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Zhang [Tariff and Equilibrium Indeterminacy, available at
http://mpra.ub.uni-muenchen.de/13099/ (2009)] shows that endogenous tariffs (or energy
taxes) and endogenous labor income taxes are equivalent in generating local
indeterminacy. Using methods developed by Stockman [Journal of Economic Theory 145
(2010), 1060–1085], we extend Zhang’s analysis to prove that endogenous tariffs and
endogenous labor income taxes are also equivalent in generating global indeterminacy
(chaotic equilibria) under a balanced-budget rule. More precisely, we show that the
existence of Euler equation branching in an arbitrarily small neighborhood of a steady
state can imply topological chaos in the sense of Devaney. In addition, Euler equation
branching occurs regardless of the local uniqueness of the equilibrium around the steady
state.
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1. INTRODUCTION

A large body of literature on trade taxes has recently suggested that a government
can rely heavily on energy taxes (or tariffs) for its revenues.1 Although much of
the early research was concerned with cases of determinacy in dynamic stochastic
general equilibrium (DSGE) models with energy in production [Rotemberg and
Woodford (1994); de Miguel and Manzano (2006)], energy taxes on intermedi-
ate goods (e.g., imported energy)—which act like taxes on returns to factors of
production—may generate indeterminacy in a way similar to factor income taxes.

Zhang (2009) shows that endogenous tariffs and endogenous labor income taxes
[Schmitt-Grohe and Uribe (1997)] are equivalent in generating local indetermi-
nacy. To be precise, local indeterminacy can emerge when the tariff rates levied on
imported energy are endogenously determined by a balanced-budget rule with a
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constant level of government expenditures (or lump-sum transfers). In this paper,
we extend Zhang’s analysis to demonstrate that endogenous tariffs and endoge-
nous labor income taxes are also equivalent in generating global indeterminacy
(chaotic equilibria) under this balanced-budget rule. Our analysis shows that as in
Stockman (2010), the existence of Euler equation branching in an arbitrarily small
neighborhood of a steady state can imply topological chaos in the sense of De-
vaney. Euler equation branching here means that the dynamics going forward can
be expressed by a differential inclusion of the form

.
x ∈ F(x) := {f (x), g(x)}.2

In addition, multiple equilibria and chaos through deterministic regime-switching
near a steady state can occur regardless of the local uniqueness of the equilib-
rium around the steady state. These results show that (1) global indeterminacy
always exists in Zhang’s model, no matter whether the (low tariff) steady state is
locally indeterminate or not, and (2) tariffs and labor income taxes are equivalent
in generating global indeterminacy because, as illustrated by Stockman (2010),
the balanced-budget rule in Schmitt-Grohe and Uribe (1997) can lead to similar
chaotic equilibria.

The sunspot equilibria discussed in our paper are deterministic. Roughly speak-
ing, the equilibrium follows a deterministic sunspot process when the model
economy switches between regimes [see Gardini et al. (2009)]. In discrete time,
Christiano and Harrison (1999) analyze this type of regime-switching sunspot
equilibria due to Euler equation branching in a one-sector economy with produc-
tive externalities. In continuous time, Stockman (2010) explores the same type of
sunspot equilibria due to Euler equation branching in a one-sector economy with
fiscal increasing returns. In continuous time, Stockman (2009) also investigates
this type of sunspot equilibria due to Euler equation branching in a two-sector
economy with productive externalities. This type of dynamics can also occur in the
discrete-time cash-in-advance model [Michener and Ravikumar (1998); Kennedy
et al. (2008)]. Medio and Raines (2007) call this type of indeterminacy in the
cash-in-advance framework backward dynamics because the dynamical systems
are multivalued moving forward, but single-valued moving backward.

We describe our model in Section 2 of this paper. In Section 3, we make a global
analysis and explore the implications of Euler equation branching. In Section 4,
other types of balanced-budget rules are discussed. In Section 5, we conclude the
paper.

2. THE ONE-SECTOR ECONOMY WITH TARIFFS

This is the one-sector real business cycle model with imported oil studied by
Zhang (2009). A representative agent maximizes the intertemporal utility function

∫ ∞

0
e−ρt (log ct − bnt )dt , b > 0, (1)
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where ct and nt are the individual household’s consumption and hours worked,
respectively, and ρ ∈ (0, 1) is the subjective discount rate. We assume that there
are no intrinsic uncertainties present in the model.

The budget constraint of the representative agent is given by
.

kt = (rt − δ)kt + wtnt − ct , k0 > 0 given, (2)

where
.

kt denotes net investment and the other variables are capital (kt ), rental rate
(rt ), real wage (wt ), and depreciation rate (δ).

