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Abstract Balanced pairs appear naturally in the realm of relative homological algebra associated with
the balance of right-derived functors of the Hom functor. Cotorsion triplets are a natural source of such
pairs. In this paper, we study the connection between balanced pairs and cotorsion triplets by using
recent quiver representation techniques. In doing so, we find a new characterization of abelian categories
that have enough projectives and injectives in terms of the existence of complete hereditary cotorsion
triplets. We also provide a short proof of the lack of balance for derived functors of Hom computed using
flat resolutions, which extends the one given by Enochs in the commutative case.
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1. Introduction

Let C be an abelian category and F a precovering class. This means that for each object
M ∈ C there exists a (not necessarily exact) complex

· · · → F1 → F0 →M → 0,

usually called an F-resolution of M , where Fi ∈ F for every i ≥ 0, which is exact after
applying the functor HomC(F,−) for each F ∈ F . The corresponding deleted complex
is unique up to homotopy, so we can compute right-derived functors of Hom, denoted
by F-Extn, associated with such F-resolutions.† In many cases there is ‘balance’ in the

∗ Corresponding author.
† The reader can consult, for instance, Enochs and Jenda [7, Proposition 8.1.3 and § 8.2] as a reference

for these claims.
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computation of such functors, meaning that there exists a preenveloping class L such that
F-Extn(M,N) can be also obtained from the right-derived functors L-Extn computed from
a coresolution of N ,

0→ N → L0 → L1 → · · · ,
where Li ∈ L for every i ≥ 0. This phenomenon can be summarized by saying that the
pair (F ,L) is a balanced pair (in the sense of Chen [3]) or equivalently that the functor
Hom is right balanced by F × L (see Enochs and Jenda [7, § 8.2]).

Thus, balanced pairs have gained attention in recent years in the context of relative
homological algebra (see, for instance, [3,5,7,9,11]). Our goal in this paper is to deepen
the relation between balanced and cotorsion pairs or, to be more precise, between balanced
pairs and complete and hereditary cotorsion triplets. Recall that a triplet (F ,G,L) is
called a cotorsion triplet provided that (F ,G) and (G,L) are cotorsion pairs. The reader
may have in mind the trivial cotorsion triplet (Proj(R),Mod(R), Inj(R)) in the category
Mod(R) of left R-modules (where Proj(R) and Inj(R) denote the classes of projective and
injective left R-modules respectively), which is the canonical example of a complete and
hereditary cotorsion triplet. But there are many other instances of such triplets occurring
in practice (see Example 4.5).

Complete hereditary cotorsion triplets are defined in Definition 4.1. They are a natural
source of balanced pairs, by a result of Enochs et al. [9, Theorem 4.1] (see also Chen [3,
Proposition 2.6]).

Theorem (see [3, 9]). Let C be an abelian category with enough injectives and pro-
jectives. If (F ,G,L) is a complete hereditary cotorsion triplet in C, then (F ,L) is an
admissible balanced pair.

Thus, it seems natural to wonder about the converse of this result. This appears
explicitly as an open problem [9, Open Problems].

Question. Find conditions for a balanced pair (F ,L) to induce a complete hereditary
cotorsion triplet (F ,G,L).

One of our motivations in this paper is to shed some light on this question. We give in
Proposition 4.6 sufficient conditions to prove the converse of the previous result.

Proposition. Let C be an abelian category with enough projectives and injectives.
Let F and L be two classes of objects in C closed under direct summands such that:

(1) the class F is resolving and special precovering, and the class L is coresolving and
special preenveloping;

(2) F ∩ F⊥ ⊆ ⊥L and ⊥L ∩ L ⊆ F⊥;

(3) the pair (F ,L) is balanced.

Then, there is a complete hereditary complete cotorsion triplet (F ,G,L) in C. In this
case, we have F ∩ F⊥ = Proj(C) and ⊥L ∩ L = Inj(C).*

* F⊥ and ⊥L are specified in the definition of hereditary cotorsion pairs in § 2.
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Note that we cannot expect to get such a triplet from any balanced pair. For instance,
given any ring R with identity, the pair (Mod(R),Mod(R)) is trivially a balanced pair,
but the triplet (Mod(R),G,Mod(R)) is complete if and only if R is quasi-Frobenius.

However, in the case where C = Mod(R), the category of left R-modules over an asso-
ciative ring R with identity, we can find a 1-1 correspondence between complete cotorsion
triplets in Mod(R) and certain balanced pairs in the abelian category Rep(Q,Mod(R))
of Mod(R)-valued representations over a quiver Q with at least one arrow. The precise
formulation of our result is the following. The proof is in Corollary 6.5.

Theorem. If (F ,H) and (G,L) are complete hereditary cotorsion pairs in Mod(R),
then the following are equivalent:

(a) H = G (that is, (F ,G,L) is a complete and hereditary cotorsion triplet in Mod(R));

(b) (Φ(F),Ψ(L)) is a balanced pair in Rep(Q,Mod(R)) for some left and right rooted
quiver Q with at least one arrow.

The classes Φ(F) and Ψ(L) were defined by Holm and Jørgensen [21]. We recall in § 6
their definition.

Notice that one easy example of a left and right rooted quiver is the 1-arrow quiver
Q : • → •, and so in this case Rep(Q,Mod(R)) is nothing but the category Mor(R) of
morphisms of R-modules. But there are many (possibly infinitely many) other quivers
satisfying this condition.* In short, the previous theorem ensures that in order to look
for conditions for an equivalence between balanced pairs and cotorsion triplets, we need
to move to a ‘bigger’ category. This result allows us to characterize quasi-Frobenius
rings (Corollary 6.6) in terms of the so-called monomorphism category and epimorphism
category as considered by Li and Zhang [24] and Luo and Zhang [25]. We also recover
and extend the recent characterization of virtually Gorenstein rings given by Zareh-
Khoshchehreh et al. [30, Theorem 3.10].

While studying cotorsion triplets, we found the following result to be of independent
interest (see Theorem 4.4).

Theorem. An abelian category C has enough projectives and injectives if and only if
there exists a hereditary and complete cotorsion triplet in C.

This theorem allows us to present a slightly stronger version of the aforementioned
result by Enochs, Jenda, Torrecillas and Xu. Namely, we do not require the existence of
enough projectives and injectives to prove the statement (see Proposition 4.2).

Proposition. Let C be an abelian category. If (F ,G,L) is a complete hereditary
cotorsion triplet in C, then (F ,L) is an admissible balanced pair in C.

Finally, we give in Theorem 5.2 a short and categorical proof about the lack of balance
with respect to the class of flat modules over a left Noetherian non-perfect ring. Our
method is different from the one used by Enochs [5, Theorem 4.1] in the commutative
case. As a consequence, we give a negative answer in Corollary 5.3 to Question 6 in

* An example of an infinite quiver with this condition is displayed in the paragraph before Corollary 6.5.
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[5, § 6]. Namely, we show in Corollary 5.3 that there is no balance for the class of flat
quasi-coherent modules on a Noetherian and semi-separated scheme.

2. Preliminaries

Throughout, C will denote an abelian category. A class of objects in C will be always
assumed to be closed under isomorphisms and under finite direct sums.

