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A new theory is presented for the generation of two-dimensional internal wave beams,
including the effects of viscosity and unsteadiness on the propagation of the waves, and
extending to the near field the classical theory of Lighthill for the far field. For this, the
forcing is assumed to be of compact support. Several equivalent expressions of the waves
are obtained, each associated with the choice of a support of simple shape embedding the
actual support of the forcing. When the two match, the expression of the waves is valid
everywhere in the fluid. For an oscillating body, the existence of critical points where the
waves rays are tangential to the body is correctly accounted for, an essential requirement
with regard to later inclusion of nonlinear effects and boundary layer eruption into the
analysis, both of which take their origin at the critical points. Embedding supports in the
shape of a circle, an ellipse and a strip are considered. Line forcing is also considered,
on a weaker assumption of rapid decrease at infinity. The analysis reduces to the classical
analysis of Hurley & Keady in the isotropic case of an oscillating circular cylinder, and
is otherwise applied to four anisotropic oscillating bodies: an elliptic cylinder, a vertical
plate, a vertical wave generator and a thin Gaussian bump.

Key words: internal waves, stratified flows

1. Introduction

Internal gravity waves in density-stratified fluids, and the similar inertial waves in
rotating fluids, first came to the attention of the scientific community owing to the striking
pattern, a St Andrew’s cross, that they form under oscillatory forcing; a pattern predicted
and visualized by Görtler (1943) and Mowbray & Rarity (1967) for internal waves, and
Görtler (1944) and Oser (1958) for inertial waves. For several decades their understanding
rested on group velocity ideas, put into quantitative use by Lighthill (1978, § 4.10) in the far
field, namely at large distances from the forcing. The analyses of the internal shear layers
that develop at the cross edges by Thomas & Stevenson (1972), Walton (1975), Rieutord,
Georgeot & Valdettaro (2001), Ogilvie (2005), Machicoane et al. (2015), Le Dizès & Le
Bars (2017) and Beckebanze et al. (2018), together with the analyses of nonlinear effects by
Tabaei & Akylas (2003) and Kataoka & Akylas (2015), all involve a far-field assumption
in one way or another.

The advent of quantitative measurement techniques such as synthetic schlieren for
density disturbances (Sutherland et al. 1999; Dalziel, Hughes & Sutherland 2000) and
particle image velocimetry for fluid velocities (Westerweel 1997) showed the need for a
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900 A3-2 B. Voisin

theory valid not only in the far field, but also in the near field, close to the forcing. When
the forcing is a body of simple shape, oscillating in an inviscid fluid, a combination of
coordinate stretching and analytic continuation allows the calculation of the waves at an
arbitrary distance from the body. This method, introduced by Bryan (1889) for inertial
waves and Hurley (1972) for internal waves, has been applied to circular and elliptic
cylinders by Hurley (1972, 1997) and Appleby & Crighton (1986), and to spheres and
spheroids by Hendershott (1969), Krishna & Sarma (1969), Sarma & Krishna (1972),
Lai & Lee (1981), Appleby & Crighton (1987), Voisin (1991), Rieutord et al. (2001)
and Davis (2012). The waves manifest themselves as a set of critical rays, with singular
amplitude at the rays and phase jumps across them.

Comparison with experiment requires the inclusion of viscosity, to smooth out the
singularities. A decisive contribution has been made by Hurley & Keady (1997), who
rewrote Hurley’s (1997) inviscid solution for the elliptic cylinder as a spectral integral,
and added, at each wavenumber, Lighthill’s (1978, § 4.10) viscous attenuation factor for the
far field into it; see also Sutherland (2010, § 5.2). Quantitative agreement has been found
excellent with experiments involving a circular cylinder, both in the far field (Sutherland
et al. 1999, 2000) and in the near field (Zhang, King & Swinney 2007). The agreement
was more qualitative for an elliptic cylinder (Sutherland & Linden 2002), but remained
consistent with what can be expected from a linear theory. As a result, the idea has emerged
that Lighthill’s far-field picture of the effect of viscosity applies to all oscillating bodies,
everywhere in the fluid.

A different picture has been obtained, however, using direct calculation for thin forcing,
namely line forcing in two dimensions and plane forcing in three dimensions. Lighthill’s
(1978, § 4.10) theory predicts that the evolution of the waves away from the forcing
is set by the distance along the axes of the St Andrew’s cross: in the inviscid case,
the determination of the multivalued functions involved in the expression of the waves
depends on this distance; in the viscous case, the attenuation of the waves at each
wavenumber depends on it. By contrast, for thin forcing, the evolution of the waves is set
by the distance normal to the forcing. This can be seen in the inviscid calculations of Oser
(1957), Reynolds (1962), Martin & Llewellyn Smith (2011, 2012b) and Davis (2012) for a
horizontal disc, Hurley (1969) for an inclined plate and Llewellyn Smith & Young (2003)
for a vertical plate, or in the viscous calculations of Kistovich & Chashechkin (1999a,b)
for a two-dimensional inclined plate, Vasil’ev & Chashechkin (2003, 2006a,b, 2012) for
a three-dimensional inclined plate, Tilgner (2000), Bardakov, Vasil’ev & Chashechkin
(2007), Davis & Llewellyn Smith (2010), Le Dizès (2015) and Le Dizès & Le Bars
(2017) for a horizontal disc, Maurer et al. (2017) and Boury, Peacock & Odier (2019)
for a horizontal wave generator and Beckebanze, Raja & Maas (2019) for a vertical wave
generator. To some extent this can also be seen in the inviscid calculations of Gabov (1985)
for a horizontal plate, Gabov & Pletner (1985) for an inclined plate, Gabov & Krutitskii
(1987) for a vertical plate and Gabov & Pletner (1988) for a horizontal disc, although
only Gabov & Pletner (1985) considered the determination of the multivalued functions
explicitly.

Different measures have been taken to reconcile the two pictures with each other. For
the waves generated by oscillatory flow over an isolated Gaussian bump at the ocean
bottom, Peacock, Echeverri & Balmforth (2008) used the analysis of Balmforth, Ierley
& Young (2002) for periodic bottom topography, obtaining first a viscous attenuation
factor depending on the vertical coordinate, then switching to one depending on the
along-cross coordinate, attributing the switch to the change from periodic to isolated
topography. Kistovich & Chashechkin (1994, 1995) considered the reflection of the wave
beam generated by a point source at an inclined plane; they obtained first a reflected beam
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Near-field internal wave beams in two dimensions 900 A3-3

whose integral expression included a viscous attenuation factor depending on the normal
coordinate to the plane, then changed variable and deformed the contour of integration
in the complex wavenumber plane to switch to a new expression in which the viscous
attenuation factor depended on the along-beam coordinate.

The present paper is part of a two-step effort to build a new theory of the generation of
internal waves by an oscillating body, valid for low viscosity and at an arbitrary distance
from the body. Firstly, applying the boundary integral method, a representation of the
body is devised as a distribution of singularities at its surface; at this stage, viscosity is
ignored. The theoretical foundations of the method have been discussed by Kapitonov
(1980), Skazka (1981), Gabov & Shevtsov (1983, 1984) and Martin & Llewellyn Smith
(2012a). The method has been applied analytically to a horizontal plate by Gabov (1985),
an inclined plate by Gabov & Pletner (1985), one or several vertical plates by Gabov &
Krutitskii (1987), Llewellyn Smith & Young (2003), Nycander (2006) and Musgrave et al.
(2016), a horizontal disc by Gabov & Pletner (1988) and a circular cylinder by Sturova
(2001). Numerically it has been applied to various topographies by Pétrélis, Llewellyn
Smith & Young (2006), Balmforth & Peacock (2009), Echeverri & Peacock (2010) and
Echeverri et al. (2011), and to circular and elliptic cylinders by Sturova (2006, 2011).
Secondly, the representation being known, Fourier analysis is used to calculate the waves
that it generates in a viscous fluid. This procedure may be viewed as a generalisation and
systematization of the approach of Hurley (1997) and Hurley & Keady (1997).

We consider the second step here, in the two-dimensional case. Section 2 presents the
classical approach of Lighthill (1978, § 4.10) for the far field and discusses its extension to
the near field; the forcing is assumed isotropic, namely of circular shape. After a brief
derivation of the wave equation in § 3, the simplest type of anisotropy is investigated
in § 4, namely forcing of an elliptic shape. As will be seen, it is not meant by this that
the source function needs to be exactly in the shape of a circle in § 2 and an ellipse
in § 4, but, rather, that its support is included inside this shape for the duration of the
calculation. The particular case of line forcing is considered in § 5. The use of alternative
integration strategies, yielding simpler expressions valid in less extended domains, is
presented in § 6, while § 7 discusses unsteady effects. Section 8 applies the theory to
four anisotropic sources of particular interest, for which experimental measurements are
available: an elliptic cylinder, a vertical barrier, a wave generator and a thin Gaussian
bump. Finally, § 9 discusses the relevance of the approach, and points out the usefulness
of the Green’s function method. It is followed by appendix A presenting the modifications
to the theory when, as is generally the case, the source function is not a standard function
but a distribution, and by appendix B calculating the Green’s function.

2. Wave structure

2.1. Inviscid case
Any quantity, ψ say, associated with internal gravity waves in an inviscid uniformly
stratified Boussinesq fluid satisfies an equation of the form(

∂2

∂t2
∇2 + N2∇2

h

)
ψ = q, (2.1)

where N is the buoyancy frequency, z the vertical coordinate, ∇ = (∂/∂x, ∂/∂y, ∂/∂z)
the del operator, ∇h = (∂/∂x, ∂/∂y, 0) its original projection and q a source term;
see, for example, Lighthill (1978, § 4.1) or Voisin (1991). Assuming the source to
be two-dimensional and monochromatic, q = f (x, z) exp(−iω0t) with ω0 < N, and
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900 A3-4 B. Voisin

introducing Fourier transforms according to

f (k,m) =
∫∫

f (x, z) exp[−i(kx + mz)] dx dz, (2.2a)

f (x, z) = 1
(2π)2

∫∫
f (k,m) exp[i(kx + mz)] dk dm, (2.2b)

the solution of (2.1) follows as

ψ = exp(−iω0t)
4π2

∫∫
f (k,m) exp[i(kx + mz)]

ω2
0κ

2 − N2k2
dk dm, (2.3)

with x = (x, z) the position, k = (k,m) the wavenumber vector and r = (x2 + z2)1/2 and
κ = (k2 + m2)1/2 their moduli.

Lighthill devised a method for the asymptotic evaluation of such Fourier integral in
the far field, as r → ∞, first for a rapidly decreasing source (1960) then for a source of
compact support (1978, § 4.9), with identical results. We adopt the former, more general
presentation; namely, the source function f (x, z) is assumed to decrease asymptotically
faster than any inverse power of x or z, so that its spectrum f (k,m) is a regular function of
the real variables k and m.

The asymptotic behaviour of the integral is expressed in terms of the singularities of
the integrand (Lighthill 1958, chapter 4). Given the regularity of f (k,m), these are the
solutions of the dispersion relation

B(ω0,k) = ω2
0κ

2 − N2k2 = 0. (2.4)

In the wavenumber plane this defines a wavenumber curve, represented in figure 1, in the
shape of a St Andrew’s cross with arms inclined at the angle θ0 = arccos(ω0/N) to the
horizontal. Writing

ω0 = N
|k|
κ
, cg =

(
∂ω0

∂k
,
∂ω0

∂m

)
= N

m
κ3
(m,−k) sign k, (2.5a,b)

the group velocity cg, at which the wave energy propagates, is seen to be perpendicular
to k. Accordingly, each arm of the cross radiates waves perpendicular to itself, forming
another St Andrew’s cross in the physical plane, represented in figure 2, with arms inclined
at the angle θ0 to the vertical.

We introduce characteristic coordinates (x±, z±) such that

x± = x cos θ0 ∓ z sin θ0, z± = ±x sin θ0 + z cos θ0, (2.6a,b)

and associated wavenumbers (k±,m±) such that

k± = k cos θ0 ∓ m sin θ0, m± = ±k sin θ0 + m cos θ0, (2.7a,b)

as shown in figures 1 and 2. The dispersion relation simplifies to

B(ω0,k) = N2m+m− = 0, (2.8)

and the equation of the wavenumber curve to

m± = 0. (2.9)
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Near-field internal wave beams in two dimensions 900 A3-5
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FIGURE 1. Wavenumber curve for two-dimensional internal waves.
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FIGURE 2. Wave beams for two-dimensional internal waves.
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900 A3-6 B. Voisin

The group velocity becomes

cg = ±N sin θ0

k±
ez±, (2.10)

with

ez± = ±ex sin θ0 + ez cos θ0 (2.11)

a unit vector along the z±-axis. The two halves k± < 0 and k± > 0 of each arm m± = 0 of
the cross are seen to radiate waves in opposite directions, shown in figure 1.

The contribution of each arm to integral (2.3) is evaluated in coordinates (k±,m±),
writing

ψ = exp(−iω0t)
4π2

∫ ∞

−∞
dk± exp(ik±x±)

∫ ∞

−∞

f±(k±,m±)
B(ω0,k)

exp(im±z±) dm±, (2.12)

where f±(k±,m±) = f (k,m), then allowing m± to become complex and applying the
residue theorem to the inner integral. An additional condition is required to displace the
real pole (2.9) slightly off the path of integration. For this, Lighthill (1960, 1978, § 4.9)
introduced an innovative formulation of the radiation condition, giving the frequency an
infinitesimal positive imaginary part ε � N. The dispersion relation becomes

B(ω0 + iε,k) ∼ N2
[
m±m∓ + 2i

ε

N
(k2

± + m2
±) cos θ0

]
= 0, (2.13)

where

m∓ = ∓k± sin(2θ0)+ m± cos(2θ0), (2.14)

providing a second-order equation for m± as a function of k±. To leading order in ε/N, the
pole (2.9) is displaced to

m± ∼ ±i
ε

N sin θ0
k±. (2.15)

The path of integration is raised or lowered a distance μ depending on whether z± > 0
or z± < 0, respectively, so as to make the integral O[exp(−μ|z±|)]. With an error of this
order, the integral evaluates to 2iπ sign z± times the sum of the residues of the integrand
at any poles passed over in deforming the path. Given the regularity of f±(k±,m±) for
real m±, and provided that ε is small enough, μ may be chosen such that no complex
singularity of f±(k±,m±) is passed over, if any, and the only pole to consider is (2.15).