On the production side, a single good is produced with a Cobb–Douglas pro-
duction technology by the representative firm,

yt = k
ak

t n
an

t o
ao

t , (3)

where yt is total output, ak + an + ao = 1 (constant returns to scale), and the
third factor in the production, nonreproducible natural resources—for example,
oil (ot )—is imported. Assuming that firms are price-takers in the factor markets
and the international energy price (po) is exogenous to the economy, the profit of
the firm is given by

πt = yt − wtnt − rtkt − po(1 + τt )ot ,

where τt is the tariff rate levied on the imported oil and is uniform to all firms.
Here we should emphasize that (1) in this standard neoclassical growth model,
po is the relative price of the foreign input in terms of the single good, which is
the numeraire and is tradable, and (2) in order to rule out the existence of import
subsidies, we require that τt ≥ 0.3

Profit maximization by each firm leads to the following first–order conditions:

wt = an

yt

nt

,

rt = ak

yt

kt

,

and

po(1 + τt ) = ao

yt

ot

.

Because we assume that the foreign input is perfectly elastically supplied and
the factor price (po) is independent of the factor demand for ot , we can substitute
out ot in the production function using

ot = ao

yt

po(1 + τt )

to obtain the production function

yt = Atk
ak

1−ao

t n
an

1−ao

t , (4)
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where At = [ ao

po(1+τt )
]ao/(1−ao) acts as the Solow residual in a neoclassical growth

model, which is inversely related to the foreign factor price and τt .
The government must select {τt} to balance its budget each period:

poτtot = G, (5)

with G > 0 given. By combining equation (2), the first-order conditions of the
firm, and the government budget constraint, we obtain the aggregate resource
constraint ct + G +

.

kt + δkt + otp
o = yt .

As in Stockman (2010), we consider a kind of global indeterminacy called
Euler equation branching. Euler equation branching occurs in our model because
multiple equilibria occur in the labor market. To be precise, we consider paths for
prices {wt, rt } and tariffs {τt } that are piecewise continuous, with the following
property: there are, at most, a finite number of discontinuities for any finite time
interval. That is, the control variables (ct and nt ) in the agent’s problem should
be piecewise continuous and the state variable (kt ) should be continuous, with
a piecewise continuous derivative with possible discontinuities that occur when
the control variables and prices/tariffs are discontinuous. Following Stockman
(2010), at these discontinuous points, we require that the left and right limits of
these points exist and their number be finite (the first kind of discontinuity).

A competitive equilibrium (CE) is defined as follows: A set of prices {wt, rt }
and resource allocations {ct , kt , nt } and a fiscal policy {G, τt } are a CE if {ct , kt , nt }
is a solution to the household maximization problem, {kt , nt } is a solution to the
firm profit-maximization problem, and {G, τt } satisfies the government budget
constraint.

The current-value Hamiltonian for our problem is

V (kt , ct , nt ,�t , t) := (log ct − bnt ) + �t [(rt − δ)kt + wtnt − ct ], (6)

where �t is the co-state variable. Using the same definitions of admissible trajec-
tories and weak maximality as Stockman (2010), we have sufficient conditions for
the weakly optimal solution to our problem.4

PROPOSITION 1. Assume that prices {wt, rt }, tariffs {τt }, and initial capital
stock k0 are given. The current value Hamiltonian V (kt , ct , nt ,�t , t) is concave in
{kt , ct , nt } for any given �t and t . Suppose there exist a continuous and piecewise
continuously differentiable function �∗

t : R+ −→ R and an admissible interior
plan {k∗

t , c
∗
t , n

∗
t } that satisfies the following conditions:

1

c∗
t

= �∗
t , (7)

b = �∗
t w

∗
t , (8)

.

�∗
t = (ρ + δ − rt )�

∗
t for almost every t ∈ R+, (9)

.

k∗
t = (rt − δ)k∗

t + wtn
∗
t − c∗

t for almost every t ∈ R+, (10)
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lim
t→∞

e−ρt�∗
t (kt − k∗

t ) ≥ 0 for all admissible paths kt . (11)

Then {k∗
t , c

∗
t , n

∗
t } is weakly optimal.

Proof. The proof is similar to that of Proposition 1 in Stockman (2010).

In this paper, weakly optimal trajectory and admissible trajectory are denoted
by {k∗

t , c
∗
t , n

∗
t } and {kt , ct , nt }, respectively.

3. EULER EQUATION BRANCHING AND GLOBAL INDETERMINACY

We use the sufficient conditions given in the section above and the government
budget constraint to show the existence of global indeterminacy. As in Zhang
(2009), equilibrium conditions can be expressed as follows:

�̇t = �t

{
ρ + δ − ak

[
ao

po(1 + τt )

] ao
1−ao

k
ak

1−ao
−1

t n
an

1−ao

t

}
, (12)

.

kt =
(

1 − ao

1 + τt

)
yt − δkt − 1/�t − G, (13)

b/�t = an

[
ao

po(1 + τt )

] ao
1−ao

k
ak

1−ao

t n
an

1−ao
−1

t , and (14)

τtaoyt

1 + τt

= G, (15)

where yt = [ao/p
o/(1 + τt )]ao/(1−ao)k

ak/(1−ao)
t n

an/(1−ao)
t . Equation (12) is the con-

sumption Euler equation associated with the household problem (1/ct = �t holds
in equilibrium). Equation (13) is the aggregate resource constraint. Equation (14)
is the optimality condition associated with the household problem with respect to
the labor supply. Equation (15) is the government budget constraint.

In addition, any equilibrium path {�t, kt , nt } should also satisfy the following
conditions:

(i) kt and �t are continuous and piecewise continuously differentiable;
(ii) nt is piecewise continuous with restrictions stated in the section above; and

(iii) �t, kt , and nt are bounded from above and not zero for any t .

Any path {�t, kt , nt } that satisfies the above conditions is a CE. Equa-
tions (14) and (15) will be used to show that multiple equilibria in the labor
market are the key to Euler equation branching. To see this, first, from equation
(14), we express nt as a function of kt , �t , and τt : nt = {an[ao/p

o(1 +
τt )]ao/(1−ao)k

ak/(1−ao)
t �t/b}1/(1− an

1−ao
). Second, using yt = [ao/p

o(1 +
τt )]ao/(1−ao)k

ak/(1−ao)
t n

an/(1−ao)
t and nt = {an[ao/p

o(1 + τt )]ao/(1−ao)k
ak/(1−ao)
t �t/

b}1/(1− an
1−ao

), equation (15) can be rewritten as follows:

G = τt [ao/(1 + τt )]
1+ao/ak (po)−ao/ak kt (an�t/b)an/a . (16)
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We should emphasize that (1) from equations (7) and (8), the equilibrium labor-
supply curve (wt = bct ) is horizontal in (n,w) space, and (2) the equilibrium labor-
demand curve is given by wt = an[ao/p

o/(1 + τt )]ao/(1−ao)k
ak/(1−ao)
t n

−ak/(1−ao)
t ,

where τt can be expressed as a function of kt and nt using G =
[aoτt/(1 + τt )][ao/p

o/(1 + τt )]ao/(1−ao)k
ak/(1−ao)
t n

an/(1−ao)
t . The equilibrium labor

demand curve is not monotonic in (n,w) space. Therefore, the demand and sup-
ply curves can intersect twice.5 As in Stockman (2010), we find that (1) the
equilibrium labor demand curve is initially beneath and ultimately below the labor
supply curve; and (2) this branching is global and exists in an arbitrarily small
open neighborhood of a steady state (�∗, k∗).6 Hereafter, we use the notation with
a star [e.g., (�∗, k∗)] to denote the steady-state values of some variables.

Now, let us formally define Euler equation branching.
Suppose that X ⊂ Rn is an open state space and �,� : X → Rn are continuous.

Consider the differential inclusion that is given by
.
x ∈ F(x) := {�(x),�(x)}.

Provided that �(x) �= �(x) holds at a point x ∈ X, we say that Euler equation
branching occurs at this point. Notice that � and � are continuous by assumption.
Therefore, if �(x) �= �(x), then we have that �(y) �= �(y) holds for all y ∈ Nx ,
where Nx is a sufficiently small neighborhood of x and Nx ⊂ X.

PROPOSITION 2. A steady state exists for small G, and Euler equation
branching occurs in a small open neighborhood of the steady state. Moreover,
we have the following results:

(1) In the steady state, ρ + δ = ak[ao/p
o/(1 + τ ∗)]ao/(1−ao)k∗ak/(1−ao)−1n∗an/(1−ao),

(1 − ao) [ao/p
o/(1 + τ ∗)]ao/(1−ao)k∗ak/(1−ao)n∗an/(1−ao) = δk∗ + 1/�∗, n∗ = {an[ao/

po/(1 + τ ∗)]ao/(1−ao)k∗ak/(1−ao)�∗/b}1/(1− an
1−ao

), and G = τ ∗[ao/(1 + τ ∗)]1+ao/ak

(po)−ao/ak k∗(an�
∗/b)an/ak hold. G is small, so that [1 − ao/(1 + τ ∗)][ao/p

o/

(1 + τ ∗)]ao/(1−ao)k∗ak/(1−ao)n∗an/(1−ao) > δk∗ + G . There then exists a steady state
(�∗, k∗) that is a solution to the first three equalities within result 1 (given τ ∗); τ ∗ is
the solution to the last equality within this result (given that k∗ and �∗ are functions
of τ ∗).