Cotorsion pairs in abelian categories

Two classes of objects X and Y in C form a cotorsion pair (Y,X ) if the following two
equalities hold:

Y = ⊥1X := {C ∈ C : Ext1C(C,X) = 0 for every X ∈ X},
X = Y⊥1 := {D ∈ C : Ext1C(Y,D) = 0 for every Y ∈ Y}.

Since C does not necessarily have enough projectives and/or injectives, the extension
groups ExtiC(A,B) are defined via its Yoneda description as certain equivalent classes of
i-fold extensions.

A cotorsion pair (Y,X ) in C is called:

(1) complete if for every object C ∈ C there exist short exact sequences

0→ X → Y → C → 0 and 0→ C → X ′ → Y ′ → 0,

with Y, Y ′ ∈ Y and X,X ′ ∈ X ;

(2) hereditary if ExtiC(Y,X) = 0 for every Y ∈ Y and X ∈ X , and i > 0.

Recall that a class Y of objects in C is resolving if Y is closed under extensions and
under kernels of epimorphisms with domain and codomain in Y, and if Y contains the
class of projective objects in C. Dually, one has the notion of coresolving class. We say
that a cotorsion pair (Y,X ) in C is quasi-hereditary if Y is resolving and X is coresolving.
In some references, quasi-hereditary cotorsion pairs are called hereditary, but the two
notions are not the same in general. Indeed, the condition defining hereditary cotorsion
pairs in (2) above is stronger than asking Y and X to be resolving and coresolving,
respectively. This can be appreciated in the following result, whose proof is well known.

Proposition 2.1. Every hereditary cotorsion pair in C is quasi-hereditary. If, in addi-
tion, C has enough projectives and injectives, then every quasi-hereditary cotorsion pair
in C is hereditary.

If (Y,X ) is a hereditary cotorsion pair in C, we actually have that:

Y = ⊥X := {C ∈ C : ExtiC(C,X) = 0 for every X ∈ X and i > 0},
X = Y⊥ := {D ∈ C : ExtjC(Y,D) = 0 for every Y ∈ Y and j > 0}.
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Precovering and preenveloping classes

Let F be a class of objects in C. A morphism φ : F →M in C is called an F-precover of
M if F ∈ F and

HomC(F ′, F )→ HomC(F ′,M)→ 0

is a right exact sequence of abelian groups for every object F ′ ∈ F . Further, if φ : F →M
is an F-precover and ker(φ) ∈ F⊥1 , then φ is called a special F-precover. If every object
in C has a (special) F-precover, then the class F is called (special) precovering.

The dual notions are the (special) preenvelope and (special) preenveloping classes. It
is easy to observe that if (Y,X ) is a complete cotorsion pair in C, then Y is special
precovering and X is special preenveloping.

Using a standard argument (known as Salce’s trick) we get the following lemma.

Lemma 2.2. Suppose that C has enough projectives and injectives. Then the following
hold:

(1) Let F be a special precovering class in C which is also resolving and closed under
direct summands. Then (F ,F⊥) is a complete hereditary cotorsion pair in C.

(2) Let L be a special preenveloping class in C which is also coresolving and closed
under direct summands. Then (⊥L,L) is a complete hereditary cotorsion pair in C.

Resolutions and coresolutions

Let X be a class of objects in C and M an object in C. An X -resolution X• →M of M
is a (not necessarily exact) complex

· · · → X1 → X0 →M → 0,

with each Xi ∈ X , which is exact when applying the functor HomC(X,−), for every
X ∈ X . In this case, we will say that the complexX• →M is HomC(X ,−)-acyclic. Dually,
we have the notion of X -coresolution M → X• of M .

If X is precovering (respectively, X is preenveloping), it is easy to see that every M
in C has an X -resolution (respectively, an X -coresolution). See, for instance, Enochs and
Jenda [7, Proposition 8.1.3].

Balanced pairs

A pair (F ,L) of classes in C is called a balanced pair if the following conditions are
satisfied:

(BP0) F is precovering and L is preenveloping;

(BP1) For each object M ∈ C, there is an F-resolution F• →M which is
HomC(−,L)-acyclic;

(BP2) For each object M ∈ C, there is a L-coresolution M → L• which is HomC(F ,−)-
acyclic.
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A balanced pair (F ,L) is called admissible provided that each F-precover is an
epimorphism and each L-preenvelope is a monomorphism.

3. Relation between balanced pairs and cotorsion pairs

Let us begin this section with the following useful characterization of balanced pairs.

Lemma 3.1. Let F and L be a precovering and a preenveloping class in C, respectively.
Then, the following conditions are equivalent.

(a) The pair (F ,L) is balanced.

(b) Each HomC(F ,−)-acyclic and left exact sequence in C is also HomC(−,L)-acyclic,
and each HomC(−,L)-acyclic and right exact sequence in C is also HomC(F ,−)-
acyclic.

(c) For each object M ∈ C, there is a left exact sequence

0→ K → F →M → 0

and a right exact sequence

0→M → L→ C → 0,

which are both HomC(F ,−)-acyclic and HomC(−,L)-acyclic, where F ∈ F and
L ∈ L.

Proof. The implication (a)⇒ (b) follows from Chen [3, Proposition 2.2], while (b)⇒
(c) is clear. Let us finish the proof by showing (c)⇒ (a). By the assumption (c), for each
object M ∈ C there is a left exact sequence

0→ K0 → F0 →M → 0

in C with F0 ∈ F which is HomC(F ,−)-acyclic and HomC(−,L)-acyclic. Now, by applying
(c) again to the object K0 we get a left exact sequence

0→ K1 → F1 → K0 → 0

with F1 ∈ F which is HomC(F ,−)-acyclic and HomC(−,L)-acyclic. Continuing this pro-
cess, we obtain an F-resolution F• →M which is HomC(−,L)-acyclic. The construction
of a HomC(F ,−)-acyclic L-coresolution of M is dual. Hence, (a) follows. �

Balanced pairs vs. cotorsion pairs

As a first consequence of the previous result, we can infer the following relation between
cotorsion pairs and balanced pairs. From now on, we will denote by Proj(C) and Inj(C)
the classes of projective and injective objects of C, respectively.

Proposition 3.2. Let (F ,H) and (G,L) be cotorsion pairs in C such that the pair
(F ,L) is balanced. Then, F ∩ G = Proj(C) and H ∩ L = Inj(C).
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Proof. We prove only the equality F ∩ G = Proj(C); the corresponding statement
with injectives follows in a dual manner. Since (F ,H) and (G,L) are cotorsion pairs,
the containment Proj(C) ⊆ F ∩ G always holds. Conversely, let P ∈ F ∩ G and C ∈ C be
an arbitrary object. Let us consider an element in Ext1C(P,C) represented by an exact
sequence

0→ C → D → P → 0. (i)

Since P ∈ G, the sequence (i) is HomC(−,L)-acyclic. But then by Lemma 3.1, we have
that this sequence is also HomC(F ,−)-acyclic. This in turn implies that (i) splits, since
P ∈ F . Finally, C being arbitrary, we conclude that P is projective. �

Uniqueness of balanced pairs

Given a preenveloping class L in C, there might be two different classes F1 and F2 such
that (F1,L) and (F2,L) are balanced pairs. For instance, take the category C = Mod(R) of
left R-modules and L the class of all injective left R-modules. Then we have two balanced
pairs (F1,L) and (F2,L), where F1 is the class of all free left R-modules and F2 consists
of all projective left R-modules. In this example, note that Smd(F1) = Smd(F2) (where
Smd(F) is the class of direct summands of objects in F). The second consequence of
Lemma 3.1 shows that this sort of uniqueness property holds for any admissible balanced
pair.

