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1. Graphs with few triangular edges

Erdős, Faudree and Rousseau [3] showed that a graph on n vertices and at least �n2/4�+1 edges
has at least 2�n/2�+ 1 edges in triangles. To see that this result is sharp, consider the graph
obtained by adding one edge to the larger side of the complete bipartite graph K�n/2�,�n/2�. We

consider a more general problem, where the number of edges may be larger than �n2/4�+ 1.
Given a graph G, let Tr(G) denote the number of edges of G contained in triangles, and let
Tr(n,e) := min{Tr(G) : |V (G)| = n, e(G) = e}. With this notation the above result of Erdős,
Faudree and Rousseau can be reformulated as

Tr(n,�n2/4�+1) = 2�n/2�+1. (1.1)

Note that Tr(n,e) = 0 whenever e � n2/4, because in that case there exist triangle-free (even
bipartite) graphs with n vertices and e edges. To avoid trivialities, we usually implicitly assume
that e > n2/4.
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Figure 1. A graph from G(a,b,c).

Given integers a, b and c, (a � 2), we define a family of graphs G(a,b,c) as follows (see
Figure 1). The vertex set V of a graph G in this class has a partition V = A ∪ B ∪C where
|A| = a, |B| = b and |C| = c, such that B and C are independent sets, B∪C induces a complete
bipartite graph Kb,c, the vertices of C have neighbours only in B, and G[A] and G[A,B] are ‘almost

complete graphs’, namely, they span more than
(|A|−1

2

)
+ |A||B| edges. The edges of G[B,C] are

the non-triangular edges.
Given integers n � 3 and n2/4 < e �

(n
2

)
, we define a class of graphs G(n,e) with many non-

triangular edges as follows. Let G(n,e) denote the set of graphs with n vertices and e edges that
belong to a class G(a,b,c). Define g(n,e) as min{Tr(G) : G ∈ G(n,e)}. We have

Tr(n,e) � g(n,e) = min

{
e−bc : a+b+ c = n, a,b,c ∈ N∪{0},

(
a
2

)
+ab+bc � e

}
. (1.2)

We believe that one can extend the theorem of Erdős, Faudree and Rousseau [3] as follows.

Conjecture 1.1. Suppose that G is an n-vertex graph with e edges, such that e > n2/4 and it
has the minimum number of triangular edges, that is, Tr(G) = Tr(n,e). Then G ∈ G(n,e).

In particular, we conjecture that Tr(n,e) = g(n,e). We prove a slightly weaker result.

Theorem 1.2. For e > n2/4 we have g(n,e)− (3/2)n � Tr(n,e) � g(n,e).

Our main tool, presented in Section 2, is a new symmetrization method that generalizes
previous results by Motzkin and Straus such that they can be applied to more than one graph
simultaneously.

In Section 3 we use the new symmetrization method to prove a lemma about triangular edges of
a given graph. In Section 4, using the lemma of Section 3, we complete the proof of Theorem 1.2.
In Section 5 we introduce more problems for future research, some of which may be solved using
our methods (see [5]).

2. The symmetrization method

In this section, we describe Zykov’s symmetrization process [10]. It starts with a Kp-free graph
G with vertex set {v1, . . . ,vn}, and at each step takes two non-adjacent vertices vi and v j such
that deg(vi) > deg(v j) and replaces all edges incident to v j by new edges incident to v j and
to the neighbourhood N(vi). We do the same if deg(vi) = deg(v j), N(vi) 	= N(v j) and i < j.
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Symmetrization does not increase the size of the largest clique and does not decrease the number
of edges. When the process terminates it yields a complete multipartite graph with at most p−1
parts.

Using this process, Zykov [10] gave an alternative proof of Turán’s theorem which states that
the number of edges of a Kp-free graph is at most as large as in a complete (p−1)-partite graph
with almost equal parts.

At first sight, it seems that this method cannot be used directly to determine Tr(n,e) because
we need to increase simultaneously the number of edges and the number of non-triangular edges.
In the rest of the section this method will be generalized to settings involving more than one
graph.

Let us recall a continuous version of Zykov’s symmetrization method, due to Motzkin and
Straus [8]. Given a graph G with vertex set {v1, . . . ,vn}, define a real polynomial

f (G,x) := ∑{xix j : viv j ∈ E}.