(2) In a small open neighborhood B of (�∗, k∗), there are two solutions to equation (16),
which are denoted by τt = g1(�t , kt ) and τt = g2(�t , kt ). Moreover, τ ∗ = g1(�∗, k∗)

and
˜
τ = g2(�∗, k∗) �= τ ∗. Therefore, equations (12), (13), (14), and (16) define a mul-

tivalued dynamical system, which can be written as (�̇t ,
.

kt )∈ {�(�t, kt ), �(�t , kt )},
with 0 = �(�∗, k∗) �= �(�∗, k∗) and �(�t, kt ) �= �(�t , kt ) for (�t , kt ) ∈ B.
�(�t, kt ) and �(�t , kt ) can be obtained from equations (12) and (13) by replacing
τt with g1(�t , kt ) and g2(�t , kt ). In this case, Euler equation branching occurs on
the set B.

Proof. Verifying that (1) holds is trivial.
To prove the second result, first, let us rewrite equation (16) as follows:

G

a
1+ao/ak
o (po)−ao/ak kt (an�t/b)an/ak

= τt

(1 + τt )
1+ao/ak

.
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Second, let H (τt ) := τt/(1 + τt )
1+ao/ak . One sees that H : (0,+∞) → R and

straightforward calculations give H′ (τt ) = 1−aoτt /ak

(1+τt )
2+ao/ak

.

It is easy to find that H (τt ) is single-peaked with H′ (τt ) > 0 for τt ∈
(0, ak/ao) and H′ (τt ) < 0 for τt ∈ (ak/ao,+∞). When τt = ak/ao,
H (ak/ao) = (ak/ao)[ao/(ak + ao)]1+ao/ak /ao. Moreover, limτt→0 H (τt ) = 0 and
limτt→+∞ H (τt ) = 0. Therefore, for any (�t , kt ) satisfying

0 <
G

a
1+ ao

ak
o (po)

− ao
ak kt (an�t/b)

an
ak

<
ak

ao

(
ao

ak + ao

)1+ ao
ak

,

two solutions exist for τt to

G

a
1+ ao

ak
o (po)

− ao
ak kt (an�t/b)

an
ak

= τt

(
1

1 + τt

)1+ ao
ak

.

When
G

a
1+ ao

ak
o (po)

− ao
ak kt (an�t/b)

an
ak

>
ak

ao

(
ao

ak + ao

)1+ ao
ak

,

there are no solutions. According to the implicit function theorem, when
there are two solutions in a small open neighborhood B of (�∗, k∗), these
two solutions are written as τt = g1(�t , kt ) and τt = g2(�t , kt ). In ad-
dition, both g1(�t , kt ) and g2(�t , kt ) are C1 functions and g1(�t , kt ) <

g2(�t , kt ). From equation (12), let us define m� (�t, kt , τt ) = �t {ρ +
δ − ak[ao/p

o(1 + τt )]ao/(1−ao)k
ak/(1−ao)−1
t n

an/(1−ao)
t }. We find that m� is

monotonically increasing in τt because m� (�t, kt , τt ) = �t {ρ + δ −
ak(an�t/b)an/ak [ao/p

o(1 + τt )]ao/ak }. This implies that for a given (�t , kt ) ∈ B,
we have m�[�t, kt , g

1(�t , kt )] �= m�[�t, kt , g
2(�t , kt )]. Hence, we have a mul-

tivalued dynamical system that can be written as (�̇t ,
.

kt ) ∈ {�(�t, kt ), �(�t , kt )}
with 0 = �(�∗, k∗) �= �(�∗, k∗) and �(�t, kt ) �= �(�t, kt ) for (�t , kt ) ∈ B.
�(�t, kt ) and �(�t, kt ) can be obtained from equations (12) and (13) by replacing
τt with g1(�t , kt ) and g2(�t , kt ). In this case, Euler equation branching occurs on
the set B.

Next, let us formally define Devaney chaos: Suppose that those conditions in
Proposition 2 are satisfied. For (�, k) ∈ B, the model dynamics is described as
follows: [

�̇t
.

kt

]
∈ F(�t, kt ) =: {�(�t, kt ), �(�t , kt )}.

We then provide several definitions of our dynamical system generated by a
differential inclusion. Assume that the state space B ⊆ R2 (open and nonempty)
has the Euclidean metric d and T := R+ is the time index. The space of all
continuous functions from T into B is denoted by W := {γ | γ : T → B}.
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Let Z be those functions (in W ) that are continuous and piecewise continuously
differentiable. In addition, the functions in Z satisfy the following condition: for
any time interval [t1, t2] ⊂ T ,

.
γ has at most a finite number of discontinuities of

the first kind. In this paper, we only consider this class of set-valued functions:
F : B → 2R2

, where F(x) := {�(x),�(x)} and �,� : B → R2 are Cr (r ≥ 1)
with �(x) �= �(x) for all x ∈ B.