Proposition 3.3. If (F1,L) and (F2,L) are two admissible balanced pairs in C,
then the equality Smd(F1) = Smd(F2) holds. Similarly, if (F ,L1) and (F ,L2) are two
admissible balanced pairs in C, then Smd(L1) = Smd(L2).

Proof. Let us show that Smd(F1) ⊆ Smd(F2). The other inclusion follows by the same
argument. It is easy to observe that it suffices to show that F1 ⊆ Smd(F2). First, note
that since F2 is a precovering class in C, for any F1 ∈ F1 we have a HomC(F2,−)-acyclic
left exact sequence

0→ K → F2 → F1 → 0 (ii)

in C with F2 ∈ F2. In fact, since (F2,L) is admissible, the sequence (ii) is exact. By
Lemma 3.1, along with the fact that (F2,L) is balanced, the sequence (ii) is also
HomC(−,L)-acyclic. But then, using that (F1,L) is balanced, (ii) is also HomC(F1,−)-
acyclic. This implies that (ii) splits, since F1 ∈ F1. Hence F1 ∈ Smd(F2), which completes
the proof. �

4. Relation between balanced pairs and cotorsion triplets

It is not in general an easy task to check whether or not a pair of classes (F ,L) form
a balanced pair in an abelian category. A common way to provide with such pairs is
by means of cotorsion triplets. This section is thus devoted to defining such triplets and
exploring their relation with balanced pairs. In summary, every complete and hereditary
cotorsion triplet gives rise to a balanced pair. Cotorsion triplets were introduced by
Beligiannis and Reiten [2, § 3 of Chapter VI], where they study necessary and sufficient
conditions for the existence of such triplets. The concept was also studied by Enochs and
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Jenda [8, § 4.2] in the context of chain complexes of modules over an associative ring with
identity.

Definition 4.1. Three classes F , G and L of objects in C form a cotorsion triplet
(F ,G,L) if (F ,G) and (G,L) are cotorsion pairs in C. Moreover, a cotorsion triplet
(F ,G,L) in C is:

(1) complete if (F ,G) and (G,L) are complete cotorsion pairs;

(2) hereditary if (F ,G) and (G,L) are hereditary cotorsion pairs.

From cotorsion triplets to balanced pairs

The relation between cotorsion triplets and balanced pairs is summarized in the next
proposition. It was originally outlined by Enochs et al. [9, Theorem 4.1], but the precise
formulation we state below is due to Chen [3, Proposition 2.6].

Proposition 4.2. If (F ,G,L) is a complete hereditary cotorsion triplet in C, then
(F ,L) is an admissible balanced pair in C.

Remark 4.3. Chen’s original statement and proof in [3, Proposition 2.6] requires
that C has enough projectives and injectives. However, these hypotheses are actually not
necessary. This fact has to do with an interesting characterization of abelian categories
with enough projectives and injectives in terms of complete hereditary cotorsion triplets,
presented in Theorem 4.4 below.

In particular, this result shows that it is hopeless to look for complete hereditary
cotorsion triplets in Grothendieck categories without enough projectives, such as some
interesting categories studied in algebraic geometry. For example, if T is a non-trivial
topological space and O is a sheaf of commutative rings with 1 on T , then Sh(O), the
category of sheaves of O-modules, does not have enough projective O-modules. This is
also the case for the category Qcoh(X) of quasi-coherent sheaves on a non-affine scheme
X, considered in § 5. Thus, it will follow that neither Sh(O) nor Qcoh(X) has complete
and hereditary cotorsion triplets.

Theorem 4.4. The following conditions are equivalent.

(a) C has enough projectives and injectives.

(b) There exists a complete hereditary cotorsion triplet (F ,G,L) in C.

Proof. For the implication (a) ⇒ (b) it suffices to consider the complete hereditary
cotorsion triplet (Proj(C), C, Inj(C)).

Let us now prove (b) ⇒ (a). Suppose we are given a complete hereditary cotorsion
triplet (F ,G,L) in C. We show that C has enough projectives. For any object C ∈ C, we
have a short exact sequence

0→ L→ G→ C → 0
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in C with G ∈ G and L ∈ L, since (G,L) is a complete cotorsion pair. Now, using the
completeness of (F ,G), we have a short exact sequence

0→ G′ → F → G→ 0

with F ∈ F and G′ ∈ G. Note that F actually belongs to F ∩ G since G is closed under
extensions. Taking the pullback of L→ G← F , we obtain two short exact sequences of
the form:

0→ G′ → K → L→ 0, (iii)

0→ K → F → C → 0. (iv)

Note that G′, L ∈ (F ∩ G)⊥ in (iii), and so K ∈ (F ∩ G)⊥. The proof will conclude after
we show that F ∩ G = Proj(C). The containment (⊇) is clear. Now let W ∈ F ∩ G. From
(iv) we have the long homology exact sequence

· · · → ExtiC(W,F )→ ExtiC(W,C)→ Exti+1
C (W,K)→ · · · .

On the one hand, ExtiC(W,F ) = 0 for every i > 0, since W ∈ F , F ∈ G and (F ,G) is
a hereditary cotorsion pair. On the other hand, Exti+1

C (W,K) = 0 for every i > 0 since
W ∈ F ∩ G and K ∈ (F ∩ G)⊥. It follows that ExtiC(W,C) = 0 for every positive integer
i > 0. Since the object C ∈ C is arbitrary, we have that W ∈ Proj(C).

A dual argument shows that C has also enough injectives. �

From now on, unless otherwise specified, R will be an associative ring with identity
and all modules are left R-modules.

Example 4.5. We collect from the literature the following examples of complete
hereditary cotorsion triplets (and hence of admissible balanced pairs).

(1) Let C be an abelian category. We already know from the proof of Theorem 4.4 that
(Proj(C), C, Inj(C)) is a complete cotorsion triplet if and only if C has enough projectives
and injectives. If any of these two conditions holds, we have the well-known balanced pair
(Proj(C), Inj(C)). Not all of the complete hereditary cotorsion triplets in C have to be of
the form (Proj(C), C, Inj(C)), as shown in the rest of the examples.

(2) Consider the category Mod(R) of modules. In this case, let us set Proj(Mod(R)) =
Proj(R) and Inj(Mod(R)) = Inj(R) for simplicity. Recall that a ring R is quasi-Frobenius
if Proj(R) = Inj(R), and note that R is quasi-Frobenius if and only if the triplet
(Mod(R),Proj(R),Mod(R)) is a complete cotorsion triplet.

(3) Beligiannis and Reiten [2, § 3 of Chapter VI]: Let Λ be an Artin algebra and let
mod(Λ) denote the abelian category of finitely generated left Λ-modules. Let add(Λ)
denote the class of objects in mod(Λ) that are direct summands of finite direct sums of
copies of Λ. The class CM(Λ) of maximal Cohen–Macaulay modules over Λ is defined as
those M ∈ mod(Λ) such that there exists an exact sequence

0→M →W 0 f0

−→W 1 f1

−→W 2 → · · ·
with W k ∈ add(Λ) and Ker(fk) ∈ ⊥(add(Λ)) for every k ≥ 0. The class CoCM(Λ) is
defined dually. On the other hand, let proj∞(Λ) (respectively inj∞(Λ)) denote the class of
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finitely generated Λ-modules with finite projective (respectively injective) dimension. If Λ
is Gorenstein, then (CM(Λ), proj∞(Λ),CoCM(D(Λ))) is a complete hereditary cotorsion
triplet in mod(Λ), where D(Λ) is the minimal injective cogenerator of mod(Λ). In this
case, one has proj∞(Λ) = inj∞(Λ).

(4) Enochs and Jenda [8, Proposition 4.4.5]: Let Ch(R) denote the category of
chain complexes of modules. Recall from [8, Definition 4.2.2] that a chain complex
P = (Pm, ∂

P
m)m∈Z is perfect if Pm = 0 except for a finite number of integers m ∈ Z and if

each Pm is a finitely generated projective module. If S is a set of perfect complexes and
U is the set of all complexes Σk(P ) where P ∈ S and k ∈ Z, then there exists a unique
complete hereditary cotorsion triplet (Y,X ,Z) in Ch(R) where X = U⊥. Here, Σk(P )
denotes the kth suspension of P , that is, Σk(P )m := Pm−k for every integer m ∈ Z, with
boundaries given by (−1)k∂P

m−k.
(5) [8, § 4.3 of Chapter IV]: Let E denote the class of exact chain complexes in Ch(R).

Then (⊥1E , E , E⊥1) is a complete hereditary cotorsion triplet in Ch(R), known as the Dold
triplet. Here, ⊥1E coincides with the class dg(Proj(R)) of differential graded projective
complexes in Ch(R), defined as those complexes P in Ch(R) such that Pm is a projective
module for every integer m ∈ Z and every chain map P → E is homotopic to zero when-
ever E ∈ E . Dually, E⊥1 coincides with the class dg(Inj(R)) of differential graded injective
complexes. Here, we have the balanced pair (dg(Proj(R)), dg(Inj(R))).

(6) Hovey [22, § 8]: Let GProj(R) and GInj(R) denote the classes of Gorenstein pro-
jective and Gorenstein injective modules. Let Proj∞(R) (respectively Inj∞(R)) denote
the class of modules with finite projective (respectively injective) dimension. If R is an
Iwanaga–Gorenstein ring, then (GProj(R),Proj∞(R),GInj(R)) is a complete hereditary
cotorsion triplet in Mod(R), where Proj∞(R) = Inj∞(R) by [7, Proposition 9.1.7]. Here,
we have the balanced pair (GProj(R),GInj(R)) comprising several properties in Gorenstein
homological algebra.

(7) Gillespie [15]: Similar to (6), let DProj(R) and DInj(R) denote the classes of
Ding-projective and Ding-injective modules, respectively. Let Flat∞(R) (respectively
FP-Inj∞(R)) denote the class of modules with finite flat (respectively FP-injective)
dimension. If R is a Ding–Chen ring, then (DProj(R),Flat∞(R),DInj(R)) is a complete
hereditary cotorsion triplet in Mod(R), where Flat∞(R) = FP-Inj∞(R) by [4, Proposi-
tion 3.16]. In this case, we have the balanced pair (DProj(R),DInj(R)) for Ding–Chen
homological algebra.

From balanced pairs to cotorsion triplets

In [9, Open Problems] it is asked under what conditions a converse of Proposition 4.2
holds. That is, given a special precovering class F and a special preenveloping class L in
C such that the pair (F ,L) is balanced, under what conditions is it true that we have a
complete cotorsion triplet (F ,G,L)? In the next proposition, we give sufficient conditions
on such F and L to ensure that they are the extremes of a complete hereditary cotorsion
triplet.

Proposition 4.6. Let C be an abelian category with enough projectives and injectives.
Let F and L be two classes of objects in C closed under direct summands such that:
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(1) the class F is resolving and special precovering, and the class L is coresolving and
special preenveloping;

(2) F ∩ F⊥ ⊆ ⊥L and ⊥L ∩ L ⊆ F⊥;

(3) the pair (F ,L) is balanced.

Then, there is a complete hereditary complete cotorsion triplet (F ,G,L) in C. In this
case, we have F ∩ F⊥ = Proj(C) and ⊥L ∩ L = Inj(C).

Proof. Let H = F⊥ and G = ⊥L. With the hypothesis on F and L we get from
Lemma 2.2 that (F ,H) and (G,L) are complete hereditary cotorsion pairs in C. Let
us show that H = G. For any H ∈ H, we have a HomC(F ,−) exact sequence

0→ H0 → F → H → 0,

with F ∈ F and H0 ∈ H. It follows that F ∈ F ∩H ⊆ G by hypothesis. By Lemma 3.1,
the above sequence is also HomC(−,L) exact, so we get H ∈ G. So H ⊆ G. Similarly, we
also have that G ⊆ H. �

Remark 4.7. As mentioned in the introduction, one cannot expect to obtain a com-
plete hereditary cotorsion triplet from any balanced pair. After checking the statement of
Proposition 4.6, it seems difficult to obtain such triplets from a balanced pair (F ,L) with-
out assuming condition (2). For example, for any ring R we have the trivial balanced pair
(Mod(R),Mod(R)) by setting F = L = Mod(R). However, we know from Example 4.5 (2)
that the triplet (Mod(R),G,Mod(R)) is complete if and only if R is quasi-Frobenius. Note
that in this case we have F ∩ F⊥ = Inj(R) and ⊥L ∩ L = Proj(R), and thus condition (2)
in Proposition 4.6 holds if and only if R is quasi-Frobenius.

As an immediate consequence of Propositions 4.2 and 4.6, we get the following.

Corollary 4.8. Let C be an abelian category with enough projectives and injectives.
If (F ,H) and (G,L) are complete hereditary cotorsion pairs in C with F ∩H ⊆ G and
G ∩ L ⊆ H, then H = G if and only if (F ,L) is an admissible balanced pair in C.

Virtually Gorenstein rings, balanced pairs and cotorsion triplets

We close this section by presenting a first application of the relation between balanced
pairs and cotorsion triplets described in Propositions 4.2 and 4.6, in the context of vir-
tually Gorenstein rings (a notion originally due to Beligiannis and Reiten [2] for Artin
algebras). More applications will be given later on for the categories of quasi-coherent
sheaves and C-valued representations of quivers. These two settings will be studied in
more detail in § 5 and § 6, respectively.

The balanced pair (GProj(R),GInj(R)) from Example 4.5 (6) can be obtained under
different assumptions on R. As a matter of fact, the existence of (GProj(R),GInj(R))
as a balanced pair in Mod(R) is a necessary and sufficient condition for certain rings
R to be virtually Gorenstein. Recall that a (non-necessarily commutative) ring R is
called virtually Gorenstein provided that GProj(R)⊥ = ⊥GInj(R). Ding–Chen rings are
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examples of non-Gorenstein virtually Gorenstein rings (see Gillespie [16, Theorem 1.1]
and [15, Theorem 4.7]).

