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Active electrostatic stabilization of liquid
bridges in low gravity
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Department of Physics, Washington State University, Pullman, WA 99164-2814, USA

(Received 10 November 2001 and in revised form 28 December 2001)

In experiments performed aboard NASA’s low-gravity KC-135 aircraft, it was found
that rapid active control of radial electrostatic stresses can be used to suppress the
growth of the (2,0) mode on capillary bridges in air. This mode naturally becomes
unstable on a cylindrical bridge when the length exceeds the Rayleigh–Plateau (RP)
limit. Capillary bridges having a small amount of electrical conductivity were deployed
with a ring electrode concentric with each end of the bridge. A signal produced by
optically sensing the shape of the bridge was used to control the electrode potentials
so as to counteract the growth of the (2,0) mode. Occasionally the uncontrolled
growth of the (3,0) mode was observed when the length far exceeded the RP limit.
Rapid breakup from the growth of the (2,0) mode on long bridges was confirmed
following deactivation of the control.

1. Introduction
The Rayleigh–Plateau (RP) instability of a liquid cylinder in the absence of gravity

normally prevents the formation of cylindrical liquid bridges which have a length
greater than their circumference. The fundamental significance of this instability is
widely recognized (Powers et al. 1998). The instability involves the growth of the (2,0)
mode which is an axisymmetric varicose deformation of one wavelength in the axial
direction. Thus one half of the cylinder swells while the other half thins until the
bridge pinches into two unequal parts plus one or more satellite drops. The stability
of a liquid bridge with cylindrical volume depends only on the slenderness, S , which
is the ratio of the length to diameter of the bridge. The RP stability limit thus
occurs for a slenderness of Smax = Lmax/D = 2πR/D = π. Methods for stabilizing
liquid bridges beyond the RP limit include both passive and active control methods.
In passive methods, axial non-uniformity in the bridge diameter is automatically
countered by the nature of the stabilizing field. Passive control methods include the
use of static axial electric fields to stabilize dielectric bridges (Sankaran & Saville
1993; Ramos, González & Castellanos 1994; Burcham & Saville 2000) and a high-
intensity ultrasonic standing wave of the appropriate wavelength applied in a lateral
direction with the bridge positioned at a pressure node of the standing wave (Marr-
Lyon, Thiessen & Marston 2001). Active control methods based on the rapid control
of applied stresses have so far only been applied to stabilizing the bridge against
the growth of the (2,0) mode. This allows extending the bridge beyond the RP limit;
however, at a slenderness of 4.49 . . . the (3,0) mode (one and a half wavelengths)
becomes unstable.
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Rapid active control methods involve sensing the amplitude of the (2,0) mode and
applying a mode-coupled feedback stress to counter the growth of the mode. Acoustic
radiation pressure (Marr-Lyon, Thiessen & Marston 1997), and electrostatic stresses
(Marr-Lyon et al. 2000) have been successfully used with feedback schemes to actively
stabilize bridges beyond the RP limit. The active stabilization of electrically conducting
liquid bridges using feedback control of radial electrostatic stresses has been previously
demonstrated in a Plateau tank (Marr-Lyon et al. 2000). That publication indicates
that the required amount of electrical conductivity is far less than for stabilization
based on induced eddy currents (Castellanos & González 1994). In this work the
active electrostatic method is extended to conducting bridges in air in the low-gravity
environment of a NASA KC-135 aircraft flying parabolic manoeuvres. Stabilization
of liquid bridges in air using a feedback scheme is more challenging than for the
case in a Plateau tank because of the reduction in damping and inertia associated
with the surrounding fluid. A further complication of the KC-135 environment is
aircraft vibration. For this reason our experiments were performed in a free-float
experimental package released from contact with the aircraft for periods of up to 10 s
during a parabolic manoeuvre.

The active control method considered here differs in several ways from an approach
to the stabilization of liquid columns based on the control of axial flow in an outer
liquid bath (Lowry & Steen 1997; Chen et al. 1999). In the approach described by
those authors an internal connecting rod is placed along the axis of the liquid bridge.
The Bond number is positive so that the bridge sags in the absence of flow and an
upward axial flow is driven in the outer liquid. The flow rate may be controlled to
establish a stable but non-cylindrical profile, provided the column is not too long.
For comparison, the generic active control strategy considered here may be used
even if the Bond number vanishes, though there are significant requirements on the
bandwidth of the control system (Marr-Lyon et al. 1997). The radial control stresses
must be applied rapidly so as to stiffen the (2,0) mode of the bridge without bringing
about a negative damping rate. It appears to be at least plausible that rapid active
control methods could be applied to the (3,0), or other higher-order modes, with a
more sophisticated optical sensor and the ability to control higher-order projections
of the radial stress. The control strategy considered here is also different from a
technique which has been demonstrated for temporal adjustment of the effective
Bond number of a bridge of paramagnetic liquid in air based on the modulation of
an inhomogeneous magnetic field (Mahajan et al. 2000).

Varicose instabilities on liquid columns in air (or in other gases) are relevant to
a variety of situations. The control method described here, or generalizations of it
based on more sophisticated optical sensors and arrays of electrodes, could make it
possible to affect the growth of one or more modes on liquid columns. Examples
of situations where rapid active control of radial stresses may be beneficial include
drop formation from liquid jets (Lin & Reitz 1998) and the extension of the length
of molten nearly cylindrical float zones. The reason for extending the length of float
zones (made possible by the suppression of the RP instability) is the reduction of
thermal gradients in the solid as well as in the liquid. For some materials thermal
gradients in the solid place significant restrictions on the size of crystals that may be
grown by float-zone methods (Cockayne 1968; Rao & Shyy 1997). Thermocapillary
instabilities also place restrictions on the applications of float zones in reduced gravity
(Velten, Schwabe & Scharmann 1991; Sumner et al. 2001; Schatz & Neitzel 2001).
The thermocapillary response of liquid jets can be used to reduce the varicose growth
rate (Nahas & Panton 1990).
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Figure 1. Schematic diagram of a capillary bridge with concentric ring electrodes of optimal
diameter and spacing to couple into the (2,0) mode of the bridge.

2. Review of active electrostatic stabilization
The active electrostatic stabilization (AES) of liquid bridges that was reported

for conducting bridges in a density-matched insulating bath (Marr-Lyon et al. 2000)
utilized two ring electrodes which were concentric with the grounded bridge to apply
the feedback stress for stabilization (figure 1). The ring diameter and spacing were
chosen so that when a voltage was applied to one or other of the electrodes, the
resulting stress distribution would couple optimally into the (2,0) mode of the bridge.
The method involves an optical mode-sensing system that provides an error signal,
Ve, proportional to the (2,0) mode amplitude, feedback circuitry that applies gain and
offset to the error voltage which is then input to a high-voltage amplifier and, finally,
high-voltage circuitry applies the voltages to the appropriate electrodes. The basic
principle is to sense which side of the bridge is becoming thin and then apply a higher
voltage to the ring electrode on that side in order to pull outward on the surface to
prevent pinchoff. Three feedback algorithms identified as simple feedback, square-root
feedback, and bias-potential feedback were evaluated in the Plateau-tank experiments
(Marr-Lyon et al. 2000). In simple feedback, a voltage which is proportional to the
(2,0) mode amplitude is applied to the electrode on the side of the bridge which is
thinner. The problem with this method is that the Maxwell stress at the surface is
proportional to the square of the voltage applied to the electrode. Thus the feedback
force is not linear in the error signal, leading to non-cylindrical equilibrium shapes for
the stabilized bridge. This problem is avoided if the voltage applied to the electrode
is proportional to the square-root of the error voltage magnitude. Another way to
make the modal projection of the feedback stress linear in the error signal is to apply
bias voltages to the electrodes. If we assume that a bridge which is bulged at the
bottom gives a positive error voltage, then the voltages applied to the electrodes are
as follows for the three methods discussed: for simple feedback

VT = KVe, VB = 0 (Ve > 0),

VT = 0, VB = KVe (Ve < 0),

for square-root feedback

VT = K|Ve|1/2, VB = 0 (Ve > 0),

VT = 0, VB = −K|Ve|1/2 (Ve < 0),
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HV: high-voltage circuit
BDA: bridge-deployment apparatus

Figure 2. Schematic of the compact layout for the optical system used for detection of the (2,0)
mode amplitude and for simultaneous imaging of the bridge. This setup resides on an optical
breadboard mounted in the free-float rack.

and for bias-potential feedback

VT = Vb +KVe, VB = −Vb +KVe (for all Ve),

where VT and VB are the voltages applied to the top and bottom electrodes re-
spectively, K is a positive gain constant which includes the gain of the high-voltage
amplifier, and Vb is a bias potential. Note that the error voltage Ve may include some
offset from the signal generated by the optical detection system. This offset can be
applied by the operator to correct for any asymmetries which may arise in the optical
system. The simple feedback method was only infrequently tested on the KC-135 and
is not emphasized here.

3. Experimental apparatus and procedure
Liquid bridges were deployed between stainless steel tips of 0.432 cm diameter.

The liquids used were mixtures of glycerol, water and sodium chloride. Concentric
ring electrodes of 1.23 cm diameter made of 0.12 cm diameter copper wire were
used. The bridge deployment apparatus uses separate stepper motors to drive the
bridge extension and liquid injection. It was difficult to produce bridges with exactly
the cylindrical volume of πR2L in the KC-135 environment. Bridge volumes were
measured post flight by digital image analysis from images captured from video and
were typically a few percent different from the cylindrical volume. A few percent
difference in volume from the cylindrical value does not change the natural stability
limit significantly when compared to the lengths of bridges stabilized in this work.

The major components of the experimental apparatus are the bridge deployment
apparatus, the stabilization system, the imaging system, and a computer for data
acquisition and experiment control. The experimental components used here are like
those used in the Plateau-tank experiments described by Marr-Lyon et al. (2000).
To avoid the effect of aircraft vibration on the experiment, the bridges are formed
within an instrument rack which is released from contact with the aircraft during
parabolic manoeuvres. Some experiment components reside on the free-float rack
while many of the electrical components are contained within a rack which is fixed to
the aircraft floor. Within the free-float rack, the optics, high-voltage circuit, electrodes,
and bridge deployment system are all mounted in a compact way on an 18× 18 inch
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optical breadboard as shown schematically in figure 2. The operator controls the
experiment from the fixed rack. An umbilical electrical cable connects the free-float
rack to the fixed rack. The fixed rack contains a video monitor which can be seen
by the two personnel handling the free-float rack. This allows the handlers to release
the experiment at the appropriate time during the parabola. A parabola typically
consists of a period of around 20 s of low gravity; however the first five seconds
of this period are often of poor quality as adjustments are made to the aircraft
trajectory. At the start of the low-gravity period the free-float handlers centre the
rack laterally within the aircraft. The experiment operator waits until the effective
gravity level is fairly low (by feel) and then deploys a bridge to a naturally stable
slenderness between 2 and 3. For a bridge-stabilization experiment, the electric field
is then activated and the bridge slenderness is increased to a target value beyond the
RP limit. The free-float handlers try to release the rack when they see the bridge being
extended beyond the initial stable slenderness and, if the bridge is being successfully
stabilized, they try to allow the rack to float as long as possible. Often the parabola
is not of sufficient quality to allow for full release of the rack. For bridges which are
successfully stabilized, the bridge typically breaks when the rack bumps into the side
of the aircraft.

The bandwidth of the control system is limited by the frequency response of the
high-voltage amplifier that controls the electrode voltages. Information from the
vendor (Trek Inc., Medina, N.Y.) indicates that the response is d.c. to 5 kHz with
the response falling by 3 dB at 5 kHz. It is possible to estimate the effective delay
in the application of the feedback stress. For low-frequency sinusoidal oscillations
of frequency f (in Hz), a delay of τ for an amplifier is associated with a complex
frequency response proportional to exp(−i2πfτ) which represents a phase delay when
τ is positive. This relationship between the frequency response and τ may be modelled
at low frequencies as a resistor-capacitor low-pass filter. Let f3dB denote the 3 dB
roll-off frequency response for the low-pass filter. From elementary circuit theory,
if f � f3dB, then the response of such a filter is approximately exp(−if/f3dB) so
that τ ≈ 1/(2πf3dB). Taking f3dB ≈ 5 kHz gives τ ≈ 0.03 ms. When the square-root
feedback algorithm is used, the actual delay time for the stress may differ from this
value since the stress projection is proportional to the square of the amplified voltage.
It is assumed in this estimate that the electrical conductance of the bridge is sufficient
to maintain the potential below each electrode at ground potential within an electrical
relaxation time that is shorter than τ (Marr-Lyon et al. 2000). An amount of sodium
chloride, NaCl, was added to the bridge liquid which was more than sufficient to meet
this requirement on the conductivity.