Define a simplex

Sn :=
{

x ∈ R
n : ∀xi � 0 and ∑xi = 1

}
.

Let f (G) := max{ f (G,x) : x ∈ Sn}. Motzkin and Straus [8] provided an alternative proof of
an asymptotic version of Turán’s theorem by observing a remarkable connection between the
clique number, ω(G), and f (G). They proved that f (G) = (ω −1)/(2ω). Their main tool was a
continuous version of Zykov’s symmetrization, as follows.

Theorem 2.1 (Motzkin and Straus [8]). Given a graph G on n vertices and a vector x ∈ Sn,
there exists y ∈ Sn such that f (G,x) � f (G,y) and support(y) induces a complete subgraph.

We generalize this result so that it can be applied to several graphs simultaneously.

Theorem 2.2. Let G be a graph on n vertices and let G1,G2, . . . ,Gd be subgraphs of G with the
same vertex set. For every x ∈ Sn there exists a subset K ⊆V (G) and a vector y ∈ Sn with support
K such that f (Gi,x) � f (Gi,y) for every 1 � i � d and α(G[K]) � d.

To prove Theorem 2.2 we need the following lemma.

Lemma 2.3. Suppose that a1, . . . ,ad ∈ R
d+1. Then there exists a non-zero vector z ∈ R

d+1 such
that aT

i z � 0 for every 1 � i � d and the sum of the coordinates is 0, namely ∑1�i�d+1 zi = 0.

Proof. Let j ∈ R
d+1 be the all-1 vector and define the matrix A as (a1, . . . ,ad , j). If det(A) = 0,

then there are non-trivial solutions of AT z = 0. If det(A) 	= 0, define a := (1, . . . ,1,0)T ∈ R
d+1.

There is a unique solution z of AT z = a. Clearly z 	= 0, so we are done.

A remark on keeping equalities. Note that if we take a := e� ∈ R
d+1 (the �th unit vector) for

some 1 � � � d instead of a := (1, . . . ,1,0)T ∈ R
d+1 in the second half of the above proof (i.e. in

the case det(A) 	= 0), then we can obtain a sharper version of Lemma 2.3. Namely, there exists a
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non-zero vector z ∈R
d+1 such that ∑1�i�d+1 zi = 0 and aT

� z � 0, but aT
i z = 0 for every 1 � i � d,

i 	= �.

Proof of Theorem 2.2. Let y ∈ Sn be a vector whose support has minimum size among vectors
y′ ∈ Sn satisfying f (Gi,x) � f (Gi,y

′) for every 1 � i � d. If {v1,v2, . . . ,vd+1} ⊆ support(y)
is an independent set, then for any z = (z1, . . . ,zd+1,0,0, . . .)T ∈ R

n, t ∈ R, and 1 � i � d we
have f (Gi,y + tz) = f (Gi,y)+ t(aT

i z) for some ai ∈ R
d+1. Here ai depends only on Gi and y,

not on z or t. Apply Lemma 2.3 to obtain a non-zero vector z = (z1, . . . ,zd+1,0,0, . . .)T with
∑1�i�d+1 zi = 0 and aT

i z � 0 for 1 � i � d. Choosing an appropriate t > 0 we have y + tz ∈ Sn

and support(y + tz) ⊆ support(y)−{v j} for some 1 � j � d + 1. This is a contradiction, so y
has the desired property.

3. Maximizing the weight of non-triangular edges in a weighted graph

In this section, by using the power of Theorem 2.2, we prove a lemma concerning the weight of
non-triangular edges in a weighted graph as follows.

Lemma 3.1. Let G1 be a graph on n vertices and G2 be a subgraph of G1 whose edges are
some of the non-triangular edges of G1, E(G2) 	= /0. For every x ∈ Sn there exists a subset K ⊆V
and a vector y ∈ Sn with support K such that f (G1,x) � f (G1,y) and f (G2,x) � f (G2,y).
Furthermore, the graph H := G1[K] contains exactly one edge e of G2 and H \V (e) is a complete
graph.

Proof. By Theorem 2.2, we know that there is a vector y ∈ Sn such that f (G1,x) � f (G1,y),
f (G2,x) � f (G2,y) and α(H) � 2. Let V = {v1, . . . ,vn} and y = (y1, . . . ,yn) be such a vector
whose support has minimal size. We claim that K := support(y) satisfies the required properties.
First we show that the structure of G2[K] is rather simple; then we show that by finding an
appropriate y′ one can further reduce K if G2[K] has two or more edges.

Recall that (∂/∂ zk) f stands for the partial derivative of the function f (z1,z2, . . . ,zn) with
respect to the variable zk. Suppose that vk and vh ∈ K are non-adjacent vertices such that

∂
∂yk

f (G1,y) � ∂
∂yh

f (G1,y) and
∂

∂yk

f (G2,y) � ∂
∂yh

f (G2,y). (3.1)

In other words,

∑{y� : vkv� ∈ E(Gi[K])} � ∑{y� : vhv� ∈ E(Gi[K])} for i = 1,2.

Define the vector y′ ∈ Sn by

y′� =

⎧⎪⎪⎨
⎪⎪⎩

yk + yh � = k,

0 � = h,

y� otherwise.

We have f (Gi,y) � f (Gi,y
′) for i ∈ {1,2} and support(y′) = K \ {vh}, a contradiction. We

conclude that such vk and vh do not exist.
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(b) Case 1b

Figure 2. The structure of H in Cases 1a and 1b. The G2 edges are bold.

Without loss of generality, we may assume that v1v2 is a G2-edge of H. From now on, in this
section if we talk about ‘edges’, ‘degrees’, etc., then we always mean H-edges, degree in H, etc.,
unless otherwise stated.

If f (G1,y) � 1/4 then define y′ = (1/2,1/2,0, . . . ,0). We obtain

f (G2,y) � f (G1,y) � 1/4 = f (G1,y
′) = f (G2,y

′).

This implies K = {1,2}, and we are done. So from now on, we suppose that f (G1,y) > 1/4.
Then the Motzkin–Straus theorem implies that the graph H is not triangle-free.

Claim 3.2. No two edges of G2[K] are adjacent.

Proof of Claim 3.2. Assume to the contrary that v1v2 and v1v3 ∈ E(H) are G2 edges. We claim
that

v2 and v3 are non-adjacent, deg(v1) = 2, and H \{v1,v2,v3} is a complete graph. (3.2)

Indeed, v2 and v3 are non-adjacent, otherwise the triangle v1v2v3 contains G2 edges. Suppose
to the contrary that |N(v1)| > 2, that is, there exists a vertex v4 	= v2,v3 such that v1v4 ∈ E(H).
Since α(H) � 2 and v2v3 /∈ E(H), without loss of generality, v3v4 ∈ E(H). Then the triangle
v1v3v4 contains a G2 edge (namely v1v3), a contradiction, so we must have N(v1) = {v2,v3}.
Finally, the condition α(H) � 2 implies that K \ (N(v1)∪{v1}) induces a complete graph (see
Figure 2).

The statement (3.2) already implies that the structure of G2 edges is rather simple in H. Using
condition (3.1) and other techniques, we reach a contradiction, considering three possible cases.

Case 1a. Assume that there is no G2 edge connecting {v1,v2,v3} to K \{v1,v2,v3}.
Then

∂
∂y2

f (G2,y) =
∂

∂y3
f (G2,y) = y1.

Since v2 and v3 are non-adjacent, the conditions of (3.1) hold, a contradiction.

Case 1b. Assume that there is a G2 edge, say v3v4, connecting {v1,v2,v3} to K \{v1,v2,v3} such
that v2v4 /∈ E(H).

According to (3.2) the set A := {v1, . . . ,v4} spans only these three G2 edges, v1 and v3 are
degree 2 vertices, and (K \A)∪{vi} are complete graphs for i ∈ {2,4}. Since H must contain
triangles we have |K \A| � 2, and H does not contain a further G2 edge (see Figure 2). Suppose
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A

v1 v2

v3 v4}

(a) the structure of H in Case 1c

A

}

y1 + t y2 + t

y3 − t y4 − t

(b) the change of the weights

Figure 3. Case 1c.

that y1 � y3. We obtain that

∂
∂y2

f (G2,y) = y1 � ∂
∂y4

f (G2,y) = y3

and

∂
∂y2

f (G1,y) = y1 + ∑
�>4

y� � ∂
∂y4

f (G1,y) = y3 + ∑
�>4

y�.

Since v2 and v4 are non-adjacent, this contradicts condition (3.1).

Case 1c. Assume that there is a G2 edge, say v3v4, connecting {v1,v2,v3} to K \{v1,v2,v3} such
that v2v4 ∈ E(H).

According to (3.2) the set A := {v1, . . . ,v4} spans only these four edges, v1 and v3 have degree
2, and K \{v1,v3} is a complete graph of size at least 3 (see Figure 3). H does not contain other
G2 edges. We have

f (G1,y) = (y1 + y4)(y2 + y3)+(y2 + y4)
(

∑
�>4

y�

)
+∑∑

i> j>4

yiy j

and

f (G2,y) = y1y2 + y1y3 + y3y4.

Substitute y′ := y′(t) = y + t(e1 + e2 − e3 − e4) into the above equations (Figure 3) where ei is
the unit vector with 1 at the ith coordinate and 0 elsewhere. Note that y′ ∈ Sn if

t ∈ I := [max{−y1,−y2},min{y3,y4}].

We get f (G1,y
′) = f (G1,y) and

f (G2,y
′)− f (G2,y) = t2 + t(y2 − y4).

The right-hand side is a convex polynomial in t and it takes its maximum on I in one of the
endpoints. Taking this optimal t we obtain that maxt∈I f (G2,y

′) > f (G2,y) and |support(y′)| <
|support(y)|, a contradiction. This completes the proof of Claim 3.2 that H has no adjacent G2

edges.

Claim 3.3. G2[K] does not have two independent edges.
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v1 v2

v3 v4

B1 = B3 B2 = B4A

}

(a) the structure of H in Case 2

y1 + t y2 + t

y3 − t y4 − t

A

}
(b) the change of weights in Case 2b

Figure 4. Case 2.

Proof of Claim 3.3. According to Claim 3.2, G2[K] is a matching, {v1v2, v3v4, . . . , v2k−1v2k}.
We will show k = 1. Assume to the contrary that v1v2 and v3v4 are two disjoint G2 edges of H.

Define A := {v1, . . . ,v4}. Since v1v2 and v3v4 are two non-triangular edges, the set A can
contain at most two more edges of H, and these should be disjoint. So without losing generality,
we may assume that v1v4,v2v3 	∈ E(G1) (see Figure 4).

Let Bi := {v ∈ K \A : vvi ∈ E(H)} for 1 � i � 4. We claim that B1 = B3. Indeed, if v5 ∈ B1 then
v2v5 	∈ E(G1), otherwise {v1,v2,v5} forms a triangle. Then v5v3 ∈ E(H) otherwise {v2,v3,v5}
forms an independent set. Hence v5 ∈ B3, implying B1 ⊆ B3. By symmetry B3 ⊆ B1, and we
obtain B1 = B3 and similarly B2 = B4.

Since v1v2 is a G2 edge we have B1 ∩ B2 = /0 (in fact {A,B1,B2} is a partition of K). We
distinguish two cases.

Case 2a. Assume first that v1v3 /∈ E(H).
Suppose that y2 � y4. Since no G2-edge joins A to K \A and B1 = B3, we obtain that

∂
∂y1

f (G2,y) = y2 � y4 =
∂

∂y3
f (G2,y)

and

∂
∂y1

f (G1,y) = y2 + ∑
y�∈B1

y� � y4 + ∑
y�∈B1

y� =
∂

∂y3
f (G1,y).

Since v1 and v3 are non-adjacent, this contradicts (3.1).
So we may assume that A contains the edge v1v3. By symmetry, we may assume that A contains

the edge v2v4 too.

Case 2b. Finally, A contains the edges v1v3 and v2v4 (see Figure 4).
We have

f (G1,y) = (y1 + y4)(y2 + y3)+(y1 + y3)
(

∑
y�∈B1

y�

)

+(y2 + y4)
(

∑
y�∈B2

y�

)
+ ∑∑

vi,v j /∈A, viv j∈E(H)
yiy j

and

f (G2,y) = y1y2 + y3y4 + · · ·+ y2k−1y2k.
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Substitute y′ := y′(t) = y+ t(e1 + e2 − e3 − e4) into the above equations. Note that y′ ∈ Sn if

t ∈ I := [max{−y1,−y2},min{y3,y4}].

We get f (G1,y
′) = f (G1,y) and

f (G2,y
′)− f (G2,y) = 2t2 + t(y1 + y2 − y3 − y4).

The right-hand side is convex; it takes its maximum on I in one of the endpoints. Taking this
optimal t we obtain that maxt∈I f (G2,y

′) > f (G2,y) and |support(y′)| < |support(y)|, a contra-
diction. This completes the proof of Claim 3.3.

Completion of the proof of Lemma 3.1. Claims 3.2 and 3.3 imply that H has a unique G2 edge.
We claim that the vertices in H which are not adjacent to any G2 edge of H induce a clique. To
see this, consider two such vertices vi and v j. We have

∂
∂yi

f (G2,y) = 0 =
∂

∂y j
f (G2,y),

so the inequalities of (3.1) hold. Therefore vi and v j must be adjacent to avoid a contradiction.

4. A continuous lower bound for the number of triangular edges

In this section, by using Lemma 3.1, we will prove the main result of this paper, Theorem 1.2.
Recall that

g(n,e) := min

{
e−bc : a+b+ c = n, a,b,c ∈ N∪{0},

(
a
2

)
+ab+bc � e

}

(see (1.2)). We define t(n,e) to be a real-valued version of g(n,e) as follows:

t(n,e) := min

{
e−bc : a+b+ c = n, a,b,c ∈ R+,

1
2

a2 +ab+bc � e

}
. (4.1)

Obviously, t(n,e) � g(n,e) for n2/4 � e �
(n

2

)
. Furthermore,

g(n,e)− (3/2)n � t(n,e). (4.2)

Indeed, suppose that (a,b,c)∈R
3
+ yields the optimal value, t(n,e) = e−bc. It is a straightforward

calculation to show that the choice of (a′,b′,c′) := (�a + 1�,�b�,n− a′ − b′) satisfies (1.2) and
the difference between (e−b′c′) and (e−bc) is at most (3/2)n.

We cannot prove Conjecture 1.1 that g(n,e) � Tr(n,e) (i.e. g(n,e) = Tr(n,e)), but as an
application of Lemma 3.1 we will show that t(n,e) is a lower bound for Tr(n,e).

Theorem 4.1. For e > n2/4 we have t(n,e) � Tr(n,e).

Proof. Suppose that G1 is a graph with n vertices, e edges and minimum number of edges in
triangles, that is, G1 has Tr(n,e) triangle edges. Let G2 be the subgraph of G1 consisting of
the edges not in any triangle of G1. Consider the vector (1/n)j = (1/n,1/n, . . . ,1/n) ∈ R

n. By
Lemma 3.1 there exists a y = (y1, . . . ,yn)∈ Sn with support K such that G2[K] consists of a single
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edge, say v1v2. Moreover,

e
n2

= f (G1,(1/n)j) � f (G1,y) (4.3)

and

e−Tr(n,e)
n2

= f (G2,(1/n)j) � f (G2,y) = y1y2. (4.4)

Assume that y1 � y2 and define

a :=
(

∑
k 	=1,2

yk

)
n, b := y1n, c := y2n

Then (4.4) yields that Tr(n,e) � e−bc. We claim that the reals a,b, and c satisfy the constraints
in (4.1), hence e−bc � t(n,e), completing the proof.

Indeed, since v1v2 is not in any triangle, N(v1)∩N(v2) = /0, we get from (4.3) that

e
n2

� f (G1,y)

= y1y2 + y1

(
∑

yk∈N(v1),k 	=2

yk

)
+ y2

(
∑

yk∈N(v2),k 	=1

yk

)
+ ∑∑

i< j, i, j 	=1,2

yiy j

� bc
n2

+
b
n
× a

n
+

1
2

(
a
n

)2

.

5. Further problems, minimizing C2k+1 edges

In addition to the question of minimizing the number of triangular edges, Erdős, Faudree and
Rousseau [3] also considered a conjecture of Erdős [2] regarding pentagonal edges asserting that
a graph on n vertices and at least �n2/4�+ 1 edges has at most n2/36 + O(n) non-pentagonal
edges. This value can be obtained by considering a graph having two components: a complete
graph on [2n/3] + 1 vertices and a complete bipartite graph on the rest. This conjecture was
mentioned in the papers of Erdős [2] and also in the problem book by Fan Chung and Graham [1].

Erdős, Faudree and Rousseau [3] proved that if G is a graph with n vertices and at least
�n2/4�+ 1 edges, then for any fixed k � 2 at least 11

144 n2 −O(n) edges of G are in cycles of
length 2k + 1. So there is a jump of Ω(n2) in the number of C5-edges, while the construction of
G(n,e) shows that for K3-edges the change is smoother, Tr(n,n2/4+ x) = O(n

√
x).

In a forthcoming paper [5] we give an example of graphs with �n2/4�+1 edges and

n2/8(2+
√

2)+O(n) = n2/27.31 . . .

non-pentagonal edges, disproving Erdős’s conjecture. By using the weighted symmetrization
method we show that this coefficient is asymptotically the best possible for e > (n2/4)+ o(n2).
On the other hand, we asymptotically establish the conjecture of Erdős that for every k � 3 the
maximum number of non-C2k+1 edges in a graph of size exceeding (n2/4) + o(n2) is at most
n2/36+o(n2), as in the graph of two components described above.

More generally, given a graph F , one can define h(n,e,F) as the minimum number of F-edges
among all graphs of n vertices and e edges. In our forthcoming paper [5] we asymptotically
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determine h(n,λn2,F) for any fixed λ , when 1/4 < λ < 1/2 and F is 3-chromatic. Many
problems, for example an F with a higher chromatic number, or natural generalizations for
hypergraphs, remain open.

A remark on very dense graphs. One can verify Conjecture 1.1 for n � 8 and in general for
e �

(n
2

)
− (3n− 13). This and (1.1) yield the exact value of Tr(n,e) for all pairs with n � 10

except Tr(10,27). More details can be found in the arXiv version of this paper [4].

More remarks on keeping equalities. The sharper version of Lemma 2.3 (mentioned after its
proof) yields a sharper version of Theorem 2.2. Namely, there exists an appropriate vector y ∈ Sn

such that f (G�,x) � f (G�,y) and f (Gi,x) = f (Gi,y) for every 1 � i � d, i 	= �.
Then the proof of Lemma 3.1 can be adjusted so that given � ∈ {1,2} one can find an appro-

priate vector y ∈ Sn such that f (G�,x) = f (G�,y) and f (G3−�,x) � f (G3−�,y).

5.1. New developments (as of May 2016)
Since the first public presentations of our results (for example in the Combinatorics seminar
of the Department of Mathematics and Computer Science at Emory University, 6 December
2013, and in the Oberwolfach Combinatorics Workshop, 5–11 January 2014) and posting the
present manuscript on arXiv [4] on 4 November 2014, there have been (at least) two remarkable
achievements.

Gruslys and Letzter [6], using a refined version of the symmetrization method, proved that
there exists an n0 such that Tr(n,e) = g(n,e) for all n > n0. The second part of our Conjecture 1.1,
namely that the extremal graph should be from a G(a,b,c), is still open.

Grzesik, P. Hu and Volec [7], using Razborov’s flag algebra method, showed that every n-
vertex graph with �n2/4�+ 1 edges has at least n2/8(2 +

√
2)− εn2 pentagonal edges for n >

n0(ε) for every ε > 0. They also proved that these graphs have at least n2/36− εn2 C2k+1-edges
for n > nk(ε) for every ε > 0 and k � 3. In [5] we were able to prove the same results only for
graphs with �n2/4�+ εn2 edges (for n > n0(k,ε), k � 2). Let us close with a slightly corrected
version of Erdős’s conjecture.

Conjecture 5.1. Suppose that G is an n-vertex graph with e edges, such that e > n2/4 and it
has the minimum number of C2k+1-edges, k � 3, n > nk. Then G is connected and has two blocks,
of which one is a complete bipartite graph and the other is almost complete.
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[1] Chung, F. and Graham, R. (1998) Erdős on Graphs: His Legacy of Unsolved Problems, A. K. Peters.
[2] Erdős, P. (1997) Some recent problems and results in graph theory. Discrete Math. 164 81–85.
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