In the case where R is a Noetherian ring of finite Krull dimension, it is proved by
Zareh-Khoshchehreh et al. [30, Theorem 3.10] that R is virtually Gorenstein if and
only if (GProj(R),GInj(R)) is a balanced pair in Mod(R). This is an important recent
result for which we will present two extensions in Corollaries 4.9 and 6.8. The former
adds an extra condition to this equivalence, namely, the existence of a cotorsion triplet
(GProj(R),G,GInj(R)) in Mod(R). For the latter extension, on the other hand, we will
require some concepts and techniques from representation theory of quivers, covered in
§ 6.

Corollary 4.9. Let R be a commutative Noetherian ring with finite Krull dimension.
Then, the following conditions are equivalent.

(a) R is a virtually Gorenstein ring.

(b) (GProj(R),GInj(R)) is an admissible balanced pair in Mod(R).

(c) There is a complete hereditary cotorsion triplet (GProj(R),G,GInj(R)) in Mod(R).

Proof. The equivalence (a) ⇔ (b) is [30, Theorem 3.10], which also holds in the
non-commutative case. The implication (c) ⇒ (b) is an immediate consequence of
Proposition 4.2. So the proof will conclude after showing (b) ⇒ (c).

Suppose that the classes GProj(R) and GInj(R) form a balanced pair (GProj(R),
GInj(R)). First, it is well known that for any arbitrary ring R the classes GProj(R) and
GInj(R) are resolving and coresolving, respectively, and that GProj(R) ∩ GProj(R)⊥ =
Proj(R)* ⊆ ⊥GInj(R) and ⊥GInj(R) ∩ GInj(R) = Inj(R)† ⊆ GProj(R)⊥. Moreover, since R
is Noetherian we have by Krause [23, Theorem 7.12] that GInj(R) is special preenvelop-
ing. On the other hand, since R is also commutative with finite Krull dimension, we have
that GProj(R) is special precovering (see, for example, [12, Proposition 6]). Thus, we are
under the hypotheses of Proposition 4.6, which says that there must exist a complete
hereditary cotorsion triplet (GProj(R),G,GInj(R)) in Mod(R). �

5. Balance with flat objects

In this section, we first give a different proof to that of Enochs [5, Theorem 4.1] about
the lack of balance with respect to the class of flat modules, in the case where the ring
R is left Noetherian and non-perfect.

* Let us prove this equality. It is clear that Proj(R) ⊆ GProj(R) ∩ GProj(R)⊥. Conversely, let M be a
module in GProj(R) ∩ GProj(R)⊥. Then, by the definition of a Gorenstein projective module, there exists
a short exact sequence

0 → M → P → M ′ → 0,

with P projective and M ′ Gorenstein projective. Since M ∈ GProj(R)⊥, the sequence splits, and so M
is a direct summand of a projective module and hence is projective.

† The proof is analogous to the projective case before.
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Balance and closure under direct sums and products

We start with the following consequence of balance in abelian categories. We recall that an
abelian category satisfies AB4 if it is cocomplete and any direct sum of monomorphisms
is a monomorphism. The axiom AB4* of an abelian category is dual.

Lemma 5.1. Let F and L be two classes of objects in C such that (F ,L) is a balanced
pair. Then the following statements hold.

(1) If C satisfies AB4 and has enough injectives, and any direct sum of injective objects
belongs to F⊥1 , then F⊥1 is closed under direct sums.

(2) If C satisfies AB4* and has enough projectives, and any direct product of projective
objects belongs to ⊥1L, then ⊥1L is closed under direct products.

Proof. To prove (1), let {Ci} be a family of objects in F⊥1 and let

0→ Ci → Ei → Di → 0

be a family of exact sequences with each Ei injective. Since each Ci ∈ F⊥1 , each of these
sequences is HomC(F ,−)-exact. Hence, by Lemma 3.1, they will be HomC(−,L)-exact.
So, for each i and each L ∈ L, we have the exact sequence of abelian groups

0→ HomC(Di, L)→ HomC(Ei, L)→ HomC(Ci, L)→ 0.

We can take the direct product of the previous family of short exact sequences to get the
exact sequence

0→
∏

i

HomC(Di, L)→
∏

i

HomC(Ei, L)→
∏

i

HomC(Ci, L)→ 0.

Now, we have the following commutative diagram

0 ��
∏

i

HomC(Di, L)

�
��

��
∏

i

HomC(Ei, L)

�
��

��
∏

i

HomC(Ci, L)

�
��

�� 0

0 �� HomC
(⊕

i

Di, L
)

�� HomC
( ⊕

i

Ei, L
)

�� HomC
( ⊕

i

Ci, L
)

�� 0

where the columns are natural isomorphisms. The bottom row tells us that the exact
sequence

0→
⊕

i

Ci →
⊕

i

Ei →
⊕

i

Di → 0

is HomC(−,L)-exact. Since (F ,L) is balanced, by applying Lemma 3.1 again, it follows
that the sequence is HomC(F ,−)-exact. Since ⊕iEi ∈ F⊥1 by hypothesis, it follows from
the usual long exact sequence of cohomology that Ext1C(F,⊕iCi) = 0 for each F ∈ F , that
is, ⊕iCi ∈ F⊥1 .

The proof of (2) is dual. �
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Lack of balance with respect to flat modules

We are now in position to give a short proof of the aforementioned result of [5, Theorem
4.1]. In what follows, we will denote by Flat(R) the class of flat left R-modules.

Theorem 5.2. Let R be a left Noetherian ring. The class of flat left R-modules is the
left part of a balanced pair if and only if the ring R is left perfect.

Proof. Let us first prove the implication (⇐). If R is left perfect, then the class of flat
modules coincides with the class of projective modules (Bass [1, Theorem P]). Hence we
get the standard balanced pair (Proj(R), Inj(R)) in Mod(R).

In order to show the converse implication (⇒), suppose there is a balanced pair
(Flat(R),L) for some class of modules L. Since R is left Noetherian, any direct sum
of injective modules is injective. Therefore, we are in the assumptions of part (1) of
Lemma 5.1, which says that the class (Flat(R))⊥1 of cotorsion modules is closed under
direct sums. But then by Guil Asensio and Herzog [18, Theorem 19], the ring R must be
left perfect. �

Following the philosophy of [5, § 5], there are other cases for which Theorem 5.2 is
also valid. First, one can state a chain complex version of Theorem 5.2 by noticing some
facts. Recall that a chain complex is flat if it is exact with flat cycles. Also, projective
and injective complexes have similar descriptions. So if Flat(R) denotes the class of flat
complexes, we can note that if (Flat(R))⊥1 is closed under direct sums, then so will be the
class (Flat(R))⊥1 of cotorsion modules. It suffices to note that for every cotorsion module
C, the complex C = · · · → 0→ C → 0→ · · · belongs to (Flat(R))⊥1 . This follows by
applying a well-known natural isomorphism appearing in [14, Lemma 4.2].

The other context we are interested in is the category of quasi-coherent sheaves on a
scheme X, presented in the following section.

