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Abstract. Let f be a smooth symplectic diffeomorphism of R
2 admitting a (non-split)

separatrix associated to a hyperbolic fixed point. We prove that if f is a perturbation of
the time-1 map of a symplectic autonomous vector field, this separatrix is accumulated
by a positive measure set of invariant circles. However, we provide examples of smooth
symplectic diffeomorphisms with a Lyapunov unstable non-split separatrix that are not
accumulated by invariant circles.
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1. Introduction
A theorem by Herman,‘Herman’s last geometric theorem’, cf. [9, 12], asserts that
if a smooth orientation- and area-preserving diffeomorphism f of the 2-plane R

2

(or the 2-cylinder R/Z × R) admits a Kolmogorov–Arnold–Moser (KAM) circle �

(by definition, a smooth invariant curve, isotopic in R
2 \ {o} to a circle centered at the

origin in the case f : R2 → R
2 or isotopic to R/Z × {0} in the cylinder case, on which

the dynamics of f is conjugated to a Diophantine translation), then this KAM circle is
accumulated by other KAM circles, the union of which has positive two-dimensional
Lebesgue measure in any neighborhood of �. In this paper, we investigate whether such a
phenomenon holds if, instead of being a KAM circle, the invariant set � is a separatrix of
a hyperbolic fixed (or periodic) point of f.

More precisely, we consider the following situation (see Figure 1). Let f : R2 → R
2,

f : (x, y) �→ f (x, y), f (0, 0) = (0, 0) be a smooth diffeomorphism which is symplectic
with respect to the usual symplectic form ω = dx ∧ dy (f ∗ω = ω). We assume that

*A preliminary version of this paper was discussed by the authors some months before Anatole Katok passed
away in April 2018.
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FIGURE 1. A (non-split) separatrix.

o := (0, 0) is a hyperbolic fixed point of f (the matrix Df (o) ∈ SL(2, R) has distinct real
eigenvalues) and that there exists an f -invariant compact connected set � � o such that
� \ {o} is a non-empty connected one-dimensional manifold included in both the stable
and unstable manifolds Ws

f (o), W
u
f (o) associated to o:

for all (x, y) ∈ �, lim
n→±∞ f n(x, y) = o.

Note that because o is f -hyperbolic, � is homeomorphic to a circle and � \ {o} coincides
with one of the two connected components ofWs

f (o) \ {o} (respectively Wu
f (o) \ {o}). We

shall say that � is a separatrix of f associated to the hyperbolic fixed point o or, without
referring to the hyperbolic fixed point o, that � is a separatrix of f.

Examples of such diffeomorphisms f can be obtained in the following way. Let X0 be a
smooth autonomous Hamiltonian vector field of the form

X0 = J∇H0, J =
(

0 −1
1 0

)
(1.1)

where H0 : R2 → R, of the form

H0(x, y) = λxy +O3(x, y), λ ∈ R
∗,

(we can assume without loss of generality λ > 0) is a smooth function. The time-1
map f0 := φ1

X0
of X0 is a Hamiltonian (in particular, symplectic) diffeomorphism of R2

admitting o as a hyperbolic fixed point. We assume that it has a separatrix � � o of the
form

� \ {o} = {φtX0
(p), t ∈ R} for some p ∈ R

2 \ {o} such that lim
t→±∞ φtX0

(p) = o.

We now consider a smooth time-dependent Hamiltonian vector field Y : R/Z × R
2 →

R, (t , (x, y)) �→ Y (t , x, y) which is 1-periodic in t, symplectic with respect to (x, y), and
tangent to � \ {o}:

for all t ∈ R/Z, for all (x, y) ∈ �, det(X0(x, y), Y (t , x, y)) = 0.
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One can for example choose Y (t , x, y) = J∇F(t , x, y), where F : R/Z × R
2 → R is a

smooth time-dependent Hamiltonian that satisfies

for all t ∈ R/Z, for all (x, y) ∈ �, F(t , x, y) = F(t , 0, 0).

Note that because o is a hyperbolic fixed point of X0, one has for all t, Y (t , o) = 0. For
ε ∈ R, define the 1-periodic in t symplectic vector field R

2 → R
2 as

Xtε(x, y) := Xε(t , x, y) = X0(x, y)+ εY (t , x, y). (1.2)

For ε small enough, the time-0-to-1 map,

fε = φ
1,0
Xε

, (1.3)

of the symplectic vector field Xε is a symplectic diffeomorphism of R
2 admitting o as

a hyperbolic fixed point and still � as a separatrix. (If X(t , z) is a time dependent vector
field, the time-s-to-t map of X is defined by φt ,sX (z(s)) = z(t) for any z(·) solution of ż(t) =
X(z(t)). When X is time independent, the notation φtX stands for φt ,0X .) Note that fε is
a Hamiltonian diffeomorphism (for more details on Hamiltonian diffeomorphisms, see
[16]).

Here is the analogue of the aforementioned last geometric theorem of Herman.

THEOREM A. For any r ∈ N
∗, there exists εr > 0 such that, for any ε ∈ ]− εr , εr [, there

exists a set of fε-invariantCr KAM circles accumulating the separatix� and which covers
a set of positive Lebesgue measure of R2 in any neighborhood of �.

Let us clarify some points made in the preceding statement.
By a Cr circle, r ≥ 0, we mean a Cr non-self-intersecting closed curve (or equivalently,

if r ≥ 1, a non-empty compact connected one-dimensional Cr submanifold of R2) which
is isotopic in R

2 \ {o} to the separatrix �. Such a set � is invariant by fε if fε(�) = �.
We say that a set G of fε-invariant circles accumulates the set� if for any ξ > 0, the set

of � ∈ G such that dist(�, �) < ξ is not empty, where dist denotes the Hausdorff distance,

dist(A, B) = max
(

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
)

(here d(x, C) = infc∈C ‖x − c‖R2 ).
The fε-invariant circles obtained in Theorem A are KAM circles: the restrictions of fε

on each of these curves are Cr circle diffeomorphisms that are conjugated to Diophantine
translations. A real number α is Diophantine if there exist positive constants κ , τ such
that, for any (p, q) ∈ Z × N

∗, |α − (p/q)| ≥ κ/qτ . The constants τ and κ are respectively
called the exponent and the constant of the Diophantine condition. The set of Diophantine
numbers with fixed exponent τ > 2 has full Lebesgue measure if the constant is not
specified and positive measure if the constant is also fixed (and small). In our case, the
exponent of the Diophantine condition can be chosen to be independent of ε (it depends
only on λ).
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Remark 1.1. However, and this is a difference with the situation of Herman’s last geometric
theorem, the constants of these Diophantine numbers are arbitrarily small. Moreover, as
these circles accumulate the separatrix, their C2-norm must explode.

Remark 1.2. The phase space R2 can be replaced by the cylinder R/Z × R in the statement
of the main theorem.

The smallness condition in Theorem A is indeed necessary as shown by the following
theorem.

Let �� be the bounded connected component of R2 \�.

THEOREM B. There exists a smooth symplectic diffeomorphism f : R2 → R
2 admitting

a separatrix � which is included in an open set W of � ∪�� that contains no f-invariant
circle in W \�.

The situation described in Theorems A and B is not generic. Indeed, as Poincaré
discovered, in general, the stable and unstable manifolds of a hyperbolic fixed or periodic
point of a symplectic map intersect transversally (one usually refers to this phenomenon
as the splitting of separatrices), a fact that forces the dynamics of f to be ‘quite intricate’.
This was Poincaré’s key argument in his proof of the fact that the Three-body problem
in Celestial Mechanics does not admit a complete set of independent commuting first
integrals. Later, Smale [18] showed that this splitting of separatrices has an even more
striking consequence on the dynamics of f, namely the existence of a horseshoe, that is, a
uniformly hyperbolic f -invariant compact set (locally maximal) with positive topological
entropy and on which the dynamics of f is ‘chaotic’ (isomorphic to a two-sided shift).
By a result of the first author [13], in this situation, positive topological entropy is indeed
equivalent to the existence of a horseshoe. A consequence of the splitting of a separatrix is
thus the existence of a Birkhoff instability zone (open region without invariant circles) in
the vicinity of this split separatrix (see [11] for a detailed exposition on the topic). In some
sense, Theorem A shows that in the perturbative situation of equations (1.2)–(1.3) (ε small
enough), the splitting of separatrices is essentially the only mechanism responsible for
the creation of instability zones. However, in a ‘non-perturbative’ situation, Theorem B
points in the opposite direction. Figures 4 and 7 illustrate the role that plays the smallness
assumption in Theorem A (or its absence in Theorem B).

1.1. On the proofs of Theorems A and B. As suggests Remark 1.1, the invariant circles
of Theorem A cannot be obtained directly via a classical KAM approach. However, the
existence of the (non-split) separatrix � allows to associate to each diffeomorphism
fε a regular diffeomorphism f̊ε, defined on a standard open annulus and preserving a
finite probability measure, to which one can apply Moser’s or Rüssmann’s invariant (or
translated) curve theorem [15, 17] (see §6). The thus obtained invariant curves for f̊ε yield
invariant curves for fε. The construction of the diffeomorphism f̊ε is done as follows. We
first make preliminary reductions involving some Birkhoff and symplectic Sternberg-like
normal forms (§2) to have a control on the dynamics in some neighborhood of the
hyperbolic fixed point o (§3). This allows us to define in §4 a first return map f̂ε for fε,
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in a fundamental domain Fε, the boundaries of which can be glued together to obtain an
open abstract cylinder (or annulus). This abstract cylinder can be uniformized to become
a standard annulus and the first return map f̂ε then becomes a regular diffeomorphism
f̄ε of a standard annulus (preserving some probability measure). This is done in §5.
We call normalization (see §5.3) the uniformization operation and we say that f̄ε is the
renormalization of fε. The term renormalization in this paper has the same acceptation as
in the theories of circle diffeomorphisms, holomorphic germs, or quasi-periodic cocycles;
cf. [6, 14, 23, 24]. The dynamics of f̄ε is closely related to that of fε in the sense that the
existence of invariant curves for f̄ε translates into a similar statement for fε (see §7). The
renormalized diffeomorphism f̄ε has a large twist (this is reminiscent of the hyperbolicity
of fε at o) and we are thus led to rescale it to obtain the aforementioned diffeomorphism
f̊ε which is now a small Cr -perturbation of an integrable twist map (this is where the
smallness assumption of Theorem A appears) with a controlled twist (see §6). The proof
of Theorem A is completed in §8.

To prove Theorem B (cf. §9), we construct a symplectic diffeomorphism f (named
fpert in that section) so that the associated renormalized diffeomorphism f̄ has an orbit
accumulating the boundary of the aforementioned annulus: this prevents the existence of
f̄ -invariant curves close to this boundary and therefore of f -invariant curves close to the
separatrix �.

We note that the authors of [21] introduce the ‘separatrix map’ constructed by a gluing
construction to investigate the size of the instability zones. Our approach here, which is
focused on a renormalization point of view, is different. The technique we use to prove
Theorem A might be useful to study the dynamics of symplectic twist maps with zero
topological entropy. That is, to which extent are they integrable? Angenent, [1], proves they
are C0-integrable in the sense that, for any rotation number, one can find a C0-invariant
curve with this rotation number. Can one prove Ck-integrability? The word ‘integrable’ is
meant in a broad sense. Additionally, the construction of Theorem B might give a hint to
provide examples of smooth twist maps admitting isolated invariant circles with irrational
rotation number (if they exist, these curves bound two instability zones). A modification
of the example of Theorem B yields examples of such isolated invariant curves with
rational rotation numbers. For the existence of curves with irrational rotation number in
low regularity and related results, see [2–5].

2. Normal forms
The main result of this section is the following Sternberg-like symplectic normal form
theorem (Proposition 2.1) that will allow us in §3 to control the long-time dynamics of fε
in a neighborhood of the hyperbolic point o. This will be useful when we shall define first
return maps for fε in a convenient fundamental domain, see §4.

Let fε be defined by (1.2) and (1.3).

PROPOSITION 2.1. For any k ∈ N
∗ large enough, there exists εk > 0 for which the

following holds. There exist a smooth family (qε,k)ε∈I (I � 0 some open interval of R) of
polynomials qε,k(s) = λs +O(s2) ∈ R[s] and a continuous family (ε,k)ε∈I of symplectic
Ck-diffeomorphism of R2 such that ε,k(o) = o, Dε,k(o) = id, and on a neighborhood
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Vk of o one has, provided ε ∈ ]−εk , εk[:
on Vk , fε,k =

defin.
ε,k ◦ fε ◦−1

ε,k (2.4)

= φ1
J∇Qε,k where Qε,k(x, y) = qε,k(xy) (2.5)

and

on Vk , (0,k)∗X0 = J∇Q0,k . (2.6)

Note that o is still a hyperbolic fixed point of fε,k and that

�ε,k := ε,k(�)

is still a separatrix for fε,k .

2.1. Reduction of Theorem A to Theorem 2.1. After applying Proposition 2.1, we are thus
left with a family (fε,k) of Ck- symplectic diffeomorphisms, each fε,k being conjugated
to fε and admitting a separatrix �ε,k . Because the conclusions of Theorem A are clearly
invariant by conjugation, to prove Theorem A, we just need to prove that if k ≥ r and ε is
small enough, each separatrix �ε,k is accumulated by a set of positive measure of KAM
circles for fε,k . This is the content of Theorem 2.1 below that we shall apply to the family
of Ck-diffeomorphisms fε,k defined by (1.2), (1.3), and (2.4), but that holds for any family
(that we still denote in what follows by (fε)ε∈I to alleviate the notations) of symplectic
Ck-diffeomorphisms satisfying the following hypothesis.

Let (fε)ε∈I , (I � 0 open interval of R) be a family of Ck-symplectic diffeomorphisms
of R2 that satisfies:
(H1) each fε has a (non-split) separatrix �ε associated to the hyperbolic point o;
(H2) the map I � ε → fε − id ∈ Ck(R2, R2) is continuous (the norm onCk is the usual

Ck-norm);
(H3) on some neighborhood V of o, each fε coincides with the time-1 map of a

symplectic vector field J∇Qε(x, y) where Qε(x, y) = qε(xy), qε ∈ Ck+1(R2)

qε(t) = λt +O2(t), λ > 0;

(H4) on R
2, f0 = φ1

X0
, where X0 = J∇H0 is a Hamiltonian vector field that coincides

with J∇Q0 on V.

Remark 2.1. On V, the orbits of fε | V = φ1
J∇Qε are pieces of hyperbolae {xy = constant}

(condition (H3)).
When ε = 0, for any z ∈ {xy = c} ∩ V , N ∈ Z such that f N0 (z) ∈ V , one has f N0 (z) ∈

{xy = c} ∩ V (condition (H4)).

Remark 2.2. The intersection �ε ∩ V is the union

�ε ∩ V = (Ws
fε
(o) ∩ V) ∪ (Wu

fε
(o) ∩ V)

and

Ws
fε
(o) ∩ V = (R × {0}) ∩ V, Wu

fε
(o) ∩ V = ({0} × R) ∩ V.

One then has the following.
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THEOREM 2.1. There exists k0 ∈ N for which the following holds. Let k ≥ k0 + 2 and
let (fε)ε∈I be a family of Ck-symplectic diffeomorphisms of R2 satisfying the previous
conditions (H1)–(H4). Then, there exists ε1 > 0 such that, for any ε ∈ ]−ε1, ε1[, the
diffeomorphism fε admits a set of positive Lebesgue measure of invariant Ck−k0−2-circles
in any neighborhood of the separatrix �ε.

Moreover, if k − k0 − 2 ≥ k1 (k1 depending only on λ), these circles are KAM circles.

We shall give the proof of Theorem 2.1 in §8.
The proof of Proposition 2.1 occupies the rest of this section. It will be based on a

first reduction obtained by performing some steps of Birkhoff normal forms (Proposition
2.3) and then the application of various Sternberg-like normal forms (Corollary 2.4 and
Proposition 2.5).

2.2. Birkhoff normal form for the time-periodic vector field Xtε. A preliminary step
in Sternberg’s classical linearization theorem is to first conjugate the considered system
(diffeomorphism or vector field) defined in the neighborhood of the hyperbolic fixed point
o to a system which is tangent to an integrable model to some high enough order. This
is what we do in this subsection and in a symplectic framework (see Proposition 2.3) by
using Birkhoff normal form techniques.

2.2.1. Periodically forced vector fields. Let X : R × R
2 � (t , x) �→ Xt(z) := X(t , z) ∈

R
2 be a smooth time-dependent symplectic vector field: for each t, the 1-form iXt ω is

closed (and hence locally exact). For t , s ∈ R, we denote by φt ,sX the flow of X between
times s and t when it is defined (see page 3 for the definition of φt ,sX ). If t �→ gt (·) is a
one-parameter family of symplectic diffeomorphisms, one has

gt ◦ φt ,sX ◦ (gs)−1 = φ
t ,s
X̃

, (2.7)

where X̃ : (t , z) �→ X̃t (z) := X̃(t , z) is the smooth time-dependent symplectic vector field

X̃t = ∂tg
t ◦ (gt )−1 + (gt )∗Xt . (2.8)

Conversely, if (2.8) is satisfied, then so is (2.7). Note that if gt depends 1-periodically on
t, then (2.7) yields the more classical conjugation equation

g ◦ φ1,0
X ◦ g−1 = φ

1,0
X̃

,

where g = g0 = g1 (gt is 1-periodic in t).
Assume now that Xt depends 1-periodically in t and, in a smooth way, on a small

parameter ε ∈ R; we furthermore assume that it is of the form

Xtε(z) = J∇Ht
ε(z), (2.9)

where (z = (z1, z2) ∈ R
2)

Ht
ε(z) = λε(t)z1z2 +O3(z),

∫
T

λε(t) dt > 0, λ0(t) = λ ∈ R
∗+, (2.10)
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Hε : R/Z × R
2 → R, Hε : (t , z) �→ Hε(t , z) := Ht

ε(z) being a smooth function. Assume
also that, for some j ∈ N

∗,

gtε(z) = φ1
J∇Gtε (z) = id +Oj(z), Gtε(z) = Oj+1(z),

where G : I × R/Z × (R2, o) � (ε, t , z) �→ Gε(t , z) := Gtε(z) ∈ R is a smooth function.
Then, one has

∂tg
t
ε ◦ (gtε)−1 = J∇∂tGtε +Oj+1(z),

(gtε)∗Xtε = J∇Ht
ε ◦ (gtε)−1 = J∇Ht

ε + J∇{Gtε, Ht
ε } +Oj+1(z),

(here {A, B} denotes the Poisson bracket {A, B} = 〈∇A, J∇B〉) so that X̃tε defined by
(2.8) is of the form

X̃tε = J∇H̃ t
ε , (2.11)

with

H̃ t
ε = Ht

ε + ∂tG
t
ε + {Gtε, Ht

ε } +Oj+2(z) (2.12)

= Ht
ε + ∂tG

t
ε + {Gtε, Ht

2,ε} +Oj+2(z), (2.13)

where we have denoted Ht
2,ε(z1, z2) = λε(t)z1z2.

If in the preceding equation, one choosesGtε = Gtε,2 withGtε,2(z) = aε,0(t)z1z2, where
aε,0 is the 1-periodic function defined by

aε,0(t) = −
∫ t

0

(
λε(s)−

∫
T

λε(u) du

)
ds,

one has

H̃ t
ε (z) = λ̄εz1z2 +O3(z),

where λ̄ε = ∫
T
λε(t) dt . In other words, performing a change of coordinates (2.8) on Xtε

with gtε = gtε,2 = φ1
J∇Gt

ε,2
, we can assume that in (2.10), λε(t) does not depend on t:

Ht
ε(z) = λεz1z2 +O3(z), λε ∈ R

∗+ (2.14)

(we write λε in place of λ̄ε).

2.2.2. Birkhoff normal form. Having put Ht
ε under the form (2.14), we now eliminate

by successive conjugations (2.8) non-diagonal higher-order terms in z from Ht
ε (note that

they depend on t).
The following lemma describes this elimination procedure.

LEMMA 2.2. Let j ∈ N, j ≥ 2. Assume that, for some polynomials qε(s) = λs +O(s2) ∈
R[s] of degree ≤ [j/2] depending smoothly on ε,

Ht
ε(z) = qε(z1z2)+Oj+1(z).

Then, there exist a smooth family (q̃ε)ε of polynomials q̃ε(s) = λs +O(s2) ∈ R[s] of
degree ≤ [(j + 1)/2] and a smooth family of smooth mapsGε : R/Z × (R2, o) � (t , z) →
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Gε(t , z) = Gtε(z) ∈ R
2 such that on a neighborhood of o,{

Gtε(z) = Oj+1(z),

Ht
ε(z)+ ∂tG

t
ε(z)+ {Gtε, Ht

ε }(z) = q̃ε(z1z2)+Oj+2(z).
(2.15)

Moreover, if for ε = 0, Ht
0 does not depend on t, one can choose Gt0 to be independent

of t.

Proof. See Appendix A.

Let now Xtε be the family of vector fields of (1.2).

PROPOSITION 2.3. For any N ≥ 1 there exist an open neighborhood VN of o, a smooth
two-parameters family (btε)ε∈I ,t∈R/Z (I some open interval containing 0) of smooth sym-
plectic diffeomorphisms btε : (R2, o) ý satisfying btε(o) = o, Dbtε(o) = id and a smooth
family of polynomials qε,N(s) = λs +O(s2) of degree ≤ [(N + 1)/2], such that, for any
ε ∈ I , t ∈ R/Z, (x, y) ∈ VN one has

X(1),tε =
defin.

(∂tb
t
ε) ◦ (btε)−1 + (btε)∗Xtε

= J∇Qε,N +ON+1(x, y) with Qε,N(x, y) = qε,N(xy),

and for ε = 0, bt0 is independent of t.

Proof. Applying the preceding Lemma 2.2 and relations (2.8)–(2.12) inductively (starting
from (2.14)), we thus construct polynomials qε,j of degree ≤ [j/2] (j ≥ 2) and functions
Gtε,j = Oj+1(z) such that if one defines

btε = gtε,N ◦ · · · ◦ gtε,2 = id +O2(z), gtε,j = φ1
J∇Gtε,j = id +Oj(z),

one has

X̃tε : = ∂tb
t
ε ◦ (btε)−1 + (btε)∗Xtε

= J∇Qε,N +ON+1(z) with Qε,N(z) = qε,N(z1z2),

all depending on ε being smooth. Moreover, if Xt0 is independent of t, the diffeomorphism
bt0 is independent of t.

Remark 2.3. Note that because bt0 ≡ b0 is independent of t, the vector field

X
(1)
0 = (b0)∗X0

is autonomous.

2.3. Symplectic Sternberg theorem for the autonomous vector field X(1)0 . We shall need
a symplectic version of the famous theorem by S. Sternberg (on smooth linearization of
hyperbolic germs of smooth vector fields, see [19]), as proved in [7] or [8] (see also [20]).
We follow here the exposition of [7].
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LetZi , i = 1, 2, be two symplectic smooth autonomous vector fields such that, for some
λ ∈ R

∗ and N ∈ N, one has⎧⎪⎨
⎪⎩
Zi(x, y) = −λx ∂

∂x
+ λy

∂

∂y
+O2(x, y) (i = 1, 2),

Z1(x, y)− Z2(x, y) = ON+1(x, y).
(2.16)

THEOREM 2.2. [7, Theorem 1.2] There exist positive constants A, B for which the
following holds. Let m ