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We prove that the fractional Yamabe equation Lγu = |u|((4γ)/(Q−2γ))u on the
Heisenberg group Hn has [n + 1/2] sequences of nodal (sign-changing) weak
solutions whose elements have mutually different nodal properties, where Lγ denotes
the CR fractional sub-Laplacian operator on Hn, Q = 2n + 2 is the homogeneous
dimension of Hn, and γ ∈ ⋃n

k=1[k, ((kQ)/Q − 1))). Our argument is variational,
based on a Ding-type conformal pulling-back transformation of the original problem
into a problem on the CR sphere S2n+1 combined with a suitable
Hebey-Vaugon-type compactness result and group-theoretical constructions for
special subgroups of the unitary group U(n + 1).
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1. Introduction

After the seminal paper of Caffarelli and Silvestre [8], considerable efforts have
been made concerning the study of elliptic problems involving the fractional Laplace
operator both in Euclidean and non-Euclidean settings. As expected, the Euclidean
framework is much more developed; although many results concerning the pure
Laplace operator can be transposed to the fractional setting in R

n, there are also
subtle differences which require a deep understanding of certain nonlinear phenom-
ena, see for example, Cabré and Sire [6], Caffarelli [7], Caffarelli, Salsa and Silvestre
[9], Di Nezza, Palatucci and Valdinoci [10], and references therein.

By exploring analytical and spectral theoretical arguments, important contribu-
tions have been obtained recently within the CR setting concerning the fractional
Laplace operator with various applications in sub-elliptic PDEs, see Branson,
Fontana and Morpurgo [5], Frank and Lieb [14], and Frank, del Mar González,
Monticelli and Tan [15]. In particular, in the latter papers, sharp Sobolev and
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Moser-Trudinger inequalities are established on the Heisenberg group H
n, n � 1,

the simplest non-trivial CR structure.
In the present paper, we shall consider the fractional Yamabe problem on the

Heisenberg group H
n, namely,{Lγu = |u|((4γ)/(Q−2γ))u on H

n,
u ∈ Dγ(Hn).

(FYH)γ

Hereafter, Q := Qn = 2n+ 2 is the homogeneous dimension of H
n, γ > 0 is a

parameter specified later, Lγ denotes the CR fractional sub-Laplacian operator
on H

n, and the functional space Dγ(Hn) contains real-valued functions from
L((2Q)/(Q−2γ))(Hn) whose energy associated with the CR fractional sub-Laplacian
operator Lγ is finite; see § 2.4 for details.

Due to the recent paper of Frank, del Mar González, Monticelli and Tan [15],
we know the existence of positive solutions of (FYH)γ for γ ∈ (0, Q/2), having the
form

u(z, t) = c0((1 + |z|2)2 + t2)((2γ−Q)/(4)), (z, t) ∈ H
n, (1.1)

for some c0 > 0, allowing any left translation and dilation. In the special case
γ = 1, when L1 = L is the usual sub-Laplacian operator on H

n, the existence and
uniqueness (up to left translation and dilation) of positive solutions of the form
(1.1) for problem (FYH)1 have been established by Jerison and Lee [18,19]; see
also Garofalo and Vassilev [16] for generic Heisenberg-type groups (e.g. Iwasawa
groups).

Our main result guarantees sign-changing solutions for the fractional Yamabe
problem (FYH)γ as follows:

Theorem 1.1. Let γ ∈ ⋃n
k=1[k, ((kQ)/(Q− 1))), where Q = 2n+ 2. Then problem

(FYH)γ admits at least [n+ 1/2] sequences of sign-changing weak solutions whose
elements have mutually different nodal properties. (Hereafter, [r] denotes the integer
part of r � 0.)

Before commenting on theorem 1.1, we recall that similar results are well known in
the Euclidean setting; indeed, Bartsch, Schneider and Weth [4] proved the existence
of infinitely many sign-changing weak solutions for the polyharmonic problem{

(−Δ)mu = |u|((4m)/(N−2m))u in R
N ,

u ∈ Dm,2(RN ),
(P)m

where N > 2m,m ∈ N, and Dm,2(RN ) denotes the usual higher order Sobolev space
over R

N . In fact, their proof is based on Ding’s original idea, see [11], who considered
the casem = 1, by pulling back the variational problem (P)m to the standard sphere
SN by stereographic projection. In this manner, by exploring certain properties
of suitable subgroups of the orthogonal group O(N + 1), the authors are able to
obtain compactness by exploring a suitable Sobolev embedding result of Hebey and
Vaugon [17] which is indispensable in the application of the symmetric mountain
pass theorem.

We notice that sign-changing solutions are already guaranteed to the usual CR-
Yamabe problem (FYH)1 by Maalaoui and Martino [20], and Maalaoui, Martino
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and Tralli [21] by exploring Ding’s approach; their results are direct consequences
of theorem 1.1 for γ = 1.

Coming back to theorem 1.1, we shall mimic Ding’s original idea as well, empha-
sizing that our CR fractional setting requires a more delicate analysis than either
the polyharmonic setting in the Euclidean case (see [4]) or the usual CR frame-
work, that is, when γ = 1 (see [20,21]). In the sequel, we sketch our strategy. As
expected, we first consider the fractional Yamabe problem on the CR sphere S2n+1,
that is,

{AγU = |U |((4γ)/(Q−2γ))U on S2n+1,
U ∈ Hγ(S2n+1),

(FYS)γ

where the intertwining operator Aγ and Sobolev space Hγ(S2n+1) are intro-
duced in § 2.4. By using the Cayley transform between the Heisenberg group
H

n and the CR sphere S2n+1, we prove that there is an explicit correspon-
dence between the weak solutions of (FYH)γ and (FYS)γ , respectively, see
proposition 3.1 (and remark 3.2 for an alternative proof). Being in the critical
case, the energy functional associated with problem (FYS)γ does not satisfy the
usual Palais-Smale condition due to the lack of compactness of the embedding
Hγ(S2n+1) ↪→ L

2Q
Q−2γ (S2n+1). In order to regain some compactness, we establish

a CR fractional version of the Ding-Hebey-Vaugon compactness result on the CR
sphere S2n+1, see proposition 3.3. In fact, subgroups of the unitary group U(n+ 1)
having the form G = U(n1) × ...× U(nk) with n1 + · · · + nk = n+ 1 will imply
the compactness of the embedding of G-invariant functions of Hγ(S2n+1) into
L((2Q)/(Q−2γ))(S2n+1). Here, we shall explore the compactness result of Maalaoui
and Martino [20] combined with an iterative argument of Aubin [1] and the tech-
nical assumption γ ∈ ⋃n

k=1[k, ((kQ)/(Q− 1))); some comments on the necessity of
the latter assumption are formulated in remark 3.4. Now, having such a compact-
ness, the fountain theorem and the principle of symmetric criticality applied to the
energy functional associated with (FYS)γ will guarantee the existence of a whole
sequence of G-invariant weak solutions for (FYS)γ , so for (FYH)γ . The number
of [n+ 1/2] sequences of sign-changing weak solutions for (FYH)γ with mutu-
ally different nodal properties will follow by careful choices of the subgroups G =
U(n1) × · · · × U(nk) of the unitary group U(n+ 1) with n1 + · · · + nk = n+ 1, see
proposition 3.6.

Plan of the paper. In § 2, we recall those notions and results that are indispensable
to present our argument (e.g. basic facts about Heisenberg groups, the Cayley
transform, spherical/zonal harmonics on S2n+1, fractional Sobolev spaces on S2n+1

and H
n). Section 3 is devoted to the proof of theorem 1.1; in § 3.1, we prove the

equivalence between the weak solutions of problems (FYS)γ and (FYH)γ ; in § 3.2,
we establish the compactness result on the CR fractional setting for S2n+1; in § 3.3,
we treat the group-theoretical aspects of our problem concerning the choice of the
subgroups G = U(n1) × · · · × U(nk) of the unitary group U(n+ 1) which is needed
to produce [n+ 1/2] sequences of sign-changing weak solutions for (FYH)γ with
different nodal properties. Finally, in § 3.4, we assemble the aforementioned pieces
in order to conclude the proof of Theorem 1.1.
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2. Preliminaries

In order the paper to be self-contained, we recall in this section, some basic notions
from [5,13–15,23] which are indispensable in the sequel.

2.1. Heisenberg groups

An element in the Heisenberg group H
n is denoted by (x, y, t), where x =

(x1, . . . , xn) ∈ R
n, y = (y1, . . . , yn) ∈ R

n, t ∈ R, and we identify the pair (x, y) with
z ∈ C

n having coordinates zj = xj + iyj for all j = 1, . . . , n. The correspondence
with its Lie algebra via the exponential coordinates induces the group law

(z, t) � (z′, t′) =
(
z + z′, t+ t′ + 2Im z · z′) , ∀ (z, t), (z′, t′) ∈ C

n × R,

where Im denotes the imaginary part of a complex number and z · z′ =
∑n

j=1 zjz′j
is the Hermitian inner product. In these coordinates, the neutral element of H

n is
0Hn = (0Cn , 0) and the inverse (z, t)−1 of the element (z, t) is (−z,−t). Note that
(x, y, t) = (z, t) forms a real coordinate system for H

n and the system of vector
fields given as differential operators

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, j ∈ {1, . . . n}, T =

∂

∂t
,

forms a basis of the left-invariant vector fields on H
n. The vectors Xj , Yj , j ∈

{1, . . . , n} form the basis of the horizontal bundle. Let

N(z, t) = (|z|4 + t2)1/4

be the homogeneous gauge norm on H
n and dKC : H

n × H
n → R be the Korányi-

Cygan metric given by

dKC((z, t), (z′, t′)) = N((z′, t′)−1 � (z, t)) = (|z − z′|4 + (t− t′ − 2Im z · z′)2)1/4.

The Lebesgue measure of R
2n+1 will be the Haar measure on H

n (uniquely defined
up to a positive multiplicative constant).

2.2. Cayley transform

Let

S2n+1 = {ζ = (ζ1, . . . , ζn+1) ∈ C
n+1 : 〈ζ, ζ〉 = 1}

be the unit sphere in C
n+1, where 〈ζ, η〉 =

∑n+1
j=1 ζjηj . The distance function on

S2n+1 is given by

dS(ζ, η) =
√

2|1 − 〈ζ, η〉|, ζ, η ∈ S2n+1.

The Cayley transform C : H
n → S2n+1 \ {(0, . . . , 0,−1)} is defined by

C(z, t) =
(

2z
1 + |z|2 + it

,
1 − |z|2 − it

1 + |z|2 + it

)
,
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whose Jacobian determinant is given by

JacC(z, t) =
22n+1

((1 + |z|2)2 + t2)n+1
, (z, t) ∈ H

n.

Accordingly, for any integrable function f : S2n+1 → R, we have
∫

S2n+1
f(η)dη =

∫
Hn

f(C(z, t))JacC(z, t)dzdt. (2.1)

If w = (z, t), v = (z′, t′) and ζ = C(w), η = C(v), one has that

dS(ζ, η) = dKC(w, v)
(

4
((1 + |z|2)2 + t2)

)1/4 (
4

((1 + |z′|2)2 + (t′)2)

)1/4

. (2.2)

2.3. Spherical/zonal harmonics on S2n+1

The Hilbert space L2(S2n+1), endowed by the inner product

(U, V ) =
∫

S2n+1
UV dη,

can be decomposed into U(n+ 1)-irreducible components as

L2(S2n+1) =
⊕

j,k�0

Hj,k,

where Hj,k denotes the space of harmonic polynomials p(z, z) on C
n+1 restricted to

S2n+1 that are homogeneous of degree j and k in the variables z and z, respectively.
We notice that the dimension of Hj,k is

mj,k =
(j + n− 1)!(k + n− 1)!(j + k + n)

n!(n− 1)!j!k!
.

Moreover, if {Y l
j,k}l=1,mj,k

is an orthonormal basis of Hj,k, then the zonal harmonics
are defined by

Φj,k(ζ, η) =
mj,k∑
l=1

Y l
j,k(ζ)Y l

j,k(η), ζ, η ∈ S2n+1. (2.3)

We recall that Φj,k can be represented as

Φj,k(ζ, η) =
(max{j, k} + n− 1)!(j + k + n)

ω2n+1n!(max{j, k})! 〈ζ, η〉|j−k|P (n−1,|j−k|)
k (2〈ζ, η〉2 − 1),

(2.4)
where P (n,l)

k denotes the Jacobi polynomials and ω2n+1 is the usual measure of
S2n+1.
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2.4. Fractional Sobolev spaces on S2n+1 and H
n

The usual sub-Laplacian on H
n is defined as

L = −1
4

n∑
j=1

(X2
j + Y 2

j ).

If we introduce the differential operators

Tj =
∂

∂ηj
− ηj

n+1∑
k=1

ηk
∂

∂ηk
, Tj =

∂

∂ηj
− ηj

n+1∑
k=1

ηk
∂

∂ηk
, j ∈ {1, . . . , n+ 1},

the conformal sub-Laplacian on S2n+1 is given by

D = −1
2

n+1∑
j=1

(TjTj + TjTj) +
n2

4
.

Note that for every Yj,k ∈ Hj,k, one has

DYj,k = λjλkYj,k,

where λj = j + n/2.
Let 0 < γ < Q/2 = n+ 1 be fixed. Given U ∈ L2(S2n+1), its Fourier representa-

tion is

U =
∑

j,k�0

mj,k∑
l=1

clj,k(U)Y l
j,k

with Fourier coefficients clj,k(U) =
∫

S2n+1
UY l

j,kdη. Accordingly, we may define

Dγ/2U =
∑

j,k�0

mj,k∑
l=1

(λjλk)γ/2clj,k(U)Y l
j,k.

The fractional Sobolev space over S2n+1 is defined as

Hγ(S2n+1) = W γ,2(S2n+1) =
{
U ∈ L2(S2n+1) : Dγ/2U ∈ L2(S2n+1)

}
,

endowed with the inner product and norm

(U, V )Hγ =
∫

S2n+1
Dγ/2UDγ/2V dη and ‖U‖Hγ = (U,U)1/2

Hγ

=

⎛
⎝ ∑

j,k�0

mj,k∑
l=1

(λjλk)γ |clj,k(U)|2
⎞
⎠

1/2

.

The norm ‖ · ‖Hγ is equivalent to the norm coming from the inner product

(U, V )γ =
∑

j,k�0

mj,k∑
l=1

λj(γ)λk(γ)clj,k(U)clj,k(V ),
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where

λj(γ) =
Γ(((Q+ 2γ)/(4)) + j)
Γ(((Q− 2γ)/(4)) + j)

, j ∈ N0 = {0, 1, 2, . . .};

indeed, by asymptotic approximation of the Gamma function Γ, one has λj(γ) ∼ jγ .
The intertwining operator Aγ of order 2γ on S2n+1 is given by

Jac((Q+2γ)/(2Q))
τ (AγU) ◦ τ = Aγ(Jac((Q−2γ)/(2Q))

τ (U ◦ τ)) for all τ ∈ Aut(S2n+1),

U ∈ C∞(S2n+1),

where Aut(S2n+1) and Jacτ denote the group of automorphisms on S2n+1 and
the Jacobian of τ ∈ Aut(S2n+1), respectively. In fact, the latter definition can be
extended to every U ∈ Hγ(S2n+1). Note that Aγ may by characterized (up to a
constant) by its action on Hj,k as

AγYj,k = λj(γ)λk(γ)Yj,k, Yj,k ∈ Hj,k. (2.5)

Therefore,

(U, V )γ =
∫

S2n+1
VAγUdη. (2.6)

In particular, λj(1) = λj for every j ∈ N0 and A1 = D. Moreover, according to
Frank and Lieb [14], for every real-valued function U ∈ Hγ(S2n+1), one has the
sharp fractional Sobolev inequality on the CR sphere S2n+1, that is,

(∫
S2n+1

|U(η)|((2Q)/(Q−2γ))dη
)((Q−2γ)/(Q))

� C(γ, n)
∫

S2n+1
U(η)AγU(η)dη,

(2.7)
where

C(γ, n) =
Γ((n+ 1 − γ)/(2))2

Γ((n+ 1 + γ)/(2))2
ω
−γ/n+1
2n+1 .

The CR fractional sub-Laplacian operator on H
n is defined by

Lγ = |2T |γ Γ(L|2T |−1 + ((1 + γ)/(2)))
Γ(L|2T |−1 + 1 − γ/2)

.