The following definitions are from Stockman (2010):

DEFINITION 1. A dynamical system on B generated by F is a subset of Z. It
can be written as follows:

D := {γ ∈ Z| .
γ ∈ F [γ (t)] almost everywhere},

Such γ in D are called solutions to the differential inclusion F .

DEFINITION 2. A set K ⊂ B is (forward) invariant under the dynamical
system D generated by F , if for each x ∈ K , there exists a solution γ ∈ D, such
that γ (0) = x and γ (t) ∈ K for all t ∈ T ; i.e., for each x ∈ K , there exists a γ

that starts at x and stays in K forever.

DEFINITION 3. Let K ⊂ B be a compact (forward) invariant set under the
dynamical system D. D has sensitive dependence on initial conditions on K if
there exists a constant ε > 0 such that for any given x ∈ K and its neighborhood
N(x) ⊂ K , there exist solutions γ , θ ∈ D and m ≥ 0 such that γ (0) = x,
θ(0) ∈ N(x), γ (t), θ(t) ∈ K for all t ∈ T , and d(γ (m), θ(m)) > ε.

DEFINITION 4. A closed (forward) invariant set K is said to be topologically
transitive under the dynamical system D generated by F if, for any two nonempty
open sets U,V ⊂ K , there exist a solution γ ∈ D and s ∈ T with γ (t) ∈ K for
all t ∈ T , γ (0) ∈ U and γ (s) ∈ V .

DEFINITION 5. D has a periodic solution of length m(> 0) if there exists a
γ ∈ D with γ (t) = γ (t + m) for all t ∈ T and there does not exist an n ∈ (0,m)

with γ (t) = γ (t + n) for all t ∈ T . A point x ∈ B is periodic if there exists a
periodic solution γ ∈ D with γ (t) = x for some t . D has a periodic solution of
length m = 0 if there exists a solution γ ∈ D with γ (t) = γ ∗ for all t ∈ T .

DEFINITION 6. Let K ⊂ B be a compact (forward) invariant set under the
dynamical system D. D has a dense set of periodic points in K if, for any given
x ∈ K and its neighborhood Nx , there exists a periodic solution γ ∈ D with
γ (0) ∈ Nx and γ (t) ∈ K for all t ∈ T .

DEFINITION 7. K is said to be a chaotic invariant set if K is a compact
invariant set under the dynamical system D generated by F such that

(1) D has sensitive dependence on initial conditions on K , and
(2) K is topologically transitive under D.

K is a Devaney-chaotic invariant set if in addition

(3) D has a dense set of periodic points in K .
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We will see that the dynamical system D generated by F is chaotic on K if K

is a chaotic invariant set. We will say that the dynamical system D generated by
F is Devaney-chaotic on K if K is a Devaney-chaotic invariant set.

The key theorem in this paper is Theorem 1 in Section 4 of Stockman (2010).

THEOREM 1. Let X ⊆ R2 be an open set containing x∗ and consider the
multivalued dynamical system (MVDS) defined by

.
x ∈ {�(x),�(x)} for all x ∈ X,

where �,� : X → R2 are Cr functions as in Definition 1. Suppose that x∗ is a
steady state of the single-valued differential equation

.
x = �(x), i.e., �(x∗) = 0,

and assume that �(x∗) = κ �= 0 is not collinear with any of the eigenvectors of
the Jacobian matrix E = D�(x∗) evaluated at the steady state x∗. The MVDS
is then Devaney-chaotic on an invariant compact set with a nonempty interior in
each of the following three cases:

(1) Saddle: The steady state x∗ is a saddle under �; i.e., E = D�(x∗) has real eigen-
values λ1, λ2 with λ1 < 0 < λ2.

(2) Sink or source with distinct real roots: The steady state x∗ is a sink or source under
� with distinct real roots; i.e., E = D�(x∗) has distinct real eigenvalues with 0 <

λ1 < λ2 or λ2 < λ1 < 0.
(3) Sink or source with complex roots: The steady state x∗ is a sink or source under �

with complex roots; i.e., E = D�(x∗) has complex eigenvalues u ± vi with u �= 0.

