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ABSTRACT
Within an immunity-based architecture for aircraft fault detection, identification and
evaluation, a structured, non-self approach has been designed and implemented to classify and
quantify the type and severity of different aircraft actuators, sensors, structural components
and engine failures. The methodology relies on a hierarchical multi-self strategy with heuristic
selection of sub-selves and formulation of a mapping logic algorithm, in which specific detect-
ors of specific selves are mapped against failures based on their capability to selectively cap-
ture the dynamic fingerprint of abnormal conditions in all their aspects. Immune negative and
positive selection mechanisms have been used within the process. Data from a motion-based
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six-degrees-of-freedom flight simulator were used to evaluate the performance in terms of per-
centage identification rates for a set of 2D non-self projections under several upset conditions.

NOMENCLATURE

Acronyms
AIS artificial immune system
ANN artificial neural networks
DOF degrees-of-freedom
DR detection rate
ERAU Embry-Riddle Aeronautical University
FDIE failure detection, identification, evaluation
FI false identifications
HMS hierarchical multi-self
IR identification rate
L-R left and right
NS negative selection
PS positive selection
SNSA structured non-self approach
WVU West Virginia University

Subscripts
Nmax maximum number of dimensions
Nf number of features
Nself total number of sub-selves
SN number of subsystems

1.0 INTRODUCTION
In recent years, the biological immune system of vertebrates has inspired new methodologies
in computational intelligence to address real-world complex problems(1,2). The artificial
immune system (AIS) paradigm has shown promising potential in a variety of applications
such as pattern recognition(3,4), robotics(5,6), computer security(7,8), data mining(9,10), adaptive
controls(11-13)and anomaly detection(14,15). Researchers from West Virginia University
(WVU) and Embry-Riddle Aeronautical University (ERAU) have proposed an integrated
framework for AIS-based solutions to the aircraft sub-system failure detection, identification,
evaluation (FDIE) problem(16,17). As part of this effort, a comprehensive set of methodologies
for AIS design and optimisation have been developed and implemented(18-20). As an
integrated solution, the AIS paradigm has demonstrated the capability to address the high
complexity and multi-dimensionality of aerospace systems with potential for aircraft health
management and fault tolerance applications over extended areas of the flight envelope(20,21).
In addition, flight envelope reduction assessment using the AIS paradigm at post-failure
conditions has also been investigated with promising results(22).

The AIS mechanism operates in a similar manner as does the biological immune system
(according to the principle of self- and non-self discrimination) when it detects microbial and
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Figure 1. (Colour online) Negative and positive selection mechanisms.

non-microbial exogenous antigens while not reacting to the self cells(1,2,23). T-cells are the
component of the system with the most important role in this process. They are first generated
through a pseudo-random genetic rearrangement mechanism, which ensures high variability
of the new cells in terms of biological features (typically proteins or polysaccharides). A
censoring process then takes place in the thymus resulting in the destruction of the T-cells that
react against self proteins. Eventually, only those T-cells that do not bind to self proteins are
allowed to leave the thymus to detect antigens and mark them for destruction. For obvious
reasons, this process is referred to as negative selection (NS)(3). Within the AIS paradigm, NS
can be used to generate detectors by properly clustering the non-self hyperspace. Alternative
mechanisms, based on positive selection (PS) have been explored for AIS as well. Through PS
strategy, the detectors are generated to coincide with the self and the process is equivalent to
clustering the self data. In this case, an abnormal situation is declared if the explored current
configuration does not match any of the detectors. This is typically more computationally
intensive as compared to the NS approach, in which the activation of a single negative anti-
body is enough to declare the presence of abnormal situation. Using PS instead, it is necessary
to test the complete set of positive anti-bodies before classifying a sample as abnormal.
However, since the evaluation of a failure implies the diagnosis of its effects on the aircraft
operational limits, the PS must be used to assess the distribution of the failure signature within
the non-self by labelling the anti-bodies corresponding to different magnitudes of the failure.
Figure 1 shows a representation of the NS and PS immune mechanisms.

Applying this paradigm to aircraft subsystem FDIE requires that a set of adequate features
be defined. These features can include various sensor outputs, states estimates, statistical
parameters or any other information expected to be relevant to the behaviour of the system
and to be able to capture the signature of abnormal situations. Extensive experimental
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data are necessary to determine the self or the hyperspace of normal conditions. Adequate
numerical representations of the self/non-self must be used and the data processed, such
that they are manageable given the computational and storage limitations of the available
hardware. In general, to make the AIS a practical aircraft health management technique,
some specific aspects must be addressed: computational efficiency improvement of the
algorithms, enhancement of the representation and development of unified architectures that
can integrate several phases of the FDIE problem. Therefore, the development of failure
detection, identification and evaluation schemes with high rates of success and comprehensive
coverage, integrating all aircraft subsystems and operational modes, is a critical objective of
this paper.