Direct computation shows that L1 = L, L2 = L2 − |T |2. Moreover, the relationship
between Lγ and Aγ is given by

Lγ((2JacC)((Q−2γ)/(2Q))(U ◦ C)) = (2JacC)((Q+2γ)/(2Q))(AγU) ◦ C,
∀ U ∈ Hγ(S2n+1). (2.8)

The fractional Sobolev space over H
n is defined by

Dγ(Hn) =
{
u ∈ L((2Q)/(Q−2γ))(Hn) : aγ [u] < +∞

}
,
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where the quadratic form aγ is associated with the operator Lγ , that is,

aγ [u] =
∫

Hn

uLγudzdt.

The form aγ can be equivalently represented by means of spectral decomposition,
see [15, p. 126].

3. Proof of Main Theorem

3.1. Equivalent critical problems on H
n and S2n+1.

Let γ ∈ (0, n+ 1) be fixed. We consider the fractional Yamabe problem on the
CR sphere, that is,

{AγU = |U |((4γ)/(Q−2γ))U on S2n+1,
U ∈ Hγ(S2n+1).

(FYS)γ

Hereafter, we are considering real-valued functions both in Hγ(S2n+1) and Dγ(Hn),
respectively. The main result of this subsection constitutes the bridge between
(FYS)γ and (FYH)γ as follows:

Proposition 3.1. Let 0 < γ < Q/2 = n+ 1. Then U ∈ Hγ(S2n+1) is a weak solu-
tion of (FYS)γ if and only if u = (2JacC)((Q−2γ)/(2Q))U ◦ C ∈ Dγ(Hn) is a weak
solution of (FYH)γ .

Proof. We first prove the following
Claim: Let U : S2n+1 → R and u : H

n → R be two functions such that u =
Jac((Q−2γ)/(2Q))

C U ◦ C. Then U ∈ Hγ(S2n+1) if and only if u ∈ Dγ(Hn).
Fix U ∈ Hγ(S2n+1); we shall prove first that (z, t) �→ u(z, t) = JacC

(z, t)((Q−2γ)/(2Q))U(C(z, t)) belongs to Dγ(Hn). By (2.1) one has
∫

Hn

|u(z, t)|((2Q)/(Q−2γ))dzdt =
∫

Hn

JacC(z, t)|U(C(z, t))|((2Q)/(Q−2γ))dzdt

=
∫

S2n+1
|U(η)|((2Q)/(Q−2γ))dη. (3.1)

Furthermore, by the fractional Sobolev inequality (2.7) and relation (2.5), one has
that
(∫

S2n+1
|U(η)|((2Q)/(Q−2γ))dη

)((Q−2γ)/(Q))

� C(γ, n)
∫

S2n+1
U(η)AγU(η)dη

= C(γ, n)
∑

j,k�0

mj,k∑
l=1

λj(γ)λk(γ)|clj,k(U)|2

� C ′(γ, n)‖U‖2
Hγ

< +∞,

https://doi.org/10.1017/prm.2018.95 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.95


Nodal solutions for the fractional Yamabe problem on Heisenberg groups 779

where C ′(γ, n) = CγC(γ, n) and Cγ > 0 is such that (V, V )γ � Cγ‖V ‖2
Hγ for every

V ∈ Hγ(S2n+1); thus u ∈ L((2Q)/(Q−2γ))(Hn). Moreover, by (2.8) and (2.1) one has

aγ [u] =
∫

Hn

uLγudzdt =

= 2α′
∫

Hn

JacC(z, t)((Q−2γ)/(2Q))U(C(z, t))

Lγ((2JacC(z, t))((Q−2γ)/(2Q))U(C(z, t)))dzdt

= 2α′
∫

Hn

JacC(z, t)((Q−2γ)/(2Q))U(C(z, t))

(2JacC(z, t))((Q+2γ)/(2Q))(AγU)(C(z, t))dzdt

= 2α′′
∫

Hn

U(C(z, t))(AγU)(C(z, t))JacC(z, t)dzdt

= 2α′′
∫

S2n+1
U(η)AγU(η)dη (3.2)

< +∞,

where α′ = −((Q− 2γ)/(2Q)) and α′′ = α′ + ((Q+ 2γ)/(2Q)) = ((2γ)/(Q)).
Therefore, u ∈ Dγ(Hn).

Conversely, let us assume that u ∈ Dγ(Hn). In particular, we have
that u ∈ L((2Q)/(Q−2γ))(Hn), thus by relation (3.1) it turns out that U ∈
L((2Q)/(Q−2γ))(S2n+1); therefore, U ∈ L2(S2n+1). Furthermore, by (3.2) we also
have that

∫
S2n+1

U(η)AγU(η)dη = 2−α′′
aγ [u] < +∞,

that is, U ∈ Hγ(S2n+1), which concludes the proof of Claim.
Let U ∈ Hγ(S2n+1) be a weak solution of (FYS)γ ; then we have

∫
S2n+1

AγUV dη =
∫

S2n+1
|U |((4γ)/(Q−2γ))UV dη for every V ∈ Hγ(S2n+1).

(3.3)

Let v ∈ Dγ(Hn) be arbitrarily fixed and define V = (JacC ◦ C−1)((2γ−Q)/(2Q))v ◦
C−1. Since v = Jac((Q−2γ)/(2Q))

C V ◦ C, by the Claim we have that V ∈ Hγ(S2n+1).
Accordingly, the function V can be used as a test-function in (3.3), obtaining

∫
S2n+1

AγU(JacC ◦ C−1)((2γ−Q)/(2Q))v ◦ C−1dη

=
∫

S2n+1
|U |((4γ)/(Q−2γ))U(JacC ◦ C−1)((2γ−Q)/(2Q))v ◦ C−1dη.
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By a change of variables, it follows that∫
Hn

(AγU ◦ C)(JacC)((2γ−Q)/(2Q))+1vdzdt

=
∫

Hn

|U ◦ C|((4γ)/(Q−2γ))(U ◦ C)(JacC)((2γ−Q)/(2Q))+1vdzdt.

This relation and (2.8) imply that

2−((Q+2γ)/2Q))

∫
Hn

Lγ((2JacC)((Q−2γ)/(2Q))(U ◦ C))vdzdt

=
∫

Hn

|U ◦ C|((4γ)/(Q−2γ))U ◦ C(JacC)((2γ+Q)/(2Q))vdzdt.

Since u = (2JacC)((Q−2γ)/(2Q))U ◦ C, the latter equality is equivalent to
∫

Hn

Lγuvdzdt =
∫

Hn

|u|((4γ)/(Q−2γ))uvdzdt,

which means precisely that u ∈ Dγ(Hn) is a weak solution of (FYH)γ . The converse
argument works in a similar way. �

Remark 3.2. One can provide an alternative proof to proposition 3.1 by exploring
the explicit form of the fundamental solution of Lγ ; a similar approach is due to
Bartsch, Schneider and Weth [4] for the polyharmonic operator (−Δ)m in R

N ,
where m ∈ N and N > 2m. For completeness, we sketch the proof.

We recall that the fundamental solution of Lγ is

L−1
γ ((z, t), (z′, t′)) =

cγ
2
d2γ−Q

KC ((z, t), (z′, t′)), (3.4)

where

cγ =
2n−γΓ((Q− 2γ)/(4))2

πn+1Γ(γ)
,

see Branson, Fontana and Morpurgo [5, p. 21]. For every ψ ∈ L((2Q)/(Q+2γ))(S2n+1)
we introduce the function

[Kγψ](ζ) = cγ

∫
S2n+1

ψ(η)|1 − 〈ζ, η〉|((2γ−Q)/(2))dη. (3.5)

One can prove that Kγψ ∈ Hγ(S2n+1) for every ψ ∈ L((2Q)/(Q+2γ))(S2n+1). More-
over, the Funk-Hecke theorem on the CR sphere S2n+1 gives

[KγYj,k](ζ) =
2Q/2−γ

λj(γ)λk(γ)
Yj,k(ζ),

see Frank and Lieb [14, corollary 5.3]. Thus, a direct computation yields that

(Kγψ, V )γ = 2Q/2−γ

∫
S2n+1

ψV dη for every V ∈ Hγ(S2n+1).
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Note that if U ∈ Hγ(S2n+1) is a weak solution of (FYS)γ , the latter relation implies
that

Kγ(|U |((4γ)/(Q−2γ))U) = 2Q/2−γU on S2n+1. (3.6)

Accordingly, by relations (3.6), (3.5), (2.1) and (2.2), it turns out that

u(z, t) = (2JacC(z, t))((Q−2γ)/(2Q))U(C(z, t))

= 2−Q/2+γ(2JacC(z, t))((Q−2γ)/(2Q))Kγ(|U(C(z, t))|((4γ)/(Q−2γ))U(C(z, t)))

=
cγ
2

∫
Hn

d2γ−Q
KC ((z, t), (z′, t′)|u(z′, t′)|((4γ)/(Q−γ))u(z′, t′)dz′dt′, (z, t) ∈ H

n.

The latter relation is equivalent to the fact that

u(z, t) =
cγ
2

(|u|((4γ)/(Q−γ))u) ∗ d2γ−Q
KC ((z, t), ·), (z, t) ∈ H

n, (3.7)

where ′∗′ denotes the (noncommutative) convolution operation on the Heisenberg
group H

n. By (3.4), a similar argument as in Folland [12, theorem 2] gives that
Lγu = |u|((4γ)/(Q−γ))u on H

n, which concludes the claim.

3.2. Compactness

According to Frank and Lieb [14], see also (2.7), the embedding Hγ(S2n+1) ↪→
L((2Q)/(Q−2γ))(S2n+1) is continuous, but not compact. This subsection is devoted
to regain certain compactness by using suitable group actions on the CR sphere
S2n+1.

To complete this purpose, let nj ∈ N, j = 1, . . . , k, with n1 + · · · + nk = n+ 1.
Associated with these numbers, let

G = U(n1) × · · · × U(nk) (3.8)

be the subgroup of the unitary group U(n+ 1) = {g ∈ O(2n+ 2) : gJ = Jg}, where

J =
[

0 IRn+1

−IRn+1 0

]
.

Let

Hγ
G(S2n+1) = {U ∈ Hγ(S2n+1) : g ◦ U = U for every g ∈ G}

be the subspace of G-invariant functions of Hγ(S2n+1), where

(g ◦ U)(η) = U(g−1η), η ∈ S2n+1. (3.9)

It is clear that Hγ
G(S2n+1) is an infinite-dimensional closed subspace of Hγ(S2n+1),

whenever k � 2 in the splitting (3.8).
With the above notations in our mind, a Ding-Hebey-Vaugon-type compactness

result reads as follows:

Proposition 3.3. Let γ ∈ ⋃n
k=1[k, ((kQ)/(Q− 1))). The embedding Hγ

G(S2n+1) ↪→
L((2Q)/(Q−2γ))(S2n+1) is compact, where G = U(n1) × · · · × U(nk) is any choice
with nj ∈ N, j = 1, . . . , k, and n1 + . . .+ nk = n+ 1.
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Proof. First, when G = U(n+ 1), the space Hγ
G(S2n+1) contains precisely the

constant functions defined on S2n+1; in this case, the proof is trivial.
In the general case, we recall by Maalaoui and Martino [20, lemma 3.3] that the

embedding W 1,2
G (S2n+1) = H1

G(S2n+1) ↪→ Lq(S2n+1) is compact for every 1 � q <
q∗1 , where q∗1 = ((2(Q− 1))/(Q− 3)) is the Riemannian critical exponent on the
(Q− 1)−dimensional sphere S2n+1.

