Alexandru Kristály

Department of Economics, Babeş-Bolyai University, Cluj-Napoca 400591, Romania and Institute of Applied Mathematics, Óbuda University, Budapest 1034, Hungary (alexandrukristaly@yahoo.com; kristaly.alexandru@nik.uni-obuda.hu)

(MS received 3 August 2017; accepted 16 November 2017)

Dedicated to Professor Patrizia Pucci on the occasion of her 65th birthday.

We prove that the fractional Yamabe equation $\mathcal{L}_{\gamma} u = |u|^{((4\gamma)/(Q-2\gamma))} u$ on the Heisenberg group \mathbb{H}^n has [n+1/2] sequences of nodal (sign-changing) weak solutions whose elements have mutually different nodal properties, where \mathcal{L}_{γ} denotes the CR fractional sub-Laplacian operator on \mathbb{H}^n , Q = 2n + 2 is the homogeneous dimension of \mathbb{H}^n , and $\gamma \in \bigcup_{k=1}^n [k, ((kQ)/Q - 1)))$. Our argument is variational, based on a Ding-type conformal pulling-back transformation of the original problem into a problem on the CR sphere S^{2n+1} combined with a suitable Hebey-Vaugon-type compactness result and group-theoretical constructions for special subgroups of the unitary group $\mathbf{U}(n + 1)$.

Keywords: CR fractional sub-Laplacian; nodal solution; Heisenberg group

2010 Mathematics subject classification: Primary 35R03; Secondary 35B38

1. Introduction

After the seminal paper of Caffarelli and Silvestre [8], considerable efforts have been made concerning the study of elliptic problems involving the fractional Laplace operator both in Euclidean and non-Euclidean settings. As expected, the Euclidean framework is much more developed; although many results concerning the pure Laplace operator can be transposed to the fractional setting in \mathbb{R}^n , there are also subtle differences which require a deep understanding of certain nonlinear phenomena, see for example, Cabré and Sire [6], Caffarelli [7], Caffarelli, Salsa and Silvestre [9], Di Nezza, Palatucci and Valdinoci [10], and references therein.

By exploring analytical and spectral theoretical arguments, important contributions have been obtained recently within the CR setting concerning the fractional Laplace operator with various applications in sub-elliptic PDEs, see Branson, Fontana and Morpurgo [5], Frank and Lieb [14], and Frank, del Mar González, Monticelli and Tan [15]. In particular, in the latter papers, sharp Sobolev and

© 2019 The Royal Society of Edinburgh

Moser-Trudinger inequalities are established on the Heisenberg group \mathbb{H}^n , $n \ge 1$, the simplest non-trivial CR structure.

In the present paper, we shall consider the *fractional Yamabe problem* on the Heisenberg group \mathbb{H}^n , namely,

$$\begin{cases} \mathcal{L}_{\gamma} u = |u|^{((4\gamma)/(Q-2\gamma))} u \quad \text{on} \quad \mathbb{H}^n, \\ u \in D^{\gamma}(\mathbb{H}^n). \end{cases}$$
(FYH)_{\gamma}

Hereafter, $Q := Q_n = 2n + 2$ is the homogeneous dimension of \mathbb{H}^n , $\gamma > 0$ is a parameter specified later, \mathcal{L}_{γ} denotes the CR fractional sub-Laplacian operator on \mathbb{H}^n , and the functional space $D^{\gamma}(\mathbb{H}^n)$ contains real-valued functions from $L^{((2Q)/(Q-2\gamma))}(\mathbb{H}^n)$ whose energy associated with the CR fractional sub-Laplacian operator \mathcal{L}_{γ} is finite; see § 2.4 for details.

Due to the recent paper of Frank, del Mar González, Monticelli and Tan [15], we know the existence of positive solutions of $(\mathbf{FYH})_{\gamma}$ for $\gamma \in (0, Q/2)$, having the form

$$u(z,t) = c_0((1+|z|^2)^2 + t^2)^{((2\gamma - Q)/(4))}, \quad (z,t) \in \mathbb{H}^n,$$
(1.1)

for some $c_0 > 0$, allowing any left translation and dilation. In the special case $\gamma = 1$, when $\mathcal{L}_1 = \mathcal{L}$ is the usual sub-Laplacian operator on \mathbb{H}^n , the existence and uniqueness (up to left translation and dilation) of positive solutions of the form (1.1) for problem (**FYH**)₁ have been established by Jerison and Lee [18, 19]; see also Garofalo and Vassilev [16] for generic Heisenberg-type groups (e.g. Iwasawa groups).

Our main result guarantees sign-changing solutions for the fractional Yamabe problem $(\mathbf{FYH})_{\gamma}$ as follows:

THEOREM 1.1. Let $\gamma \in \bigcup_{k=1}^{n} [k, ((kQ)/(Q-1)))$, where Q = 2n + 2. Then problem $(\mathbf{FYH})_{\gamma}$ admits at least [n + 1/2] sequences of sign-changing weak solutions whose elements have mutually different nodal properties. (Hereafter, [r] denotes the integer part of $r \ge 0$.)

Before commenting on theorem 1.1, we recall that similar results are well known in the Euclidean setting; indeed, Bartsch, Schneider and Weth [4] proved the existence of infinitely many sign-changing weak solutions for the polyharmonic problem

$$\begin{cases} (-\Delta)^m u = |u|^{((4m)/(N-2m))} u & \text{in } \mathbb{R}^N, \\ u \in \mathcal{D}^{m,2}(\mathbb{R}^N), \end{cases}$$
(**P**)_m

where $N > 2m, m \in \mathbb{N}$, and $\mathcal{D}^{m,2}(\mathbb{R}^N)$ denotes the usual higher order Sobolev space over \mathbb{R}^N . In fact, their proof is based on Ding's original idea, see [11], who considered the case m = 1, by pulling back the variational problem (**P**)_m to the standard sphere S^N by stereographic projection. In this manner, by exploring certain properties of suitable subgroups of the orthogonal group $\mathbf{O}(N+1)$, the authors are able to obtain compactness by exploring a suitable Sobolev embedding result of Hebey and Vaugon [17] which is indispensable in the application of the symmetric mountain pass theorem.

We notice that sign-changing solutions are already guaranteed to the usual CR-Yamabe problem $(FYH)_1$ by Maalaoui and Martino [20], and Maalaoui, Martino

and Tralli [21] by exploring Ding's approach; their results are direct consequences of theorem 1.1 for $\gamma = 1$.

Coming back to theorem 1.1, we shall mimic Ding's original idea as well, emphasizing that our *CR fractional* setting requires a more delicate analysis than either the polyharmonic setting in the Euclidean case (see [4]) or the usual CR framework, that is, when $\gamma = 1$ (see [20, 21]). In the sequel, we sketch our strategy. As expected, we first consider the fractional Yamabe problem on the CR sphere S^{2n+1} , that is,

$$\begin{cases} \mathcal{A}_{\gamma}U = |U|^{((4\gamma)/(Q-2\gamma))}U & \text{on} \quad S^{2n+1}, \\ U \in H^{\gamma}(S^{2n+1}), \end{cases}$$
(FYS)_{\gamma}

where the intertwining operator \mathcal{A}_{γ} and Sobolev space $H^{\gamma}(S^{2n+1})$ are introduced in $\S 2.4$. By using the Cayley transform between the Heisenberg group \mathbb{H}^n and the CR sphere S^{2n+1} , we prove that there is an explicit correspondence between the weak solutions of $(\mathbf{FYH})_{\gamma}$ and $(\mathbf{FYS})_{\gamma}$, respectively, see proposition 3.1 (and remark 3.2 for an alternative proof). Being in the critical case, the energy functional associated with problem $(\mathbf{FYS})_{\gamma}$ does not satisfy the usual Palais-Smale condition due to the lack of compactness of the embedding $H^{\gamma}(S^{2n+1}) \hookrightarrow L^{\frac{2Q}{Q-2\gamma}}(S^{2n+1}).$ In order to regain some compactness, we establish a CR fractional version of the Ding-Hebey-Vaugon compactness result on the CR sphere S^{2n+1} , see proposition 3.3. In fact, subgroups of the unitary group U(n+1)having the form $G = \mathbf{U}(n_1) \times ... \times \mathbf{U}(n_k)$ with $n_1 + \cdots + n_k = n + 1$ will imply the compactness of the embedding of G-invariant functions of $H^{\gamma}(S^{2n+1})$ into $L^{((2Q)/(\hat{Q}-2\gamma))}(S^{2n+1})$. Here, we shall explore the compactness result of Maalaoui and Martino [20] combined with an iterative argument of Aubin [1] and the technical assumption $\gamma \in \bigcup_{k=1}^{n} [k, ((kQ)/(Q-1)));$ some comments on the necessity of the latter assumption are formulated in remark 3.4. Now, having such a compactness, the fountain theorem and the principle of symmetric criticality applied to the energy functional associated with $(\mathbf{FYS})_{\gamma}$ will guarantee the existence of a whole sequence of G-invariant weak solutions for $(\mathbf{FYS})_{\gamma}$, so for $(\mathbf{FYH})_{\gamma}$. The number of [n+1/2] sequences of sign-changing weak solutions for $(\mathbf{FYH})_{\gamma}$ with mutually different nodal properties will follow by careful choices of the subgroups G = $\mathbf{U}(n_1) \times \cdots \times \mathbf{U}(n_k)$ of the unitary group $\mathbf{U}(n+1)$ with $n_1 + \cdots + n_k = n+1$, see proposition 3.6.

Plan of the paper. In § 2, we recall those notions and results that are indispensable to present our argument (e.g. basic facts about Heisenberg groups, the Cayley transform, spherical/zonal harmonics on S^{2n+1} , fractional Sobolev spaces on S^{2n+1} and \mathbb{H}^n). Section 3 is devoted to the proof of theorem 1.1; in § 3.1, we prove the equivalence between the weak solutions of problems $(\mathbf{FYS})_{\gamma}$ and $(\mathbf{FYH})_{\gamma}$; in § 3.2, we establish the compactness result on the CR fractional setting for S^{2n+1} ; in § 3.3, we treat the group-theoretical aspects of our problem concerning the choice of the subgroups $G = \mathbf{U}(n_1) \times \cdots \times \mathbf{U}(n_k)$ of the unitary group $\mathbf{U}(n+1)$ which is needed to produce [n + 1/2] sequences of sign-changing weak solutions for $(\mathbf{FYH})_{\gamma}$ with different nodal properties. Finally, in § 3.4, we assemble the aforementioned pieces in order to conclude the proof of Theorem 1.1.

2. Preliminaries

In order the paper to be self-contained, we recall in this section, some basic notions from [5, 13-15, 23] which are indispensable in the sequel.

2.1. Heisenberg groups

An element in the Heisenberg group \mathbb{H}^n is denoted by (x, y, t), where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, $t \in \mathbb{R}$, and we identify the pair (x, y) with $z \in \mathbb{C}^n$ having coordinates $z_j = x_j + iy_j$ for all $j = 1, \ldots, n$. The correspondence with its Lie algebra via the exponential coordinates induces the group law

 $(z,t)\star(z',t') = \left(z+z',t+t'+2\mathrm{Im}\ z\cdot\overline{z'}\right), \quad \forall\ (z,t),\ (z',t')\in\mathbb{C}^n\times\mathbb{R},$

where Im denotes the imaginary part of a complex number and $z \cdot \overline{z'} = \sum_{j=1}^{n} z_j \overline{z'_j}$ is the Hermitian inner product. In these coordinates, the neutral element of \mathbb{H}^n is $0_{\mathbb{H}^n} = (0_{\mathbb{C}^n}, 0)$ and the inverse $(z, t)^{-1}$ of the element (z, t) is (-z, -t). Note that (x, y, t) = (z, t) forms a real coordinate system for \mathbb{H}^n and the system of vector fields given as differential operators

$$X_j = \frac{\partial}{\partial x_j} + 2y_j \frac{\partial}{\partial t}, \quad Y_j = \frac{\partial}{\partial y_j} - 2x_j \frac{\partial}{\partial t}, \quad j \in \{1, \dots n\}, \quad T = \frac{\partial}{\partial t},$$

forms a basis of the left-invariant vector fields on \mathbb{H}^n . The vectors $X_j, Y_j, j \in \{1, \ldots, n\}$ form the basis of the horizontal bundle. Let

$$N(z,t) = (|z|^4 + t^2)^{1/4}$$

be the homogeneous gauge norm on \mathbb{H}^n and $d_{KC} : \mathbb{H}^n \times \mathbb{H}^n \to \mathbb{R}$ be the Korányi-Cygan metric given by

$$d_{KC}((z,t),(z',t')) = N((z',t')^{-1} \star (z,t)) = (|z-z'|^4 + (t-t'-2\operatorname{Im} z \cdot \overline{z'})^2)^{1/4}.$$

The Lebesgue measure of \mathbb{R}^{2n+1} will be the Haar measure on \mathbb{H}^n (uniquely defined up to a positive multiplicative constant).

2.2. Cayley transform

Let

$$S^{2n+1} = \{ \zeta = (\zeta_1, \dots, \zeta_{n+1}) \in \mathbb{C}^{n+1} : \langle \zeta, \overline{\zeta} \rangle = 1 \}$$

be the unit sphere in \mathbb{C}^{n+1} , where $\langle \zeta, \overline{\eta} \rangle = \sum_{j=1}^{n+1} \zeta_j \overline{\eta_j}$. The distance function on S^{2n+1} is given by

$$d_S(\zeta,\eta) = \sqrt{2|1 - \langle \zeta, \overline{\eta} \rangle|}, \quad \zeta, \eta \in S^{2n+1}.$$

The Cayley transform $\mathcal{C} : \mathbb{H}^n \to S^{2n+1} \setminus \{(0, \ldots, 0, -1)\}$ is defined by

$$\mathcal{C}(z,t) = \left(\frac{2z}{1+|z|^2+it}, \frac{1-|z|^2-it}{1+|z|^2+it}\right),$$

Nodal solutions for the fractional Yamabe problem on Heisenberg groups 775 whose Jacobian determinant is given by

$$\operatorname{Jac}_{\mathcal{C}}(z,t) = \frac{2^{2n+1}}{((1+|z|^2)^2 + t^2)^{n+1}}, \quad (z,t) \in \mathbb{H}^n$$

Accordingly, for any integrable function $f: S^{2n+1} \to \mathbb{R}$, we have

$$\int_{S^{2n+1}} f(\eta) \mathrm{d}\eta = \int_{\mathbb{H}^n} f(\mathcal{C}(z,t)) \mathrm{Jac}_{\mathcal{C}}(z,t) \mathrm{d}z \mathrm{d}t.$$
(2.1)

If w = (z, t), v = (z', t') and $\zeta = \mathcal{C}(w), \eta = \mathcal{C}(v)$, one has that

$$d_S(\zeta,\eta) = d_{KC}(w,v) \left(\frac{4}{((1+|z|^2)^2 + t^2)}\right)^{1/4} \left(\frac{4}{((1+|z'|^2)^2 + (t')^2)}\right)^{1/4}.$$
 (2.2)

2.3. Spherical/zonal harmonics on S^{2n+1}

The Hilbert space $L^2(S^{2n+1})$, endowed by the inner product

$$(U,V) = \int_{S^{2n+1}} U\overline{V} \mathrm{d}\eta,$$

can be decomposed into $\mathbf{U}(n+1)$ -irreducible components as

$$L^2(S^{2n+1}) = \bigoplus_{j,k \ge 0} \mathcal{H}_{j,k},$$

where $\mathcal{H}_{j,k}$ denotes the space of harmonic polynomials $p(z, \overline{z})$ on \mathbb{C}^{n+1} restricted to S^{2n+1} that are homogeneous of degree j and k in the variables z and \overline{z} , respectively. We notice that the dimension of $\mathcal{H}_{j,k}$ is

$$m_{j,k} = \frac{(j+n-1)!(k+n-1)!(j+k+n)}{n!(n-1)!j!k!}.$$

Moreover, if $\{Y_{j,k}^l\}_{l=\overline{1,m_{j,k}}}$ is an orthonormal basis of $\mathcal{H}_{j,k}$, then the zonal harmonics are defined by

$$\Phi_{j,k}(\zeta,\eta) = \sum_{l=1}^{m_{j,k}} Y_{j,k}^{l}(\zeta) \overline{Y_{j,k}^{l}(\eta)}, \quad \zeta,\eta \in S^{2n+1}.$$
(2.3)

We recall that $\Phi_{j,k}$ can be represented as

$$\Phi_{j,k}(\zeta,\eta) = \frac{(\max\{j,k\}+n-1)!(j+k+n)}{\omega_{2n+1}n!(\max\{j,k\})!} \langle \zeta,\overline{\eta} \rangle^{|j-k|} P_k^{(n-1,|j-k|)}(2\langle \zeta,\overline{\eta} \rangle^2 - 1),$$
(2.4)

(2.4) where $P_k^{(n,l)}$ denotes the Jacobi polynomials and ω_{2n+1} is the usual measure of S^{2n+1} .

2.4. Fractional Sobolev spaces on S^{2n+1} and \mathbb{H}^n

The usual sub-Laplacian on \mathbb{H}^n is defined as

$$\mathcal{L} = -\frac{1}{4} \sum_{j=1}^{n} (X_j^2 + Y_j^2).$$

If we introduce the differential operators

$$T_j = \frac{\partial}{\partial \eta_j} - \overline{\eta}_j \sum_{k=1}^{n+1} \eta_k \frac{\partial}{\partial \eta_k}, \quad \overline{T_j} = \frac{\partial}{\partial \overline{\eta_j}} - \eta_j \sum_{k=1}^{n+1} \overline{\eta_k} \frac{\partial}{\partial \overline{\eta_k}}, \quad j \in \{1, \dots, n+1\},$$

the conformal sub-Laplacian on S^{2n+1} is given by

$$\mathcal{D} = -\frac{1}{2} \sum_{j=1}^{n+1} (T_j \overline{T_j} + \overline{T_j} T_j) + \frac{n^2}{4}.$$

Note that for every $Y_{j,k} \in \mathcal{H}_{j,k}$, one has

$$\mathcal{D}Y_{j,k} = \lambda_j \lambda_k Y_{j,k},$$

where $\lambda_j = j + n/2$. Let $0 < \gamma < Q/2 = n + 1$ be fixed. Given $U \in L^2(S^{2n+1})$, its Fourier representation is

$$U = \sum_{j,k \ge 0} \sum_{l=1}^{m_{j,k}} c_{j,k}^l(U) Y_{j,k}^l$$

with Fourier coefficients $c_{j,k}^l(U) = \int_{S^{2n+1}} UY_{j,k}^l \mathrm{d}\eta$. Accordingly, we may define

$$\mathcal{D}^{\gamma/2}U = \sum_{j,k \ge 0} \sum_{l=1}^{m_{j,k}} (\lambda_j \lambda_k)^{\gamma/2} c_{j,k}^l(U) Y_{j,k}^l.$$

The fractional Sobolev space over S^{2n+1} is defined as

$$H^{\gamma}(S^{2n+1}) = W^{\gamma,2}(S^{2n+1}) = \left\{ U \in L^2(S^{2n+1}) : \mathcal{D}^{\gamma/2}U \in L^2(S^{2n+1}) \right\},$$

endowed with the inner product and norm

$$(U,V)_{H^{\gamma}} = \int_{S^{2n+1}} \mathcal{D}^{\gamma/2} U \overline{\mathcal{D}^{\gamma/2} V} d\eta \quad \text{and} \quad \|U\|_{H^{\gamma}} = (U,U)_{H^{\gamma}}^{1/2}$$
$$= \left(\sum_{j,k \ge 0} \sum_{l=1}^{m_{j,k}} (\lambda_j \lambda_k)^{\gamma} |c_{j,k}^l(U)|^2 \right)^{1/2}.$$

The norm $\|\cdot\|_{H^{\gamma}}$ is equivalent to the norm coming from the inner product

$$(U,V)_{\gamma} = \sum_{j,k \ge 0} \sum_{l=1}^{m_{j,k}} \lambda_j(\gamma) \lambda_k(\gamma) c_{j,k}^l(U) \overline{c_{j,k}^l(V)},$$

where

$$\lambda_j(\gamma) = \frac{\Gamma(((Q+2\gamma)/(4))+j)}{\Gamma(((Q-2\gamma)/(4))+j)}, \quad j \in \mathbb{N}_0 = \{0, 1, 2, \ldots\};$$

indeed, by asymptotic approximation of the Gamma function Γ , one has $\lambda_j(\gamma) \sim j^{\gamma}$. The intertwining operator \mathcal{A}_{γ} of order 2γ on S^{2n+1} is given by

$$\begin{aligned} \operatorname{Jac}_{\tau}^{((Q+2\gamma)/(2Q))}(\mathcal{A}_{\gamma}U) \circ \tau &= \mathcal{A}_{\gamma}(\operatorname{Jac}_{\tau}^{((Q-2\gamma)/(2Q))}(U \circ \tau)) \text{ for all } \tau \in \operatorname{Aut}(S^{2n+1}), \\ U \in C^{\infty}(S^{2n+1}), \end{aligned}$$

where $\operatorname{Aut}(S^{2n+1})$ and $\operatorname{Jac}_{\tau}$ denote the group of automorphisms on S^{2n+1} and the Jacobian of $\tau \in \operatorname{Aut}(S^{2n+1})$, respectively. In fact, the latter definition can be extended to every $U \in H^{\gamma}(S^{2n+1})$. Note that \mathcal{A}_{γ} may by characterized (up to a constant) by its action on $\mathcal{H}_{i,k}$ as

$$\mathcal{A}_{\gamma}Y_{j,k} = \lambda_j(\gamma)\lambda_k(\gamma)Y_{j,k}, \quad Y_{j,k} \in \mathcal{H}_{j,k}.$$
(2.5)

Therefore,

$$(U,V)_{\gamma} = \int_{S^{2n+1}} \overline{V} \mathcal{A}_{\gamma} U \mathrm{d}\eta.$$
(2.6)

In particular, $\lambda_j(1) = \lambda_j$ for every $j \in \mathbb{N}_0$ and $\mathcal{A}_1 = \mathcal{D}$. Moreover, according to Frank and Lieb [14], for every real-valued function $U \in H^{\gamma}(S^{2n+1})$, one has the sharp fractional Sobolev inequality on the CR sphere S^{2n+1} , that is,

$$\left(\int_{S^{2n+1}} |U(\eta)|^{((2Q)/(Q-2\gamma))} \mathrm{d}\eta\right)^{((Q-2\gamma)/(Q))} \leqslant C(\gamma, n) \int_{S^{2n+1}} U(\eta) \mathcal{A}_{\gamma} U(\eta) \mathrm{d}\eta,$$
(2.7)

where

$$C(\gamma, n) = \frac{\Gamma((n+1-\gamma)/(2))^2}{\Gamma((n+1+\gamma)/(2))^2} \omega_{2n+1}^{-\gamma/n+1}.$$

The CR fractional sub-Laplacian operator on \mathbb{H}^n is defined by

$$\mathcal{L}_{\gamma} = |2T|^{\gamma} \frac{\Gamma(\mathcal{L}|2T|^{-1} + ((1+\gamma)/(2)))}{\Gamma(\mathcal{L}|2T|^{-1} + 1 - \gamma/2)}$$

Direct computation shows that $\mathcal{L}_1 = \mathcal{L}$, $\mathcal{L}_2 = \mathcal{L}^2 - |T|^2$. Moreover, the relationship between \mathcal{L}_{γ} and \mathcal{A}_{γ} is given by

$$\mathcal{L}_{\gamma}((2\operatorname{Jac}_{\mathcal{C}})^{((Q-2\gamma)/(2Q))}(U \circ \mathcal{C})) = (2\operatorname{Jac}_{\mathcal{C}})^{((Q+2\gamma)/(2Q))}(\mathcal{A}_{\gamma}U) \circ \mathcal{C},$$

$$\forall U \in H^{\gamma}(S^{2n+1}).$$
(2.8)

The fractional Sobolev space over \mathbb{H}^n is defined by

$$D^{\gamma}(\mathbb{H}^n) = \left\{ u \in L^{((2Q)/(Q-2\gamma))}(\mathbb{H}^n) : a_{\gamma}[u] < +\infty \right\},\$$

where the quadratic form a_{γ} is associated with the operator \mathcal{L}_{γ} , that is,

$$a_{\gamma}[u] = \int_{\mathbb{H}^n} \overline{u} \mathcal{L}_{\gamma} u \mathrm{d}z \mathrm{d}t.$$

The form a_{γ} can be equivalently represented by means of spectral decomposition, see [15, p. 126].

3. Proof of Main Theorem

3.1. Equivalent critical problems on \mathbb{H}^n and S^{2n+1} .

Let $\gamma \in (0, n + 1)$ be fixed. We consider the fractional Yamabe problem on the CR sphere, that is,

$$\begin{cases} \mathcal{A}_{\gamma}U = |U|^{((4\gamma)/(Q-2\gamma))}U & \text{on } S^{2n+1}, \\ U \in H^{\gamma}(S^{2n+1}). \end{cases}$$
(FYS)_{\gamma}

Hereafter, we are considering real-valued functions both in $H^{\gamma}(S^{2n+1})$ and $D^{\gamma}(\mathbb{H}^n)$, respectively. The main result of this subsection constitutes the bridge between $(\mathbf{FYS})_{\gamma}$ and $(\mathbf{FYH})_{\gamma}$ as follows:

PROPOSITION 3.1. Let $0 < \gamma < Q/2 = n + 1$. Then $U \in H^{\gamma}(S^{2n+1})$ is a weak solution of $(\mathbf{FYS})_{\gamma}$ if and only if $u = (2 \operatorname{Jac}_{\mathcal{C}})^{((Q-2\gamma)/(2Q))} U \circ \mathcal{C} \in D^{\gamma}(\mathbb{H}^n)$ is a weak solution of $(\mathbf{FYH})_{\gamma}$.

Proof. We first prove the following

 $\underbrace{\underline{Claim}: \ Let \ U: S^{2n+1} \to \mathbb{R} \ and \ u: \mathbb{H}^n \to \mathbb{R} \ be \ two \ functions \ such \ that \ u = Jac_C^{((Q-2\gamma)/(2Q))}U \circ \mathcal{C}. \ Then \ U \in H^{\gamma}(S^{2n+1}) \ if \ and \ only \ if \ u \in D^{\gamma}(\mathbb{H}^n).$

Fix $U \in H^{\gamma}(S^{2n+1})$; we shall prove first that $(z,t) \mapsto u(z,t) = \operatorname{Jac}_{\mathcal{C}}(z,t)^{((Q-2\gamma)/(2Q))}U(\mathcal{C}(z,t))$ belongs to $D^{\gamma}(\mathbb{H}^n)$. By (2.1) one has

$$\int_{\mathbb{H}^n} |u(z,t)|^{((2Q)/(Q-2\gamma))} dz dt = \int_{\mathbb{H}^n} \operatorname{Jac}_{\mathcal{C}}(z,t) |U(\mathcal{C}(z,t))|^{((2Q)/(Q-2\gamma))} dz dt$$
$$= \int_{S^{2n+1}} |U(\eta)|^{((2Q)/(Q-2\gamma))} d\eta.$$
(3.1)

Furthermore, by the fractional Sobolev inequality (2.7) and relation (2.5), one has that

$$\left(\int_{S^{2n+1}} |U(\eta)|^{((2Q)/(Q-2\gamma))} \mathrm{d}\eta\right)^{((Q-2\gamma)/(Q))} \leq C(\gamma, n) \int_{S^{2n+1}} U(\eta) \mathcal{A}_{\gamma} U(\eta) \mathrm{d}\eta$$
$$= C(\gamma, n) \sum_{j,k \ge 0} \sum_{l=1}^{m_{j,k}} \lambda_j(\gamma) \lambda_k(\gamma) |c_{j,k}^l(U)|^2$$
$$\leq C'(\gamma, n) \|U\|_{H^{\gamma}}^2$$
$$< +\infty,$$

where $C'(\gamma, n) = C_{\gamma}C(\gamma, n)$ and $C_{\gamma} > 0$ is such that $(V, V)_{\gamma} \leq C_{\gamma} ||V||^{2}_{H^{\gamma}}$ for every $V \in H^{\gamma}(S^{2n+1})$; thus $u \in L^{((2Q)/(Q-2\gamma))}(\mathbb{H}^{n})$. Moreover, by (2.8) and (2.1) one has

$$a_{\gamma}[u] = \int_{\mathbb{H}^{n}} u\mathcal{L}_{\gamma} u dz dt =$$

$$= 2^{\alpha'} \int_{\mathbb{H}^{n}} \operatorname{Jac}_{\mathcal{C}}(z,t)^{((Q-2\gamma)/(2Q))} U(\mathcal{C}(z,t))$$

$$\mathcal{L}_{\gamma}((2\operatorname{Jac}_{\mathcal{C}}(z,t))^{((Q-2\gamma)/(2Q))} U(\mathcal{C}(z,t))) dz dt$$

$$= 2^{\alpha'} \int_{\mathbb{H}^{n}} \operatorname{Jac}_{\mathcal{C}}(z,t)^{((Q-2\gamma)/(2Q))} U(\mathcal{C}(z,t))$$

$$(2\operatorname{Jac}_{\mathcal{C}}(z,t))^{((Q+2\gamma)/(2Q))} (\mathcal{A}_{\gamma}U)(\mathcal{C}(z,t)) dz dt$$

$$= 2^{\alpha''} \int_{\mathbb{H}^{n}} U(\mathcal{C}(z,t)) (\mathcal{A}_{\gamma}U)(\mathcal{C}(z,t)) \operatorname{Jac}_{\mathcal{C}}(z,t) dz dt$$

$$= 2^{\alpha''} \int_{S^{2n+1}} U(\eta) \mathcal{A}_{\gamma}U(\eta) d\eta \qquad (3.2)$$

$$< +\infty,$$

where $\alpha' = -((Q - 2\gamma)/(2Q))$ and $\alpha'' = \alpha' + ((Q + 2\gamma)/(2Q)) = ((2\gamma)/(Q))$. Therefore, $u \in D^{\gamma}(\mathbb{H}^n)$.

Conversely, let us assume that $u \in D^{\gamma}(\mathbb{H}^n)$. In particular, we have that $u \in L^{((2Q)/(Q-2\gamma))}(\mathbb{H}^n)$, thus by relation (3.1) it turns out that $U \in L^{((2Q)/(Q-2\gamma))}(S^{2n+1})$; therefore, $U \in L^2(S^{2n+1})$. Furthermore, by (3.2) we also have that

$$\int_{S^{2n+1}} U(\eta) \mathcal{A}_{\gamma} U(\eta) \mathrm{d}\eta = 2^{-\alpha''} a_{\gamma}[u] < +\infty,$$

that is, $U \in H^{\gamma}(S^{2n+1})$, which concludes the proof of *Claim*.

Let $U \in H^{\gamma}(S^{2n+1})$ be a weak solution of $(\mathbf{FYS})_{\gamma}$; then we have

$$\int_{S^{2n+1}} \mathcal{A}_{\gamma} U V \mathrm{d}\eta = \int_{S^{2n+1}} |U|^{((4\gamma)/(Q-2\gamma))} U V \mathrm{d}\eta \quad \text{for every } V \in H^{\gamma}(S^{2n+1}).$$
(3.3)

Let $v \in D^{\gamma}(\mathbb{H}^n)$ be arbitrarily fixed and define $V = (\operatorname{Jac}_{\mathcal{C}} \circ \mathcal{C}^{-1})^{((2\gamma-Q)/(2Q))}v \circ \mathcal{C}^{-1}$. Since $v = \operatorname{Jac}_{\mathcal{C}}^{((Q-2\gamma)/(2Q))}V \circ \mathcal{C}$, by the *Claim* we have that $V \in H^{\gamma}(S^{2n+1})$. Accordingly, the function V can be used as a test-function in (3.3), obtaining

$$\begin{split} &\int_{S^{2n+1}} \mathcal{A}_{\gamma} U(\operatorname{Jac}_{\mathcal{C}} \circ \mathcal{C}^{-1})^{((2\gamma-Q)/(2Q))} v \circ \mathcal{C}^{-1} \mathrm{d}\eta \\ &= \int_{S^{2n+1}} |U|^{((4\gamma)/(Q-2\gamma))} U(\operatorname{Jac}_{\mathcal{C}} \circ \mathcal{C}^{-1})^{((2\gamma-Q)/(2Q))} v \circ \mathcal{C}^{-1} \mathrm{d}\eta. \end{split}$$

By a change of variables, it follows that

$$\int_{\mathbb{H}^n} (\mathcal{A}_{\gamma} U \circ \mathcal{C}) (\operatorname{Jac}_{\mathcal{C}})^{((2\gamma - Q)/(2Q)) + 1} v \mathrm{d}z \mathrm{d}t$$
$$= \int_{\mathbb{H}^n} |U \circ \mathcal{C}|^{((4\gamma)/(Q - 2\gamma))} (U \circ \mathcal{C}) (\operatorname{Jac}_{\mathcal{C}})^{((2\gamma - Q)/(2Q)) + 1} v \mathrm{d}z \mathrm{d}t.$$

This relation and (2.8) imply that

$$2^{-((Q+2\gamma)/2Q))} \int_{\mathbb{H}^n} \mathcal{L}_{\gamma}((2\operatorname{Jac}_{\mathcal{C}})^{((Q-2\gamma)/(2Q))}(U \circ \mathcal{C}))v dz dt$$
$$= \int_{\mathbb{H}^n} |U \circ \mathcal{C}|^{((4\gamma)/(Q-2\gamma))}U \circ \mathcal{C}(\operatorname{Jac}_{\mathcal{C}})^{((2\gamma+Q)/(2Q))}v dz dt.$$

Since $u = (2 \operatorname{Jac}_{\mathcal{C}})^{((Q-2\gamma)/(2Q))} U \circ \mathcal{C}$, the latter equality is equivalent to

$$\int_{\mathbb{H}^n} \mathcal{L}_{\gamma} uv \mathrm{d}z \mathrm{d}t = \int_{\mathbb{H}^n} |u|^{((4\gamma)/(Q-2\gamma))} uv \mathrm{d}z \mathrm{d}t,$$

which means precisely that $u \in D^{\gamma}(\mathbb{H}^n)$ is a weak solution of $(\mathbf{FYH})_{\gamma}$. The converse argument works in a similar way.

REMARK 3.2. One can provide an alternative proof to proposition 3.1 by exploring the explicit form of the fundamental solution of \mathcal{L}_{γ} ; a similar approach is due to Bartsch, Schneider and Weth [4] for the polyharmonic operator $(-\Delta)^m$ in \mathbb{R}^N , where $m \in \mathbb{N}$ and N > 2m. For completeness, we sketch the proof.