In previous efforts, the capability of the AIS paradigm to address the FDIE problem within a
hierarchical multi-self (HMS) strategy has been demonstrated(19,25). The HMS strategy relies
on the premise that multiple non-self configurations or projections can be integrated in order to
achieve good subsystem FDIE results(26). In this paper, a structured non-self approach (SNSA)
algorithm has been designed and implemented to increase the identification performance
within the HMS strategy and extend its capabilities for classifying and quantifying the type
and magnitude of different aircraft sub-systems’ failures. Within this approach, sub-sets of
anti-bodies or “identifiers” of specific non-selves are mapped against failures to categorise
the dynamic fingerprint of the abnormal conditions throughout the entire flight envelope.
Using a positive selection-type mechanism, the SNSA algorithm is able to determine which
aircraft sub-system component is under an abnormal condition, the type of failure and the
magnitude of the identified failure with a high identification rate (IR) and a low number of
false identifications (FI).

The proposed identification mechanism consists of a dual phase multi-self approach in
which pre-selected selves with acceptable detection rates are used for identification purposes.
The first phase of the mechanism consists precisely of an off-line selection of selves that
demonstrate to have good detection performance through experimentation. The second phase
relies on a positive selection algorithm that determines specifically the failed sub-system, the
failure type and the failure severity. It uses a logic strategy in which a failure is considered to
be identified properly if the majority of identifiers agree on the identification outcome.

The paper is organised as follows. After a brief introduction, the AIS paradigm for
aircraft sub-system abnormal condition identification is outlined in Section II. The process of
generating the identifiers using positive selection algorithms and the identification algorithm
is described in Section III. In Section IV, the simulation environment utilised is described.
In Section V, the results of the identification algorithms are presented. The conclusions of
this research effort are summarised in Section VI, followed by acknowledgments and a list of
references.

2.0 AIS-BASED FDIE PROBLEM FORMULATION
The general identification problem must be defined and formulated in detail, including the
sub-systems targeted, and the category and severity of the failure. Such a process, as shown
in Fig. 2, can be performed in several phases to address the FDIE problem: within a first
phase, an off-line process is performed to generate detectors based on a clear definition
of the aircraft dynamic features. This process requires the availability of large amounts of
measured data that must be pre-processed for self/non-self generation and structuring. For a
comprehensive solution, acquiring and processing these data is considerably less difficult and
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Figure 2. (Colour online) AIS general architecture.

expensive than developing extensive accurate models, as required by alternative approaches.
The effectiveness of the abnormal condition feature selection is determined by the number
of sub-selves used and the number of identifiers generated for each sub-system failure
investigated. In a following phase, on-line abnormal condition detection, identification, and
evaluation are performed. Sets of current values of the features measured in flight at a
certain sampling rate are compared against the detectors, identifiers, and evaluators and the
outcomes of the FDIE are generated. These outcomes could be transferred to the pilot, an
on-board monitoring and recording system, and to automatic fault tolerant control laws. It is
important to notice that the general architecture of the identification problem requires prior
generation of the non-self with adequate resolution and knowledge of the abnormal condition
characteristics. In previous efforts, this problem was addressed by considering the abnormal
condition identification and evaluation as independent modules(16,17). First, identification was
defined as the determination of the subsystem affected by the abnormal condition. Then,
evaluation was defined within a context of qualitative (type) and quantitative (severity or
magnitude) assessment of the identified failure. In this paper, as shown in Fig. 2 with lower
dotted lines, a preliminary integration of identification and evaluation phases into one unique
scheme using a structured non-self approach is investigated. The performance is demonstrated
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Table 1
Feature list for aircraft AIS development

H = altitude V = aircraft ground speed

de = longitudinal stick displacement M = Mach number
da = lateral stick displacement ax = longitudinal acceleration

dr = pedal displacement aY = lateral acceleration
dT = pilot throttle az = vertical acceleration

pre f = roll rate command α = angle-of-attack
qre f = pitch rate command β = sideslip angle
rre f = yaw rate command φ = roll attitude angle

NNp = estimates of roll acceleration error θ =pitch attitude angle
NNq = estimates of pitch acceleration error ψ = yaw attitude angle
NNr = estimates of yaw acceleration error p = roll rate
MQEE = main quadratic estimation error q = pitch rate
OQEE = output quadratic estimation error r = yaw rate

DQEEp = decentralised quadratic roll rate estimation error ṗ = roll acceleration
DQEEq = decentralised quadratic pitch rate estimation error q̇ = pitch acceleration
DQEEr = decentralised quadratic yaw rate estimation error ṙ = yaw acceleration

through correct failure subsystem and magnitude classification which minimises the design
process by using higher-resolution antibodies.