This procedure picks the pole with an imaginary part of the same sign as z±, namely

m± ∼ i
ε

N sin θ0
|k±| sign z±, (2.16)

subject to the condition

sign k± = ± sign z±, (2.17)

thereby allowing only one half of the arm of the cross to contribute to the radiation.
Physically, this amounts to imposing cg · x > 0, with x = (x, z) the position, namely to
selecting the part of the wavenumber curve such that the component of the group velocity
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Near-field internal wave beams in two dimensions 900 A3-7

along the direction of observation points outwards not inwards, consistent with figure 1.
The introduction of ε has fulfilled its use, and we may now let ε → 0 to get

m± = 0 with sign k± = ± sign z±. (2.18)

An asymptotic expansion of the waves follows,

ψ ∼ −i
exp(−iω0t)

4πN2 sin θ0 cos θ0

∫ ±∞ sign z±

0
f±(k±,m± = 0) exp(ik±x±)

dk±
k±
, (2.19)

valid in the far field as |z±| → ∞. It was first obtained by Lighthill (1978, § 4.10).
We are looking for an exact expression of the waves in the near field, at finite |z±|. For

this, more restrictive assumptions must be made about the source, which is assumed to
be of compact support of radius a, in the sense that f (x, z) = 0 for r > a. The spectrum
f±(k±,m±), being an integral over a finite domain, is an analytic function of the complex
wavenumbers k± and m±; for each of them its modulus decreases asymptotically along the
real axis, is small for | Re k±| � 1/a or | Re m±| � 1/a, and grows exponentially along the
imaginary axis. Specifically, we have

| f±(k±,m±)| < exp[a(| Im k±| + | Im m±|)]
∫∫

r<a
| f (x, z)| dx dz. (2.20)

This bound allows the path of integration of the inner integral in (2.12) to be closed by a
semi-circle at infinity in the half-plane where the imaginary part of m± is of the same sign
as z±: by a straightforward extension of Jordan’s lemma, the contribution of the semi-circle
vanishes provided that |z±| > a, and the integral evaluates to 2iπ sign z± times the sum of
the residues of the integrand at any poles with an imaginary part of the same sign as z±.

Given the analyticity of f±(k±,m±), the only pole to consider is, again, (2.16). The waves
follow immediately, when both |z+| > a and |z−| > a, as

ψ = −i
exp(−iω0t)

4πN2 sin θ0 cos θ0

∑
±

∫ ±∞ sign z±

0
f±(k±,m± = 0) exp(ik±x±)

dk±
k±
, (2.21)

or, equivalently,

ψ = −i
exp(−iω0t)

4πN2 sin θ0 cos θ0

∑
±

∫ ∞

0
f±(k± = ±κ sign z±,m± = 0)

× exp(±iκx± sign z±)
dκ
κ
. (2.22)

As a result, if four wave beams are defined as the contributions of the four half-arms of
the wavenumber curve, then at any given location two beams are received, one for the half
sign k+ = sign z+ of the arm m+ = 0, and the other for the half sign k− = −sign z− of
the arm m− = 0. In the far field, as |z±| → ∞ with x± fixed, the contribution of one arm
m± = 0 becomes dominant compared with that for the other arm m∓ = 0; then (2.19) is
recovered and each beam turns into a half-arm of the St Andrew’s cross shown in figure 2
and observed experimentally by Görtler (1943), Mowbray & Rarity (1967), Sutherland
et al. (1999) and Zhang et al. (2007), among others.

Conversely, the line z+ = 0 is seen to separate the two beams k+ < 0 and k+ > 0
originating from the arm m+ = 0 of the wavenumber curve, and the line z− = 0 the two
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900 A3-8 B. Voisin

beams k− < 0 and k− > 0 originating from the arm m− = 0. For each beam, (2.22) is
ascertained to be valid from the distance |z±| = a where the beam leaves the source
behind, up to infinity. Being based on an upper bound (2.20), it can be valid closer to
the source, depending on the exact form of f±(k±,m±); this, however, can only be assessed
on a case-by-case basis, as will be seen later in § 8.1.

2.2. Viscous case
Viscosity acts as another equivalent way of setting which part of the wavenumber curve is
received at which location. The wave equation becomes[(

∂

∂t
− ν∇2

)
∂

∂t
∇2 + N2∇2

h

]
ψ = q, (2.23)

with ν the kinematic viscosity; see, for example, Voisin (2003). The response to
two-dimensional monochromatic forcing becomes

ψ = exp(−iω0t)
4π2

∫∫
f (k,m) exp[i(kx + mz)]
ω2

0κ
2 − N2k2 + iω0νκ4

dk dm. (2.24)

Lighthill (1978, § 4.10) did not evaluate this integral directly. Instead, he calculated the
shear-induced rate of energy dissipation along the rays of a plane internal wave (Lighthill
1978, § 4.7), then deduced from it an exponential attenuation factor to be added inside the
inviscid expansion (2.19).

We proceed from (2.24), on the assumption νκ2/N � 1 of small viscous effects. The
addition of viscosity transforms the dispersion relation (2.8) into

B(ω0,k) = N2
[
m±m∓ + i

ν

N
(k2

± + m2
±)

2 cos θ0

]
= 0, (2.25)

with m∓ given by (2.14), thus providing a fourth-order equation for m±. To leading order
in νk2

±/N, the pole (2.9) is displaced to

m± ∼ ±iβk3
±, (2.26)

where

β = ν

2N sin θ0
. (2.27)

The above deformations of contour pick

m± ∼ iβ|k3
±| sign z± with sign k± = ± sign z±, (2.28)

yielding for a rapidly decreasing source the far-field expansion, as |z±| → ∞,

ψ ∼ −i
exp(−iω0t)

4πN2 sin θ0 cos θ0

∫ ±∞ sign z±

0
f±(k±,m± = iβ|k3

±| sign z±)

× exp(−β|k3
±z±|) exp(ik±x±)

dk±
k±
, (2.29)
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Near-field internal wave beams in two dimensions 900 A3-9

and for a source of compact support the exact expression, valid when both |z+| > a and
|z−| > a,

ψ = −i
exp(−iω0t)

4πN2 sin θ0 cos θ0

∑
±

∫ ±∞ sign z±

0
f±(k±,m± = iβ|k3

±| sign z±)

× exp(−β|k3
±z±|) exp(ik±x±)

dk±
k±
, (2.30)

or, equivalently,

ψ = −i
exp(−iω0t)

4πN2 sin θ0 cos θ0

∑
±

∫ ∞

0
f±(k± = ±κ sign z±,m± = iβκ3 sign z±)

× exp(−βκ3|z±|) exp(±iκx± sign z±)
dκ
κ
. (2.31)

A new difference arises with Lighthill’s (1978, § 4.10) far-field analysis, in addition to the
superposition of two wave beams at any given location; namely, the occurrence of the
viscous correction (2.28) to the wavenumber not only for the propagation of the waves,
as an attenuation factor, but also for their generation, inside the source spectrum. The
relevance of this correction will be discussed later in § 8.1.

2.3. Validity
The preceding analysis is essentially a reformulation of the far-field expansion of Lighthill
(1978, § 4.10) for rapidly decreasing sources, and its extension to the near field for the
smaller class of sources of compact support. The solutions of Hurley (1997) and Hurley
& Keady (1997) for the oscillations of an elliptic cylinder are of the type anticipated by
Lighthill. When the cylinder is circular, the experiments of Sutherland et al. (1999) and
Zhang et al. (2007) have confirmed their quantitative validity not only in the far field but
also in the near field. When the cylinder is elliptic, the comparison with the experiments of
Sutherland & Linden (2002) has been less conclusive. The wave structure for the circular
cylinder is illustrated in figure 3(a), where both beam separation and viscous attenuation
are set by the along-beam coordinates z±.

The same is not true of all sources though: when the source is infinitely thin, beam
separation and viscous attenuation are set by the normal coordinate to the source, z for
the horizontal segment in figure 3(b). Adapting the results of Tilgner (2000), Bardakov
et al. (2007), Davis & Llewellyn Smith (2010) and Le Dizès (2015) for the oscillations of a
horizontal circular disc to the line source q = g(x)δ(z) exp(−iω0t), with δ the Dirac delta
function, we obtain

ψ = −i
exp(−iω0t)

4πN2 sin θ0 cos θ0

∑
±

∫ ±∞ sign z

0
g(k = k± cos θ0)

× exp(−β|k3
±z|/ cos θ0) exp(ik±x±)

dk±
k±
, (2.32)
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900 A3-10 B. Voisin

Energy
propagation

Viscous
attenuation

Beam

separation
Energy

propagation

Viscous
attenuation

Beam
separation

Energy
propagation

Viscous
attenuation

Beam
separation

θ0

θ0

θ0

(c)

(a)

(b)

FIGURE 3. Structure of the beams propagating upward to the right and downward to the left
for (a) a circular cylinder, (b) a horizontal segment and (c) an elliptic cylinder. The beams are
delimited by the critical rays grazing the oscillating body at critical points on either side. The
grey areas represent the zones where the validity of the theory is not ascertained.
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Near-field internal wave beams in two dimensions 900 A3-11

or, equivalently,

ψ = −i
exp(−iω0t)

4πN2 sin θ0 cos θ0

∑
±

∫ ∞

0
g(k = ±κ cos θ0 sign z)

× exp(−βκ3|z|/ cos θ0) exp(±iκx± sign z)
dκ
κ
. (2.33)

At first glance the two wave structures, shown in figure 3(a,b), appear incompatible with
each other. In particular, the spectrum f (k,m) = g(k) of the line source leaves the normal
wavenumber m arbitrary, thereby allowing |k±| to become infinitely large and preventing
the pole displacements (2.15) and (2.26) from remaining small, however small ε/N and
βκ2 can be.

In order to elucidate the effect of the geometry of the source on its wave radiation,
we consider a source of elliptic shape in the following. The anticipated wave structure is
illustrated in figure 3(c) for an elliptic cylinder, with both beam separation and viscous
attenuation set by the normal distance to the line joining the two critical points where
critical wave rays are tangential to the cylinder on either side. After a brief derivation of
the wave equation in the following section, we will move on to the determination of the
fluid velocity.

3. Wave equation

We consider a viscous uniformly stratified Boussinesq fluid of buoyancy frequency
N = −[(g/ρ0)(dρ0/dz)]1/2 and kinematic viscosity ν, having density distribution ρ0(z)
and pressure distribution p0(z) at rest, related by the hydrostatic balance equation dp0/dz =
−gρ0, where z is the upward vertical coordinate and g the acceleration due to gravity. The
linearized equations of motion for the density disturbance ρ, the pressure disturbance p
and the velocity u are

ρ0
∂u
∂t

= −∇p + ρgez + ρ0ν∇2u, (3.1)

∇ · u = q, (3.2)

∂ρ

∂t
= ρ0

N2

g
w, (3.3)

respectively, the Navier–Stokes equation, the equation of continuity, and the
incompressible equation of state d(ρ0 + ρ)/dt = 0. The source of the waves is modelled
as a source of mass releasing the volume q of fluid per unit volume per unit time.

The combination of these equations yields a single equation for the velocity, i.e.

[(
∂

∂t
− ν∇2

)
∂

∂t
∇2 + N2∇2

h

]
u =

[(
∂

∂t
− ν∇2

)
∂

∂t
∇ + N2∇h

]
q, (3.4)

which will be our wave equation of choice in the following. For a two-dimensional
monochromatic source q = f (x, z) exp(−iω0t) of frequency ω0 < N, introducing Fourier
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900 A3-12 B. Voisin

transforms according to (2.2), the velocity follows as

u = i
exp(−iω0t)

4π2

∫∫
kex sin2 θ0 − mez cos2 θ0 − i(νκ2/N)k cos θ0

m2 cos2 θ0 − k2 sin2 θ0 + i(νκ4/N) cos θ0

× f (k,m) exp[i(kx + mz)] dk dm, (3.5)

where θ0 = arccos(ω0/N) is the direction of propagation of the waves and κ = |k| the
modulus of the wavenumber vector k = (k,m).

4. Bluff forcing

We consider a source of elliptic shape, having principal directions inclined at the
angles ϕ0 and ϕ0 + π/2 to the x-axis, with −π/2 < ϕ0 ≤ π/2, and semi-axes a and b,
respectively. Introducing coordinates (x0, z0) such that

x0 = x cosϕ0 + z sinϕ0, z0 = −x sinϕ0 + z cosϕ0, (4.1a,b)

the source satisfies f0(x0, z0) = f (x, z) = 0 for x2
0/a

2 + z2
0/b

2 > 1. The characteristic
coordinates (2.6) become

x± = x0 cos(θ0 ± ϕ0)∓ z0 sin(θ0 ± ϕ0), z± = ±x0 sin(θ0 ± ϕ0)+ z0 cos(θ0 ± ϕ0),

(4.2a,b)

and similarly for the wavenumbers (2.7). The velocity (3.5) becomes

u = i
exp(−iω0t)

4π2

∫∫
kex sin2 θ0 − mez cos2 θ0 − i(νκ2/N)k cos θ0

m2 cos2 θ0 − k2 sin2 θ0 + i(νκ4/N) cos θ0

× f0(k0,m0) exp[i(k0x0 + m0z0)] dk0 dm0, (4.3)

where f0(k0,m0) = f (k,m). We rescale coordinates and wavenumbers according to

(X0,Z0) = (x0/a, z0/b), (K0,M0) = (k0a,m0b), (4.4a,b)

so that F0(X0,Z0) = f0(x0, z0) = 0 for |X 0| > 1.

4.1. Inviscid case
To proceed further, we start with the inviscid case and introduce the lengths

c± = [a2 cos2(θ0 ± ϕ0)+ b2 sin2(θ0 ± ϕ0)]1/2, (4.5)

the angles Θ± such that

cosΘ± = a
c±

cos(θ0 ± ϕ0), sinΘ± = b
c±

sin(θ0 ± ϕ0), (4.6a,b)

and the rescaled characteristic coordinates

X± = X0 cosΘ± ∓ Z0 sinΘ±, Z± = ±X0 sinΘ± + Z0 cosΘ±, (4.7a,b)

and similarly (K±,M±) in the wavenumber plane. These quantities are best interpreted
by considering an elliptic cylinder of semi-axes a and b, illustrated in figure 4. Then, as
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Near-field internal wave beams in two dimensions 900 A3-13

z+

x+

x0
z0

2d+

2c+

θ0

θ0

ζ+

χ+

x0
χ–

ξ+

ζ–

ξ–

2d–

2c–

z0

z–
x–

(a)

(b)

FIGURE 4. Geometry of the beams propagating (a) upward to the right and downward to the
left, and (b) upward to the left and downward to the right, for the oscillations of an elliptic
cylinder.
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900 A3-14 B. Voisin

pointed out by Hurley (1997), c+ and c− are the half-widths of the wave beams delimited
by the critical rays tangential to the cylinder on either side.

The dispersion relation (2.8) becomes

B(ω0,k) = N2 c+c−
a2b2

M+M− = 0, (4.8)

implying that the wavenumber curve is still a St Andrew’s cross but its arms now
make different angles to the horizontal, Θ+ for the arm M+ = 0 and Θ− for the arm
M− = 0. Proceeding as in § 2, we evaluate the contribution of each arm in coordinates
(K±,M±), allowing M± to become complex and applying the residue theorem. The
radiation condition transforms the dispersion relation into

B(ω0 + iε,k) ∼ N2
(c+c−

a2b2
M±M∓ + 2i

ε

N
κ2 cos θ0

)
= 0, (4.9)

where
M∓ = ∓K± sin(Θ+ +Θ−)+ M± cos(Θ+ +Θ−), (4.10)

and

κ2 = 1
c2±

K2
± +

(
sin2Θ±

a2
+ cos2Θ±

b2

)
M2

± ± 2
(

1
a2

− 1
b2

)
K±M± sinΘ± cosΘ±, (4.11)

displacing the pole M± = 0 to

M± ∼ ±i
ab
c2±

ε

N sin θ0
K±. (4.12)

Now, the spectrum F±(K±,M±) = F0(K0,M0) = f0(k0,m0) is an analytic function of the
complex wavenumbers K± and M±, for each decreasing asymptotically along the real axis,
small for | Re K±| � 1 or | Re M±| � 1, and growing exponentially along the imaginary
axis, with

|F±(K±,M±)| < exp(| Im K±| + | Im M±|)
∫∫

|X 0|<1
|F0(X0,Z0)| dX0 dZ0. (4.13)

Accordingly, the real path of integration for the variable M± may be closed by a semi-circle
at infinity in the half-plane where the imaginary part of M± is of the same sign as Z±, in
such a way that the contribution of the semi-circle vanishes for |Z±| > 1. The integral
follows as 2iπ sign Z± times the sum of the residues of the integrand at any poles with an
imaginary part of the same sign as Z±. This procedure picks the pole

M± ∼ i
ab
c2±

ε

N sin θ0
|K±| sign Z± with sign K± = ± sign Z±. (4.14)

With ε/N � 1 and |K±| = O(1), the displacement is small and the limit ε → 0 may be
applied, so that

M± = 0 with sign K± = ± sign Z±. (4.15)

The evaluation of the waves is then immediate when |Z+| > 1 and |Z−| > 1, yielding

u = exp(−iω0t)
4π

∑
±
(±)ez±

c±

∫ ±∞ sign Z±

0
F±(K±,M± = 0) exp(iK±X±) dK±. (4.16)
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Near-field internal wave beams in two dimensions 900 A3-15

To go back to unscaled coordinates, we introduce the new lengths

d± = (a2 cos2Θ± + b2 sin2Θ±)1/2 = [a4 cos2(θ0 ± ϕ0)+ b4 sin2(θ0 ± ϕ0)]1/2

c±
, (4.17)

the new angles χ± such that

cosχ± = a
d±

cosΘ± = a2

c±d±
cos(θ0 ± ϕ0), (4.18a)

sinχ± = b
d±

sinΘ± = b2

c±d±
sin(θ0 ± ϕ0), (4.18b)

and the new coordinates

ξ± = x0 cosχ± ∓ z0 sinχ±, ζ± = ±x0 sinχ± + z0 cosχ±, (4.19a,b)

and similarly (κ±, μ±) in the wavenumber plane. For the elliptic cylinder, d+ and d− are
the half-lengths of the critical segments joining the critical points where the critical rays
are tangential to the cylinder on either side, and χ+ and χ− are the angles of these segments
to the positive x0-axis, counted clockwise for χ+ and counterclockwise for χ−, as shown
in figure 4.

We have

X± = x±
c±
, Z± = ζ±

d±
ab
, K± = κ±d±, M± = m±

ab
c±
. (4.20a–d)

Furthermore, on the wavenumber curve M± = 0, we also have m± = 0 and K± = k±c±. It
then follows that, when both |ζ+| > ab/d+ and |ζ−| > ab/d−,

u = exp(−iω0t)
4π

∑
±

ez± sign ζ±

∫ ∞

0
f±(k± = ±κ sign ζ±,m± = 0)

× exp(±iκx± sign ζ±) dκ, (4.21)

where κ = |k±| = |K±|/c±. Consistent with figure 3(c), beam separation is set by the
coordinates ζ± normal to the critical lines.

4.2. Viscous case
The presence of viscosity transforms the dispersion relation (4.8) into

B(ω0,k) = N2
(c+c−

a2b2
M±M∓ + i

ν

N
κ4 cos θ0

)
= 0. (4.22)

There are now four poles, whose contributions are evaluated in the small-viscosity limit
Nc+c−/ν � 1, corresponding to a large Stokes number.
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900 A3-16 B. Voisin

Two poles are associated with waves,

M± ∼ ±iβ
ab
c4±

K3
±, (4.23)

where β has been defined in (2.27). Closing the path of integration as above picks the pole

M± ∼ iβ
ab
c4±

|K±|3 sign Z± with sign K± = ± sign Z±. (4.24)

The assumptions β/c2
± � 1 and |K±| = O(1) ensure its smallness. Setting it to zero in the

slowly varying rational fraction in the integrand of (4.3) when evaluating the residue, but
keeping it non-zero in the spectrum and in the rapidly varying complex exponential, the
velocity follows for |Z+| > 1 and |Z−| > 1 as

u = exp(−iω0t)
4π

∑
±
(±)ez±

c±

∫ ±∞ sign Z±

0
F±

(
K±,M± = iβ

ab
c4±

|K±|3 sign Z±

)

× exp
(

−β ab
c4±

|K3
±Z±|

)
exp(iK±X±) dK±, (4.25)

that is, in unscaled coordinates, for |ζ+| > ab/d+ and |ζ−| > ab/d−,

u = exp(−iω0t)
4π

∑
±

ez± sign ζ±

∫ ∞

0
F±

(
K± = ±κc± sign ζ±,M± = iβκ3 ab

c±
sign ζ±

)

× exp
(

−βκ3 d±
c±

|ζ±|
)

exp(±iκx± sign ζ±) dκ, (4.26)

where κ = | Re k±| = |K±|/c± and

d±
c±
ζ± = ± b2

c2±
x0 sin(θ0 ± ϕ0)+ a2

c2±
z0 cos(θ0 ± ϕ0). (4.27)

Consistent with figure 3(c), viscous attenuation is set by ζ±. When the source is circular
(a = b), we have c± = d± = a and χ± = θ0 ± ϕ0, so that ζ± = z± and the pattern in
figure 3(a) is recovered; when the source is a horizontal segment (b = 0 and ϕ0 = 0),
we have c± = a cos θ0 and d± = a, and also χ± = 0, so that ζ± = z and the pattern in
figure 3(b) is recovered.

The other two poles are associated with boundary layers along the lines Z± = 0, hence,
ζ± = 0. To leading order they satisfy

M2
± ∼ i

Nc+c−
ν

a2b2

d4±

cos(Θ+ +Θ−)
cos θ0

, (4.28)

which combined with the condition |Z±| > 1 means that their contributions are

O

{
exp

[
−

(
Nc+c−
ν

)1/2 ab
d2±

∣∣∣∣cos(Θ+ +Θ−)
cos θ0

∣∣∣∣
1/2

]}
. (4.29)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

44
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.442


Near-field internal wave beams in two dimensions 900 A3-17

Given the small-viscosity assumption Nc+c−/ν � 1, the only way for these contributions
to be significant, apart from the pathological case

a2 cos(θ0 + ϕ0) cos(θ0 − ϕ0) = b2 sin(θ0 + ϕ0) sin(θ0 − ϕ0), (4.30)

corresponding to cos(Θ+ +Θ−) = 0, is that a = 0 or b = 0, namely that the source be
infinitely thin. Accordingly, consistent with physical intuition, no boundary layer forms
for bluff forcing of non-zero a and b, and for line forcing the boundary layer forms along
the line itself.

5. Line forcing

We consider line forcing separately in this section. Without loss of generality, the source
is assumed to have finite and non-zero size 2a along the x0-axis, and zero size along the
z0-axis. Forcing is assumed to be inviscid, with implications discussed later in § 5.3. Then,
using (3.2), (3.3) and the inviscid version of (3.1), either the pressure is prescribed on both
sides of the line z0 = 0 yielding a velocity discontinuity 2w0(x0) across it, so that

f0(x0, z0) = 2w0(x0)δ(z0), (5.1)

or the velocity is prescribed yielding a pressure discontinuity 2p0(x0), so that

f0(x0, z0) = 2i
cos(θ0 + ϕ0) cos(θ0 − ϕ0)p0(x0)δ

′(z0)+ sinϕ0 cosϕ0p′
0(x0)δ(z0)

ρ0ω0 sin2 θ0
. (5.2)

For a horizontal disc, Gabov & Pletner (1988) considered the former forcing and Martin &
Llewellyn Smith (2011, 2012b) the latter. We take

f0(x0, z0) = g(x0)δ
(n)(z0), f0(k0,m0) = g(k0)(im0)

n, (5.3a,b)

where δ(n) is the nth derivative of the Dirac delta function, with n = 0 or 1. The function
g(x0) is assumed to decrease rapidly for |x0| � a, so that its spectrum g(k0) is appreciable
only for |k0| � 1/a and small at larger |k0|. This assumption, less restrictive than the
compact support assumption, leaves the possibility for the forcing to be Gaussian, as in
§ 8.4 below.

We follow the approach introduced by Kistovich & Chashechkin (1994, 1995) for the
reflection of the wave beam from a point source at an inclined plane, and Chashechkin &
Kistovich (1997) and Kistovich & Chashechkin (1999a,b) for the generation of wave
beams by the oscillations of an inclined plate; namely, we proceed in coordinates (x0, z0),
applying the residue theorem to integration over m0 and dealing directly with the viscous
case in the small-viscosity limit Na2/ν � 1.

5.1. Inclined source
The dispersion relation (2.25) is written as

B(ω0,k) = N2
[
m+m− + i

ν

N
(k2

0 + m2
0)

2 cos θ0

]
= 0, (5.4)

where
m± = k0 sin(ϕ0 ± θ0)+ m0 cos(ϕ0 ± θ0). (5.5)
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900 A3-18 B. Voisin

Two of its solutions are associated with waves,

m0 ∼ −k0 tan(ϕ0 ± θ0)± i
βk3

0

cos4(ϕ0 ± θ0)
, (5.6)

and the condition |k0|a = O(1) combined with the assumption β/a2 � 1 ensures that
they remain close to their inviscid values m0 ∼ −k0 tan(ϕ0 ± θ0). Closing the real path
of integration by a semi-circle at infinity in the half-plane where the imaginary part of m0
is of the same sign as z0, we keep the solution

m0 ∼ −k0 tan(ϕ0 + θ0 sign k0 sign z0)+ i
β|k0|3 sign z0

cos4(ϕ0 + θ0 sign k0 sign z0)
, (5.7)

and obtain

u = exp(−iω0t)
4π

∫ ∞

−∞

ex sin θ0 sign k0 + ez cos θ0 sign z0

cos(ϕ0 + θ0 sign k0 sign z0)
g(k0)

× [−ik0 tan(ϕ0 + θ0 sign k0 sign z0)]n exp
[
− β|k3

0z0|
cos4(ϕ0 + θ0 sign k0 sign z0)

]
× exp{ik0[x0 − z0 tan(ϕ0 + θ0 sign k0 sign z0)]} dk0 (5.8)

or, equivalently,

u = exp(−iω0t)
4π

∑
±

ez±[−i sin(θ0 ± ϕ0)]n[ sign z0 sign cos(θ0 ± ϕ0)]n+1

×
∫ ∞

0
κng[k0 = ±κ| cos(θ0 ± ϕ0)| sign z0] exp

[
− βκ3|z0|

| cos(θ0 ± ϕ0)|
]

× exp[±iκx± sign z0 sign cos(θ0 ± ϕ0)] dκ, (5.9)

where κ = | Re k±| = |k0|/| cos(θ0 ± ϕ0)|, consistent with (4.26).
The other two solutions are

m0 ∼
[

i
N
ν

cos(θ0 + ϕ0) cos(θ0 − ϕ0)

cos θ0

]1/2

+ k0
sinϕ0 cosϕ0

cos(θ0 + ϕ0) cos(θ0 − ϕ0)
, (5.10)

where the undetermined square root in the first term can take either value. Closing the path
of integration as above, we pick

m0 ∼ kb[i + sign cos(θ0 + ϕ0) sign cos(θ0 − ϕ0)] sign z0

+ k0
sinϕ0 cosϕ0

cos(θ0 + ϕ0) cos(θ0 − ϕ0)
, (5.11)

where

kb =
(ω0

2ν

)1/2 | cos(θ0 + ϕ0) cos(θ0 − ϕ0)|1/2
cos θ0

. (5.12)
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Near-field internal wave beams in two dimensions 900 A3-19

The associated velocity disturbance is

ub = (
√

2kb)
n sinϕ0 cosϕ0

2 cos(θ0 + ϕ0) cos(θ0 − ϕ0)
ex0 exp(−iω0t)(−sign z0)

n+1

× g
[

x0 + z0
sinϕ0 cosϕ0

cos(θ0 + ϕ0) cos(θ0 − ϕ0)

]
exp(−kb|z0|)

× exp
[
i
(

kb|z0| − n
π

4

)
sign cos(θ0 + ϕ0) sign cos(θ0 − ϕ0)

]
, (5.13)

and corresponds to a boundary layer of thickness 1/kb, small compared with a, around
the line z0 = 0. The velocity within the layer is O[(Na2/ν)n/2] compared with that for the
waves; hence, of the same order for n = 0 and large compared with it for n = 1. As for
the classical Stokes layer, the velocity is directed along the source, in the x0-direction.
Its variations combine transverse propagation at the velocity ω0/kb in the z0-direction,
and reproduction of the longitudinal variations g(x0) imposed at the source, shifted in
proportion to z0. When the source is either horizontal (ϕ0 = 0) or vertical (ϕ0 = π/2), the
leading-order term (5.13) vanishes and the expansion must be carried to the next order.

In the event n = 1 that Jordan’s lemma does not apply, a third contribution to the
velocity is associated with the semi-circle closing the path of integration at infinity. This
possibility is considered in appendix A.

5.2. Horizontal and vertical sources
For a horizontal line source, we have x0 = x and z0 = z. Separating the exponential
transform g(k) into cosine and sine transforms

g(c)(k) =
∫

g(x) cos(kx) dx, g(s)(k) =
∫

g(x) sin(kx) dx, (5.14a,b)

the original source distribution g(x) separates into even and odd parts, respectively, and
we obtain for the waves

u = exp(−iω0t)
2π

(−i sin θ0 sign z)n
∫ ∞

0
κn exp(−βκ3|z|/ cos θ0) exp(−iκ|z| sin θ0)

× {g(c)(k = κ cos θ0)[ez cos θ0 cos(κx cos θ0) sign z + iex sin θ0 sin(κx cos θ0)]

+ g(s)(k = κ cos θ0)[ez cos θ0 sin(κx cos θ0) sign z − iex sin θ0 cos(κx cos θ0)]} dκ.
(5.15)

The boundary layer is given by

ub = −(
√

2kb)
n−1

2 cos2 θ0
ex exp(−iω0t)(−sign z)ng′(x)

× exp(−kb|z|) exp
{

i
[
kb|z| − (n − 1)

π

4

]}
, (5.16)

where

kb =
(ω0

2ν

)1/2
. (5.17)

It is O[(Na2/ν)(n−1)/2] compared with the waves; hence, negligible for n = 0 and of the
same order for n = 1. Its structure is the same as before, with longitudinal velocity and
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900 A3-20 B. Voisin

transverse propagation, except for the longitudinal variations which are the derivative g′(x)
of those imposed at the source.

For a vertical line source, we have x0 = z and z0 = −x . Introducing the cosine and sine
transforms

g(c)(m) =
∫

g(z) cos(mz) dz, g(s)(m) =
∫

g(z) sin(mz) dz, (5.18a,b)

we obtain

u = exp(−iω0t)
2π

(−i cos θ0 sign x)n
∫ ∞

0
κn exp(−βκ3|x |/ sin θ0) exp(iκ|x | cos θ0)

× {g(c)(m = κ sin θ0)[ex sin θ0 cos(κz sin θ0) sign x − iez cos θ0 sin(κz sin θ0)]

+ g(s)(m = κ sin θ0)[ex sin θ0 sin(κz sin θ0) sign x + iez cos θ0 cos(κz sin θ0)]} dκ.
(5.19)

The boundary layer is given by

ub = −(
√

2kb)
n−1

2 sin2 θ0
ez exp(−iω0t)(sign x)ng′(z)

× exp(−kb|x |) exp
{
−i

[
kb|x | − (n − 1)

π

4

]}
, (5.20)

where

kb =
(ω0

2ν

)1/2
tan θ0, (5.21)

implying the same structure as for a horizontal source.

5.3. Relevance
At this stage, no assumption has been made regarding the actual boundary condition at
the source. The aim was to point out that, in a viscous fluid, when forcing takes place at a
line, in the form (5.3), the solution of the wave equation contains not only waves but also a
boundary layer, and to highlight how stratification affects this layer. In particular, when the
line is horizontal, the layer thickness, 1/kb say, is the same penetration depth (2ν/ω0)

1/2

as in a homogeneous fluid according to (5.17); when the line is inclined, it varies with the
angle of propagation of the waves according to (5.12), becoming (5.21) when the line is
vertical.

In practice, the actual mechanism by which the waves are generated is the imposition
of a no-slip condition at a rectilinear boundary. Accordingly, the representation of the
forcing arises as a consequence of solving the full boundary-value problem, not as an
ingredient of its formulation; in other words, the knowledge of the boundary layer is a
prerequisite for the representation of the forcing, not the other way round. Consider a plate
or a disc. When its oscillations are broadside, forcing becomes free-slip in the limit of a
large Stokes number ω0a2/ν � 1. For a horizontal disc, Davis & Llewellyn Smith (2010)
have shown that, in this limit, the force exerted on the disc approaches its inviscid value.
In these circumstances, the forcing can be represented by a distribution of mass sources
taken from inviscid (but stratified) flow theory. When the oscillations are edgewise, forcing
is no-slip and wave generation is entirely attributable to viscosity. For a two-dimensional
inclined plate, Chashechkin & Kistovich (1997) and Kistovich & Chashechkin (1999a,b)
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Near-field internal wave beams in two dimensions 900 A3-21

have considered the possibility of representing the plate by a distribution of force sources
taken from homogeneous (but viscous) flow theory. They found that, although the waves
and the boundary layer have identical structures for the force sources and for the actual
boundary condition, their amplitudes are different, especially in the pathological cases
ϕ0 = ±(π/2 − θ0).

The particular case of a two-dimensional horizontal boundary has been considered by
Hurley & Hood (2001) and Renaud & Venaille (2019). When the same vertical velocity is
imposed on both sides of the boundary, corresponding to the oscillations of a rigid plate,
the present analysis for n = 1 yields a boundary layer of the same order as the waves; the
same conclusion has been reached by Hurley & Hood (2001) using a free-slip boundary
condition. When a given vertical velocity profile is imposed on part of an otherwise fixed
boundary, as for the wave generator in § 8.3, and the image of the profile through this
boundary is added, the present analysis for n = 0 predicts that the boundary layer is
negligible compared with the waves; for an undulating horizontal wall, the boundary layer
has been found by Renaud & Venaille (2019) to be negligible compared with the waves
when a free-slip boundary condition is used, and of the same order as them when a no-slip
condition is used.

6. Alternative approaches

It follows from the preceding sections that, for a given source function f (x, z), different
expressions of the waves may be obtained, depending on the direction along which the
residue theorem is applied in the wavenumber plane. Each expression has a domain
of validity set by the extent of the source along that direction, the various expressions
becoming equivalent wherever their domains of validity intersect. We investigate some
expressions in the present section.

6.1. Inclined source
Consider first the characteristic coordinates (x±, z±) as in § 2, and integrate over m± to get

u = exp(−iω0t)
4π

∑
±

ez± sign z±

∫ ∞

0
f±(k± = ±κ sign z±,m± = iβκ3 sign z±)

× exp(−βκ3|z±|) exp(±iκx± sign z±) dκ. (6.1)

If the support of the source is circular of radius a, such that f±(x±, z±) = 0 for |z±| > a,
this result is valid when both |z+| > a and |z−| > a. If the support is elliptic of semi-axes
a and b, such that f±(x±, z±) = 0 for |z±| > [a2 sin2(θ0 ± ϕ0)

2 + b2 cos(θ0 ± ϕ0)
2]1/2,

the result becomes valid when both |z+| > [a2 sin2(θ0 + ϕ0)
2 + b2 cos(θ0 + ϕ0)

2]1/2 and
|z−| > [a2 sin2(θ0 − ϕ0)

2 + b2 cos(θ0 − ϕ0)
2]1/2.

Alternatively, consider the original Cartesian coordinates (x0, z0) as in § 5, and integrate
over m0 to get

u = exp(−iω0t)
4π

sign z0

∑
±

ez± sign cos(θ0 ± ϕ0)

∫ ∞

0
f0(k0 = k′

0,m0 = m′
0)

× exp
[
− βκ3|z0|

| cos(θ0 ± ϕ0)|
]

exp[±iκx± sign cos(θ0 ± ϕ0) sign z0] dκ, (6.2)
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900 A3-22 B. Voisin

where

k′
0 = ±κ| cos(θ0 ± ϕ0)| sign z0, (6.3a)

m′
0 = −κ sin(θ0 ± ϕ0) sign cos(θ0 ± ϕ0) sign z0 + i

βκ3 sign z0

| cos(θ0 ± ϕ0)| . (6.3b)

This result corresponds to a source contained inside the strip |z0| < b, such that
f0(x0, z0) = 0 for |z0| > b, and is valid outside this strip for |z0| > b.

6.2. Source with horizontal and vertical axes
The relation between the different expressions of the waves is tedious to investigate in
the general case, owing to the number of possibilities to consider depending on the value
of ϕ0 compared with ±θ0 and ±(π/2 − θ0). With future application to § 8.1 in mind, we
consider the particular case of a source of horizontal semi-axis a and vertical semi-axis b,
and focus on expressions (4.26) and (6.2). For the former, we set ϕ0 = 0. The lengths c+
and c− merge into a single c, and d+ and d− into a single d, with

c = (a2 cos2 θ0 + b2 sin2 θ0)
1/2, d = (a4 cos2 θ0 + b4 sin2 θ0)

1/2

c
. (6.4a,b)

Similarly, Θ+ and Θ− merge into Θ0, and χ+ and χ− into χ0, with

Θ0 = arctan
(

b
a

tan θ0

)
, χ0 = arctan

(
b2

a2
tan θ0

)
. (6.5a,b)

Expression (4.26) becomes, for |ζ+| > ab/d and |ζ−| > ab/d,

u = exp(−iω0t)
4π

∑
±

ez± sign ζ±

∫ ∞

0
F±

(
K± = ±κc sign ζ±,M± = iβκ3 ab

c
sign ζ±

)

× exp
(

−βκ3 d
c
|ζ±|

)
exp(±iκx± sign ζ±) dκ, (6.6)

where
d
c
ζ± = ±x

b2

c2
sin θ0 + z

a2

c2
cos θ0. (6.7)

For (6.2), we set first ϕ0 = π/2 to obtain, for |x | > a,

u = exp(−iω0t)
4π

sign x
∑

±
(±)ez±

∫ ∞

0
exp(−βκ3|x |/ sin θ0) exp(iκx± sign x)

× f [k = κ cos θ0 sign x + iβκ3 sign x/ sin θ0,m = ∓κ sin θ0 sign x] dκ, (6.8)

and then ϕ0 = 0 to obtain, for |z| > b,

u = exp(−iω0t)
4π

sign z
∑

±
ez±

∫ ∞

0
exp(−βκ3|z|/ cos θ0) exp(±iκx± sign z)

× f [k = ±κ cos θ0 sign z,m = −κ sin θ0 sign z + iβκ3 sign z/ cos θ0] dκ. (6.9)

The relations between these expressions follow from the low-viscosity assumption
β/c2 � 1. Consider (6.6), where the condition |K±| = κc = O(1) implies that βκ2 � 1.
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Near-field internal wave beams in two dimensions 900 A3-23

In the sectors b2|x | sin θ0 > a2|z| cos θ0, where sign ζ± = ± sign x , the change of variable

κ ′ = κ − iβκ3 a2

c2
cot θ0 (6.10)

maps, to leading order, the path of integration onto itself and reduces (6.6) to (6.8). In the
sectors b2|x | sin θ0 < a2|z| cos θ0, where sign ζ± = sign z, the change of variable

κ ′ = κ + iβκ3 b2

c2
tan θ0 (6.11)

reduces (6.6) to (6.9). Such changes of variable were first introduced by Kistovich &
Chashechkin (1994, 1995).

6.3. Relevance
Several equivalent expressions of the waves have been obtained, showing that the
incompatibility highlighted in figure 3 was only apparent. At each location two wave
beams are received, corresponding to two half-arms of the wavenumber curve. The
separation line between the beams originating from the two halves of each arm, and the
attenuation of the waves at each wavenumber in proportion to the distance to this line, are
all artifacts of the way the waves are calculated. When the beams are properly superposed,
the three approaches illustrated in figure 3(a–c), corresponding to (6.1), (6.9) and (6.6),
respectively, yield identical results in their common areas of validity. Each expression is
better suited to a particular type of source: (6.1) to a circular source; (4.26) and (6.6) to an
elliptic source; (6.2), (6.8) and (6.9) to a source contained in a strip; and (5.9), (5.15) and
(5.19) to a line source. Before applying these expressions to specific sources and comparing
them with experiment, we briefly consider unsteady effects.

7. Unsteady effects

In laboratory experiments, depending on the setup, it may not be possible to wait
long enough, after the source of the waves has started to operate, for a steady state
to be reached. Unsteady effects are observed, which must be taken into account when
comparing with the theory (Ermanyuk & Gavrilov 2005; Voisin, Ermanyuk & Flór 2011).
A simple way of achieving this aim is to consider impulsive start-up, namely to write
q = f (x, z)H(t) exp(−iω0t), with H(t) = 0 for t < 0 and 1 for t > 0 the Heaviside step
function, and investigate the large-time limit Nt � 1. This procedure has been outlined by
Lighthill (1960).

Neglecting viscosity and using the transform, taken from table 5 of Voisin (2003),

∫ ∞

0
eiωt dt = i

ω + i0
= lim

ε→0+

i
ω + iε

, (7.1)

we obtain

u = 1
8π3

lim
ε→0+

∫∫∫
ω2k − N2kex

ω2κ2 − N2k2

f (k,m)
ω − ω0 + iε

exp[i(kx + mz − ωt)] dk dm dω. (7.2)
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For large times Nt � 1, the dominant asymptotic contribution to this inverse transform
arises from an O(1/t) vicinity of the singular frequency ω = ω0 − iε, yielding

u ∼ 1
8π3

lim
ε→0+

∫
dω

exp(−iωt)
ω − ω0 + iε

∫∫
dk dm f (k,m) exp[i(kx + mz)]

× mez cos2 θ0 − kex sin2 θ0 + 2[(ω − ω0 + iε)/N]k cos θ0

m2 cos2 θ0 − k2 sin2 θ0 + 2[(ω − ω0 + iε)/N]κ2 cos θ0
, (7.3)

where |ω − ω0 + iε|/N = O[1/(Nt)] � 1. The resulting dispersion relation

B(ω + iε,k) ∼ N2

[
m±m∓ + 2

ω − ω0 + iε
N

(k2
± + m2

±) cos θ0

]
= 0 (7.4)

is of the same form as (2.13) including Lighthill’s radiation condition. Proceeding as in
§ 4.1, we obtain the poles

M± ∼ ±ab
c2±

ω − ω0 + iε
N sin θ0

K±, (7.5)

of which the appropriate deformation of contour selects

M± ∼ ab
c2±

ω − ω0 + iε
N sin θ0

|K±| sign Z± with sign K± = ± sign Z±. (7.6)

Applying the residue theorem to integration over M±, and the inverse transform

lim
ε→0+

∫
e−iωt

ω + iε
dω =

∫
e−iωt

ω + i0
dω = 2πH(t), (7.7)

to integration over ω, the result only differs from (4.16) by the inclusion of a factor

H
(

t − ab
c2±

|K±Z±|
N sin θ0

)
= H

(
1 − ακ

d±
c±

|ζ±|
)

(7.8)

inside the integrand, with

α = 1
Nt sin θ0

. (7.9)

To leading order, viscosity and unsteadiness are seen to induce independent low-pass
cutoff factors, respectively exponential and step-like, in the integral expression of the
waves. Accordingly, their effects can be simply superposed yielding, for |ζ+| > ab/d+
and |ζ−| > ab/d−,

u = exp(−iω0t)
4π

∑
±

ez± sign ζ±

∫ ∞

0
F±

(
K± = ±κc± sign ζ±,M± = iβκ3 ab

c±
sign ζ±

)

× H
(

1 − ακ
d±
c±

|ζ±|
)

exp
(

−βκ3 d±
c±

|ζ±|
)

exp(±iκx± sign ζ±) dκ. (7.10)

The alternative expressions of the waves for bluff forcing in § 6 and the expressions for
line forcing in § 5 can easily be modified in the same way.
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8. Applications

The analysis of the preceding sections is now applied to four oscillating bodies: an
elliptic cylinder, a vertical barrier, a wave generator and a thin topography. Experimental
measurements are available for all of them, to which the theory can be compared. All
measurements were made once a steady state had been reached, removing the need for
the unsteady correction of § 7. On the assumption of a large Stokes number, the viscous
boundary layer around the body is negligible and the boundary condition approximately
free-slip. The first body is of the bluff type considered in §§ 4 and 6, and the next three of
the line type considered in § 5.

8.1. Elliptic cylinder
For a long time, following the pioneering experiments of Mowbray & Rarity (1967), the
preferred way of generating monochromatic internal waves in the laboratory has been the
oscillations of a horizontal circular cylinder. Hurley (1997) and Hurley & Keady (1997)
calculated the waves analytically, and Sutherland et al. (1999, 2000) and Zhang et al.
(2007) compared their predictions with experiment, the latter paying particular attention to
the near field. Winters & Armi (2013) investigated the flow numerically. For this particular
geometry, the present theory and the Hurley–Keady theory yield identical results.

The same is not true for the elliptic cylinder. The predictions of Hurley (1997) and
Hurley & Keady (1997) were compared with experiment by Sutherland & Linden (2002),
for the case when the elliptic cross-section has horizontal and vertical axes. To apply the
present theory to this configuration, a representation of the cylinder as a source of mass is
required. It is obtained by combining the boundary integral method with the method, based
on coordinate stretching and analytic continuation, introduced by Bryan (1889) for inertial
waves and Hurley (1972) for internal waves. The derivation will be reported elsewhere; a
summary may be found in Voisin (2009) for a sphere.

An elliptic cylinder of horizontal semi-axis a and vertical semi-axis b, oscillating at the
velocity (U,W) e−iω0t, has the representation

f (x, z) =
[(

1 + i
b
a

tan θ0

)
U

x

a2
+

(
1 − i

a
b

cot θ0

)
W

z
b2

]
δ

[(
x2

a2
+ z2

b2

)1/2

− 1

]
,

(8.1)

of spectrum

f (k,m) = −2iπab
[(

1 + i
b
a

tan θ0

)
Uk +

(
1 − i

a
b

cot θ0

)
Wm

]
J1[(k2a2 + m2b2)1/2]
(k2a2 + m2b2)1/2

,

(8.2)

with J1 a Bessel function. At this stage two remarks must be made. First, the spectrum
may only be derived from known integrals for real wavenumbers k and m, and the result
has been continued analytically to complex wavenumbers. Second, with the source being
a distribution of order 0 rather than a proper function, the analysis of §§ 4 and 6 has been
extended as discussed in appendix A, with identical results.

We introduce, as did Hurley (1997), the notation

α± = eiΘ0

2

(
a
c

W ∓ i
b
c

U
)

= (a cos θ0 + ib sin θ0)(aW ∓ ibU)
2c2

, (8.3)
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such that
f±(k±,m± = 0) = ±4πcα± J1(k±c). (8.4)

When using (6.6), the viscous correction to the wavenumber inside the source spectrum
is of the second order in the small parameter β/c2, since k2a2 + m2b2 = K2

± + M2
± with

|K±| = κc = O(1) and |M±| = O(βκ2) = O(β/c2). It is thus negligible. We obtain, for
|ζ+| > ab/d and |ζ−| > ab/d,

u = c exp(−iω0t)
∑

±
α±ez±

∫ ∞

0
J1(κc) exp

(
−βκ3 d

c
|ζ±|

)
exp(±iκx± sign ζ±) dκ.

(8.5)
By contrast, when using the other expressions, the viscous correction is of the first
order inside the source spectrum, hence significant. We obtain from (6.1), for |z+| >
(a2 sin2 θ0 + b2 cos2 θ0)

1/2 and |z−| > (a2 sin2 θ0 + b2 cos2 θ0)
1/2,

u = c exp(−iω0t)
∑

±
α±ez±

∫ ∞

0
J1

(
κc + iβκ3 a2 − b2

c
sin θ0 cos θ0

)

× exp(−βκ3|z±|) exp(±iκx± sign z±) dκ, (8.6)

and similarly from (6.8), for |x | > a,

u = exp[−i(ω0t −Θ0)]
∫ ∞

0
J1

(
κc + iβκ3 a2

c
cot θ0

)
exp(−βκ3|x |/ sin θ0)

× exp(iκ|x | cos θ0){ez cos θ0[aW cos(κz sin θ0)− bU sin(κz sin θ0) sign x]

− iex sin θ0[aW sin(κz sin θ0) sign x + bU cos(κz sin θ0)]} dκ, (8.7)

and from (6.9), for |z| > b,

u = exp[−i(ω0t −Θ0)]
∫ ∞

0
J1

(
κc − iβκ3 b2

c
tan θ0

)
exp(−βκ3|z|/ cos θ0)

× exp(−iκ|z| sin θ0){ez cos θ0[aW cos(κx cos θ0)+ bU sin(κx cos θ0) sign z]

+ iex sin θ0[aW sin(κz cos θ0) sign z − bU cos(κz cos θ0)]} dκ. (8.8)

The classical theory of Hurley & Keady (1997) corresponds to applying (8.6) everywhere
while omitting the viscous correction inside the Bessel function.

Now, as discussed in § 2.1, the above domains of applicability are those for which the
validity of the results has been ascertained for a generic elliptic source, based on bounds
such as (2.20) and (4.13). If we consider instead the convergence of the above integrals
for the elliptic cylinder, larger domains are obtained, starting from the lines where the
coordinates involved in beam separation and viscous attenuation take their values at the
critical points where the critical wave rays are tangential to the cylinder. Specifically, (8.5)
converges everywhere, (8.6) for

|z+| > |a2 − b2|
c

sin θ0 cos θ0 and |z−| > |a2 − b2|
c

sin θ0 cos θ0, (8.9a,b)

(8.7) for

|x | > a2

c
cos θ0, (8.10)
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and (8.8) for

|z| > b2

c
sin θ0. (8.11)

These domains remain relevant even in the absence of viscosity, if the infinitesimal
imaginary part ε added to the frequency by the radiation condition is kept during the
whole calculation and the limit ε → 0 applied only at the very end.

In the inviscid case, the Fourier transform∫ ∞

0
J1(k) exp(ikx) dk = 1 − x

[(x + i0)2 − 1]1/2
, (8.12)

taken from table 5 of Voisin (2003), turns (8.5) into

u = exp(−iω0t)
∑

±
α±ez±

{
1 − x±

[(x± ± i0 sign ζ±)2 − c2]1/2

}
, (8.13)

and similarly for (8.6), (8.7) and (8.8) with sign ζ± replaced by sign z±, sign x and sign z,
respectively. Solution (8.13) is identical to equations (3.28) and (3.29) from Hurley (1997).
At the cylinder, we introduce the eccentric angle η such that

x = a cos η, z = b sin η, (8.14a,b)

to obtain

x± = c cos(η ±Θ0), ζ± = ab
d

sin(η ±Θ0). (8.15a,b)

The solution becomes

u = exp(−iω0t)
∑

±
α±ez±[1 ± i cot(η ±Θ0)], (8.16)

and satisfies the free-slip boundary condition at the cylinder,

n · u = n · (Uex + Wez) exp(−iω0t), (8.17)

where the outward normal n is given by

n = bex cos η + aez sin η
(a2 sin2 η + b2 cos2 η)1/2

. (8.18)

Accordingly, (8.13) applies everywhere in the fluid. For the other solutions, we write

x

[(x ± i0)2 − 1]1/2
= |x |

|x2 − 1|1/2 (|x | > 1), (8.19a)

= ∓i
x

|1 − x2|1/2 (|x | < 1). (8.19b)

All four solutions are identical outside the wave beams for |x±| > c. Inside the beams, for
|x±| < c, the solutions (8.6), (8.7) and (8.8) are valid wherever z±, x and z have the same
sign as ζ±, that is, for (8.9), (8.10) and (8.11), respectively.

Consistent with (8.19b), the velocity is discontinuous across the portion |x±| < c of the
beam separation lines and singular at their extremities |x±| = c, where the lines intersect
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900 A3-28 B. Voisin

the critical rays. The discontinuity persists in the presence of viscosity, since the effect
of viscosity vanishes at the separation lines. When (8.5) is used, the separation lines are
ζ± = 0 and the discontinuity takes place in between the critical points [|x | = (a2/c) cos θ0,
|z| = (b2/c) sin θ0], that is, inside the cylinder. When (8.6) is used, the separation lines are
z± = 0 and the discontinuity penetrates into the fluid, up to the points (|x | = c cos θ0,

|z| = c sin θ0). When (8.7) is used, the discontinuity extends along the line x = 0 up to
|z| = c/ sin θ0 inside the fluid, and similarly when (8.8) is used it extends along the line z =
0 up to |x | = c/ cos θ0. Once the domains of validity (8.9)–(8.11) are taken into account,
the discontinuities become irrelevant.

Sutherland & Linden (2002) considered the vertical oscillations of two elliptic cylinders:
one with horizontal semi-axis a = 2.10 cm, vertical semi-axis b = 1.12 cm and aspect
ratio a/b ≈ 2; the other with horizontal semi-axis a = 2.52 cm, vertical semi-axis b =
0.86 cm and aspect ratio a/b ≈ 3. These dimensions were chosen so as to keep the average
radius (a + b)/2 approximately the same, close to 1.67 cm. Synthetic schlieren was used
to measure the time derivative of the buoyancy frequency disturbance, N2

t = −N2∂w/∂z.
The outcome was compared with the predictions of Hurley & Keady (1997). The buoyancy
frequency was N = 0.97 s−1. The kinematic viscosity was not specified and has been taken
as ν = 1 mm2 s−1.

Choosing, as did Sutherland & Linden (2002), the phase of the oscillation φ = ω0t
to be zero at the instant when the cylinder moves downwards through the midpoint of
its oscillation, and introducing the (real positive) oscillation amplitude A, we write the
position of the cylinder as Re[−iAez exp(−iω0t)], so that W = −ω0A. Normalizing with

AN2
t
= N3 aA

2c2
sin θ0 cos2 θ0, (8.20)

we obtain

N2
t

AN2
t

= −ic2 exp[−i(ω0t −Θ0)]
∫ ∞

0
κ J1(κc)

×
∑

±
sign ζ± exp

(
−βκ3 d

c
|ζ±|

)
exp(±iκx± sign ζ±) dκ (8.21)

valid everywhere;

N2
t

AN2
t

= −ic2 exp[−i(ω0t −Θ0)]
∫ ∞

0
κ J1

(
κc + iβκ3 a2 − b2

c
sin θ0 cos θ0

)

×
∑

±
sign z± exp(−βκ3|z±|) exp(±iκx± sign z±) dκ (8.22)

valid for |z+| > (|a2 − b2|/c) sin θ0 cos θ0 and |z−| > (|a2 − b2|/c) sin θ0 cos θ0;

N2
t

AN2
t

= −2c2 exp[−i(ω0t −Θ0)]
∫ ∞

0
κ J1

(
κc + iβκ3 a2

c
cot θ0

)

× exp(−βκ3|x |/ sin θ0) exp(iκ|x | cos θ0) sin(κz sin θ0) dκ (8.23)
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valid for |x | > (a2/c) cos θ0; and

N2
t

AN2
t

= −2ic2 exp[−i(ω0t −Θ0)]
∫ ∞

0
κ J1

(
κc − iβκ3 b2

c
tan θ0

)

× sign z exp(−βκ3|z|/ cos θ0) cos(κx cos θ0) exp(−iκ|z| sin θ0) dκ (8.24)

valid for |z| > (b2/c) sin θ0. The classical theory of Hurley & Keady (1997) gives

(
N2

t

AN2
t

)
c

= −ic2 exp[−i(ω0t −Θ0)]
∫ ∞

0
κ J1(κc)

×
∑

±
sign z± exp(−βκ3|z±|) exp(±iκx± sign z±) dκ. (8.25)

The relevant non-dimensional parameters are the Stokes number St = ω0(a + b)2/(4ν)
and the Keulegan–Carpenter number Ke = 2A/(a + b).

We focus on figures 8–10 of Sutherland & Linden (2002), corresponding to the range
of parameters for which no second harmonic wave is generated and the waves are close to
linear. The waves were measured for A = 0.32 cm in the first quadrant, where the dominant
beam propagates upward to the right. The along-beam profiles at the beam axis x+ = 0
in their figure 9 and the across-beam profile at distance z+ = 20 cm in their figure 10
essentially belong to the far field, namely to distances from the cylinder larger than one
to three times its average radius say; there, the preceding expressions all coincide with
one another and with the Hurley–Keady theory. We switch instead to the contour maps in
their figure 8. Application of the present ‘best’ expression (8.21) is shown in figure 5. In
the far field, where (8.21) and the Hurley–Keady theory (8.25) yield identical results, the
agreement with experiment is good.

The differences between the theories appear in the near field, shown in figure 6. To better
illustrate the underlying structure, the waves have been plotted both inside and outside
the cylinder. The present theory (8.21) predicts singularities at the critical points, visible
as maxima in Sutherland’s & Linden’s (2002) figure 8, especially subfigures (c,d). By
contrast, the Hurley–Keady theory (8.25) puts the singularities closer to the vertical, inside
the fluid and connected to the cylinder by segments of discontinuity.

The relation between all four solutions (8.21)–(8.24) is illustrated in figures 7 and 8 for
the largest and smallest angles of propagation to the vertical, corresponding to figures 8(a)
and 8(d) of Sutherland & Linden (2002), respectively. When viscosity is not taken into
account in the source spectrum, the critical points are put inside the fluid by the last three
solutions, connected to the cylinder by segments of discontinuity, and the solutions exhibit
significant differences with one another. When viscosity is taken into account, all four
solutions predict the correct positions of the critical points and are in close agreement
with one another in their common domains of validity.

The remaining small discrepancies are caused by the finite value of St. Consistent
with § 6.2, when the waves propagate closer to the horizontal in figure 7, the region
b2|x | sin θ0 > a2|z| cos θ0 is more extended and the solution (8.23) provides the best
approximation to (8.21). When the waves propagate closer to the vertical in figure 8,
the region b2|x | sin θ0 < a2|z| cos θ0 is more extended and (8.24) provides the best
approximation. Accordingly, (8.23) and (8.24) offer simpler alternatives to (8.21), relevant
at low and high frequencies, respectively. The solution (8.22) does not seem to offer any
particular advantage over (8.21).
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FIGURE 5. Contour maps of |N2
t |/AN2

t
, as predicted by (8.21), for the oscillations at relative

frequencies (a) ω0/N = 0.15, (b) ω0/N = 0.26, (c) ω0/N = 0.35 and (d) ω0/N = 0.44 of
the elliptic cylinder of aspect ratio a/b ≈ 3 in figure 8 of Sutherland & Linden (2002). The
waves propagate at the angles (a) θ0 = 81◦, (b) θ0 = 75◦, (c) θ0 = 70◦ and (d) θ0 = 64◦ to
the vertical, with Stokes numbers (a) St = 42, (b) St = 72, (c) St = 97 and (d) St = 120, and
Keulegan–Carpenter number Ke = 0.19. The white areas correspond to off-scale values of the
plotted quantity.

8.2. Vertical barrier
The first study of monochromatic internal waves in the laboratory, by Görtler (1943), used
the horizontal oscillations of a vertical plate. The plate was thick, piercing through the
surface of the fluid down a depth b = 6 mm and having a width 2a of the same order.
As a consequence, a vortex patch formed along the edge of the plate, with diameter
roughly equal to its width, affecting wave generation significantly. Several decades later,
Peacock et al. (2008) repeated these investigations in a more controlled setting, using a
thin plate of height b = 16.5 mm and width 2a = 1.28 mm, mounted on a rigid bottom in
a fluid of buoyancy frequency N = 1.18 s−1 and kinematic viscosity ν = 1.10 mm2 s−1.
The oscillations had amplitude A = 0.88 mm and frequency ω0 = 0.836 s−1,
yielding the Stokes number St = ω0b2/ν = 210 and Keulegan–Carpenter number
Ke = A/b = 0.05.
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FIGURE 6. Near field for figure 5 at (a,b) ω0/N = 0.15, (c,d) ω0/N = 0.26, (e, f ) ω0/N = 0.35
and (g,h) ω0/N = 0.44, using (a,c,e,g) the classical theory (8.25) and (b,d, f,h) the present theory
(8.21). The waves are calculated both inside and outside the cylinder, whose outline is shown
dashed.
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FIGURE 7. Near field for figure 5(a), using (8.21) in (a,b), (8.22) in (c,d), (8.23) in (e, f ) and
(8.24) in (g,h), ignoring the viscous correction in the argument of the Bessel function J1 in
(a,c,e,g) and taking it into account in (b,d, f,h). The regions excluded by the conditions (8.9),
(8.10) and (8.11) for the convergence of the integrals are shown in red in (d), (f ) and (h),
respectively.
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FIGURE 8. Near field for figure 5(d). The mode of representation is the same as in figure 7.
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FIGURE 9. Contour map of ΔN2 (in s−2) at phase φ = 0, as predicted by (8.31), for the vertical
barrier in figure 8 of Peacock et al. (2008). The waves propagate at the angle θ0 = 45◦ to the
vertical. The white areas correspond to off-scale values of the plotted quantity.
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FIGURE 10. Near field for figure 9, using (a) the classical theory (8.33) and (b) the present
theory (8.31). The outline of the barrier is shown dashed.

The high aspect ratio b/a ≈ 26 allows the plate to be considered as a knife edge, while
the presence of the rigid bottom adds the image of the edge through the line z = 0, hence
turning the plate into the limit as a → 0 of the elliptic cylinder. Its representation follows
as

f (x, z) = −2iU tan θ0δ
′(x)H(b − |z|)(b2 − z2)1/2, (8.26)

with spectrum

f (k,m) = 2πbU tan θ0
k
m

J1(mb). (8.27)
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The theory of § 5.2 gives waves

u = bU exp(−iω0t)
∫ ∞

0
J1(κb sin θ0) exp(−βκ3|x |/ sin θ0) exp(iκ|x | cos θ0)

× [ex cos(κz sin θ0) sin θ0 − iez sin(κz sin θ0) cos θ0 sign x] dκ, (8.28)

and a boundary layer

ub = iUez exp(−iω0t)
sign x

sin θ0 cos θ0
H(b − |z|) z

(b2 − z2)1/2
exp(−kb|x |) exp(−ikb|x |),

(8.29)
with kb as in (5.21), while the classical theory of Hurley & Keady (1997) gives waves

uc = bU
2

exp(−iω0t)
∑

±
(ex sin θ0 ± ez cos θ0)

×
∫ ∞

0
J1(κb sin θ0) exp(−βκ3|z±|) exp(±iκx± sign z±) dκ, (8.30)

and no boundary layer.
Peacock et al. (2008) used synthetic schlieren to measure the buoyancy frequency

disturbance ΔN2 = −i(N2/ω0)(∂w)/(∂z), and compared the outcome with the predictions
of Hurley & Keady (1997). Choosing, as they did, the phase of the oscillation φ = ω0t
to be zero at the instant when the plate moves right to left through the midpoint of its
oscillation, we write the position of the plate as Re[−iAex exp(−iω0t)], so that U = −ω0A.
The present theory gives waves

ΔN2

N2
= bA exp(−iω0t) sin θ0 cos θ0 sign x

∫ ∞

0
κ J1(κb sin θ0)

× exp(−βκ3|x |/ sin θ0) exp(iκ|x | cos θ0) cos(κz sin θ0) dκ, (8.31)

and a boundary layer(
ΔN2

N2

)
b
= −A

b
exp(−iω0t)

sign x

sin θ0 cos θ0

H(b − |z|)
[1 − (z/b)2]3/2

exp(−kb|x |) exp(−ikb|x |),
(8.32)

while the Hurley–Keady theory gives only waves(
ΔN2

N2

)
c
= bA

2
exp(−iω0t) sin θ0 cos θ0

∑
±
(±) sign z±

×
∫ ∞

0
κ J1(κb sin θ0) exp(−βκ3|z±|) exp(±iκx± sign z±) dκ. (8.33)

As for the elliptic cylinder in § 8.1, the transverse profiles at cross-sections z+ = 3b and
10b in figure 7 of Peacock et al. (2008) belong to the far field, where the present theory and
the Hurley–Keady theory exhibit no significant difference. We consider instead the contour
map in their figure 6, and plot the outcome of the present theory in figure 9. The agreement
with experiment is good, especially in the far field. A close-up of the near field is shown in
figure 10: the discontinuity of the Hurley–Keady theory across the portion |x±| < b sin θ0
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FIGURE 11. Contour maps of ΔN2 (in s−2) for the boundary layer (8.32), shown either (a) in
isolation or (b) in combination with the waves (8.31), in the same conditions as for figure 10.

of the beam separation lines z± = 0 is strikingly visible, whereas the present theory keeps
the discontinuity at the knife edge (x = 0, 0 < z < b).

Figure 11 shows the effect of adding the boundary layer (8.32): singularities spread
through the fluid at the level z = b of the tip of the knife edge. This unphysical behaviour
illustrates the singular nature of the low-viscosity limit St → ∞, such that no free-slip
regime is reached at the horizontal line z = b through the tip; there, however large St
can be, a no-slip solution of the equations of motion is required. The interested reader
may check that the same inverse square root singularity of the velocity is obtained for
the broadside oscillations of a horizontal disc at the vertical cylinder through the rim of
the disc, when the large-St behaviour of the no-slip solution of Davis & Llewellyn Smith
(2010) is considered.

8.3. Wave generator
A major breakthrough for the laboratory study of internal waves has been the design of a
wave generator by Gostiaux et al. (2007) and Mercier et al. (2010), allowing the imposition
of an arbitrary wave profile at a plane boundary. In the original design, the profile was
discretized as a camshaft-driven stack of plates; this design has since been improved and
applied worldwide to a variety of problems, such as those described in the reviews by
Dauxois et al. (2018) and Sibgatullin & Ermanyuk (2019). Alternative designs have also
been developed, in which each generating element, either plate, bar or rod, is controlled
by an individual motor. In one design, called GOAL (generator of oscillations as you like),
the elements are in direct contact with the fluid (Dossmann et al. 2016, 2017; Brunet,
Dauxois & Cortet 2019); in another, called ASWaM (arbitrary spectrum wave maker),
they operate behind a neoprene sheet smoothing out the discretization (Dobra, Lawrie &
Dalziel 2019).

Imposition of the velocity profile w0(x0) on the positive side of a line z0 = 0, inclined at
the angle ϕ0 to the horizontal, and additional imposition, on the negative side of the line,
of the image of the profile through this line, so as to transform the problem into one over
the whole plane, yield a velocity discontinuity 2w0(x0) at z0 = 0, hence a source of mass

f0(x0, z0) = 2w0(x0)δ(z0), f0(k0,m0) = 2w0(k0). (8.34a,b)
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Near-field internal wave beams in two dimensions 900 A3-37

Both waves and a boundary layer are produced, given by the formulae of § 5. According to
them, the boundary layer is of the same order as the waves when the generator is inclined,
and negligible compared with the waves when the generator is horizontal or vertical. As
previously discussed, such a prediction of a boundary layer based on a free-slip boundary
condition is questionable. Beckebanze et al. (2019) discussed the appropriate condition at
a vertical wave generator and concluded that the boundary layer may be neglected and a
free-slip condition used.

One of the experiments by Mercier et al. (2010) aimed at reproducing the self-similar
wave beam, propagating downward to the right, generated in a viscous fluid by a point
dipole source at (x− = 0, z− = l). In this beam, calculated by Thomas & Stevenson (1972)
and Machicoane et al. (2015), the fluid velocity can be written as

uc = − 3U
Γ (2/3)

ez− exp(−iω0t)
(

l
l − z−

)2/3

(c2 + is2)

{
x−

[β(l − z−)]1/3

}
, (8.35)

where the real functions cμ and sμ, defined as

(cμ + isμ)(x) =
∫ ∞

0
kμ−1 exp(−k3) exp(ikx) dk, (8.36)

and such that (cμ + isμ)(0) = Γ (μ/3)/3, have been introduced independently by
Moore & Saffman (1969) for rotating fluids and Thomas & Stevenson (1972) for stratified
fluids, with different notations, and their properties studied in greater detail by Voisin
(2003) and Le Dizès & Le Bars (2017).

The aim of the experiment was to impose the profile (8.35) along the line z− = 0, setting
this profile such that the distance l to the virtual source was large enough for the beam
to have reached self-similarity already, and then to check whether the resulting waves
evolved according to (8.35). To avoid having to reconfigure the generator to be along the
line z− = 0 for each frequency of oscillation, the generator was positioned vertically and
the profile u(x = 0, z) = −uc(x− = z, z− = 0) · ez− imposed along it, assuming the angle
of propagation π/2 − θ0 to the horizontal to be small enough for the approximation to be
valid. The forcing becomes

g(z) = 4U
Γ (2/3)

(c2 + is2)

[
z

(βl)1/3

]
, g(m) = 12πU

Γ (2/3)
(βl)2/3H(m)m exp(−βlm3),

(8.37a,b)

and the waves follow as

u = − 3U
Γ (2/3)

ez− exp(−iω0t)
l2/3 sin5/3 θ0

(x + l sin4 θ0)2/3
(c2 + is2)

{
x−

[
sin θ0

β(x + l sin4 θ0)

]1/3
}
.

(8.38)

The experiment took place in a fluid of buoyancy frequency N = 0.82 s−1. The kinematic
viscosity was not specified and has been taken as ν = 1 mm2 s−1. The virtual origin was at
l = 44 cm, determined from a fit to figure 2(a) of Mercier et al. (2010), and the amplitude
of oscillation was A = 10 mm. The phase of the oscillation φ = ω0t was chosen to be
zero at the instant when the central plate of the generator was at the rightmost point of its
oscillation, yielding Re[Aex exp(−iω0t)] for the position of the plate, so that U = −iω0A.
Matching numerical simulations were also performed.
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FIGURE 12. Contour maps of B (in mm s−2) at phase φ = 0 for the wave generator in the ‘wave
beam’ experiment in figure 12 of Mercier et al. (2010), using (a) the Thomas–Stevenson profile
(8.39) and (b) the present profile (8.40).

The plotted quantity was the buoyancy disturbance B = −gρ/ρ0 = −i(N2/ω0)w, for
which the Thomas–Stevenson approach gives

Bc

N2A
= 3 cos θ0

Γ (2/3)
exp(−iω0t)

(
l

l − z−

)2/3

(c2 + is2)

{
x−

[β(l − z−)]1/3

}
, (8.39)

and the present approach gives

B
N2A

= 3 cos θ0

Γ (2/3)
exp(−iω0t)

l2/3 sin5/3 θ0

(x + l sin4 θ0)2/3
(c2 + is2)

{
x−

[
sin θ0

β(x + l sin4 θ0)

]1/3
}
.

