(M \ EP

g ) = 0 = δxN
g

(M \ EN
g )
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and ‖δxP
g
‖ = ‖δxN

g
‖ = 1, proposition 2.9 implies ‖g‖∞δxP

g
∈ J(g) and −‖g‖∞δxN

g
∈

J(g). Therefore, proposition 2.9 yields

〈f, g〉− = inf{µ(f) : µ ∈ J(g)}
� ‖g‖∞ min{δxP

g
(f),−δxN

g
(f)}

= ‖g‖∞ min{f(xP
g ),−f(xN

g )}

= ‖g‖∞ min
{

min
x∈EP

g

f(x),− max
x∈EN

g

f(x)
}

.

It is easy to see that no µ ∈ J(g) yields a lower value.

When X = C(Sd−1) and A, B ∈ Kc(Rd), explicit expressions for the sets EP
σA−σB

and EN
σA−σB

can be obtained using the following proposition about variational
inequalities.

Proposition 2.11. Let A ∈ Kc(Rd), a∗ ∈ A and x ∈ Rd. Then

‖x − a∗‖ = dist(x, A) ⇐⇒ 〈x − a∗, a − a∗〉 � 0 for all a ∈ A, (2.4)
‖a∗ − x‖ = dist(A, x) ⇐⇒ 〈x − a∗, a − a∗〉 � 0 for all a ∈ A. (2.5)

Proof. Inequality (2.4) is standard (see, for example, [5, proposition 7.4]), and (2.5)
can be obtained by an analogous proof.

We are now in a position to characterize the sets EP
σA−σB

and EN
σA−σB

.

Proposition 2.12. Let A, B ∈ Kc(Rd), and let σA, σB ∈ Σ(Rd) be the correspond-
ing support functions.

(a) If A = B, then EP
σA−σB

= Sd−1.

(b) If A � B, then EP
σA−σB

= ∅.

(c) Let A �⊂ B. Then, for any p ∈ Sd−1, we have p ∈ EP
σA−σB

if and only if there
exist a∗ ∈ A and b∗ ∈ B such that p = (a∗ − b∗)/‖a∗ − b∗‖ and

‖a∗ − b∗‖ = dist(a∗, B) = dist(A, B) = distH(A, B). (2.6)

An analogous statement holds for the set EN
σA−σB

.

Proof. If A = B, then σA = σB , and hence

EP
σA−σB

= {p ∈ Sd−1 : σA(p) − σB(p) = ‖σA − σB‖∞} = Sd−1,

which proves (a).

If A � B, then ‖σA − σB‖∞ > 0 and σA − σB � 0, so that

EP
σA−σB

= {p ∈ Sd−1 : σA(p) − σB(p) = ‖σA − σB‖∞} = ∅,

which is (b).
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Let us show the equivalence (c). Let p ∈ EP
σA−σB

. Using proposition 2.2, we find

distH(A, B) = ‖σA − σB‖∞

= σA(p) − σB(p)
= sup

a∈A
〈p, a〉 − sup

b∈B
〈p, b〉

= sup
a∈A

inf
b∈B

〈p, a − b〉

= sup
a∈A

inf
b∈B

cos ∠(p, a − b)‖a − b‖

� sup
a∈A

cos ∠(p, a − projB(a))‖a − projB(a)‖.

By the compactness of A and the continuity of the above expression, there exists
a∗ ∈ A such that

distH(A, B) � sup
a∈A

cos ∠(p, a − projB(a))‖a − projB(a)‖

= cos ∠(p, a∗ − projB(a∗))‖a∗ − projB(a∗)‖
= cos ∠(p, a∗ − projB(a∗)) dist(a∗, B)
� cos ∠(p, a∗ − projB(a∗)) dist(A, B)
� dist(A, B).

Hence, the above inequalities are, in fact, equalities, which enforces

cos ∠(p, a∗ − projB(a∗)) = 1,

0 < distH(A, B) = dist(A, B) = dist(a∗, B).

Therefore, a∗ and b∗ := projB(a∗) ∈ B satisfy (2.6) and p = (a∗ − b∗)/‖a∗ − b∗‖.

To show the opposite implication, let a∗ ∈ A and b∗ ∈ B satisfy (2.6) and set
p = (a∗ − b∗)/‖a∗ − b∗‖. Note that (2.6) and the assumption A �⊂ B guarantee
a∗ �= b∗. Using (2.5) and (2.4), we obtain

〈a∗ − b∗, a〉 � 〈a∗ − b∗, a∗〉 for all a ∈ A,

〈a∗ − b∗, b〉 � 〈a∗ − b∗, b∗〉 for all b ∈ B,

so that

sup
a∈A

〈a∗ − b∗, a〉 = 〈a∗ − b∗, a∗〉,

sup
b∈B

〈a∗ − b∗, b〉 = 〈a∗ − b∗, b∗〉.

Hence, using proposition 2.2, we find

σA(p) − σB(p) = sup
a∈A

〈p, a〉 − sup
b∈B

〈p, b〉

=
1

‖a∗ − b∗‖

(
sup
a∈A

〈a∗ − b∗, a〉 − sup
b∈B

〈a∗ − b∗, b〉
)
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=
1

‖a∗ − b∗‖ (〈a∗ − b∗, a∗〉 − 〈a∗ − b∗, b∗〉)

= ‖a∗ − b∗‖
= distH(A, B)
= ‖σA − σB‖∞,

so that p ∈ EP
σA−σB

.

3. The existence and uniqueness of solutions

In this section we apply the standard existence and uniqueness results for the initial-
value problem

x′(t) = f(t, x(t)), x(0) = x0, (3.1)

on a real Banach space X to the particular case of set differential equations in the
support function representation (1.2). We first collect the necessary terminology and
state a standard existence and uniqueness result from [6] for differential equations
in Banach spaces.

Definition 3.1. Let X be a Banach space, and let D(X) be the family of all
bounded subsets of X. The Kuratowski measure of non-compactness α : D(X) → R

is defined by

α(A) = inf{d > 0: A admits a finite covering by sets of diameter � d}.

Definition 3.2 introduces standard classes of growth functions from [6]. The sym-
bol D− denotes the Dini derivative

D−ρ(t) = lim inf
h↘0

h−1(ρ(t + h) − ρ(t))

of functions ρ : R → R.

Definition 3.2. We distinguish the following classes of growth functions.

(U0) A continuous function ω : R+
0 → R+

0 is said to be of class U0 if the initial-value
problem

ρ′ = ω(ρ), ρ(0) = 0,

possesses only the trivial solution.

(U1) Let b > 0. A function ω : (0, b] × R+
0 → R is said to be of class U1 if for each

ε > 0 there are a δ > 0, a sequence ti → 0+ and a sequence of continuous
functions ρi : [ti, b] → R+

0 such that

(a) ρi(ti) � δti for all i ∈ N,

(b) 0 < ρi(t) � ε for all i ∈ N and t ∈ (ti, b],

(c) there exists a sequence (δi)i∈N with δi > 0 such that

D−ρi(t) � ω(t, ρi(t)) + δi

for all i ∈ N and t ∈ (ti, b].
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The following existence and uniqueness theorem is an excerpt of [6, theorem 4.1]
applied in the present context.

Theorem 3.3. Let (X, ‖ · ‖X) be a Banach space, and let D ⊂ X, x0 ∈ D and r > 0
be such that Dr := D∩Br(x0) is closed and convex. Let c > 0, let f : [0, T ]×Dr → X
be a continuous function satisfying

‖f(t, x)‖X � c for all t ∈ [0, T ], x ∈ Dr,

and let b := min{T, r/c}. Suppose that the subtangent condition

f(t, x) ∈ TD(x) for all t ∈ [0, b], x ∈ ∂D ∩ Br(x0)

holds. Then the initial-value problem (3.1) has a solution ϕ : [0, b] → Dr, provided
one of the following additional conditions is satisfied:

(a) there exists a function ω : R+
0 → R+

0 of class U0 such that

α(f([0, b] × A)) � ω(α(A)) for all A ⊂ Dr;

(b) there exists a function ω : (0, b] × R+ → R+ of class U1 such that

〈f(t, x) − f(t, y), x − y〉− � ω(t, ‖x − y‖X)‖x − y‖X

for all t ∈ [0, b] and x, y ∈ Dr.

In case (b), the solution is unique.

When adapting theorem 3.3 to set differential equations, we shall frequently use
the version

f(t, σ) ∈ Σ(Rd) − R+
0 σ for all t ∈ [0, T ], σ ∈ Σ(Rd), (3.2)

of the subtangent condition to ensure that solutions do not leave the cone Σ(Rd)
associated with Kc(Rd).

Our first result is a Peano-type theorem.

Theorem 3.4. Let f : [0, T ] × Σ(Rd) → Σ̂(Rd) be a continuous function, let A0 ∈
Kc(Rd) and let r > 0. Then there exists c > 0 such that

‖f(t, σ)‖∞ � c for all t ∈ [0, T ], σ ∈ Dr = Σ(Rd) ∩ Br(σA0). (3.3)

Let b := min{T, r/c}. If, in addition, the subtangent condition (3.2) holds, then
there exists a solution σ : [0, b] → Dr of the set differential equation (1.2) in the
support function representation.

Proof. Since balls defined in the maximum norm are always convex and Σ(Rd)
is a convex cone, the intersection Dr is convex. By proposition 2.3, the set Dr is
compact, and the existence of some c > 0 such that (3.3) holds is implied by the
continuity of f . By proposition 2.5, condition (3.2) implies

f(t, σ) ∈ TΣ(Rd)(σ) for all t ∈ [0, b], σ ∈ Dr.
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By the compactness of Dr and continuity of f , the image f([0, T ]×Dr) is compact,
and hence we have

α(f([0, T ] × A)) = 0 = α(A) for all A ⊂ Dr,

so that the compactness assumptions of theorem 3.3(a) are trivially satisfied with
ω(ρ) = ρ of class U0.

The next result is a Picard–Lindelöf-type statement.

Theorem 3.5. Let A0 ∈ Kc(Rd), and let f : [0, T ] × Σ(Rd) → Σ̂(Rd) be continuous
and Lipschitz continuous in its second argument, i.e. we assume that there exists
L > 0 such that

‖f(t, σA) − f(t, σB)‖∞ � L‖σA − σB‖∞ = LdistH(A, B)

for all A, B ∈ Kc(Rd). If, in addition, f satisfies condition (3.2), then there exists
a unique solution σ : [0, T ] → Σ(Rd) of (1.2).

Proof. As f is continuous and [0, T ] is compact, we have

κ := sup
t∈[0,T ]

‖f(t, σA0)‖∞ < ∞,

and Lipschitz continuity of f yields

cr := sup
t∈[0,T ],σ∈Br(σA0 )∩Σ(Rd)

‖f(t, σ)‖∞ � Lr + κ.

Because

〈f(t, σ) − f(t, σ̃), σ − σ̃〉− = inf
µ∈J(σ−σ̃)

µ(f(t, σ) − f(t, σ̃))

� inf
µ∈J(σ−σ̃)

|‖µ|‖‖f(t, σ) − f(t, σ̃)‖∞

� L‖σ − σ̃‖2
∞

for all t ∈ [0, T ] and σ, σ̃ ∈ Σ(Rd), and by the arguments in the preceding proof, all
the assumptions of theorem 3.3(b) are verified with r = 1, c = c1 and ω(t, s) = Ls,
so there exists a unique solution σ0(·) : [0, b0] → Σ(Rd) ∩ B1(σA0) of (1.2) with
b0 := min{T, 1/(L + κ)}. If 1/(L + κ) < T , the same argument yields a unique
solution σ1(·) : [b0, b0 + b1] → Σ(Rd) ∩ B1(σ0(b0)) of the set differential equation
with b1 := min{T − b0, 1/(2L + κ)}.

Assume that b0 + b1 < T and that this construction can be repeated indefinitely
with

∑N
k=0 bk < T for all N ∈ N. But then

T �
∞∑

k=0

bk =
∞∑

k=0

1
kL + κ

= ∞,

which is a contradiction. Hence, there exists a smallest index N ∈ N such that
bN = T . Concatenating the unique solutions σ0, . . . , σN yields a unique solution
σ : [0, T ] → Σ(Rd) of (3.1) on the entire interval [0, T ].
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a

b

d

f(A)(p)

f(B)(p)

v B

A
f(A)

f(B)

Figure 1. The geometric condition in theorem 3.6 in an important special case. Let
t ∈ (0, T ) and assume that there exist Ã, B̃ ∈ Kc(Rd) such that σÃ = f(t, σA) and
σB̃ = f(t, σB). Then, as shown, the relative velocity is vr(p) = f(t, σA)(p) − f(t, σB)(p)
in the critical direction p = (a − b)/‖a − b‖.

In contrast to the Picard–Lindelöf-type result above, the following statement
fully exploits theorem 3.3(b) and the considerations from § 2.4. Roughly speaking,
it states that the uniqueness of the solution can be guaranteed by controlling the
relative velocity f(t, σA) − f(t, σB) for two sets A, B ∈ Kc(Rd) in only one critical
direction, which is given by a pair (a, b) ∈ A×B that realizes the Hausdorff distance
of A and B.

Theorem 3.6. Let f : [0, T ] × Σ(Rd) → Σ̂(Rd) be continuous, let A0 ∈ Kc(Rd) and
let r > 0. Let b, c > 0 and Dr be as in theorem 3.4, let

D′
r := {A ∈ Kc(Rd) : distH(A, A0) � r},

let ω : (0, T ]×R+ → R be of class U1 and assume that the subtangent condition (3.2)
holds. If, in addition, for any t ∈ [0, b] and A, B ∈ D′

r with A �= B, there exist a ∈ A
and b ∈ B such that p := (a − b)/‖a − b‖ is well defined and one of the conditions

‖a − b‖ = dist(a, B) = dist(A, B) = distH(A, B),
f(t, σA)(p) − f(t, σB)(p) � ω(t, distH(A, B))

}
(3.4)

and
‖a − b‖ = dist(b, A) = dist(B, A) = distH(A, B),
f(t, σB)(−p) − f(t, σA)(−p) � ω(t, distH(A, B))

}
(3.5)

is satisfied, then there exists a unique solution σ : [0, b] → Dr of (1.2).

The geometric principle behind conditions (3.4) and (3.5) is depicted in figure 1
for the case when f(t, σA), f(t, σB) ∈ Σ.
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Proof. By theorem 3.4, we know that the desired solution exists. According to
theorem 3.3(b), to ensure uniqueness, we need to verify that

〈f(t, σA) − f(t, σB), σA − σB〉− � ω(t, ‖σA − σB‖∞)‖σA − σB‖∞

for any t ∈ (0, b] and σA, σB ∈ Dr. By proposition 2.10 this is true if and only if, for
any t ∈ (0, b] and σA, σB ∈ Dr, at least one of the following inequalities is satisfied:

min
p∈EP

σA−σB

(f(t, σA)(p) − f(t, σB)(p)) � ω(t, distH(A, B)),

min
p∈EP

σB−σA

(f(t, σB)(p) − f(t, σA)(p)) � ω(t, distH(A, B)).

If σA �= σB , this is, according to proposition 2.12, ensured by conditions (3.4) and
(3.5). This can be checked by addressing all possible relations A � B, B � A and
A �⊂ B ∧B �⊂ A between the sets A and B separately. If σA = σB , both inequalities
are obviously valid.

4. Hukuhara-type differentials

In this section, we clarify that curves A : [0, T ] → Kc(Rd), which are second-type
Hukuhara differentiable, are time-reversed Hukuhara differentiable curves with the
same derivative up to sign change. This insight has some important consequences.

(i) As Hukuhara differentiable curves can only grow in diameter (see [11, propo-
sition 1.6.1]), second-type Hukuhara differentiable curves can only shrink in
diameter, as claimed in § 1.

(ii) As the support function representation of Hukuhara differentiable curves is
Fréchet differentiable [3, lemma 4.1], this also holds for second-type Huku-
hara differentiable curves. Furthermore, by the same lemma, the Hukuhara
and second-type Hukuhara differentials of a curve coincide with its Fréchet
differential (up to a sign change) whenever the Hukuhara-type differentials
exist. Therefore, set differential equations based on both types of Hukuhara
derivatives are special cases of our support function approach.

The notions of Hukuhara difference and Hukuhara differential are standard. The
concept of generalized or second-type Hukuhara differentials goes back to [4]. Their
use for set differential equations was investigated in [13,14].

Definition 4.1 (Hukuhara differences and differentials).

(a) Let A, B ∈ Kc(Rd). If there exists C ∈ Kc(Rd) such that A = B+C, then C is
called the Hukuhara difference between A and B, and we define C = A�H B.

(b) A curve A : [0, T ] → Kc(Rd) is called Hukuhara differentiable at t ∈ (0, T )
with Hukuhara differential DHA(t) ∈ Kc(Rd) if the limits

lim
h↘0

h−1(A(t + h) �H A(t)), lim
h↘0

h−1(A(t) �H A(t − h))

with respect to Hausdorff distance exist and equal DHA(t).
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(c) A curve A : [0, T ] → Kc(Rd) is called second-type Hukuhara differentiable at
t ∈ (0, T ) with differential D∗

HA(t) ∈ Kc(Rd) if the limits

lim
h↘0

(−h)−1(A(t) �H A(t + h)), lim
h↘0

(−h)−1(A(t − h) �H A(t))

with respect to Hausdorff distance exist and equal D∗
HA(t).

The following proposition shows that second-type Hukuhara differentiable curves
are precisely those curves that are Hukuhara differentiable in the ordinary sense
after time reversal.

Proposition 4.2. Let A : [0, T ] → Kc(Rd) be a curve, and let B : [−T, 0] → Kc(Rd)
be given by B(t) = A(−t). Then A is second-type Hukuhara differentiable at t ∈
(0, T ) if and only if B is Hukuhara differentiable at −t in the usual sense. In that
case, the respective differentials satisfy

D∗
HA(t) = −DHB(−t).

Proof. The statement follows immediately from the identities

lim
h↘0

(−h)−1(A(t) �H A(t + h)) = − lim
h↘0

h−1(B(−t) �H (B(−t − h))),

lim
h↘0

(−h)−1(A(t − h) �H A(t)) = − lim
h↘0

h−1(B(−t + h) �H B(−t))

for the Hausdorff limits.

5. Example

We conclude with a simple but instructive example, which illustrates that the use-
fulness of both types of Hukuhara derivative depends not only on the equation, but
also on the initial value. Consider the set differential equation

d
dt

σA(t) = σQ − σA(t), σA(0) = σA0 (5.1)

in Kc(R2) with Q = [−1, 1]2 and A0 = [a1, b1] × [a2, b2] ⊂ R2. The curve

A(t) = e−tA0 + (1 − e−t)Q (5.2)

is a solution of (5.1) because

d
dt

σA(t) = e−t(σQ − σA0) = σQ − σA(t).

By theorem 3.5, the solution is unique. Clearly, the set Q is a globally asymptotically
stable fixed point.

By [3, lemma 4.1], any Hukuhara differentiable solution of the reformulation

DHA(t) = Q �H A(t), A(0) = A0 (5.3)

of (5.1) in set notation must coincide with this curve. Note that, for many A ∈
Kc(R2), the right-hand side Q �H A of (5.3) is not well defined. Since σQ − σA0 ∈
Σ(Rd) if and only if

max{b1 − a1, b2 − a2} � 2, (5.4)
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Figure 2. Solutions to set differential equation (5.1) with three different initial values. The
rectangles in the graphs on the left are the values A(t), t = 0, 1

4 , 1
2 , 3

4 , . . . , of the solutions.
The rectangles in the top-right graph are the Hukuhara differentials DHA(t), and the
rectangles in the second graph on the right are the second-type Hukuhara differentials
D∗

HA(t) at the same time points. There is no graph in the bottom-right position, because
the third solution curve is neither Hukuhara nor second-type Hukuhara differentiable.

a Hukuhara differentiable solution does not exist if this condition is violated. A
computation shows that (5.4) is sufficient for (5.2) being a solution of first Hukuhara
type.
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Figure 3. Solutions from figure 2 and the corresponding differentials in the support function
representation. The differentials of the third curve cannot be interpreted as sets, but are
well defined as elements of Σ̂(Rd).

Proposition 4.2, however, shows that the curve (5.2) can only be a second-type
Hukuhara solution if σQ − σA0 ∈ −Σ(Rd), which is equivalent to

min{b1 − a1, b2 − a2} � 2, (5.5)

and condition (5.5) is sufficient for (5.2) being a solution of second Hukuhara type.
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Figures 2 and 3 display solutions of (5.1) with three different initial values: A1
0 =

[2, 3] × [1, 2], A2
0 = [0, 3.5] × [−1.5, 2.5] and A3

0 = [−1.5, 3.5] × [−0.5, 0].
The left-hand column of Figure 2 depicts the evolution of the solutions. It can

clearly be seen that distH(A(t), Q) → 0 as t → ∞. The first curve is Hukuhara
differentiable but not second-type Hukuhara differentiable, and the Hukuhara dif-
ferentials are plotted in the top right graph. The second curve is second-type Huku-
hara, but not Hukuhara differentiable, and the second-type Hukuhara differentials
are plotted in the middle of the right-hand column. In both cases, the differentials
converge to {0} when the state approaches Q. The third curve is neither Hukuhara
differentiable nor second-type Hukuhara differentiable, because it shrinks in the
direction of the first axis and grows in the direction of the second axis.

Figure 3 depicts the same three curves in a support function representation. The
left-hand column shows the evolution of the support functions, while the right-hand
column shows the Fréchet differentials along that curve. In this representation, the
third curve can be treated like any other; the fact that its differentials are elements
of Σ̂(Rd) \ Σ(Rd) causes no problems. In all three cases, the derivatives converge
to the zero function as the state approaches equilibrium.

We conclude that both types of Hukuhara differentiability only yield solutions for
very special initial conditions, while the support function approach yields a solution
that exhibits the expected behaviour for any initial condition without any technical
complications.
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