By our assumption γ ∈ ⋃n
k=1[k, ((kQ)/(Q− 1))) we have that l := [γ] � 1 and

γ

(
1 − 1

Q

)
< l � γ. (3.10)

The iterative argument developed by Aubin [1, proposition 2.11], applied for l times,
gives that the embedding W l,2

G (S2n+1) = H l
G(S2n+1) ↪→ Lq(S2n+1) is compact for

every 1 � q < q∗l , where q∗l = ((2(Q− 1))/(Q− 1 − 2l)). On one hand, since l � γ,
we have that Hγ

G(S2n+1) = W γ,2
G (S2n+1) ⊂W l,2

G (S2n+1). On the other hand, the
left-hand side of (3.10) is equivalent to q∗l > ((2Q)/(Q− 2γ)). Combining these
facts, we have the chain of inclusions

Hγ
G(S2n+1) ⊂W l,2

G (S2n+1) ↪→ L((2Q)/(Q−2γ))(S2n+1),

where the latter embedding is compact. �

Remark 3.4. Our assumption γ ∈ ⋃n
k=1[k, ((kQ)/(Q− 1)) is important to guar-

antee the left-hand side of (3.10), which in turn, implies that ((2Q)/(Q− 2γ)) is
within the range [1, q∗l ) where the embedding W l,2

G (S2n+1) ↪→ Lq(S2n+1) is com-
pact, q ∈ [1, q∗l ). We are wondering if this assumption can be removed in order to
prove the compactness of the above embedding for the whole spectrum (0, Q/2) of
the parameter γ.

3.3. Special group actions

The goal of this subsection is to describe symmetrically different functions
belonging to Hγ(S2n+1) via subgroups of the form G = U(n1) × · · · × U(nk) with
n1 + · · · + nk = n+ 1. To handle this problem, we explore a Rubik-cube technique,
described in a slightly different manner in Balogh and Kristály [2]; roughly speak-
ing, n+ 1 corresponds to the number of total sides of the cube, while the sides of the
cube are certain blocks in the decomposition subgroup G = U(n1) × · · · × U(nk).

To be more precise, let n � 1 and for i ∈ {1, . . . , [n+ 1/2]}, we consider the
subgroup of the unitary group U(n+ 1) as

Gi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
U

(
n+ 1

2

)
0

0 U
(
n+ 1

2

)
⎤
⎥⎥⎦ , if n+ 1 = 2i,

⎡
⎣U(i) 0 0

0 U(n+ 1 − 2i) 0
0 0 U(i)

⎤
⎦ , if n+ 1 �= 2i.
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It is clear that a particular Gi does not act transitively on the sphere S2n+1. How-
ever, to recover the transitivity, we shall combine different groups of the type Gi;
for further use, let [Gi;Gj ] be the group generated by Gi and Gj .

Lemma 3.5. Let i, j ∈ {1, . . . , [n+ 1/2]} with i �= j. Then the group [Gi;Gj ] acts
transitively on the CR sphere S2n+1.

Proof. Without loss of generality, we assume that j > i. For further use,
let 0k = (0, . . . , 0) ∈ C

k = R
2k, k ∈ {1, . . . , n}. Let us fix η = (η1, η2, η3) ∈ S2n+1

arbitrarily with η1, η3 ∈ C
j and η2 ∈ C

n+1−2j ; clearly, η2 disappears from η
whenever 2j = n+ 1. Taking into account the fact that U(j) acts transitively
on S2j−1, there are g1

j , g
2
j ∈ U(j) such that if gj = g1

j × ICn+1−2j × g2
j ∈ Gj ,

then gjη = (0j−1, 0, |η1|, η2, |η3|, 0, 0j−1). Since j − 1 � i, the transitive action
of U(n+ 1 − 2i) on S2n+1−4i implies the existence of g1

i ∈ U(n+ 1 − 2i) such
that g1

i (0j−i−1, 0, |η1|, η2, |η3|, 0, 0j−i−1) = (1, 0, 0n−2i). Therefore, if gi = ICi ×
g1

i × ICi ∈ Gi then gigjη = (0i, 1, 0, 0n−i) ∈ S2n+1.
By repeating the same procedure for another element η̃ ∈ S2n+1, there exists

g̃i ∈ Gi and g̃j ∈ Gj such that g̃ig̃j η̃ = (0i, 1, 0, 0n−i) ∈ S2n+1. Accordingly,

η = g−1
j g−1

i g̃ig̃j η̃ = g−1
j gig̃j η̃,

where gi = g−1
i g̃i ∈ Gi, which concludes the proof. �

For every fixed i ∈ {1, . . . , [n+ 1/2]}, we introduce the matrix Ai as

Ai =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
0 IC((n+1)/(2))

IC((n+1)/(2)) 0

]
, if n+ 1 = 2i,

⎡
⎣ 0 0 ICi

0 ICn+1−2i 0
ICi 0 0

⎤
⎦ , if n+ 1 �= 2i.

The following construction is inspired by Bartsch and Willem [3]. Since one has
Ai ∈ U(n+ 1) \Gi, A

2
i = ICn+1 and AiGi = GiAi, the group generated by Gi and

Ai is Ĝi = [Gi;Ai] = Gi ∪AiGi, that is,

Ĝi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
U(n + 1/2) 0

0 U(n + 1/2)

]
∪

[
0 U(n + 1/2)

U(n + 1/2) 0

]
, if n+1=2i,

⎡
⎣U(i) 0 0

0 U(n + 1 − 2i) 0
0 0 U(i)

⎤
⎦ ∪

⎡
⎣ 0 0 U(i)

0 U(n + 1 − 2i) 0
U(i) 0 0

⎤
⎦ , if n+1 �=2i.