Lack of balance with respect to flat quasi-coherent modules on a scheme

From now until the end of this section, all rings are commutative.
Let Qcoh(X) denote the category of quasi-coherent sheaves on a scheme X. The corre-

sponding version of Theorem 5.2 for Qcoh(X) is formulated below in Corollary 5.3. This
result answers question (6) posted in [5, § 6] in the negative.

For a better understanding of Corollary 5.3, we need to recall a few well-known facts
about Qcoh(X). First, a scheme X is called semi-separated if it has a semi-separating
open affine covering U = {Ui : i ∈ I}, that is, for each i, k ∈ I the intersection Ui ∩ Uk is
also an open affine. For each i ∈ I, the canonical inclusion ιi : Ui → X gives an adjoint
pair (ι∗i , ι

i
∗), where

ι∗i : Qcoh(X)→ Qcoh(Ui) and ιi∗ : Qcoh(Ui)→ Qcoh(X)

are the inverse and direct image functors, respectively. In general, the direct image functor
ιi∗ does not preserve quasi-coherence, but it does for semi-separated schemes X. So, for
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each Ui, we have an isomorphism

HomQcoh(Ui)(ι
∗
i H ,T ) ∼= HomQcoh(X)(H , ιi∗T ).

Since for each open affine Ui, the categories Mod(OX(Ui)) and Qcoh(Ui) are equivalent
by a well-known result of Grothendieck (see, for instance, Hartshorne [20, Chapter II,
Corollary 5.5]), we can write the previous isomorphism as

HomOX(Ui)(H (Ui), T ) ∼= HomQcoh(X)(H , ιi∗(T )),

for any OX(Ui)-module T and any quasi-coherent sheaf H . We recall that a scheme is
Noetherian if it is quasi-compact and possesses an open affine covering U = {U1, . . . , Un}
such that, for each i = 1, . . . , n, OX(Ui) is a Noetherian ring.

Let Flat(X) denote the class of flat quasi-coherent sheaves over X in the following
result.

Corollary 5.3. Let X be a Noetherian and semi-separated scheme, with semi-
separating open affine covering U = {U1, . . . , Un}. Assume that OX(Ui) is a Noetherian
but not Artinian ring, for some i ∈ {1, . . . , n}. Then, Flat(X) is not the left part of a
balanced pair in Qcoh(X).

Proof. Suppose that there is such a balanced pair (Flat(X),L) in Qcoh(X), for
some class L. The category Qcoh(X) is well known to be a Grothendieck category (see
Grothendieck and Dieudonné [17, Chapitre 1, § 6, Corollarie 6.9.12] for the existence of
a family of generators) and so it is cocomplete, satisfies AB4 and has enough injectives.
Indeed, since X is Noetherian, the category Qcoh(X) is locally Noetherian [19, Chapter
II, § 7], hence the direct sum of injective objects in Qcoh(X) is again injective (Sten-
ström [29, Chapter V, Proposition 4.3]). Therefore, part (1) of Lemma 5.1 tells us that
the class (Flat(X))⊥1 of cotorsion quasi-coherent sheaves is closed under direct sums.
Now let {Ck} be a family of cotorsion OX(Ui)-modules. By Gillespie [13, Lemma 6.5],
the functor ιi∗ : Mod(OX(Ui))→ Qcoh(X) preserves cotorsion objects. Hence, the fam-
ily {ιi∗(Ck)} is a family of cotorsion quasi-coherent sheaves and thus, by the previous,
⊕kι

i
∗(Ck) ∈ (Flat(X))⊥1 . We will finish the proof by showing that this implies that ⊕kCk

is a cotorsion OX(Ui)-module. So, by Guil Asensio and Herzog [18, Theorem 19], the
ring OX(Ui) must be Artinian, a contradiction.

To prove what we have claimed, let F be a flat OX(Ui)-module. We want to show
that the equality Ext1OX(Ui)(F,⊕kCk) = 0 holds. First, notice that F = ι∗i ι

i
∗(F ). Then,

the isomorphism shown in the proof of [13, Lemma 6.5] gives

Ext1OX(Ui)(F,⊕kCk) ∼= Ext1Qcoh(X)(ι
i
∗(F ), ιi∗(⊕kCk)).

The last Ext functor vanishes because ιi∗(F ) is a flat quasi-coherent sheaf (so it belongs
to Flat(X)), and ιi∗(⊕kCk) � ⊕kι

i
∗(Ck) ∈ (Flat(X))⊥1 because the functor ιi∗ commutes

with direct sums. �

6. Balance in quiver representations and cotorsion triplets

Throughout this section, C will be an abelian category with enough projectives and
injectives that satisfies AB4 and AB4*.
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In [27, Theorem 4.1.3], Odabaşı recently proved that under some conditions on a quiver
Q, a complete cotorsion pair in C induces two complete cotorsion pairs in the abelian
category Rep(Q, C) of C-valued representations of Q. Taking into account the relation
between balanced pairs and cotorsion triplets, it seems natural to expect that balanced
pairs in C and Rep(Q, C) should be also related. Thus, we devote this section to studying
the relation between balanced pairs in C and balanced pairs in Rep(Q, C). One of the
consequences of our results is that they will lead us to finding new conditions over two
complete hereditary cotorsion pairs to form a cotorsion triplet.

Adjoint functors between C and Rep(Q, C)

A quiver Q = (Q0, Q1, s, t) is a directed graph with vertex set Q0, arrow set Q1 and two
maps s, t from Q1 to Q0, which associate with each arrow α ∈ Q1 its source s(α) ∈ Q0

and its target t(α) ∈ Q0, respectively. The quiver Q is said to be finite if Q0 and Q1 are
finite.

A representation X = (Xi,Xα) of Q over C, or a C-valued representation, is defined by
the following.

(1) with each vertex i in Q0 is associated an object Xi ∈ C.
(2) with each arrow α : i→ j in Q1 is associated a morphism Xα : Xi → Xj in C.
A morphism f from X to Y is a family of morphisms {fi : Xi → Yi}i∈Q0 such that

Yαfi = fjXα for any arrow α : i→ j ∈ Q1. We will denote by Rep(Q, C) the category of
all C-valued representations of a quiver Q.

Define the functor ei
λ : C → Rep(Q, C) as

ei
λ(M)j :=

⊕
Q(i,j)

M,

for every vertex j ∈ Q0 (see Mitchell [26, § 28]), with Q(i, j) the set of paths p in Q such
that s(p) = i and t(p) = j. Moreover, for an arrow α : j → k, the morphism ei

λ(M)α is
the canonical injection. Dually, the functor eρ

i : C → Rep(Q, C) is defined by Enochs and
Herzog [6,10] as

eρ
i (M)j :=

∏
Q(j,i)

M

for every vertex j ∈ Q0.

Lemma 6.1 (see [10, 21]). Let i ∈ Q0 and ( )i : Rep(Q, C) −→ C be the restriction
functor given by (X)i = Xi for any representation X of Rep(Q, C). Then, the following
conditions hold:

(1) ( )i is a right adjoint of ei
λ and a left adjoint of eρ

i ;

(2) ExtmRep(Q,C)(e
i
λ(Y ),X) ∼= ExtmC (Y, (X)i) for every m ≥ 0;

(3) ExtmRep(Q,C)(X, e
ρ
i (Y )) ∼= ExtmC ((X)i, Y ) for every m ≥ 0.

https://doi.org/10.1017/S0013091519000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000270


Balanced pairs, cotorsion triplets and representations 83

For any representation (Xi,Xα) of Rep(Q, C), there are induced morphisms
ϕXi

:
⊕

t(α)=i

Xs(α) → Xi and ψXi
: Xi →

∏
s(α)=i

Xt(α). We will denote by ci(X) the cok-

ernel of ϕXi
and by ki(X) the kernel of ψXi

. The assignments ci(−) and ki(−) from
Rep(Q, C) to C are functorial.

Lemma 6.2 (see [21, § 4 and Proposition 5.4]). Let i ∈ Q0 and let si : C →
Rep(Q, C) be the stalk functor given by si(Y )j = δijY , where δiiY = Y and δijY = 0
whenever j �= i. Then we have:

(1) si is a right adjoint of ci and a left adjoint of ki;

(2) Ext1Rep(Q,C)(X, si(Y )) ∼= Ext1C(ci(X), Y ), provided that ϕXi
is monic;

(3) Ext1Rep(Q,C)(si(Y ),X) ∼= Ext1C(Y,ki(X)), provided that ψXi
is epic.

Corollary 6.3. Let Q be a quiver without oriented cycles, and let us fix a vertex
k ∈ Q0. Given a class L of objects of C, for any G ∈ ⊥1L there is an exact sequence

0→ K→ ek
λ(G) ĩd−→ sk(G)→ 0

in Rep(Q, C) with ĩd = δkiidG. Moreover, for any X ∈ Rep(C, Q), if kk(X) ∈ L and ψXk

is epic, then the above sequence is HomRep(Q,C)(−,X) exact.

Proof. Clearly, ĩd is surjective. For any arrow α : i→ j, if j = k then ek
λ(G)i = 0, since

the quiver has no oriented cycles. And so we have the diagram

0 ��

��

0

��
G

idG

�� G

Otherwise, the diagrams

i = k, j �= k G
idG ��

Gα
��

G

��⊕
Q(k,j)

G �� 0

i �= k, j �= k
⊕

Q(k,i)

G ��

Gα

��

0

��⊕
Q(k,j)

G �� 0

are also commutative. That is, ĩd is an epimorphism in Rep(Q, C).
Moreover, Ext1Rep(Q,C)(sk(G),X) ∼= Ext1C(G,kk(X)) = 0 by Lemma 6.2 and the hypoth-

esis on G. Therefore, the sequence

0→ K→ ek
λ(G) ĩd−→ sk(G)→ 0

is HomRep(Q,C)(−,X) exact. �
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Induced classes in Rep(Q, C)

Let L be a class of objects of C. Following [21] we denote:

Rep(Q,L) := {X ∈ Rep(Q, C) | Xi ∈ L for all i ∈ Q0},
Φ(L) := {X ∈ Rep(Q,L) | ϕXi

is monic and ci(X) ∈ L for all i ∈ Q0},
Ψ(L) := {X ∈ Rep(Q,L) | ψXi

is epic and ki(X) ∈ L for all i ∈ Q0}.

Proposition 6.4. Let Q be a quiver with at least one arrow and without oriented
cycles. With the notation above, assume that (Φ(F),Ψ(L)) is a balanced pair in Rep(Q, C)
for certain classes F and L in C. Then, the following statements hold.

(1) (F ,L) is a balanced pair in C.
(2) If F is resolving, then ⊥1L ⊆ F⊥1 .

(3) If L is coresolving, then F⊥1 ⊆ ⊥1L.

Proof. Let us prove (1) and (2). Part (3) is dual to (2).
(1) For any object M ∈ C, there is a Φ(F)-precover σ : F→ si(M). Let K = ker(σi).

Thus we have an induced morphism σ̃i : Fi → si(M)i = M in C, and a left exact sequence

0→ Ki → Fi
σ̃i−→M → 0. (v)

We claim that σ̃i : Fi → si(M)i = M is an F-precover of M , where σ̃i is induced by σ. In
fact, for any F ∈ F , one can note that the representation ei

λ(F ) belongs to Φ(F). Then
we have an epimorphism

HomRep(Q,C)(ei
λ(F ),F)→ HomRep(Q,C)(ei

λ(F ), si(M)),

which implies by Lemma 6.1 an epimorphism HomC(F,Fi)→ HomC(F,M), as desired.
Since (Φ(F),Ψ(L)) is a balanced pair in Rep(Q, C) and eρ

i (L) ∈ Ψ(L) for any L ∈ L,
we have by Lemma 3.1 an exact sequence

0→ HomRep(Q,C)(si(M), eρ
i (L))→ HomRep(Q,C)(F, e

ρ
i (L))

→ HomRep(Q,C)(K, e
ρ
i (L))→ 0.

Now, by part (1) of Lemma 6.1, we have an exact sequence

0→ HomC(M,L)→ HomC(Fi, L)→ HomC(Ki, L)→ 0.

Thus the left exact sequence (v) is HomC(−,L) and HomC(F ,−) exact. Similarly, we have
that L is preenveloping and that there is a right exact sequence

0→M → L→ C → 0

in C, which is HomC(F ,−)-acyclic and HomC(−,L)-acyclic. Therefore, by Lemma 3.1, the
pair (F ,L) is balanced.

(2) Before proving the statement, we need to make some observations.
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• By the hypothesis on Q, we can fix a non-sink vertex k ∈ Q0. This means that there
exists at least an arrow k → i in Q.

• Let F ∈ F and σ : P → F be an epimorphism with P projective and let us denote by
P and F the induced representations ek

λ(P ) and sk(F ), respectively. Then we have an
induced epimorphism σ̃ : P→ F in Rep(Q, C) with σ̃i = δkiσ, for any vertex i ∈ Q0.
Let K = ker(σ̃). We will show that K ∈ Φ(F).

For each vertex i ∈ Q0, we have the following exact commutative diagram in C:

Since F is resolving it contains all the projective objects, so P ∈ F . Therefore, by
the definition of the functor ek

λ(−), it follows that P = ek
λ(P ) belongs to Φ(F). So, in

particular, the morphism ϕPi
is monic for any vertex i ∈ Q0. It follows that ϕKi

is
monic since ϕPi

is monic. By the snake lemma, we get the exact sequence

0 �� ker(ϕFi
) �� ci(K) �� ci(P) �� ci(F) �� 0.

Note that ker(ϕFi
), ci(P), ci(F) ∈ F and F is resolving. It follows that ci(K) ∈ F .

Thus K ∈ Φ(F).