This theorem states that a steady state associated with Euler equation branching
implies chaos. To see this in our model, we consider two numerical examples and
find that no matter whether the low-tariff steady state is locally indeterminate or
not, there always exist numerous Devaney-chaotic invariant sets with nonempty
interiors. Remember that rearranging terms in equation (16) gives

G

a
1+ ao

ak
o (po)−ao/ak kt (an�t/b)an/ak

= τt

(
1

1 + τt

)1+ao/ak

, (17)

where H(τt ) = τt [1/(1 + τt )]1+ao/ak was defined in Proposition 2. We already
have the following results:

(1) H (τt ) is single-caved withH′ (τt ) > 0 for τt < ak/ao andH′ (τt ) < 0 for τt > ak/ao.
(2) A unique equilibrium exists in the labor market with τt = ak/ao for

G

a
1+ ao

ak
o (po)

− ao
ak kt (an�t/b)

an
ak

= H
(

ak

ao

)
.

(3) Two equilibria exist in the labor market for

G

a
1+ ao

ak
o (po)

− ao
ak kt (an�t/b)

an
ak

< H
(

ak

ao

)
.

We call these two equilibria τ1t and τ2t , with

0 < τ1t <
ak

ao

< τ2t < ∞.
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FIGURE 1. The low-tariff steady state is locally a saddle. The plotted trajectories from the
high-tariff branch are flowing from the bottom right to the top left. However, the plotted
trajectories from the low-tariff branch are flowing down and to the right.

In the following numerical exercises, the parameter value of ao is taken from
Aguiar-Conraria and Wen (2005), and the parameter values of an, ρ, and δ are
taken from Schmitt-Grohe and Uribe (1997).

Example 1 (Local determinacy)

In the first numerical exercise, we use the following parameter values to demon-
strate our results: ρ = 0.04, ao = 0.21, an = 0.64, po = 0.01, b = 0.5,
δ = 0.1, and G = 0.25. We calculate the two steady states and eigenvalues from
the linearization at these two steady states. We have the following results (see
Figure 1):

(1) Low-tariff steady state values: τ ∗ = 0.3392, k∗ = 5.0362, �∗ = 0.31155, n∗ =
1.8745, c∗ = 3.2097, and y∗ = 4.7004; eigenvalues: µ1 = −0.7237 and µ2 =
0.8903.

(2) High-tariff steady state values: τ ∗ = 83.8794, k∗ = 1.2907, �∗ = 1.2156, n∗ =
1.8745, c∗ = 0.8226, and y∗ = 1.2047; eigenvalues: µ1 = 0.2482 and µ2 =
−0.3494.

It is obvious that these two steady states are locally determinate. We then draw
the trajectories from both branches near the low tariff steady state and find that
numerous Devaney-chaotic invariant sets with nonempty interiors appear.

To provide some intuition for why the model dynamics is chaotic on these
Devaney-chaotic invariant sets, we consider the dynamical system that is generated
by a constant function and a linear function. Let X := R2 and H (x) := {Ex, κ},
where E is a 2 × 2 matrix with no purely imaginary eigenvalues and κ ∈ X.
D is the dynamical system generated by ẋ ∈ H (x). Consider Example 1. We
assume that the horizontal axis and the vertical axis are the unstable and stable
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FIGURE 2. Saddle: chaotic region K.

manifolds of E, and the flow from κ is going from “southeast” to “northwest” (see
Figure 2). We further assume that κ is not a scalar multiple of either eigenvector,
because the integral curves generated by κ can typically intersect twice with those
generated by E under this assumption. The region K in Figure 2 is one of those
compact invariant sets on which F is Devaney-chaotic. Let us consider the flow
from Ex. We can have a path that starts from x and moves to y; using the flow
from κ , we can get back from y to x. We call this periodic path from x to y and
then back to xP . The region K includes the periodic path P and its interior. Now,
let us demonstrate why the system has topological transitivity. Selecting any two
points u, v ∈ K , we can obtain a solution γ contained in K with γ (0) = u and
γ (M) = v for some M > 0. Figure 3 illustrates how this happens. First, from u
follow the solution generated by κ to u2 ∈ P . Then follow the path P to v1 ∈ P .
Finally, from v1 follow the flow generated by κ to v. Figure 4 shows how the
system is sensitively dependent on initial conditions. Let γx be the periodic orbit
that follows the path P from x to y and then back to x. Let γu be the periodic
orbit from u to v, and then back to u. Notice that γx (s) and γu (s) are always
more than some positive scalar δ∗ apart whenever γx (s) = x. Let w1 ∈ K and
ε > 0. Without loss of generality, we assume that w1 lies in the path vu generated
by κ . For any z ∈ Bε (w1), there is a solution γz contained in K with γz (0) = z
and γz (Mz) = u for some Mz > 0. In Figure 4, we show that γz follows the path
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FIGURE 3. Saddle: a solution from any u to any v in K .

v′u′ generated by κ , and then moves along the path u′u. There exists a solution
γw1 contained in K with γw1(0) = w1 and γw1(Mw1) = x for some Mw1 > 0. We
then let γ (t) = γw1 (t) for 0 ≤ t ≤ Mw1 and γ (t) = γx(t − Mw1) for t ≥ Mw1 .
Let θ (t) = γz (t) for 0 ≤ t ≤ Mz and θ (t) = γu (t − Mz) for t ≥ Mz. Then
for m > max{Mw1,Mz} sufficiently large with γ (m) = x, d (γ (m) , θ (m)) > δ∗
holds.

Example 2 (Local indeterminacy)

In the second numerical exercise, we use the following parameter values to show
our results: ρ = 0.04, ao = 0.21, an = 0.64, po = 0.01, b = 0.5, δ = 0.1, and
G = 0.4. We calculate the two steady states and eigenvalues from the linearization
at these two steady states. We have the following results:

(1) Low-tariff steady state values: τ ∗ = 0.8092, k∗ = 4.5628, �∗ = 0.3439, n∗ =
1.8745, c∗ = 2.9080, and y∗ = 4.2586; eigenvalues µ1 = −0.5767 + 1.3309i and
µ2 = −0.5767 − 1.3309i.

(2) High-tariff steady state values: τ ∗ = 16.5738, k∗ = 2.1640, �∗ = 0.7251,
n∗ = 1.8745, c∗ = 1.3792, and y∗ = 2.0197; eigenvalues µ1 = 0.2278 and
µ2 = −0.3341.

It is obvious that the low-tariff steady state is locally indeterminate and the
high-tariff steady state is locally determinate. We then draw the trajectories from
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FIGURE 4. Saddle: sensitive dependence on initial conditions.

both branches near the low-tariff steady state (see Figure 5) and find that numerous
Devaney-chaotic invariant sets with nonempty interiors appear (see Figure 6).7

In this section, we showed that global indeterminacy can occur near the low-
tariff steady state regardless of the local stability properties of that steady state,
and the high-tariff steady state is always a saddle. We illustrated that the existence
of Euler equation branching crucially depends on how the balanced-budget rule
is set up and that endogenous changes in the tariff rate are crucial for generating
global indeterminacy.

4. OTHER BALANCED-BUDGET RULES

In this section, following Schmitt-Grohe and Uribe (1997) and Stockman (2010),
we consider two other types of fiscal policies:

(P1) fixed tariff rates and endogenous spending, and
(P2) endogenous tariff rates with income-elastic government spending.

In the following proposition, we show that when tariff rates are fixed under a
balanced-budget rule (P1), Euler equation branching cannot occur.

PROPOSITION 3 [Policy (P1)]. Let us consider the model described in Section
2, but with a different balanced-budget rule. In particular, we let the tariff rate be
fixed. We find that the labor supply and demand curves can intersect at most once.
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FIGURE 5. The low-tariff steady state is locally a sink. The plotted trajectories from the
high-tariff branch are flowing from the top left to the bottom right. The plotted trajectories
for the low-tariff branch are flowing counterclockwise.

Proof. Under this fiscal policy, the labor supply curve is horizontal. The labor
demand curve is wt = an[ao/p

o(1 + τ̄ )]ao/(1−ao)k
ak/(1−ao)
t n

−ak/(1−ao)
t , which is

strictly downward-sloping. Therefore, the two curves can intersect at most once
and Euler equation branching cannot occur.

In the following proposition, we show that under policy (P2), the labor demand
and supply curves can intersect twice and Euler equation branching can occur in
an arbitrarily small neighborhood of a steady state.

PROPOSITION 4 [Policy (P2)]. Consider the model described in Section 2
with a different balanced-budget rule (P2)—income-elastic government spending
and endogenous tariffs. Gt = Ḡ(yt/ȳ)� holds, where 0 ≤ � < 1 and Ḡ and ȳ

denote the steady state values of Gt and yt . The labor demand and supply curves
can then intersect twice and Euler equation branching can occur in an arbitrarily
small neighborhood of a steady state.

Proof. Gt = Ḡ(yt/ȳ)� holds for all t with 0 ≤ � < 1. ȳ is the steady state
value of output and Ḡ is the steady state value of government spending. Let us
consider equations (14), (15), and Gt = Ḡ(yt/ȳ)�. After tedious algebra, we have
the following labor market–equilibrium condition:
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a
ao
ak

�

o Ḡ

ȳ�
(an�t/b)

(�−1) an
ak = k

1− ak+an
1−ao

�

t �n(τt ),

where �n(τt ) = a
ao/ak+1
o (po)(�−1)ao/ak τt (1 + τt )

(ao/ak)(�−1)−1. One can see that
�n(τt ) is single-caved with �n′ (τt ) > 0 for τt < ak/ao(1 − �) and �n′ (τt ) < 0
for τt > ak/ao(1 − �). Therefore, we have the following results:

(1) A unique equilibrium exists in the labor market with τt = ak

ao(1−�)
when

a
ao
ak

�

o Ḡ

ȳ�
(an�t/b)

(�−1)
an
ak = k

1− ak+an
1−ao

�

t �n

(
ak

ao(1 − �)

)
.