(8.40)

Figures 12 and 13 of Mercier et al. (2010) present measurements for oscillations at the
frequency ω0 = 0.20 s−1, corresponding to propagation at 14◦ to the horizontal. The
transverse profiles in their figure 13, measured at eleven cross-sections every 2 cm from
z− = −3 cm to z− = −23 cm, are all in the far field; this is because, with an across-beam
distance to the beam axis of at most 4.5 cm, corresponding to half the active region of the
generator, and an along-beam distance to the virtual origin of at least 44 cm, we are already
in the far field at the generator. As a result, the present theory is indistinguishable from the
Thomas–Stevenson theory, considered by Mercier et al. (2010), at those cross-sections.
This legitimates a posteriori the use of a vertical generator.

We focus instead on their figure 12, and present matching contour maps in the present
figure 12. The Thomas–Stevenson theory and the present theory only differ from each
other in the close vicinity of the generator, the latter giving slightly larger values. The
theory agrees with both experiments and simulations, the agreement being better with the
latter owing to the more controlled numerical conditions.

8.4. Thin topography
The main manifestation of monochromatic internal waves in the environment is the
internal or baroclinic tide, generated in the ocean by the oscillation of the barotropic tide
over bottom topography (Garrett & Kunze 2007). A convenient approximation, sometimes
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Near-field internal wave beams in two dimensions 900 A3-39

called ‘weak topography’, is the concept of a thin topography, that is, a topography of
infinitesimal slope. It has been introduced by Cox & Sandstrom (1962), developed by Bell
(1975a,b) and Llewellyn Smith & Young (2002), and applied to the global calculation of
the internal tide by St. Laurent & Garrett (2002), Nycander (2005), Melet et al. (2013),
Falahat et al. (2014) and Vic et al. (2019).

The approximation requires the topographic slope to be small compared with the slope
of the wave rays. Topographies are said to be subcritical if their slope is everywhere
smaller than the slope of the rays, and supercritical otherwise. For a two-dimensional
topography of profile h(x), Balmforth et al. (2002) introduced a ‘criticality
parameter’,

ε = max |h′(x)|
cot θ0

, (8.41)

and studied the validity of the approximation, in theory ε � 1, as ε increases from 0 to 1
for a variety of subcritical topographies. Among those was an isolated Gaussian bump.
In this respect, the elliptic cylinder of § 8.1 and the vertical barrier of § 8.2 are extreme
examples of supercritical topographies for which ε → ∞.

Consider the problem in the frame of reference of the barotropic tide. The topography
oscillates at the velocity (U, 0) exp(−iω0t) in an otherwise quiescent fluid with rigid
bottom at z = 0. Assuming the topography to be thin, the free-slip boundary condition
simplifies to w = −Uh′(x) at z = 0. Adding the image of the topography through the
bottom, the representation of the forcing follows as

f (x, z) = −2Uh′(x)δ(z), f (k,m) = −2iUkh(k), (8.42a,b)

yielding the internal tide

u = −i
U
2π

exp(−iω0t) cos θ0

∑
±
(ex sin θ0 ± ez cos θ0)

×
∫ ∞

0
κh(k = ±κ cos θ0 sign z) exp(−βκ3|z|/ cos θ0) exp(±iκx± sign z) dκ. (8.43)

As already discussed, the boundary layer is negligible. For the same forcing, the classical
theory of § 2 gives

uc = −i
U
2π

exp(−iω0t) cos θ0

∑
±
(ex sin θ0 ± ez cos θ0)

×
∫ ∞

0
κh(k = ±κ cos θ0 sign z±) exp(−βκ3|z±|) exp(±iκx± sign z±) dκ. (8.44)

Applied to the Gaussian bump

h(x) = h0 exp
(

− x2

2a2

)
, h(k) = (2π)1/2ah0 exp

(
−k2a2

2

)
, (8.45a,b)
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these results give, for the present theory,

u =
(

2
π

)1/2

ah0U exp(−iω0t) cos θ0

×
∫ ∞

0
κ exp(−κ2a2 cos2 θ0/2) exp(−βκ3|z|/ cos θ0) exp(−iκ|z| sin θ0)

× [ez cos θ0 sin(κx cos θ0) sign z − iex sin θ0 cos(κx cos θ0)] dκ, (8.46)

and for the classical theory,

uc = −i
ah0U
(2π)1/2

exp(−iω0t) cos θ0

∑
±
(ex sin θ0 ± ez cos θ0)

×
∫ ∞

0
κ exp(−κ2a2 cos2 θ0/2) exp(−βκ3|z±|) exp(±iκx± sign z±) dκ, (8.47)

on the assumption that the criticality parameter ε = (h0 tan θ0)/(a
√

e) is small.
In the inviscid case, the Fourier transform

∫ ∞

0
k exp(−k2) exp(ikx) dk = 1

2

[
1 − xF

( x

2

)]
+ i

π1/2

4
x exp

(
− x2

4

)
, (8.48)

where F(x) = e−x2 ∫ x
0 et2 dt is Dawson’s integral, taken from table 5 of Voisin (2003),

yields

uc = −i
h0

a cos θ0

U
(2π)1/2

exp(−iω0t)
∑

±
(ex sin θ0 ± ez cos θ0)

×
[

1 −
√

2x±
a cos θ0

F
(

x±√
2a cos θ0

)
± i

(π

2

)1/2 x±
a cos θ0

exp
(

− x2
±

2a2 cos2 θ0

)
sign z±

]
.

(8.49)

Accordingly, the classical solution (8.47) is discontinuous across the entirety of the lines
z± = 0, while the discontinuity of the present solution (8.46) is limited to the forcing line
z = 0 where it is of no consequence. In practice, given the rapid decay of x exp(−x2/2)
past its maximum at x = 1, such that the function is already negligible at x = 4 say, the
discontinuity of the classical solution is only visible for |x±| � 4a cos θ0.

In the same series of experiments as for the vertical barrier in § 8.2, Peacock et al. (2008)
considered a Gaussian bump of height h0 = 14.7 mm and standard deviation a = 20 mm,
hence the maximum slope angle of 24◦, oscillating with amplitude A = 2.79 mm, hence
the Keulegan–Carpenter number Ke = A/a = 0.14, in a fluid of kinematic viscosity ν =
1.10 mm2 s−1. Two different criticality parameters were obtained by varying the frequency
of oscillation: ε = 0.34, for ω0 = 0.98 s−1 and N = 1.23 s−1; and ε = 0.82, for ω0 =
0.59 s−1 and N = 1.24 s−1. The associated Stokes numbers St = ω0a2/ν were 360 and
210, respectively.

The measured quantity was, again, the buoyancy frequency disturbance, compared with
an extension of the theory of Balmforth et al. (2002). Choosing the phase origin as in
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FIGURE 13. Contour maps of ΔN2 (in s−2) at phase φ = π/2, as predicted by (8.50), for the
oscillations at relative frequencies (a) ω0/N = 0.80 and (b) ω0/N = 0.48 of the Gaussian bump
in figures 2 and 4, respectively, of Peacock et al. (2008). The waves propagate at the angles
(a) θ0 = 37◦ and (b) θ0 = 62◦ to the vertical, with criticality parameters (a) ε = 0.34 and (b) ε =
0.82.

§ 8.2, so that U = −ω0A, the present theory gives

ΔN2

N2
=

(
2
π

)1/2

ah0A exp(−iω0t) sin θ0 cos2 θ0

∫ ∞

0
κ2 exp(−κ2a2 cos2 θ0/2)

× exp(−βκ3|z|/ cos θ0) sin(κx cos θ0) exp(−iκ|z| sin θ0) dκ, (8.50)

while the classical theory gives(
ΔN2

N2

)
c
= −i

ah0A
(2π)1/2

exp(−iω0t) sin θ0 cos2 θ0

∑
±
(±) sign z±

×
∫ ∞

0
κ2 exp(−κ2a2 cos2 θ0/2) exp(−βκ3|z±|) exp(±iκx± sign z±) dκ.

(8.51)

Figure 13 applies the present theory to the contour maps in figures 2 and 4 of Peacock
et al. (2008). The overall agreement with experiment is surprisingly good, given that the
topography is nowhere as thin as the theory assumes it to be. This is confirmed in the
far field by plotting in figures 14 and 15 the transverse profiles at cross-sections z+ = 4a
and 12a, corresponding to figures 3 and 5 of Peacock et al. (2008), respectively: there is a
tendency to overprediction of the wave amplitudes by the thin-topography approximation,
and a shift of the experiment to the left for ε = 0.34 in figure 14 compared with this
approximation, but otherwise the shape of the profile is relatively well predicted. The
theory of Balmforth et al. (2002) for finite topography seems to exhibit a similar shift
in their figure 8(a,b), obtained in an inviscid fluid for similar criticality parameters ε =
0.4 and 0.8. As a rule, in these figures, each beam seems to be shifted to the side of
the topography that it appears to emanate from, namely to the left for the beam pointing
upward to the right, and to the right for the beam pointing upward to the left, though it is
difficult to draw any definite conclusion based on such a limited sample.
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FIGURE 14. Transverse variations of ΔN2 at cross-sections (a,b) z+/a = 4 and (c,d) z+/a =
12, at phases (a,c) φ = 0 and (b,d) φ = π/2, for the oscillations at relative frequency ω0/N =
0.80 of the Gaussian bump in figure 3 of Peacock et al. (2008), with other parameters as in
figure 13(a) above. The experimental data are plotted together with the present theory (8.50).
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FIGURE 15. Same as figure 14 for the oscillations at relative frequency ω0/N = 0.48 of the
Gaussian bump in figure 5 of Peacock et al. (2008), with other parameters as in figure 13(b).
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FIGURE 16. Near field for figure 13(a) using (a) the classical theory (8.51) and (b) the present
theory (8.50). The waves are calculated both inside and outside the bump, whose outline is shown
dashed. The white areas correspond to off-scale values of the plotted quantity.
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FIGURE 17. Near field for figure 13(b). The mode of representation is the same as in figure 16.

Close-ups of the near field are provided in figures 16 and 17. Owing to the absence of
critical points, the wave variations are much smoother than for the supercritical sources
in figures 6 and 10. The classical theory still yields segments of discontinuity along
the lines z± = 0, whose extension into the fluid is consistent with the above prediction
|x±| � 4a cos θ0. Coming back to figure 13(a,b) and comparing them with experiment,
the variations of the present theory are seen to differ from the experimental variations
close to the topography, probably owing to the combined effects of the thin-topography
approximation and the free-slip boundary condition. Overall, comparing figures 9, 13(b)
and 13(a), the rate of decrease of the wave amplitude with distance away from the forcing
seems to become smaller as the criticality parameter ε becomes smaller.
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9. Conclusion

A new approach has been proposed for the generation of two-dimensional internal wave
beams in fluids of small viscosity, extending to the near field the classical approach of
Lighthill (1960, 1978, § 4.10) for the far field. For this, the source of the waves has been
assumed to be of compact support, a subclass of the rapidly decreasing sources considered
by Lighthill. The waves have been derived by Fourier integration and application of the
residue theorem in the wavenumber plane. Depending on the direction along which the
theorem is applied, several expressions of the waves have been obtained: (6.1), most
appropriate for a circular source; (4.26), most appropriate for an elliptic source, becoming
(6.6) when the axes of the ellipse are horizontal and vertical; and (6.2), most appropriate
for a source in the shape of an inclined strip, becoming (6.9) when the strip is horizontal
and (6.8) when it is vertical. In each case, the indicated shape is the shape of the support
domain used for the calculation of the waves.

This support does not need to exactly match the shape of the source; the closer it does,
the more accurate the expression of the waves, and the larger its domain of validity.
For a given source, each expression of the waves has a specific domain of validity, all
expressions becoming equivalent in the intersection of their domains. The equivalence is
exact when the fluid is inviscid, and asymptotic, in the limit of a large Stokes number,
when the fluid is viscous.

These conclusions have been confirmed by application in § 8.1 to the oscillations of a
horizontal cylinder. When the cylinder is circular and (6.1) is used, the theory of Hurley
& Keady (1997) is recovered, which the experiments of Sutherland et al. (1999, 2000) and
Zhang et al. (2007) have shown to apply everywhere in the fluid. When the cylinder is
elliptic and (6.6) is used, the result is seen to satisfy the free-slip condition at the surface
of the cylinder, hence to apply everywhere in the fluid, and to be consistent with the
experiments of Sutherland & Linden (2002). In both cases, viscosity arises only as an
exponential attenuation factor in the integral expression of the waves. When the other
expressions of the waves are used, associated with a support which does not match exactly
the shape of the cylinder, viscosity arises also as an additional term inside the source
spectrum. When this term, absent from the far-field theory of Lighthill (1978, § 4.10), is
taken into account, every expression leads to a correct prediction of the critical points at
which critical wave rays are tangential to the cylinder.

This is especially important with a view to a later extension of the analysis to include
nonlinear effects and no-slip boundaries. For the former, the experimental investigations
of Zhang et al. (2007), Ermanyuk, Flór & Voisin (2011) and Shmakova, Ermanyuk & Flór
(2017), together with the numerical investigations of Tabaei, Akylas & Lamb (2005) and
Korobov & Lamb (2008), have shown that nonlinear higher harmonics are generated for
an oscillating body at the locations where the critical rays either intersect each other or are
tangential to the body; for the latter, Kerswell (1995) and Le Dizès & Le Bars (2017) have
shown that the internal shear layers forming the wave beams arise from eruptions of the
boundary layer at the critical points.

When the source reduces to a line, generating the waves (5.9) for an inclined line, (5.15)
for a horizontal line and (5.19) for a vertical line, a boundary layer is produced in addition
to the waves, given by (5.13), (5.16) and (5.20), respectively, with penetration depth

δb =
(

2ν
ω0

)1/2 cos θ0

| cos(θ0 + ϕ0) cos(θ0 − ϕ0)|1/2 (9.1)

for a line inclined at the angle ϕ0 to the horizontal generating waves propagating at the
angle θ0 to the vertical, with ν the kinematic viscosity and ω0 the oscillation frequency.
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The other properties of the layer are, however, speculative, given the model of the forcing
as a source term in the wave equation. The determination of this model for an actual
forcing mechanism, typically the oscillations of a plate, requires the calculation of the
boundary layer, which then predates the calculation of the waves. In three dimensions the
boundary layer has been obtained by Davis & Llewellyn Smith (2010) and Le Dizès (2015)
by solving the no-slip boundary-value problem for oscillating horizontal discs.

The three applications in §§ 8.2–8.4 to a vertical knife edge, a vertical wave generator
and a thin Gaussian bump, respectively, all involve line sources. For the knife edge, the
boundary layer is predicted to be of the same order as the waves and to yield singularities
extending through the fluid at the level of the tip of the knife edge. This unphysical result
illustrates the singularity of the low-viscosity limit St → ∞ for the boundary layer, where
St is the Stokes number. As a rule, the present calculations for oscillating bodies assume
free-slip boundaries. Accordingly, the viscous attenuation of the waves is accounted for
but not the viscous boundary layer around the body. In this respect, as pointed out by an
anonymous referee, the present study applies to the ‘near field’ but not the ‘near near-field’.

Quantitative validation of the study has been limited to the far field, where most of
the available experimental measurements have been made. This is, unfortunately, also the
region where the present theory and the classical theory of Lighthill (1978, § 4.10) and
Hurley & Keady (1997) become identical. In the near field the validation has been limited
to showing that the unphysical lines of singularities predicted by the classical theory are
absent in the present theory, and that critical points are correctly accounted for. These
points are visible to some extent in the experiments of Sutherland & Linden (2002), but a
quantitative study of the near field through simulations, if not experiments, remains to be
done, which only will be able to provide independent verification of the theory.

When the shape of the oscillating body becomes more involved, the description of the
wave field close to the body, where locally inward energy flux may be observed (Martin &
Llewellyn Smith 2012a), cannot be achieved via a Fourier-based method. The Green’s
function method provides a convenient alternative, in which the response to a point source
δ(x)δ(z) is represented by the Green’s function G(x, z) and the waves produced by an
arbitrary source f (x, z) follow from its convolution with the Green’s function

ψ(x, z) =
∫∫

f (x ′, z′)G(x − x ′, z − z′) dx ′ dz′. (9.2)

Voisin (2003) and Martin & Llewellyn Smith (2012a) applied this method to the
determination of the far field for a generic three-dimensional source and an oscillating
sphere, respectively, and Bühler & Muller (2007) evaluated the convolution integral
numerically for a variety of thin topographies. The derivation of the two-dimensional
Green’s function is presented in appendix B for both inviscid and viscous fluids.

The next step in this study is its adaptation to three dimensions. The expression (2.7)
of three-dimensional waves in Voisin et al. (2011), based on an extrapolation from Voisin
(2003), is of the same type as the present (6.9), but misses the restriction |z| > b on its
validity and the viscous correction inside the spectrum of the forcing. As a result, the
application of that expression to an oscillating sphere, giving equation (2.16) of Voisin
et al. (2011), is in agreement with the measurements of Flynn, Onu & Sutherland (2003),
King, Zhang & Swinney (2009), Voisin et al. (2011) and Ghaemsaidi & Peacock (2013),
performed mostly in the far field, but yields spurious singularities in the equatorial plane
of the sphere in the near field, visible in figures 6 and 7 of Voisin et al. (2011). No such
singularity has been found in the experiments of Flynn et al. (2003), Sutherland, Flynn
& Onu (2003) and King et al. (2009), or the numerical simulations of King et al. (2009),
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Bigot et al. (2014) and Le Dizès & Le Bars (2017). The interested reader may also check
that, in the inviscid case, the expression (2.16) of the waves in Voisin et al. (2011) does not
satisfy the free-slip boundary condition at the sphere in between the critical latitudes, that
is, for |z| < a sin θ0.

An added complexity in three dimensions is the existence of a complex continuation
to the real wavenumber surface. To illustrate this, we write the dispersion relation in
Cartesian components (k, l,m) as

(k2 + l2) sin2 θ0 = m2 cos2 θ0. (9.3)

In two dimensions, l = 0 and for each real k this equation has two real solutions m =
±k tan θ0, yielding the wavenumber surface in the shape of a St Andrew’s cross shown
in figure 1. In three dimensions, if k and l are real and integration is performed over m,
as in Voisin (2003), the two solutions m = ±(k2 + l2)1/2 are real and define a conical
wavenumber surface. If k and m are real and integration is performed over l, however,
the two solutions are l = ±(m2 cot2 θ0 − k2)1/2: if |m| > |k| tan θ0 they belong to the
intersection of the conical surface with the plane of constant l, but if |m| < |k| tan θ0 they
become imaginary and migrate outside this surface; in either case they are valid solutions
which need to be taken into account, especially in the near field. This possibility, foreseen
by Lighthill (1990) for general waves, does not exist in two dimensions. Work to adapt the
analysis to this situation is under way.

Finally, it must be pointed out that other diffusive phenomena are present in real fluids in
addition to viscosity, affecting temperature and concentration. They have been ignored to
keep the analysis tractable, but may play a role in applications. As a rule, the diffusivities
add up to viscosity in the expression of the attenuation coefficient of the waves, and give
rise to new boundary layers, one per diffusivity. Their effect on the dispersion relation has
been investigated by Kistovich & Chashechkin (2007) and Chashechkin (2018), the latter
presenting experimental examples of the flow structure near oscillating discs and spheres.
Molecular diffusivity is a common occurrence in stratified fluids at laboratory scale, and
has been taken into account by Kistovich & Chashechkin (1995) for the reflection of a
two-dimensional wave beam at an inclined plane, Bardakov et al. (2007) and Davis &
Llewellyn Smith (2010) for the emission of waves by an oscillating disc and Vasil’ev &
Chashechkin (2012) for the emission by an oscillating plate. In astrophysical conditions
magnetic and thermal diffusivities may also play a role, investigated for oscillating discs
by Tilgner (2000) and Le Dizès (2015), respectively.
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Appendix A. Higher-order sources

The bounds (2.20) and (4.13) are a lesser form of a family of theorems, known
as Paley–Wiener theorems after their introduction by Paley & Wiener (1934, § 6) for
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square-integrable functions, relating the decay properties of a function to the behaviour
of its Fourier transform in the complex plane. For a function f (x) of compact support of
radius a, such that f (x) = 0 for |x | > a, the theorem states that the transform

f (k) =
∫ a

−a
f (x) exp(−ikx) dx (A 1)

is an analytic function of the complex variable k, integrable along the real axis and growing
exponentially along the imaginary axis; by the latter it is meant that there exists a positive
constant C such that, for all complex k,

| f (k)| < C exp(a| Im k|). (A 2)

The theorem also states that the reciprocal is true: any function having these properties is
the Fourier transform of an integrable function of compact support of radius a. When
the original function is further smooth, namely differentiable to any order, then each
derivative f (n)(x), of transform (ik)nf (k), admits a bound of the form (A 2); as a result
f (k) is rapidly decreasing along the real axis, namely decreasing faster than any inverse
power of k, since for any non-negative integer n there exists a positive constant Cn such
that, for all complex k,

| f (k)| < Cn(1 + |k|a)−n exp(a| Im k|). (A 3)

Schwartz extended this theorem to distributions of order n, such as the nth derivative of
the Dirac delta function. According to the extension (Hörmander 1990, § 7.3), the Fourier
transform f (k) of a distribution f (x) of order n and compact support of radius a is an
analytic function of the complex variable k, with slow polynomial growth along the real
axis and exponential growth along the imaginary axis; specifically, there exists a positive
constant C such that, for all complex k,

| f (k)| < C(1 + |k|a)n exp(a| Im k|). (A 4)

Again, the reciprocal is true: any function having these properties is the Fourier transform
of a distribution of order n and compact support of radius a.

Here, given (3.5), where the rational fraction multiplying the spectrum varies as the
inverse wavenumber, this means that the analysis of §§ 4 and 5 only applies to source
functions that are either proper functions or distributions of order n = 0 (as in § 8.1). For
higher n = 1, 2, . . . (as in § 8.2), the contribution of the semi-circle at infinity does not
vanish and must be evaluated.

We present a purely heuristic derivation for the line source (5.3). For simplicity, we set
ν = 0. The integrand in (4.3) behaves asymptotically for large |m0| as

− in

[
ez0 + ex0

sinϕ0 cosϕ0

cos(θ0 + ϕ0) cos(θ0 − ϕ0)

]
g(k0)mn−1

0 exp[i(k0x0 + m0z0)]. (A 5)

We use this estimate along the semi-circle at infinity, close the semi-circle by a straight
line along the real axis, use along this line the inverse transform∫ ∞

−∞
kn exp(ikx) dk = 2π(−i)nδ(n)(x), (A 6)
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taken from table 4 of Voisin (2003), and apply Cauchy’s theorem. The result is a new
contribution to the velocity,

u∞ =
[

ez0 + ex0

sinϕ0 cosϕ0

cos(θ0 + ϕ0) cos(θ0 − ϕ0)

]
exp(−iω0t)g(x0)δ

(n−1)(z0), (A 7)

in the form of a singularity of order n − 1 at the source. Such a singularity is an artifact of
the source model and has been ignored throughout.

Appendix B. Green’s function

The Green’s function is defined as the solution of the wave equation (2.1) or (2.23)
for unit point forcing f (x, z) = δ(x)δ(z). The flatness of the spectrum f (k,m) = 1 leaves
the wavenumber arbitrary, allowing |k±| to become infinitely large and preventing the
poles (2.15) and (2.26) from remaining small, however small ε/N and βκ2 can be. The
derivations in §2 are invalidated and alternative derivations are necessary, presented
briefly in this appendix. The time dependence as exp(−iω0t) is implicit throughout.

B.1. Inviscid case
The inviscid Green’s function satisfies[

(ω2
0 − N2)

∂2

∂x2
+ ω2

0
∂2

∂z2

]
G = −δ(x)δ(z), (B 1)

an equation solved by the method of Bryan (1889) and Hurley (1972). For ω0 > N, the
equation is elliptic. Stretching the coordinates according to

x� = ω0

N
x, z� = (ω2

0 − N2)1/2

N
z (B 2a,b)

transforms it into a Poisson equation, of known Green’s function −1/(4π) ln(x2
� + z2

�).
The solution is continued analytically onto the upper half of the complex ω0-plane, so as
to ensure causality. For real ω0 this gives

G = − ln[(ω0 + i0)2r2 − N2z2]
4πω0[(ω0 + i0)2 − N2]1/2

, (B 3)

where the addition of an infinitesimal positive imaginary part to ω0 is consistent with
Lighthill’s radiation condition.

For 0 < ω0 < N, we may write, up to an insignificant constant,

G = i
ln(x+x− + i0)

4πN2 sin θ0 cos θ0
, (B 4)

or, equivalently, in decomposed form,

G = i
4πN2 sin θ0 cos θ0

[ln(x+ + i0 sign x−)+ ln(x− + i0 sign x+)]. (B 5)
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The fluid velocity follows by differentiation according to

uG = N2

(
ex sin2 θ0

∂

∂x
− ez cos2 θ0

∂

∂z

)
G, (B 6)

yielding

uG = i
sin θ0 cos θ0

2π

x
x+x− + i0

(B 7)

or, in decomposed form,

uG = i
4π

(
ez+

x+ + i0 sign x−
− ez−

x− + i0 sign x+

)
. (B 8)

The phase variations are put forward by writing

ln(x ± i0) = ln |x | ± iπH(−x),
1

x ± i0
= pv

(
1
x

)
∓ iπδ(x), (B 9a,b)

with pv the principal value. These results have first been obtained by Hurley (1969),
considering the Boussinesq limit of the non-Boussinesq Green’s function, and Bühler &
Muller (2007).

As a verification, we note that the logarithm in (B 4) has the determination

ln |x+x−| + i
π

2
(1 − sign x+ sign x−), (B 10)

while the analysis of § 2.1, using the inverse transform

∫ ∞

0
exp(ikx)

dk
k

= i
π

2
− ln(x + i0), (B 11)

taken from table 5 of Voisin (2003), would give instead

ln(x+ + i0 sign z+)− i
π

2
sign z+ + ln(x− − i0 sign z−)+ i

π

2
sign z−, (B 12)

with determination

ln |x+x−| + i
π

2
( sign x− sign z− − sign x+ sign z+), (B 13)

yielding incorrect phase jumps across the lines x± = 0 and adding spurious phase jumps
across the lines z± = 0.
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B.2. Viscous case
The viscous Green’s function is given by (2.24) as the inverse transform

G = 1
4π2

∫∫
exp[i(kx + mz)]

ω2
0κ

2 − N2k2 + iω0νκ4
dk dm. (B 14)

We evaluate it by applying the residue theorem to integration over m. Jordan’s lemma
selects the two poles m = m1,2 sign z, where

m2
1,2 = −k2 + i

ω0

2ν
[1 ∓ D(k)], Im m1,2 > 0, (B 15)

and the square root

D(k) =
(

1 + i
4νk2

ω0 cos2 θ0

)1/2

(B 16)

is taken in the first quadrant. This gives

G = i
4πN2 cos2 θ0

∫ ∞

−∞

exp(ikx)

D(k)

[
exp(im1|z|)

m1
− exp(im2|z|)

m2

]
dk. (B 17)

The fluid velocity follows by differentiation according to

uG = N2

[
ex

(
sin2 θ0 + i cos2 θ0

ν∇2

ω0

)
∂

∂x
− ez

(
cos2 θ0 − i cos2 θ0

ν∇2

ω0

)
∂

∂z

]
G,

(B 18)

yielding

uG = 1
8π

∫ ∞

−∞
exp(ikx)

{[
1 − 1 + 2 tan2 θ0

D(k)

]
k

m1
exp(im1|z|)

+
[

1 + 1 + 2 tan2 θ0

D(k)

]
k

m2
exp(im2|z|)

}
dk, (B 19a)

wG = sign z
8π

∫ ∞

−∞
exp(ikx)

{[
1 + 1

D(k)

]
exp(im1|z|)

+
[

1 − 1
D(k)

]
exp(im2|z|)

}
dk. (B 19b)

These results were first obtained by Ramachandra Rao & Balan (1977). Their derivation
closely follows those by Chashechkin, Vasil’ev & Bardakov (2004) and Davis & Llewellyn
Smith (2010) for the waves generated by an oscillating disc.

In the inviscid limit ν → 0 we have

m1 ∼ −|k| tan θ0, m2 ∼
(ω0

2ν

)1/2
(1 + i), (B 20a,b)

implying that the term of vertical wavenumber m2 vanishes and the term of vertical
wavenumber m1 reduces to the inviscid Green’s function.
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