There are important differences between the damping of (2,0) mode oscillations for
bridges in Plateau tanks and the damping for bridges in air that may significantly alter
the dynamics when feedback is present. This is evident from the lumped-parameter
model indicating that the delay τ must be sufficiently short (Marr-Lyon et al. 1997).
For long bridges, from physical considerations, the magnitude of the boundary-layer
coefficient in the characteristic equation for the complex natural frequency of the mode
is strongly influenced by the presence of a liquid outer bath. The model suggests that
the influence of delayed feedback on mode stability may be different for bridges in air
than for bridges in Plateau tanks. It is plausible that τ may need to be significantly
smaller for bridges in air than for bridges in Plateau tanks. Consequently even with
the prior success of active stabilization of long bridges in Plateau tanks (Marr-Lyon
et al. 2000) it was not certain that τ ≈ 0.03 ms was sufficiently small to facilitate the
stabilization of long bridges in air for the bridge viscosity considered.
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Figure 3. Liquid bridge stabilized to a slenderness of 3.6 by the bias-potential method. The bridge
broke due to the disturbance shown in the accelerometer trace starting at around 2.4 s. Here and in
subsequent figures the displayed portion is near the end of the low-gravity interval with t = 0 being
shortly after bridge extension was complete.

4. Results
4.1. Stabilization

Both the bias-potential and square-root methods have been successfully tested on
the KC-135. Initial observations clearly indicated that it was possible to extend the
slenderness significantly beyond π. Turning off the control after several seconds of
stabilization shows that the bridge breaks in much less than one second from the
growth of the (2,0) mode as previously shown with acoustic stabilization (Marr-
Lyon et al. 2001). The results discussed below were obtained after the sensitivity
of the control system was improved and under excellent flying conditions. Several
deployment records support the conclusion that the growth of the (2,0) mode may
be suppressed. Results are presented as time-sequence images with the associated
accelerometer trace beneath. The dots on the accelerometer trace correspond to the
times at which the images were taken. Figure 3 shows the result of stabilization using
the bias-potential method. The bridge liquid in this case was an aqueous solution of
63.9 wt% glycerol and 9.0 wt% NaCl (viscosity ∼ 25 cS). The bridge was stabilized to
a slenderness of 3.6 for several seconds before breakage occurred due to a disturbance
in the acceleration level. The volume was determined by digital image analysis to be
constant prior to breaking. The normalized bridge volume, V/πR2L, in this case was
0.965 and the bias-potential was 450 V. During the quiescent period, the bridge has
a static (3,0)-mode shape with bulges near each end and a small diameter in middle.
This is because the volume of the bridge is below that of a circular cylinder and is
enhanced because of the bias potentials on the ring electrodes. Such shapes have also
been observed in Plateau-tank experiments (Marr-Lyon et al. 2000).

The longest bridges on the KC-135 have been achieved using the square-root
algorithm. The results presented here will be discussed in the context of the stability
diagram shown in figure 6 which was computed following the methods of Lowry
& Steen (1995) for a bridge in zero gravity. The stability diagram for this part of
parameter space has been presented by Lowry (2000) and Marr-Lyon et al. (2000).
The equilibrium shapes shown in the shaded regions of figure 6 are unstable to the
(2,0) mode. The white regions of the plot are unstable to both the (2,0) and (3,0)
modes and thus could not be stabilized with the current two-electrode array. The
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Figure 4. Active control using the square-root feedback algorithm suppressed the growth of the
(2,0) mode for a bridge in air. This bridge has S = 4.3 and is observed here under the very best of
circumstances. Break-up in this example is apparently from the natural growth of the (3,0) mode
because of the observed symmetry.
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Figure 5. Stabilized bridge of slenderness 4.4 using active control with the square-root algorithm.

shaded regions of the plot thus show conditions for which the square-root stabilization
method should work. The stability boundaries for the bias-potential method would
be expected to be shifted since the bias potentials on the electrodes modifiy the
equilbrium shape of the bridge. Figure 4 shows a bridge stabilized at a slenderness
of 4.3 for about 1 s before disturbances cause the bridge to break in the (3,0)-mode
configuration. The bridge liquid was an aqueous solution of 43.5 wt% glycerol and
1.0 wt% NaCl (viscosity ∼ 4 cS). The normalized volume determined from image
analysis is 0.993. This bridge was very close to the lower stability boundary as shown
in figure 6, thus only a small disturbance is necessary to cause bridge breakage from
the growth of the (3,0) mode. A result from a different parabola on the same day, with
the same liquid, is shown in figure 5 for a slenderness of 4.4 and normalized volume
of 1.026. Although this bridge is longer it is not as near to the stability boundary
since it is 2.6% higher in volume (see figure 6). This bridge survived a significant
disturbance, seen in the accelerometer record, before finally rupturing in response to
an even larger disturbance. The bridge appeared to break from the growth of the
(2,0) mode.
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Figure 6. Stability boundaries near the upper slenderness limit for stabilization by the two-electrode
method. The shaded regions are normally unstable to (2,0)-mode perturbations and the white
regions are unstable to both (2,0)- and (3,0)-mode perturbations. The (unstable) equilibrium shapes
are shown for the different domains. The two data points correspond to the two longest bridges
stabilized to date (the bridges shown in figures 4 and 5). The error bars indicate the uncertainty in
the bridge volume from digital image analysis. The mean and standard deviation are shown from
over 30 images of each bridge.

4.2. Oscillation and free decay

In addition to stabilization experiments, bridge oscillations were recorded. Infor-
mation can be obtained either by purposely exciting the (2,0) mode oscillation by
modulating the electrode potentials or by observing the dynamics of the bridge fol-
lowing an accidental bump to the apparatus which sometimes excites the (2,0) mode
and other modes. Modulation of electrode potentials can be used to drive the (2,0)
mode exclusively in order to measure the natural frequency and damping of the
mode. A burst of modulation is used to excite the mode while the mode amplitude is
monitored as shown in figure 7. The results in figure 7 are for a 3.7 cS bridge of slen-
derness 2.4 without feedback. The frequency and decay time (1/e) of the (2,0) mode
measured from the data in figure 7 were 4.9 Hz and 0.92 s respectively. The measured
density and surface tension for the bridge liquid were 1.115 g cm−3 and 64.4 dyn cm−1

respectively. For these values of the bridge properties and a bridge radius of 0.216 cm,
a semi-analytical, linear theory of cylindrical bridge oscillations by Nicolás & Vega
2000 predicts a frequency of 5.2 Hz and a decay time of 1.4 s. The inviscid theory
of Sanz & Diez (1989) also predicts a frequency of 5.2 Hz for these conditions. The
volume of the bridge measured from image analysis was 1.3% below the assumed
cylindrical value. In Plateau-tank experiments, a volume deficiency of 1% was found
to decrease the frequency by 3% which is in the same direction. Uncertainties in the
properties owing to an uncertainty in the liquid temperature during the flight may also
contribute to disagreement between theory and measurement. Decay times increase
for longer bridges making accurate measurements difficult in the limited duration of
low gravity available on the KC-135.
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Figure 7. The driven oscillation and decay of the (2,0) mode of a bridge with slenderness 2.4. The
solid curve is the photodetector signal which is proportional to the (2,0) mode amplitude while the
dashed curve is the drive signal sent to the feedback circuit to modulate the electrode potentials.
The drive frequency differs from the natural frequency since the latter was not known prior to the
measurement.

5. Discussion and summary
Observations of the kind shown in figure 4 giving symmetric breakup associated

with the growth of the (3,0) mode are extremely rare. Figure 4 shows the best event
observed in a large number of trials. It appears likely that such observations require
not only that the effective gravity and g-jitter is small during the final stages of
the observation but also that high-quality low gravity is maintained for about 10 s
while the bridge is initially extended. That is because of the long decay time for
vibrations accidentally introduced on long bridges. Significantly raising the viscosity
of the bridge causes the viscous stresses during the rapid deployment of the bridge
to increase and slows down the breakup once the stability boundary is reached.
Consequently it may be impractical if not impossible to probe the predicted (3,0)
mode stability boundary, figure 6, using bridges in air on the KC-135 though it is
plausible that this could be done on a space-based platform.

This research was supported by the National Aeronautics and Space Adminis-
tration.
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