(2) Two equilibria exist in the labor market when

k
1− ak+an

1−ao
�

t �n

(
ak

ao(1 − �)

)
>

a
ao
ak

�

o Ḡ

ȳ�
(an�t/b)

(�−1)
an
ak .

We call these two equilibria τ1t and τ2t , with

0 < τ1t <
ak

ao(1 − �)
< τ2t < ∞.
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Similarly to Proposition 2, we say that the labor demand and supply curves
can intersect twice and Euler equation branching can occur in an arbitrarily small
neighborhood of a steady state if government spending is income-elastic.

5. CONCLUSION

We show that under a balanced–budget rule, endogenous tariffs and endogenous
labor-income taxes are equivalent in generating global indeterminacy in the form
of Euler equation branching. The methodology in our paper comes from Stockman
(2010). Similarly to Stockman (2010), the existence of Euler equation branching
crucially depends on an endogenous tariff rate. These findings show that those
multiple equilibria caused by the balanced-budget rule studied by Zhang can
always exist and extend beyond local indeterminacy.

NOTES

1. See, for example, Bizer and Stuart (1987), Rotemberg and Woodford (1994), and de Miguel and
Manzano (2006).

2. We often consider differential inclusions
.
x ∈ F(x), where F is a set-valued map that associates

with any point x ∈ Rn a set F(x) ⊂ Rn. Euler equation branching is a special type of differential
inclusion. Differential inclusions play a crucial role in studying ordinary differential equations with
an inaccurately known right-hand side. If the right-hand side of a differential equation is in an ε1-
neighborhood of a given function f(x), any solution of the differential equation is a solution to the
differential inclusion

.
x ∈ f(x) + ε1Bn, where Bn is a unit ball in Rn centered at zero [see Smirnov

(2002)].
3. The model is based on the standard DSGE models that incorporate foreign energy as a third

production factor. This class of models [such as those of Rotemberg and Woodford (1994) and Aguiar-
Conraria and Wen (2005, 2007, 2008)] have been widely used to study the business-cycle effects of
oil price shocks.

4. A trajectory P := (c, n, k) is admissible if (a) c(t), n(t), k(t) ≥ 0 and k(0) = k0 > 0 is given;
(b) c and n are piecewise continuous with, at most, a countable number of discontinuities and they
satisfy the property that at most a finite number of discontinuities occur during any finite time interval

[a, b]; and (c) k is continuous and piecewise continuously differentiable and
.

kt = (rt −δ)kt +wtnt −ct

holds for almost every t . Two admissible paths P ∗ and P are comparable if we define the following
function: D(P ∗, P , Time) = ∫ Time

0 e−ρt (log c∗
t − bn∗

t )dt − ∫ Time
0 e−ρt (log ct − bnt )dt . The path P ∗

is weakly optimal if for every admissible path P , limTime→∞D(P ∗, P , Time) ≥ 0 holds.
5. Note that for kt , �t > 0, the number of equilibria in the labor market can be either zero or two.

There is also some possibility of the demand and supply curves being tangent. In this special case,
the number of equilibria is one. To remain comparable to the analysis of Stockman (2010), we only
consider the case with two equilibria in the labor market.

6. Our results hold under general preferences. For example, preferences are given by U(c, n) :=
u(c) − bv(n), where u and v are C2 functions with u′, v′, v′′ > 0 and u′′ < 0 with the In-
ada properties satisfied. We find that if the labor demand and supply curves intersect, there will
be an even number of such intersections. To see this, let wt be the after-tariff real wage. The
labor-supply curve is defined from the first-order conditions: bv′(nt ) = �twt . Because v′′ > 0,
the labor supply curve is increasing in nt . The equilibrium labor demand curve is given by
wt = an[ao/p

o(1 + τt )]ao/(1−ao)k
ak/(1−ao)
t n

−ak/(1−ao)
t , where τt can be expressed as a function of

kt and nt using G = [τt ao/(1 + τt )][ao/p
o(1 + τt )]ao/(1−ao)k

ak/(1−ao)
t n

an/(1−ao)
t . The equilibrium

labor demand curve can be initially beneath and ultimately below the labor supply curve. Therefore,
these two curves intersect twice.
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7. From Figures 5 and 6, one sees that as in the saddle case, the chaotic region K for the sink
case (with complex roots) is the periodic path, which is generated by one branch from x to y and then
moves back from y to x along the other branch, and its interior.
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