The identification structure presented in this paper relies on the selection of sub-selves
previously tested for failure detection within an HMS scheme that features high flexibility
and can extract the best characteristics of different features for FDIE purposes. The HMS
strategy relies on the assumption that within a class of failures, differences in the dynamic
fingerprint among failed elements may be captured by different features. Therefore, a specific
set of parameters could favour the identification of some particular failures better than
others(25).

Let us assume that four major aircraft sub-systems with their components must be
considered, such as actuators, sensors, structural elements and propulsion. The set of actuators
may include a left and right (L-R) stabilator, L-R aileron, L-R rudder and L-R throttle.
The sensors considered may be the angular rate gyros, which are typically necessary for a
multitude of automatic control systems. Let us assume that the targeted structural elements are
a L-R wing, L-R horizontal tail and L-R vertical tail, and that the propulsion system consists
of two engines. The total number of sub-systems SN results to be SN = 8 + 3 + 6 + 2 = 19.

The definition and analysis of the failures is important for the process of selecting and
defining the features because they must capture the dynamic fingerprint of all failures. It
should be noted that unknown failures can be detected as they are implicitly included in the
non-self.

The feature variables are expected to completely define the targeted system and achieve
the self/non-self-discrimination. An example set of features for aircraft AIS development
is presented in Table 1. It includes system states, state derivatives and inputs, as well as
derived and estimated parameters. Carefully designed derived parameters can often prove to
be valuable AIS features. For example, the angular acceleration errors in Table 1 are artificial
neural network estimates with excellent detection capabilities for a variety of abnormal
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conditions(28). The quadratic estimation parameters are based on angular rates measurements
and their neural network estimations(28) and have shown good detection capabilities for sensor
failures(25).

With the set of features presented in Table 1, a 32-dimensional hyper-space must be
handled to define the self and non-self. This can create significant computational problems.
However, they can be mitigated or avoided altogether using the HMS strategy(19), which uses
lower-order projections to build sub-selves instead of using one single higher-dimensional
hyper-space and makes use of a specific hierarchy of feature relevance with respect to each
type of failure. Therefore, projections of the hyper-space along relevant dimensions only may
be enough to detect the respective failures. Within this research effort, an exhaustive set of 2D
projections Nmax = 2 is used. The total number of sub-selves Nsel f that need to be built for a

complete set with Nf = 32 features is: Nsel f = CNmax
N = Nf !

Nmax!(Nf −Nmax )! = 32!
2!30! = 496.

3.0 STRUCTURED NON-SELF APPROACH
The abnormal condition identification and evaluation processes investigated in this effort
represent a novel and integrated approach for the problem of aircraft operation under sub-
system failure within the HMS strategy. The approach is based on a structuring process of
non-self-projections and intends to reduce the computational effort required and to facilitate
the real-time application of the AIS approach without compromising the FDIE performance.
As shown in Fig. 3, the proposed SNSA consists of a dual-phase algorithm where 2D
self/non-self projections, previously generated using negative selection mechanism and tested
in simulation under several abnormal conditions, are selected according to the ability to
detect failures at a pre-defined detection rate (DR). Then, by using a positive selection-
type mechanism, the resulting projections are processed to generate identifiers capable of
differentiating similar dynamic prints among several abnormal conditions and declaring
correct failure types and magnitudes. This process extends the capabilities of the identification
phase by not only classifying but also providing a quantitative evaluation of the failure, as
depicted in green in Fig. 2.

For example, within a first phase of the SNSA, a total of 496 self/non-self projections were
generated based on the availability of 32 features to capture the dynamic print of abnormal
conditions. After comparing these projections with all considered types of failures, the ones
with a DR equal to or larger than 70% were selected as candidates. After this process, a
total of 183 projections were considered to possess the ability to capture the dynamic print of
several sub-system failures and, more importantly, facilitate the process of characterising the
projections that perform better during the identification of specific failures. Table 2 presents a
sample set of the 2D projections investigated within this phase.