• Moreover, for any arrow α : k → i with i �= k, we have the commutative diagram

0 �� Kk = ker(σ)

��

l �� Pk = P

Pα

��

Ki
Pi =

⊕
Q(k,i)

P

and

Pk = P

Pα

��

σ �� Fk = F

��

�� 0

Pi =
⊕

Q(k,i)

P �� 0

where l and Pα are canonical injections.
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Let us now prove claim (2). So let G ∈ ⊥1L. We want to show that G ∈ F⊥1 . Given
F ∈ F , we have the previous exact sequence

0→ ker(σ) l→ P
σ→ F → 0,

with P projective. Then, to get what we claim, it suffices to show that any f : ker(σ)→ G
can be lifted to a map P → G, that is, the previous sequence is HomC(−, G) exact. So,
let f : ker(σ)→ G be any morphism and let f̃ : K→ sk(G) be the induced morphism in
Rep(Q, C) with f̃i = δikf . Noting that G ∈ ⊥1L, we get that

ĩd : ek
λ(G)→ sk(G)→ 0

is HomC(−,Ψ(L)) exact from Corollary 6.3. It follows that ĩd is HomC(Φ(F),−) exact by
the hypothesis on the balance. We have previously proved that K ∈ Φ(F). Therefore, for
the map f̃ : K→ sk(G), there is g̃ : K→ ek

λ(G) such that f̃ = ĩdg̃. In particular, for the
arrow α : k → i, we have the following commutative diagram

ker(σ)

Pαl

��

f

���
�������

g̃k

������������

G

ek
λ(G)

α

��

G

��

Ki

���
��

��
��

��
�

g̃i

����
��

��
��

�

G

⊕
Q(k,i)

G ��
πα

�� 0

It follows that g̃iPαl = ek
λ(G)αg̃k. Let πα be the canonical projection corresponding to

the canonical injection ek
λ(G)α, and so

f = g̃k = παe
k
λ(G)αg̃k = (παg̃i) ◦ (Pαl) = (παg̃iPα) ◦ l.

That is, the sequence

0→ ker(σ)→ P → F → 0

is HomC(−, G) exact, and so G ∈ F⊥1 . �

For the following results, recall (see, for example, [21]) that a quiver Q is said to be
left rooted if it contains no paths of the form · · · → • → • → •. Dually, Q is called right
rooted if it contains no paths of the form • → • → • → · · · .

Let us focus now on the case where C = Mod(R). If the quiver Q is left and right
rooted (for instance, the quiver · · · → • ← • → • ← • → • ← • → · · · ), we can combine
[21, Theorems A and B] and Eshraghi et al. [11, Theorem A] (or [27, Theorem 4.1.3]) to
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infer that, if we start with two complete hereditary cotorsion pairs (F ,H) and (G,L) in
Mod(R), then we get two induced complete hereditary cotorsion pairs (Φ(F),Rep(Q,H))
and (Rep(Q,G),Ψ(L)) in Rep(Q,Mod(R)). Therefore, we get the following result.

Corollary 6.5. If (F ,H) and (G,L) are complete hereditary cotorsion pairs in
Mod(R), then the following are equivalent.

(a) H = G.
(b) (Φ(F),Ψ(L)) is an admissible balanced pair for any left and right rooted quiver Q

with at least one arrow.

(c) (Φ(F),Ψ(L)) is an admissible balanced pair for some left and right rooted quiver
Q with at least one arrow.

Proof.

• (a) ⇒ (b). Let Q be any left and right rooted quiver with at least one arrow.
By the previous comments, we have the two complete hereditary cotorsion pairs
(Φ(F),Rep(Q,H)) and (Rep(Q,G),Ψ(L)) in Rep(Q,Mod(R)). By hypothesis we
have that H = G, and so Rep(Q,H) = Rep(Q,G). Hence, Proposition 4.2 gives the
claim (b).

• (b) ⇒ (c). This is trivial.

• (c)⇒ (a). By Proposition 6.4(1), the pair (F ,L) is a balanced pair. By the assumption
in the corollary, the classes F and L are, in particular, resolving and coresolving,
respectively (see § 2). Hence, Proposition 6.4(2) gives that

G = ⊥1L ⊆ F⊥1 = H,
and Proposition 6.4(3) gives that H = F⊥1 ⊆ ⊥1L = G. So (a) follows. �

As a consequence of Corollary 6.5, we have the following characterization of quasi-
Frobenius rings.

Corollary 6.6. A ring R is quasi-Frobenius if and only if (Φ(Mod(R)),Ψ(Mod(R)))
is an admissible balanced pair for a left and right rooted quiver Q with at
least one arrow. In this case, we have the complete hereditary cotorsion triplet
(Φ(Mod(R)),Rep(Q,Proj(R)),Ψ(Mod(R))) in Rep(Q,Mod(R)).

Proof. Let us first recall that for any ring R, we have the trivial complete heredi-
tary cotorsion pairs (Mod(R), Inj(R)) and (Proj(R),Mod(R)). By the comments before
Corollary 6.5, for a given left and right rooted quiver Q, we have the induced complete
hereditary cotorsion pairs

(Φ(Mod(R)),Rep(Q, Inj(R))) and (Rep(Q,Proj(R)),Ψ(Mod(R))) in Rep(Q,Mod(R)).
(vi)

Now, suppose that R is quasi-Frobenius. Then Inj(R) = Proj(R), and so Corollary 6.5
((a)⇒ (c)) gives that (Φ(Mod(R)),Ψ(Mod(R))) is a balanced pair for some left and right
rooted quiver Q with at least one arrow.
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Conversely, if we assume that (Φ(Mod(R)),Ψ(Mod(R))) is a balanced pair for some
left and right rooted quiver Q with at least one arrow, we get from Corollary 6.5 ((c) ⇒
(a)) that Inj(R) = Proj(R), that is, the ring R is quasi-Frobenius.

Finally, if any of the equivalent conditions holds, we follow that the categories
Rep(Q, Inj(R)) and Rep(Q,Proj(R)) coincide, and so the pairs in (vi) give rise to the
complete hereditary cotorsion triplet

(Φ(Mod(R)),Rep(Q,Proj(R)),Ψ(Mod(R)))

in Rep(Q,Mod(R)). �

Remark 6.7. The category Φ(Mod(R)) is known in the literature as the monomor-
phism category. It has been extensively studied by Li and Zhang [24] and Luo and Zhang
[25]. Similarly, Ψ(Mod(R)) is called the epimorphism category.

Our last result allows us to give another extension of the characterization of virtu-
ally Gorenstein Noetherian rings of finite Krull dimension by Zareh-Khoshchehreh et al.
[30, Theorem 3.10]. We recall that a ring R is called left n-perfect if every flat left
R-module has finite projective dimension ≤ n.

Corollary 6.8. Let R be a left n-perfect and right coherent ring. Then, the following
conditions are equivalent.

(a) R is virtually Gorenstein.

(b) (Φ(GProj(R)),Ψ(GInj(R))) is an admissible balanced pair in Rep(Q,Mod(R)) for
some left and right rooted quiver Q with at least one arrow.

(c) (GProj(R),GInj(R)) is an admissible balanced pair in Mod(R).

Proof. First, we point out that under the assumptions on R, the pair
(GProj(R),GProj(R)⊥) is known to be a complete hereditary cotorsion pair (see Estrada
et al. [12, Proposition 6]). On the other hand, Šaroch and Šťov́ıček [28] have recently
proved that the pair (⊥GInj(R),GInj(R)) is a perfect (so, in particular, complete) and
hereditary cotorsion pair for any ring.

Now, (a) ⇔ (c) immediately follows from Corollary 4.8 by the above and by noticing
that

GProj(R) ∩ GProj(R)⊥ = Proj(R) and ⊥GInj(R) ∩ GInj(R) = Inj(R).

Finally (a) ⇔ (b) follows from Corollary 6.5. �
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