We recall that the fundamental solution of \mathcal{L}_{γ} is

$$\mathcal{L}_{\gamma}^{-1}((z,t),(z',t')) = \frac{c_{\gamma}}{2} d_{KC}^{2\gamma-Q}((z,t),(z',t')), \tag{3.4}$$

where

$$c_{\gamma} = \frac{2^{n-\gamma}\Gamma((Q-2\gamma)/(4))^2}{\pi^{n+1}\Gamma(\gamma)}$$

see Branson, Fontana and Morpurgo [5, p. 21]. For every $\psi \in L^{((2Q)/(Q+2\gamma))}(S^{2n+1})$ we introduce the function

$$[\mathcal{K}_{\gamma}\psi](\zeta) = c_{\gamma} \int_{S^{2n+1}} \psi(\eta) |1 - \langle \zeta, \overline{\eta} \rangle|^{((2\gamma - Q)/(2))} \mathrm{d}\eta.$$
(3.5)

One can prove that $\mathcal{K}_{\gamma}\psi \in H^{\gamma}(S^{2n+1})$ for every $\psi \in L^{((2Q)/(Q+2\gamma))}(S^{2n+1})$. Moreover, the Funk-Hecke theorem on the CR sphere S^{2n+1} gives

$$[\mathcal{K}_{\gamma}Y_{j,k}](\zeta) = \frac{2^{Q/2-\gamma}}{\lambda_j(\gamma)\lambda_k(\gamma)}Y_{j,k}(\zeta),$$

see Frank and Lieb [14, corollary 5.3]. Thus, a direct computation yields that

$$(\mathcal{K}_{\gamma}\psi, V)_{\gamma} = 2^{Q/2-\gamma} \int_{S^{2n+1}} \psi V \mathrm{d}\eta \quad \text{for every } V \in H^{\gamma}(S^{2n+1}).$$

Note that if $U \in H^{\gamma}(S^{2n+1})$ is a weak solution of $(\mathbf{FYS})_{\gamma}$, the latter relation implies that

$$\mathcal{K}_{\gamma}(|U|^{((4\gamma)/(Q-2\gamma))}U) = 2^{Q/2-\gamma}U \quad \text{on } S^{2n+1}.$$
 (3.6)

Accordingly, by relations (3.6), (3.5), (2.1) and (2.2), it turns out that

$$\begin{split} u(z,t) &= (2\text{Jac}_{\mathcal{C}}(z,t))^{((Q-2\gamma)/(2Q))}U(\mathcal{C}(z,t)) \\ &= 2^{-Q/2+\gamma}(2\text{Jac}_{\mathcal{C}}(z,t))^{((Q-2\gamma)/(2Q))}\mathcal{K}_{\gamma}(|U(\mathcal{C}(z,t))|^{((4\gamma)/(Q-2\gamma))}U(\mathcal{C}(z,t))) \\ &= \frac{c_{\gamma}}{2}\int_{\mathbb{H}^{n}} d_{KC}^{2\gamma-Q}((z,t),(z',t')|u(z',t')|^{((4\gamma)/(Q-\gamma))}u(z',t')\mathrm{d}z'\mathrm{d}t', \ (z,t) \in \mathbb{H}^{n}. \end{split}$$

The latter relation is equivalent to the fact that

$$u(z,t) = \frac{c_{\gamma}}{2} (|u|^{((4\gamma)/(Q-\gamma))}u) * d_{KC}^{2\gamma-Q}((z,t),\cdot), \quad (z,t) \in \mathbb{H}^n,$$
(3.7)

where '*' denotes the (noncommutative) convolution operation on the Heisenberg group \mathbb{H}^n . By (3.4), a similar argument as in Folland [12, theorem 2] gives that $\mathcal{L}_{\gamma} u = |u|^{((4\gamma)/(Q-\gamma))} u$ on \mathbb{H}^n , which concludes the claim.

3.2. Compactness

According to Frank and Lieb [14], see also (2.7), the embedding $H^{\gamma}(S^{2n+1}) \hookrightarrow L^{((2Q)/(Q-2\gamma))}(S^{2n+1})$ is continuous, but not compact. This subsection is devoted to regain certain compactness by using suitable group actions on the CR sphere S^{2n+1} .

To complete this purpose, let $n_j \in \mathbb{N}$, j = 1, ..., k, with $n_1 + \cdots + n_k = n + 1$. Associated with these numbers, let

$$G = \mathbf{U}(n_1) \times \dots \times \mathbf{U}(n_k) \tag{3.8}$$

be the subgroup of the unitary group $\mathbf{U}(n+1) = \{g \in \mathbf{O}(2n+2) : gJ = Jg\}$, where

$$J = \begin{bmatrix} 0 & I_{\mathbb{R}^{n+1}} \\ -I_{\mathbb{R}^{n+1}} & 0 \end{bmatrix}$$

Let

$$H^{\gamma}_{G}(S^{2n+1}) = \{ U \in H^{\gamma}(S^{2n+1}) : g \circ U = U \quad \text{for every } g \in G \}$$

be the subspace of G-invariant functions of $H^{\gamma}(S^{2n+1})$, where

$$(g \circ U)(\eta) = U(g^{-1}\eta), \quad \eta \in S^{2n+1}.$$
 (3.9)

It is clear that $H_G^{\gamma}(S^{2n+1})$ is an infinite-dimensional closed subspace of $H^{\gamma}(S^{2n+1})$, whenever $k \ge 2$ in the splitting (3.8).

With the above notations in our mind, a Ding-Hebey-Vaugon-type compactness result reads as follows:

PROPOSITION 3.3. Let $\gamma \in \bigcup_{k=1}^{n} [k, ((kQ)/(Q-1)))$. The embedding $H_{G}^{\gamma}(S^{2n+1}) \hookrightarrow L^{((2Q)/(Q-2\gamma))}(S^{2n+1})$ is compact, where $G = \mathbf{U}(n_1) \times \cdots \times \mathbf{U}(n_k)$ is any choice with $n_j \in \mathbb{N}, j = 1, \ldots, k$, and $n_1 + \ldots + n_k = n + 1$.

Proof. First, when $G = \mathbf{U}(n+1)$, the space $H_G^{\gamma}(S^{2n+1})$ contains precisely the constant functions defined on S^{2n+1} ; in this case, the proof is trivial.

In the general case, we recall by Maalaoui and Martino [20, lemma 3.3] that the embedding $W_G^{1,2}(S^{2n+1}) = H_G^1(S^{2n+1}) \hookrightarrow L^q(S^{2n+1})$ is compact for every $1 \leq q < q_1^*$, where $q_1^* = ((2(Q-1))/(Q-3))$ is the Riemannian critical exponent on the (Q-1)-dimensional sphere S^{2n+1} .

By our assumption $\gamma \in \bigcup_{k=1}^{n} [k, ((kQ)/(Q-1)))$ we have that $l := [\gamma] \ge 1$ and

$$\gamma \left(1 - \frac{1}{Q} \right) < l \leqslant \gamma. \tag{3.10}$$

 \square

The iterative argument developed by Aubin [1, proposition 2.11], applied for l times, gives that the embedding $W_G^{l,2}(S^{2n+1}) = H_G^l(S^{2n+1}) \hookrightarrow L^q(S^{2n+1})$ is compact for every $1 \leq q < q_l^*$, where $q_l^* = ((2(Q-1))/(Q-1-2l))$. On one hand, since $l \leq \gamma$, we have that $H_G^{\gamma}(S^{2n+1}) = W_G^{\gamma,2}(S^{2n+1}) \subset W_G^{l,2}(S^{2n+1})$. On the other hand, the left-hand side of (3.10) is equivalent to $q_l^* > ((2Q)/(Q-2\gamma))$. Combining these facts, we have the chain of inclusions

$$H_G^{\gamma}(S^{2n+1}) \subset W_G^{l,2}(S^{2n+1}) \hookrightarrow L^{((2Q)/(Q-2\gamma))}(S^{2n+1})$$

where the latter embedding is compact.

REMARK 3.4. Our assumption $\gamma \in \bigcup_{k=1}^{n} [k, ((kQ)/(Q-1))]$ is important to guarantee the left-hand side of (3.10), which in turn, implies that $((2Q)/(Q-2\gamma))$ is within the range $[1, q_l^*)$ where the embedding $W_G^{l,2}(S^{2n+1}) \hookrightarrow L^q(S^{2n+1})$ is compact, $q \in [1, q_l^*)$. We are wondering if this assumption can be removed in order to prove the compactness of the above embedding for the whole spectrum (0, Q/2) of the parameter γ .