The dynamic fingerprint of several failures may produce a very similar effect on the
features of self/non-self projections. This characteristic presents a more complex problem
in which incorrect identification may be produced if the identification problem is not defined
appropriately. For example, let us assume that an identification algorithm, only consisting of
Self#3 (pre f , NNp), is tested for two sub-system failures (i.e. right wing structural failure
and left aileron stuck failure). This particular pair of failures will produce an undesired
roll rate that can be successfully perceived and detected by Self#3. The dynamic fingerprint
produced by both abnormal conditions in the selected projection may look very similar,
increasing the complexity of the identification problem. Now, let us assume that the same
identification algorithm is augmented with Self#30 (qre f , NNp) which can also capture the
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Figure 3. (Colour online) Structured non-self approach logic.

Table 2
Self/non-self projections

Self Features Self Features

Self#3 pre f , NNp Self#56 rre f , NNp

Self#4 pre f , NNq Self#57 rre f , NNq

Self#7 pre f , OQEE Self#60 rre f , OQEE
Self#8 pre f , DQEEp Self#61 rre f , DQEEp

Self#9 pre f , DQEEq Self#62 rre f , DQEEq

Self#30 qre f , NNp Self#69 rre f , r
Self#31 qre f , NNq Self#82 NNp, NNq

Self#34 qre f , OQEE Self#83 NNp, NNr

Self#35 qre f , DQEEp Self#84 NNp, MQEE
Self#36 qre f , DQEEq Self#85 NNp, OQEE
Self#42 qre f , q Self#86 NNp, DQEEp

Self#52 qre f , de Self#87 NNp, DQEEq

Self#53 qre f , dr Self#88 NNp, DQEEr
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Figure 4. (Colour online) (a) Self#3 with left aileron failure, (b) Self#3 with right wing structural damage.

Figure 5. (Colour online) (a) Self#30 with left aileron failure, (b) Self#30 with right wing structural damage.

abnormal condition dynamic print of the mentioned failures. Due to the fact that Self#30 also
captures dynamic changes in pitch rate, it is possible to identify and distinguish between the
two mentioned failures. Within a second phase of the SNSA, positive selection applied to the
183 self/non-self projections is performed in order to address the mentioned identification
problem. Figures 4(a), 4(b), 5(a) and 5(b) present the similarity of the dynamic print of two
different failures in a 2D projection.

The combined identification capabilities of the projections utilised within the two phases
of the SNSA provides a more robust system capable of not only correctly identifying the
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Table 3
Investigated sub-system failures

Failure # Failure Failure # Failure

1 Left aileron stuck at 2° 9 Left wing loss of 6%
2 Right aileron stuck at 2° 10 Right wing loss of 6%
3 Left aileron stuck at 8° 11 Left wing loss of 15%
4 Right aileron stuck at 8° 12 Right wing loss of 15%
5 Left stabilator stuck at 2° 13 Left engine out
6 Right stabilator stuck at 2° 14 Right engine out
7 Left stabilator stuck at 8° 15 Roll sensor bias of 5°/sec
8 Right stabilator stuck at 8° 16 Roll sensor bias of 10°/sec

detected failure but also providing information regarding the magnitude of the investigated
failures. With the correct combination of projections with their corresponding identifiers, it is
possible to discard incorrect failures and ultimately determine which abnormal condition is
affecting the system.

3.1 Phase I: Non-self 2D projections selection

The first phase of the SNSA is the result of the failure detection testing within the HMS
strategy. As mentioned previously, 496 2D self/non-self projections were generated for failure
detection algorithm experimentation. Then, they were tested against over 16 different failures
including several sub-systems under different failure magnitudes. Extensive experimentation
was required in order to determine which projections could substantially detect a failure with
good detection rates and minimum false alarms within a negative selection approach. It was
determined that a total of 183 projections were capable to fulfil the objectives of a DR equal to
or higher than 70%. This process is referred to as the Phase I Non-Self Structuring. The selec-
ted projections as potential candidates for identification included sensor outputs, state estim-
ates and statistical parameters, among other features. The set of abnormal conditions involved
sensor failures, structural damage on the wings, engine failures and control surface failures.
Table 3, shown below, presents a list of the failures investigated in this research effort.

Several failures presented similar dynamic fingerprints on several 2D projections, which
subsequently led to the selection of several projections with the ability to detect multiple
failures. On the other hand, certain failures that are difficult to detect, such as rudder failure,
only resulted in the activation of a few projections. The selection logic behind Phase I
of the algorithm resulted in the reduction of the initial number of projections down to a
significantly smaller set, thus reducing the complexity and the hardware requirements for
algorithm implementation. Table 4 presents a sample of the projections that are considered to
be adequate for abnormal condition identification based on the detection performance equal
to or higher than 70%. In this table, the results are presented based on the detection capability
of the sample set of projections for five sample types of failures at different magnitudes.
This analysis was performed on the 496 original projections under 16 failures, varying in
sub-system categories, failures types and magnitudes. Various projections present the ability
to capture the dynamic fingerprint of several abnormal conditions, while others can only
capture the dynamics of a small set or even a single abnormal condition. For example, Self#3
demonstrated its ability to capture the dynamic fingerprint of a locked left aileron, a right

https://doi.org/10.1017/aer.2016.15 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2016.15


Moncayo ET AL 425Structured non-self approach for aircraft failure…

Table 4
Detection performance of a sample set of projections

Self/
Failure

Left
Aileron
Stuck

2°

Left
Aileron
Stuck

8°

Right
Wing
6%

Struct.
Damage

Right
Wing
15%

Struct.
Damage

Left
Stab.
Stuck

2°

Left
Stab.
Stuck

8°

Right
Engine

Out

Roll
Sensor

5°/s
Bias

Roll
Sensor
10°/s
Bias

Self#3 82.02 99.95 99.84 99.98 99.38 99.96 10.51 1.90 3.42
Self#4 1.45 1.82 3.87 13.76 30.73 99.85 1.42 3.02 4.08
Self#30 83.49 99.95 99.83 99.98 99.29 99.96 10.57 2.82 30.02
Self#31 0.85 3.26 1.94 0.87 28.99 99.82 0.52 0.37 60.68
Self#52 0.99 2.64 0.76 17.53 1.75 1.56 1.10 0.96 71.52
Self#56 86.85 99.93 99.94 99.94 99.48 99.88 12.94 5.43 0.59
Self#82 92.33 99.96 99.96 99.98 99.73 99.97 21.32 7.67 15.01
Self#83 88.06 99.96 99.93 99.98 99.62 99.97 14.13 5.81 0.74
Self#84 86.23 99.96 99.94 100 99.52 99.98 12.05 2.81 0.30
Self#85 88.76 99.97 99.91 99.98 99.45 99.96 12.80 40.66 37.42
Self#100 86.92 99.51 99.45 99.48 99.08 99.25 15.20 3.09 0.46
Self#142 0.06 1.60 29.35 49.08 17.11 56.08 72.42 0.35 0.99
Self#233 5.51 8.40 7.47 10.26 8.04 7.02 5.49 68.53 92.07
Self#259 13.44 18.26 54.05 45.79 32.52 77.33 72.54 7.30 9.41
Self#350 15.39 17.70 33.10 40.93 22.74 60.70 72.47 30.82 22.27
Self#351 26.07 24.21 50.30 46.33 32.38 67.13 71.49 7.38 14.23
Self#433 1.39 3.43 1.44 14.07 2.77 6.76 2.33 3.89 77.7

Table 5
Total number of projections activated per failure

Actuator Engine Structural
Aileron Stuck

(8°)
Stabilator Stuck

(8°)
Rudder Stuck

(8°) Engine Out
Wing Damage

(15%)
Left Right Left Right Left Right Left Right Left Right

31 31 72 62 9 11 31 4 31 31

wing with structural damage and a left stabilator locked failure. On the other hand, Self#4
only demonstrates the ability to capture the dynamic fingerprint of a “left stabilator locked”-
type of failure. In addition, from Table 4, it is possible to highlight that specific projections
would have the capability to detect a specific failure at different severities.

Within this analysis, it was possible to isolate the projections that can be used for
identification purposes. From the Phase I non-self structure analysis, it was possible to
determine which specific projections correspond to every specific failure investigated.
Furthermore, it is also possible to determine how many projections capture the dynamic
fingerprint of any given abnormal condition at different magnitudes. Table 5 presents an
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Figure 6. (Colour online) Identifier generation logic.

example of the number of projections from the total 183 selected that have the potential ability
to be used for identification purposes.

As a result of the Phase I non-self structuring, the total number of projections needed to
perform the FDIE algorithm is considerably reduced. This outcome allows a more efficient
design of the mapped-based positive selection algorithm utilised in the second phase of the
SNSA.

3.1 Phase II: Positive selection algorithm

Phase II of SNSA includes a positive selection-type process where flight failure test data
are used to generate higher-resolution non-self detectors that are labelled depending on the
characteristics of the failure, and thus, converted into identifiers. Resulting projections from
Phase I are processed in order to generate identifiers capable of differentiating similar dynamic
prints among several abnormal conditions and declaring correct failure types and magnitudes.
In order to obtain correct identification results, the identification logic must be carefully
formulated and the generation and selection of identifiers must be adequate. Sub-sets of
antibodies or identifiers must be generated with sufficient resolution to avoid incorrect outputs.
The generation of identifiers consists of a multi-step process where their radii are assigned
based on their distance to self and not based on coverage of the non-self optimisation criteria,
as was the case for previous detector generation. Figure 6 presents the logic for the generation
of identifiers.

Abnormal Flight Tests: Several flight tests at different abnormal conditions throughout
the entire flight envelope are performed. Previously selected features corresponding to
the self/non-self definition as shown in Table 1 are recorded for future processing and
identifier definition. Section IV provides more details on the flight testing environment and
conditions.

Normalisation: The sets of raw data received from the flight tests’ recorded values are
normalised between 0 and 1. The normalisation factor of each projection is determined by
the range of the flight data plus a percent margin. The normalisation factor is the same
one used for the self/non-self projections during the antibodies generation(26). Therefore, the
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Figure 7. (Colour online) Radii variation with respect to distance from the self.

normalised data points of failure data correspond to the correct hypercube projection of each
specific feature combination.

Offset Hypercubes: The unit hypercube determined during the normalisation process
delimits the hyperspace of the nominal condition flight tests. High-magnitude failures may
contain data points that lie far away from the unit hypercube of the self/non-self projection.
Therefore, outward concentric hypercubes are defined in order to determine the distance of the
abnormal condition point from the self, which subsequently allows the algorithm to determine
the magnitude of the corresponding failure (see Fig. 7).

Radii Assignment: The radius of any identifier is pre-determined and it is assigned
depending on the location of its centre with respect to the offset hypercubes. Since 2D
projections are used, the radii that correspond to identifiers at each area are previously
established based on direct observation of few selves against abnormal condition signatures.
The radius of an identifier increases as the position of its centre lies within an outward
hypercube. In other words, the radii of all identifiers increase as their distance to the self
increases. The increase of the radii of the identifiers is due to the fact that higher-magnitude
failures are expected to present a dynamic fingerprint with greater dispersion of data
points.

Identifiers Elimination/Fusion: The amount of initial identifiers depends on the number
of data points obtained from the flight tests. This may yield a very large number of identifiers
that will require excessive computer processing capabilities. A simple elimination algorithm
is implemented in order to reduce the number of identifiers. Identifiers that lay inside the
radius of another identifier, plus a tolerance, are eliminated. Finally, a fusion process is
performed that consists of a set union accompanied by overlapping elimination. After this
step is concluded, the final number of identifiers is reduced considerably.

The identifiers generated during Phase I and II are then loaded into an identification
function and organised in a single array such that the index of each identifier corresponds to a
failure type and magnitude. The arrangement of the identifiers is inspired by a mapping-based
algorithm which simplifies the selection scheme. The positive selection process is performed
simultaneously by all the projections included in the identification algorithm. The outputs of
all projections are compared to each other and the most frequent value is determined. If a
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Figure 8. (Colour online) The WVU 6-DOF motion-based flight simulator.

specific failure index is present throughout the majority of the projections’ outputs, its value
is selected and a proper identification is declared.

The approach investigated in this paper covers not only a general identification logic, but
also a quantitative evaluation logic integrated into a single, less complex algorithm. This
integration intends to reduce the computational process for the real-time implementation of
the solution to the FDIE problem. The mapping-based positive selection logic proposed here
targets a multi-dimensional problem by means of a simpler but effective logic that can result
in a more efficient real-time algorithm.

4.0 THE SIMULATION ENVIRONMENT
Experimental data was collected from the WVU 6-DOF Flight Simulator system shown in
Fig. 8. The simulator consists of a Motus 600 motion platform driven by electrical induction
motors to provide adequate 6-DOF translational and rotational motion cues. The motion
platform was inter-faced with an external computer on which an aircraft model can run within
the Matlab/Simulink environment to drive the entire simulator system. The aircraft model
used in this work is a customised research supersonic fighter aircraft(19). This aircraft also
includes model reference adaptive control laws based on non-linear dynamic inversion and
artificial neural network (ANN) augmentation, which also produces estimates of the aircraft
angular rates and angular acceleration errors.