(3.11)

In fact, in Ĝi, there are only two types of elements: either of the form g ∈ Gi, or
Aig ∈ Ĝi \Gi (with g ∈ Gi), respectively.
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The action Ĝi �Hγ(S2n+1) �→ Hγ(S2n+1) of the group Ĝi on Hγ(S2n+1) is
defined by

(ĝ � U)(η) =
{

U(g−1η), if ĝ = g ∈ Gi,

−U(g−1A−1
i η), if ĝ = Aig ∈ Ĝi \Gi,

(3.12)

for every ĝ ∈ Ĝi, U ∈ Hγ(S2n+1) and η ∈ S2n+1. We notice that this action is well-
defined, continuous and linear. Similarly, as in (3.9), we introduce the space of
Gi-invariant functions of Hγ(S2n+1) as

Hγ
Gi

(S2n+1) = {U ∈ Hγ(S2n+1) : g ◦ U = U for every g ∈ Gi},

where the action ′◦′ corresponds to the first relation in (3.12). Furthermore, let

Hγ

Ĝi
(S2n+1) =

{
U ∈ Hγ(S2n+1) : ĝ � U = U for every ĝ ∈ Ĝi

}

be the space of Ĝi-invariant functions of Hγ(S2n+1).
The following result summarizes the constructions in this subsection.

Proposition 3.6. Let γ ∈ ⋃n
k=1[k, kQ/Q− 1), and fix i, j ∈ {1, . . . , [n+ 1/2]}

such that i �= j. The following statements hold:

(i) The embedding Hγ

Ĝi
(S2n+1) ↪→ L((2Q)/(Q−2γ))(S2n+1) is compact;

(ii) Hγ
Gi

(S2n+1) ∩Hγ
Gj

(S2n+1) = {constant functions on S2n+1};

(iii) Hγ

Ĝi
(S2n+1) ∩Hγ

Ĝj
(S2n+1) = {0}.

Proof.

(i) It is clear that Hγ

Ĝi
(S2n+1) ⊂ Hγ

Gi
(S2n+1). Moreover, by proposition 3.3, we

have that the embedding Hγ
Gi

(S2n+1) ↪→ L((2Q)/(Q−2γ))(S2n+1) is compact.

(ii) Let us fix U ∈ Hγ
Gi

(S2n+1) ∩Hγ
Gj

(S2n+1). Since U is both Gi- and Gj- invari-
ant, it is also [Gi;Gj ]-invariant, that is, U(gη) = U(η) for every g ∈ [Gi;Gj ]
and η ∈ S2n+1. According to lemma 3.5, the group [Gi;Gj ] acts transitively
on the CR sphere S2n+1, that is, the orbit of every element η ∈ S2n+1 by the
group [Gi;Gj ] is the whole sphere S2n+1. Thus, U is a constant function.

(iii) Let U ∈ Hγ

Ĝi
(S2n+1) ∩Hγ

Ĝj
(S2n+1). On one hand, by (ii), we first have that

U is constant. On the other hand, the second relation from (3.12) implies
that U(η) = −U(Aiη) for every η ∈ S2n+1. Therefore, we necessarily have
that U = 0.

�
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3.4. Proof of Theorem 1.1.

We associate to problem (FYS)γ the energy functional E : Hγ(S2n+1) → R

defined by

E(U) =
1
2

∫
S2n+1

UAγUdη − Q− 2γ
2Q

∫
S2n+1

|U |((2Q)/(Q−2γ))dη, U ∈ Hγ(S2n+1).

Due to (2.7), the functional E is well-defined, belonging to C1(Hγ(S2n+1),R).
Moreover, U ∈ Hγ(S2n+1) is a critical point of E if and only if U is a weak solution
of (FYS)γ .

Let us fix i ∈ {1, . . . , [n+ 1/2]}. In order to guarantee critical points for E, we
first consider the functional Ei : Hγ

Ĝi
(S2n+1) → R, the restriction of E to the space

Hγ

Ĝi
(S2n+1). It is clear that Ei is an even functional and it has the mountain pass

geometry. Since the embedding Hγ

Ĝi
(S2n+1) ↪→ L((2Q)/(Q−2γ))(S2n+1) is compact,

see proposition 3.6 (i), we may apply the fountain theorem, see for example, Bartsch
and Willem [3, theorem 3.1], guaranteeing a sequence {Uk

i }k∈N ⊂ Hγ

Ĝi
(S2n+1) of

critical points for Ei with the additional property that ‖Uk
i ‖Hγ → ∞ as k → ∞.

By using the principle of symmetric criticality of Palais [22], we are going to
prove that {Uk

i }k∈N ⊂ Hγ

Ĝi
(S2n+1) are in fact critical points for the original energy

functional E, thus weak solutions of (FYS)γ . To do this, it suffices to verify that
E is a Ĝi-invariant functional, that is,

E(ĝ � U) = E(U) for every ĝ ∈ Ĝi, U ∈ Hγ(S2n+1).

On one hand, according to relation (2.6), for the quadratic term in E, it is enough
to prove that Ĝi acts isometrically on Hγ(S2n+1), that is,

(ĝ � U, ĝ � U)γ = (U,U)γ for every ĝ ∈ Ĝi, U ∈ Hγ(S2n+1). (3.13)

To see this, let us fix ĝ ∈ Ĝi and U ∈ Hγ(S2n+1) arbitrarily. We recall that by
definition

(ĝ � U, ĝ � U)γ =
∑

j,k�0

λj(γ)λk(γ)
mj,k∑
l=1

|clj,k(ĝ � U)|2.

By using (2.3), one has

mj,k∑
l=1

|clj,k(ĝ � U)|2 =
∫

S2n+1

∫
S2n+1

(ĝ � U)(ζ)(ĝ � U)(η)
mj,k∑
l=1

Y l
j,k(ζ)Y l

j,k(η)dζdη

=
∫

S2n+1

∫
S2n+1

(ĝ � U)(ζ)(ĝ � U)(η)Φj,k(ζ, η)dζdη. (3.14)
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Note that for every g ∈ Gi ⊂ U(n+ 1) and ζ, η ∈ S2n+1, we have

〈gζ, gη〉 = 〈Aigζ,Aigη〉 = 〈ζ, η〉;

therefore, by the representation (2.4) of the zonal harmonics we also have that

Φj,k(gζ, gη) = Φj,k(Aigζ,Aigη) = Φj,k(ζ, η).

Thus, relation (3.12) and suitable changes of variables in (3.14) imply that

mj,k∑
l=1

|clj,k(ĝ � U)|2 =
∫

S2n+1

∫
S2n+1

U(ζ)U(η)Φj,k(ζ, η)dζdη =
mj,k∑
l=1

|clj,k(U)|2,

which proves (3.13).
On the other hand, the Ĝi-invariance of the nonlinear term U �→∫

S2n+1 |U |((2Q)/(Q−2γ)) trivially follows by a change of variable, by using the
isometric character of the group U(n+ 1) on S2n+1.

Accordingly, for every i ∈ {1, . . . , [n+ 1/2]}, the functions {Uk
i }k∈N ⊂ Hγ

Ĝi

(S2n+1) are non-trivial weak solutions of (FYS)γ . Due to proposition 3.1, uk
i =

(2JacC)((Q−2γ)/(2Q))Uk
i ◦ C ∈ Dγ(Hn) are non-trivial weak solutions of the origi-

nal fractional Yamabe problem (FYH)γ ; by construction, uk
i are sign-changing

functions.
Due to proposition 3.6 (iii), we state that the sequences {Uk

i }k∈N ⊂ Hγ

Ĝi
(S2n+1)

and {Uk
j }k∈N ⊂ Hγ

Ĝj
(S2n+1) with i, j ∈ {1, . . . , [n+ 1/2]}, i �= j, cannot be com-

pared from symmetrical point of view. Therefore, the sequences {uk
i } ⊂ Dγ(Hn)

and {uk
j } ⊂ Dγ(Hn) have mutually different nodal properties for every i, j ∈

{1, . . . , [n+ 1/2]}, i �= j, which concludes the proof.

Remark 3.7. Consider a nonzero solution uk
i = (2JacC)((Q−2γ)/(2Q))Uk

i ◦ C ∈
Dγ(Hn) of (FYH)γ , with {Uk

i }k∈N ⊂ Hγ

Ĝi
(S2n+1) \ {0}. For simplicity, we con-

sider the case n+ 1 = 2i. Let us introduce the nodal domain of Uk
i (or uk

i ) as the
connected components of Ck

i = S2n+1 \Nk
i , where Nk

i = {η ∈ S2n+1 : Uk
i (η) = 0}.

Since Uk
i ∈ Hγ

Ĝi
(S2n+1), by relation (3.12) it follows that Uk

i has the form Uk
i (η) =

Uk
i (|η1|, |η2|) with the property that Uk

i (|η1|, |η2|) = −Uk
i (|η2|, |η1|), η = (η1, η2) ∈

S2n+1, η1, η2 ∈ C
i.Accordingly, since Uk

i (|η1|, |η2|) = Uk
i (| ± η1|, | ± η2|), Uk

i is sign-
changing with at least four non-degenerate nodal domains in Ck

i ; in two of them
the function Uk

i is negative, while in the other two it is positive, respectively. When
n+ 1 �= 2i, a similar discussion can be performed.

We conclude the paper by the following table providing explicit forms of sub-
groups of the unitary group U(n+ 1) and admissible intervals for the parameter γ,
depending on the dimension n, where our main theorem applies; we only consider
the cases when n ∈ {1, . . . , 8}:
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Number of
symmetrically

distinct
Admissible sequences
domains for of solution

n Q = 2n+ 2 Gi, i ∈ {1, . . . , [n+ 1/2]} γ ∈ (0, Q/2) of (FYH)γ

1 4 G1 = U(1) × U(1) [1, 4/3) 1
2 6 G1 = U(1) × U(1) × U(1) [1, 6/5) ∪ [2, 12/5) 1
3 8 G1 = U(1) × U(2) × U(1) [1, 8/7) ∪ [2, 16/7)∪ 2

G2 = U(2) × U(2) ∪[3, 24/7)
4 10 G1 = U(1) × U(3) × U(1)

⋃4
k=1[k, 10k/9) 2

G2 = U(2) × U(1) × U(2)
G1 = U(1) × U(4) × U(1)

5 12 G2 = U(2) × U(2) × U(2)
⋃5

k=1[k, 12k/11) 3
G3 = U(3) × U(3)

G1 = U(1) × U(5) × U(1)
6 14 G2 = U(2) × U(3) × U(2)

⋃6
k=1[k, 14k/13) 3

G3 = U(3) × U(1) × U(3)
G1 = U(1) × U(6) × U(1)

7 16 G2 = U(2) × U(4) × U(2)
⋃7

k=1[k, 16k/15) 4
G3 = U(3) × U(2) × U(3)

G4 = U(4) × U(4)
G1 = U(1) × U(7) × U(1)

8 18 G2 = U(2) × U(5) × U(2)
⋃8

k=1[k, 18k/17) 4
G3 = U(3) × U(3) × U(3)
G4 = U(4) × U(1) × U(4)
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