3.3. Special group actions

The goal of this subsection is to describe symmetrically different functions belonging to $H^{\gamma}(S^{2n+1})$ via subgroups of the form $G = \mathbf{U}(n_1) \times \cdots \times \mathbf{U}(n_k)$ with $n_1 + \cdots + n_k = n + 1$. To handle this problem, we explore a Rubik-cube technique, described in a slightly different manner in Balogh and Kristály [2]; roughly speaking, n + 1 corresponds to the number of total sides of the cube, while the sides of the cube are certain blocks in the decomposition subgroup $G = \mathbf{U}(n_1) \times \cdots \times \mathbf{U}(n_k)$.

To be more precise, let $n \ge 1$ and for $i \in \{1, \ldots, [n+1/2]\}$, we consider the subgroup of the unitary group $\mathbf{U}(n+1)$ as

$$G_{i} = \begin{cases} \begin{bmatrix} \mathbf{U}\left(\frac{n+1}{2}\right) & 0\\ 0 & \mathbf{U}\left(\frac{n+1}{2}\right) \end{bmatrix}, & \text{if } n+1=2i, \\ \begin{bmatrix} \mathbf{U}(i) & 0 & 0\\ 0 & \mathbf{U}(n+1-2i) & 0\\ 0 & 0 & \mathbf{U}(i) \end{bmatrix}, & \text{if } n+1 \neq 2i. \end{cases}$$

https://doi.org/10.1017/prm.2018.95 Published online by Cambridge University Press

It is clear that a particular G_i does not act transitively on the sphere S^{2n+1} . However, to recover the transitivity, we shall combine different groups of the type G_i ; for further use, let $[G_i; G_j]$ be the group generated by G_i and G_j .

LEMMA 3.5. Let $i, j \in \{1, \ldots, [n+1/2]\}$ with $i \neq j$. Then the group $[G_i; G_j]$ acts transitively on the CR sphere S^{2n+1} .

Proof. Without loss of generality, we assume that j > i. For further use, let $0_k = (0, \ldots, 0) \in \mathbb{C}^k = \mathbb{R}^{2k}$, $k \in \{1, \ldots, n\}$. Let us fix $\eta = (\eta_1, \eta_2, \eta_3) \in S^{2n+1}$ arbitrarily with $\eta_1, \eta_3 \in \mathbb{C}^j$ and $\eta_2 \in \mathbb{C}^{n+1-2j}$; clearly, η_2 disappears from η whenever 2j = n + 1. Taking into account the fact that $\mathbf{U}(j)$ acts transitively on S^{2j-1} , there are $g_j^1, g_j^2 \in \mathbf{U}(j)$ such that if $g_j = g_j^1 \times I_{\mathbb{C}^{n+1-2j}} \times g_j^2 \in G_j$, then $g_j \eta = (0_{j-1}, 0, |\eta_1|, \eta_2, |\eta_3|, 0, 0_{j-1})$. Since $j - 1 \ge i$, the transitive action of $\mathbf{U}(n + 1 - 2i)$ on $S^{2n+1-4i}$ implies the existence of $g_i^1 \in \mathbf{U}(n + 1 - 2i)$ such that $g_i^1(0_{j-i-1}, 0, |\eta_1|, \eta_2, |\eta_3|, 0, 0_{j-i-1}) = (1, 0, 0_{n-2i})$. Therefore, if $g_i = I_{\mathbb{C}^i} \times g_i^1 \times I_{\mathbb{C}^i} \in G_i$ then $g_i g_j \eta = (0_i, 1, 0, 0_{n-i}) \in S^{2n+1}$.

By repeating the same procedure for another element $\tilde{\eta} \in S^{2n+1}$, there exists $\tilde{g}_i \in G_i$ and $\tilde{g}_j \in G_j$ such that $\tilde{g}_i \tilde{g}_j \tilde{\eta} = (0_i, 1, 0, 0_{n-i}) \in S^{2n+1}$. Accordingly,

$$\eta = g_j^{-1} g_i^{-1} \tilde{g}_i \tilde{g}_j \tilde{\eta} = g_j^{-1} \overline{g}_i \tilde{g}_j \tilde{\eta},$$

where $\overline{g}_i = g_i^{-1} \tilde{g}_i \in G_i$, which concludes the proof.

For every fixed $i \in \{1, \ldots, [n+1/2]\}$, we introduce the matrix A_i as

$$A_i = \begin{cases} \begin{bmatrix} 0 & I_{\mathbb{C}^{((n+1)/(2))}} \\ I_{\mathbb{C}^{((n+1)/(2))}} & 0 \end{bmatrix}, & \text{if} \quad n+1 = 2i, \\ \begin{bmatrix} 0 & 0 & I_{\mathbb{C}^i} \\ 0 & I_{\mathbb{C}^{n+1-2i}} & 0 \\ I_{\mathbb{C}^i} & 0 & 0 \end{bmatrix}, & \text{if} \quad n+1 \neq 2i. \end{cases}$$

The following construction is inspired by Bartsch and Willem [3]. Since one has $A_i \in \mathbf{U}(n+1) \setminus G_i$, $A_i^2 = I_{\mathbb{C}^{n+1}}$ and $A_iG_i = G_iA_i$, the group generated by G_i and A_i is $\hat{G}_i = [G_i; A_i] = G_i \cup A_iG_i$, that is,

$$\hat{G}_{i} = \begin{cases} \begin{bmatrix} \mathbf{U}(n+1/2) & 0 \\ 0 & \mathbf{U}(n+1/2) \end{bmatrix} \cup \begin{bmatrix} 0 & \mathbf{U}(n+1/2) \\ \mathbf{U}(n+1/2) & 0 \end{bmatrix}, & \text{if } n+1=2i, \\ \begin{bmatrix} \mathbf{U}(i) & 0 & 0 \\ 0 & \mathbf{U}(n+1-2i) & 0 \\ 0 & 0 & \mathbf{U}(i) \end{bmatrix} \cup \begin{bmatrix} 0 & 0 & \mathbf{U}(i) \\ 0 & \mathbf{U}(n+1-2i) & 0 \\ \mathbf{U}(i) & 0 & 0 \end{bmatrix}, & \text{if } n+1\neq 2i. \end{cases}$$

$$(3.11)$$

In fact, in \hat{G}_i , there are only two types of elements: either of the form $g \in G_i$, or $A_i g \in \hat{G}_i \setminus G_i$ (with $g \in G_i$), respectively.

The action $\hat{G}_i \circledast H^{\gamma}(S^{2n+1}) \mapsto H^{\gamma}(S^{2n+1})$ of the group \hat{G}_i on $H^{\gamma}(S^{2n+1})$ is defined by

$$(\hat{g} \circledast U)(\eta) = \begin{cases} U(g^{-1}\eta), & \text{if } \hat{g} = g \in G_i, \\ -U(g^{-1}A_i^{-1}\eta), & \text{if } \hat{g} = A_ig \in \hat{G}_i \setminus G_i, \end{cases}$$
(3.12)

for every $\hat{g} \in \hat{G}_i$, $U \in H^{\gamma}(S^{2n+1})$ and $\eta \in S^{2n+1}$. We notice that this action is welldefined, continuous and linear. Similarly, as in (3.9), we introduce the space of G_i -invariant functions of $H^{\gamma}(S^{2n+1})$ as

$$H^{\gamma}_{G_i}(S^{2n+1}) = \{ U \in H^{\gamma}(S^{2n+1}) : g \circ U = U \quad \text{ for every } g \in G_i \},$$

where the action \circ' corresponds to the first relation in (3.12). Furthermore, let

$$H^{\gamma}_{\hat{G}_i}(S^{2n+1}) = \left\{ U \in H^{\gamma}(S^{2n+1}) : \hat{g} \circledast U = U \quad \text{for every } \hat{g} \in \hat{G}_i \right\}$$

be the space of \hat{G}_i -invariant functions of $H^{\gamma}(S^{2n+1})$.

The following result summarizes the constructions in this subsection.

PROPOSITION 3.6. Let $\gamma \in \bigcup_{k=1}^{n} [k, kQ/Q - 1)$, and fix $i, j \in \{1, \dots, [n+1/2]\}$ such that $i \neq j$. The following statements hold:

- (i) The embedding $H^{\gamma}_{\hat{G}_{*}}(S^{2n+1}) \hookrightarrow L^{((2Q)/(Q-2\gamma))}(S^{2n+1})$ is compact;
- (ii) $H_{G_i}^{\gamma}(S^{2n+1}) \cap H_{G_i}^{\gamma}(S^{2n+1}) = \{ \text{constant functions on } S^{2n+1} \};$

(iii)
$$H^{\gamma}_{\hat{G}_i}(S^{2n+1}) \cap H^{\gamma}_{\hat{G}_j}(S^{2n+1}) = \{0\}.$$

Proof.

- (i) It is clear that $H^{\gamma}_{\hat{G}_i}(S^{2n+1}) \subset H^{\gamma}_{G_i}(S^{2n+1})$. Moreover, by proposition 3.3, we have that the embedding $H^{\gamma}_{G_i}(S^{2n+1}) \hookrightarrow L^{((2Q)/(Q-2\gamma))}(S^{2n+1})$ is compact.
- (ii) Let us fix $U \in H^{\gamma}_{G_i}(S^{2n+1}) \cap H^{\gamma}_{G_j}(S^{2n+1})$. Since U is both G_i and G_j invariant, it is also $[G_i; G_j]$ -invariant, that is, $U(g\eta) = U(\eta)$ for every $g \in [G_i; G_j]$ and $\eta \in S^{2n+1}$. According to lemma 3.5, the group $[G_i; G_j]$ acts transitively on the CR sphere S^{2n+1} , that is, the orbit of every element $\eta \in S^{2n+1}$ by the group $[G_i; G_j]$ is the whole sphere S^{2n+1} . Thus, U is a constant function.
- (iii) Let $U \in H^{\gamma}_{\hat{G}_i}(S^{2n+1}) \cap H^{\gamma}_{\hat{G}_j}(S^{2n+1})$. On one hand, by (ii), we first have that U is constant. On the other hand, the second relation from (3.12) implies that $U(\eta) = -U(A_i\eta)$ for every $\eta \in S^{2n+1}$. Therefore, we necessarily have that U = 0.

3.4. Proof of Theorem 1.1.

We associate to problem $(\mathbf{FYS})_{\gamma}$ the energy functional $E: H^{\gamma}(S^{2n+1}) \to \mathbb{R}$ defined by

$$E(U) = \frac{1}{2} \int_{S^{2n+1}} U \mathcal{A}_{\gamma} U \mathrm{d}\eta - \frac{Q - 2\gamma}{2Q} \int_{S^{2n+1}} |U|^{((2Q)/(Q - 2\gamma))} \mathrm{d}\eta, \quad U \in H^{\gamma}(S^{2n+1}).$$

Due to (2.7), the functional E is well-defined, belonging to $C^1(H^{\gamma}(S^{2n+1}), \mathbb{R})$. Moreover, $U \in H^{\gamma}(S^{2n+1})$ is a critical point of E if and only if U is a weak solution of $(\mathbf{FYS})_{\gamma}$.

Let us fix $i \in \{1, \ldots, [n+1/2]\}$. In order to guarantee critical points for E, we first consider the functional $E_i : H^{\gamma}_{\hat{G}_i}(S^{2n+1}) \to \mathbb{R}$, the restriction of E to the space $H^{\gamma}_{\hat{G}_i}(S^{2n+1})$. It is clear that E_i is an even functional and it has the mountain pass geometry. Since the embedding $H^{\gamma}_{\hat{G}_i}(S^{2n+1}) \hookrightarrow L^{((2Q)/(Q-2\gamma))}(S^{2n+1})$ is compact, see proposition 3.6 (i), we may apply the fountain theorem, see for example, Bartsch and Willem [3, theorem 3.1], guaranteeing a sequence $\{U^k_i\}_{k\in\mathbb{N}} \subset H^{\gamma}_{\hat{G}_i}(S^{2n+1})$ of critical points for E_i with the additional property that $\|U^k_i\|_{H^{\gamma}} \to \infty$ as $k \to \infty$.

By using the principle of symmetric criticality of Palais [22], we are going to prove that $\{U_i^k\}_{k\in\mathbb{N}} \subset H_{\hat{G}_i}^{\gamma}(S^{2n+1})$ are in fact critical points for the original energy functional E, thus weak solutions of $(\mathbf{FYS})_{\gamma}$. To do this, it suffices to verify that E is a \hat{G}_i -invariant functional, that is,

$$E(\hat{g} \circledast U) = E(U)$$
 for every $\hat{g} \in \hat{G}_i, \ U \in H^{\gamma}(S^{2n+1}).$

On one hand, according to relation (2.6), for the quadratic term in E, it is enough to prove that \hat{G}_i acts isometrically on $H^{\gamma}(S^{2n+1})$, that is,

$$(\hat{g} \circledast U, \hat{g} \circledast U)_{\gamma} = (U, U)_{\gamma} \text{ for every } \hat{g} \in \hat{G}_i, \ U \in H^{\gamma}(S^{2n+1}).$$
(3.13)

To see this, let us fix $\hat{g} \in \hat{G}_i$ and $U \in H^{\gamma}(S^{2n+1})$ arbitrarily. We recall that by definition

$$(\hat{g} \circledast U, \hat{g} \circledast U)_{\gamma} = \sum_{j,k \ge 0} \lambda_j(\gamma) \lambda_k(\gamma) \sum_{l=1}^{m_{j,k}} |c_{j,k}^l(\hat{g} \circledast U)|^2$$

By using (2.3), one has

$$\sum_{l=1}^{m_{j,k}} |c_{j,k}^{l}(\hat{g} \circledast U)|^{2} = \int_{S^{2n+1}} \int_{S^{2n+1}} (\hat{g} \circledast U)(\zeta)(\hat{g} \circledast U)(\eta) \sum_{l=1}^{m_{j,k}} Y_{j,k}^{l}(\zeta) \overline{Y_{j,k}^{l}(\eta)} d\zeta d\eta$$
$$= \int_{S^{2n+1}} \int_{S^{2n+1}} (\hat{g} \circledast U)(\zeta)(\hat{g} \circledast U)(\eta) \Phi_{j,k}(\zeta,\eta) d\zeta d\eta.$$
(3.14)

Note that for every $g \in G_i \subset \mathbf{U}(n+1)$ and $\zeta, \eta \in S^{2n+1}$, we have

$$\langle g\zeta, \overline{g\eta} \rangle = \langle A_i g\zeta, \overline{A_i g\eta} \rangle = \langle \zeta, \overline{\eta} \rangle;$$

therefore, by the representation (2.4) of the zonal harmonics we also have that

$$\Phi_{j,k}(g\zeta,g\eta) = \Phi_{j,k}(A_ig\zeta,A_ig\eta) = \Phi_{j,k}(\zeta,\eta).$$

Thus, relation (3.12) and suitable changes of variables in (3.14) imply that

$$\sum_{l=1}^{m_{j,k}} |c_{j,k}^l(\hat{g} \circledast U)|^2 = \int_{S^{2n+1}} \int_{S^{2n+1}} U(\zeta) U(\eta) \Phi_{j,k}(\zeta,\eta) \mathrm{d}\zeta \mathrm{d}\eta = \sum_{l=1}^{m_{j,k}} |c_{j,k}^l(U)|^2,$$

which proves (3.13).

On the other hand, the \hat{G}_i -invariance of the nonlinear term $U \mapsto \int_{S^{2n+1}} |U|^{((2Q)/(Q-2\gamma))}$ trivially follows by a change of variable, by using the isometric character of the group $\mathbf{U}(n+1)$ on S^{2n+1} .

Accordingly, for every $i \in \{1, \ldots, [n+1/2]\}$, the functions $\{U_i^k\}_{k \in \mathbb{N}} \subset H_{\hat{G}_i}^{\gamma}$ (S^{2n+1}) are non-trivial weak solutions of $(\mathbf{FYS})_{\gamma}$. Due to proposition 3.1, $u_i^k = (2\operatorname{Jac}_{\mathcal{C}})^{((Q-2\gamma)/(2Q))}U_i^k \circ \mathcal{C} \in D^{\gamma}(\mathbb{H}^n)$ are non-trivial weak solutions of the original fractional Yamabe problem $(\mathbf{FYH})_{\gamma}$; by construction, u_i^k are sign-changing functions.

Due to proposition 3.6 (iii), we state that the sequences $\{U_i^k\}_{k\in\mathbb{N}} \subset H_{\hat{G}_i}^{\gamma}(S^{2n+1})$ and $\{U_j^k\}_{k\in\mathbb{N}} \subset H_{\hat{G}_j}^{\gamma}(S^{2n+1})$ with $i, j \in \{1, \ldots, [n+1/2]\}, i \neq j$, cannot be compared from symmetrical point of view. Therefore, the sequences $\{u_i^k\} \subset D^{\gamma}(\mathbb{H}^n)$ and $\{u_j^k\} \subset D^{\gamma}(\mathbb{H}^n)$ have mutually different nodal properties for every $i, j \in \{1, \ldots, [n+1/2]\}, i \neq j$, which concludes the proof.

REMARK 3.7. Consider a nonzero solution $u_i^k = (2\operatorname{Jac}_{\mathcal{C}})^{((Q-2\gamma)/(2Q))}U_i^k \circ \mathcal{C} \in D^{\gamma}(\mathbb{H}^n)$ of $(\mathbf{FYH})_{\gamma}$, with $\{U_i^k\}_{k\in\mathbb{N}} \subset H_{\hat{G}_i}^{\gamma}(S^{2n+1}) \setminus \{0\}$. For simplicity, we consider the case n+1=2i. Let us introduce the nodal domain of U_i^k (or u_i^k) as the connected components of $C_i^k = S^{2n+1} \setminus N_i^k$, where $N_i^k = \overline{\{\eta \in S^{2n+1} : U_i^k(\eta) = 0\}}$. Since $U_i^k \in H_{\hat{G}_i}^{\gamma}(S^{2n+1})$, by relation (3.12) it follows that U_i^k has the form $U_i^k(\eta) = U_i^k(|\eta_1|, |\eta_2|)$ with the property that $U_i^k(|\eta_1|, |\eta_2|) = -U_i^k(|\eta_2|, |\eta_1|), \eta = (\eta_1, \eta_2) \in S^{2n+1}, \eta_1, \eta_2 \in \mathbb{C}^i$. Accordingly, since $U_i^k(|\eta_1|, |\eta_2|) = U_i^k(|\pm \eta_1|, |\pm \eta_2|), U_i^k$ is sign-changing with at least four non-degenerate nodal domains in C_i^k ; in two of them the function U_i^k is negative, while in the other two it is positive, respectively. When $n+1 \neq 2i$, a similar discussion can be performed.

We conclude the paper by the following table providing explicit forms of subgroups of the unitary group $\mathbf{U}(n+1)$ and admissible intervals for the parameter γ , depending on the dimension n, where our main theorem applies; we only consider the cases when $n \in \{1, \ldots, 8\}$:

https://doi.org/10.1017/prm.2018.95 Published online by Cambridge University Press

n	$Q = 2n \pm 2$	$C: i \in \{1, [n \pm 1/2]\}$	Admissible domains for $\gamma \in (0, \Omega/2)$	Number of symmetrically distinct sequences of solution of (FYH)
\mathcal{H}	Q = 2m + 2	$G_i, i \in \{1, \ldots, \lfloor ll + 1/2 \rfloor\}$	$\gamma \in (0, Q/2)$	of $(\mathbf{F} \mathbf{I} \mathbf{I} \mathbf{I})\gamma$
1	4	$G_1 = \mathbf{U}(1) \times \mathbf{U}(1)$	[1, 4/3)	1
2	6	$G_1 = \mathbf{U}(1) \times \mathbf{U}(1) \times \mathbf{U}(1)$	$[1, 6/5) \cup [2, 12/5)$	1
3	8	$G_1 = \mathbf{U}(1) \times \mathbf{U}(2) \times \mathbf{U}(1)$	$[1, 8/7) \cup [2, 16/7) \cup$	2
		$G_2 = \mathbf{U}(2) \times \mathbf{U}(2)$	$\cup [3, 24/7)$	
4	10	$G_1 = \mathbf{U}(1) \times \mathbf{U}(3) \times \mathbf{U}(1)$	$\bigcup_{k=1}^{4} [k, 10k/9)$	2
		$G_2 = \mathbf{U}(2) \times \mathbf{U}(1) \times \mathbf{U}(2)$		
		$G_1 = \mathbf{U}(1) \times \mathbf{U}(4) \times \mathbf{U}(1)$	-	
5	12	$G_2 = \mathbf{U}(2) \times \mathbf{U}(2) \times \mathbf{U}(2)$	$\bigcup_{k=1}^{5} [k, 12k/11)$	3
		$G_3 = \mathbf{U}(3) \times \mathbf{U}(3)$		
		$G_1 = \mathbf{U}(1) \times \mathbf{U}(5) \times \mathbf{U}(1)$	6	
6	14	$G_2 = \mathbf{U}(2) \times \mathbf{U}(3) \times \mathbf{U}(2)$	$\bigcup_{k=1}^{6} [k, 14k/13)$	3
		$G_3 = \mathbf{U}(3) \times \mathbf{U}(1) \times \mathbf{U}(3)$		
_	10	$G_1 = \mathbf{U}(1) \times \mathbf{U}(6) \times \mathbf{U}(1)$,
7	16	$G_2 = \mathbf{U}(2) \times \mathbf{U}(4) \times \mathbf{U}(2)$	$\bigcup_{k=1}^{1} [k, 16k/15)$	4
		$G_3 = \mathbf{U}(3) \times \mathbf{U}(2) \times \mathbf{U}(3)$		
		$G_4 = \mathbf{U}(4) \times \mathbf{U}(4)$ $G_4 = \mathbf{I}(1) \times \mathbf{I}(7) \times \mathbf{I}(1)$		
8	18	$C_1 = \mathbf{U}(1) \times \mathbf{U}(1) \times \mathbf{U}(1)$ $C_2 = \mathbf{U}(2) \times \mathbf{U}(5) \times \mathbf{U}(2)$	$ ^{8}$ [k 18k/17)	4
0	10	$G_2 = U(2) \times U(3) \times U(2)$ $G_3 = U(3) \times U(3) \times U(3)$	$\bigcup_{k=1}^{k} (k, 10k/17)$	4
		$G_4 = \mathbf{U}(4) \times \mathbf{U}(1) \times \mathbf{U}(4)$		

Acknowledgements

The author would like to thank Professor Carlo Morpurgo for his useful remarks concerning the preliminary version of the manuscript and the anonymous referee for her/his valuable observations which improved the quality of the manuscript.

References

- 1 T. Aubin. Nonlinear analysis on manifolds, Monge-Ampère equations (New York: Springer-Verlag, 1982).
- 2 Z. M. Balogh and A. Kristály. Lions-type compactness and Rubik actions on the Heisenberg group. Calc. Var. Partial Differ. Equ. 48 (2013), 89–109.
- 3 T. Bartsch and M. Willem. Infinitely many nonradial solutions of a Euclidean scalar field equation. J. Funct. Anal. **117** (1993), 447–460.
- 4 T. Bartsch, M. Schneider and T. Weth. Multiple solutions of a critical polyharmonic equation. J. Reine Angew. Math. 571 (2004), 131–143.
- 5 T. P. Branson, L. Fontana and C. Morpurgo. Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere. Ann. of Math. **177** (2013), 1–52.

- 6 X. Cabré and Y. Sire. Nonlinear equations for fractional Laplacians I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23–53.
- 7 L. Caffarelli. Nonlocal equations drifts and games. Nonlinear Partial Differ. Equ., Abel Symposia 7 (2012), 37–52.
- 8 L. Caffarelli and L. Silvestre. An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. **32** (2007), 1245–1260.
- 9 L. Caffarelli, S. Salsa and L. Silvestre. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. *Invent. Math.* **171** (2008), 425–461.
- 10 E. Di Nezza, G. Palatucci and E. Valdinoci. Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521–573.
- W. Y. Ding. On a conformally invariant elliptic equation. Comm. Math. Phys. 107 (1986), 331–335.
- 12 G. B. Folland. A fundamental solution for a subelliptic operator. *Bull. Amer. Math. Soc.* **79** (1973), 373–376.
- 13 G. B. Folland. Spherical harmonics expansion of the Poisson-Szegő kernel for the ball. Proc. Amer. Math. Soc. 47 (1975), 401–408.
- 14 R. L. Frank and E. H. Lieb. Sharp constants in several inequalities on the Heisenberg group. Ann. Math. 176 (2012), 349–381.
- 15 R. Frank, M. del Mar González, D. D. Monticelli and J. Tan. An extension problem for the CR fractional Laplacian. Adv. Math. 270 (2015), 97–137.
- 16 N. Garofalo and D. Vassilev. Symmetry properties of positive entire solutions of Yamabetype equations on groups of Heisenberg type. *Duke Math J.* **106** (2001), 411–448.
- 17 E. Hebey and M. Vaugon. Sobolev spaces in the presence of symmetries. J. Math. Pures Appl. 76 (1997), 859–881.
- 18 D. Jerison and J. M. Lee. The Yamabe problem on CR manifolds. J. Differ. Geom. 25 (1987), 167–197.
- 19 D. Jerison and J. M. Lee. Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem. J. Amer. Math. Soc. 1 (1988), 1–13.
- 20 A. Maalaoui and V. Martino. Changing-sign solutions for the CR-Yamabe equation. Differ. Integral Equ. 25 (2012), 601–609.
- 21 A. Maalaoui, V. Martino and G. Tralli. Complex group actions on the sphere and sign changing solutions for the CR-Yamabe equation. J. Math. Anal. Appl. 431 (2015), 126–135.
- 22 R. S. Palais. The principle of symmetric criticality. Comm. Math. Phys. 69 (1979), 19–30.
- N. J. Vilenkin and A. U. Klimyk. Representation of Lie groups and special functions. Class I representations, special functions, and integral transforms vol. 2, Translated from the Russian by V. A. Groza and A. A. Groza. Mathematics and its applications (Soviet Series), 74 (Dordrecht: Kluwer Academic Publishers Group, 1993).