The AIS self/non-selves were generated from data collected for different flight scenarios
under normal conditions over a wide range of the flight envelope. Nine reference points for
various altitude/Mach number combinations were used in designing these flight scenarios as
shown in Fig. 9. All flight tests start at steady state flight conditions at point 1 and continue to
cover the nine points as described by the arrows. For example, for a flight scenario 1-2-3, the
aircraft climbs from point 1 to point 2 with constant speed, accelerates from point 2 to point 3
with constant altitude, decelerates from point 3 to point 2 with constant altitude, and descends
from point 2 to point 1 with constant speed. A total of eight such tests are necessary to cover
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Figure 9. (Colour online) Testing flight envelope.

Table 6
The aircraft sub-systems and their failure types

Sub-system
Category Sub-system Description

Actuator Left/Right Stabilator Blockage of any control surface at non-trim position
Left/Right Aileron
Left/Right Rudder

Sensor Roll Gyro LSB: large step bias
Pitch Gyro LFDB: large fast drifting bias
Yaw Gyro

Structure Left/Right Wing Missing part of the wing with and without affecting
the “efficiency” of the aileron control surface.

Propulsion Left/Right Engine Reduced effectiveness /Loss of power in one of the
engines

the testing flight envelope. Additional intermediate points (A, B, C and D in Fig. 9) were used
for validation. Note that all flight scenarios include mild to moderate manoeuvres and that the
data acquisition rate from the simulator is 50 Hz.

Table 6 summarises the aircraft sub-systems and the failure types considered for the
purpose of this paper. A total of 13 sub-systems were modelled to support the development
and testing of the AIS-based FDIE scheme. Failure test data were collected from the simulator
using the same testing flight envelope as that of Fig. 9. Only one failure at a time was
considered to capture/isolate the dynamic fingerprint of each type of failure and generate
antibodies appropriately.

5.0 RESULTS
The identifier generation algorithm proposed in this research effort was implemented for
nine different failures considered to be high magnitude using the 183 selected projections.
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Table 7
Projections used for identification

Self# Features Self# Features Self# Features Self# Features

3 pre f NNp 57 rre f NNq 110 NNq DQEE p 121 NNq ϕ

4 pre f NNq 60 rre f OQEE 111 NNq DQEEq 123 NNq ax
7 pre f OQEE 82 NNp NNq 113 NNq v 124 NNq ay
9 pre f DQEEq 83 NNp NNr 114 NNq α 125 NNq az
31 qre f NNq 84 NNp MQEE 115 NNq β 126 NNq da

34 qre f OQEE 86 NNp DQEE p 116 NNq p 127 NNq de

35 qre f DQEE p 87 NNp DQEEq 117 NNq q 128 NNq dr

42 qre f q 88 NNp DQEEr 118 NNq r 129 NNq dT

56 rre f NNp 107 NNq NNr 120 NNq θ 130 NNq M

Based on the assumption that lower-magnitude failures of the same type of failure generate
similar dynamic fingerprints with a closer proximity to the self, the set of identifiers were
subdivided into two groups. The first set corresponds to high magnitude and the second set
to low-magnitude failures (i.e. closer to the self). This approach increases the total amount of
failures that can be identified to 18 instead of the original 9. A total of 1647 different cases
for identifier generation were implemented in order to cover all the possible failure outputs
investigated.

Each set of identifiers generated per failure contains on average 36 identifiers. Considering
that every set of identifiers for all failures is integrated in each projection, an approximate
total of 324 identifiers per projection are used for the identification positive selection process.

After an initial analysis, the algorithm was optimised and it was determined that out of the
183 projections, a total of 93 projections were enough to correctly identify the investigated
failures. The reduction of the total number of projections required for identification will
reduce computational complexity of the algorithm considerably.Table 7 presents a sample set
of projections used for failure identification.

Further analysis was carried out to reduce the number of projections required to
produce desirable identification outputs. In some cases, the use of a single projection was
enough to obtain favourable identification rates. On the other hand, other failures require
more projections in order to obtain desirable identification results and also to reduce
misidentification rates. Table 8 presents the number of projections required for a correct
failure identification output.

The identification algorithm was tested under 16 different failures (refer to Table 3).
Table 9, shown below, presents the results for identification rate analysis. It includes the
false identification percent for other types of failures. It should be noted that, in some cases,
the dynamic fingerprint of a failure fell outside the identifiers. For these particular cases
the identification algorithm output a 0% identification rate. For simplicity, a “no identified
failure” column was not included in Table 9. It should be noted that Table 9 presents the
identification results in a horizontal fashion. For example, failure #1 is output correctly
99.7% of the time but presents confusion with failures 3, 4 and 14 for 0.1% of the time,
respectively.
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Table 8
Total number of projections used for identification

Failure # Failure
Projections

Used Failure # Failure
Projections

Used

1 Left aileron stuck at
2°

14 9 Left wing loss of 6% 2

2 Right aileron stuck
at 2°

7 10 Right wing oss of 6% 1

3 Left aileron stuck at
8°

8 11 Left wing loss of
15%

1

4 Right aileron stuck
at 8°

8 12 Right wing loss of
15%

2

5 Left stabilator stuck
at 2°

18 13 Left engine out 1

6 Right stabilator
stuck at 2°

2 14 Right engine out 18

7 Left stabilator stuck
at 8°

9 15 Roll sensor bias of
5°/sec

1

8 Right stabilator
stuck at 8°

31 16 Roll sensor bias of
10°/sec

7

6.0 CONCLUSIONS
A novel, more compact SNSA algorithm for aircraft sub-system failure identification and
evaluation has been developed and tested for several abnormal conditions. The algorithms
for generation of identifiers through positive selection and the structuring of the non-self
have been described and implemented successfully. This novel two-phase SNSA algorithm
has been developed within a fault tolerance architecture to address aircraft sub-system failure
detection, identification and evaluation FDIE problems. The approach relies on a new refined
process to extend and enhance the architecture capabilities. The first phase corresponds to
non-self-structuring via negative selection, in which 2D, self/non-self-projections are selected
according to the ability to detect failures at a pre-defined detection rate. A second phase
uses positive selection to generate specific sets of detectors capable of differentiating similar
dynamic prints among several abnormal conditions and declaring correct failure types and
magnitudes.

The identification performance was obtained through a set of 93 2D projections within
an HMS strategy and, as shown from the results, achieved excellent performance in terms
of identification rate for 16 types of failures. The results demonstrate that the proposed
methodology is able to reduce the total number of projections required to successfully
identify failed subsystems without compromising the FDIE performance. The total number
of projections was reduced from 496 to 93. This projection reduction implies less overall
complexity and computational time required to execute an effective algorithm, making
this approach feasible for real-time execution. The capability of the SNSA for failure
identification and evaluation using a small number of low-dimensional projections was
confirmed.
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Table 9
Identification results for 16 different failures

Identified Failure #

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Failure # 1 99.7 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0

2 9.9 87.3 0 0 0 0 0 0 0 0 0 0 0 2.8 0 0
3 0.4 0 95.6 0.6 0 0 0 0 0 0 0 0 0 3.4 0 0
4 0 0 0.1 97.2 0 0 0 0 0 0 0 0 0.3 2.4 0 0
5 0.5 1.7 1.5 0 92.5 1.5 1.1 0 0 0 0 0 0 0 1.2 0
6 9.9 0 1.2 0 0 86.8 0 2.1 0 0 0 0 0 0 0 0
7 0.2 1 0 0 0 0 96.1 1.5 0 0 0 1.2 0 0 0 0
8 0.5 0 0 0 0 0 4.8 93.8 0.9 0 0 0 0 0 0 0
9 1.2 2 0.2 0 0 0.1 0 0.9 95.6 0 0 0 0 0 0 0
10 0 0 2.1 0 0 0 0 0 1.1 94.5 0 0 0 1.1 0 1.2
11 0 0 0 0 0 0 0 0.1 7.6 0.1 92.2 0 0 0 0 0
12 0 0 0 0 0 0 1.1 0 0 1.1 0 97.5 0.3 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 92.6 7.4 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0.1 99.9 0 0
15 0 0 0 0 0 0.3 0 0.2 0.3 0 0.2 0 2.1 1.3 95.6 0
16 0 0 0 0.3 0 0 0 0 0 0 2.7 0 0 2.1 0 94.9

https://doi.org/10.1017/aer.2016.15 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/aer.2016.15


Moncayo ET AL 433Structured non-self approach for aircraft failure…

The data used for processing, design and validation of the proposed algorithms are based on
information collected from human piloted tests performed on a high-fidelity 6-DOF motion-
based simulator. In this sense, the results achieved and presented in this paper represent
promising advancement towards real implementation of these AIS-based algorithms for FDIE
on aerospace systems.
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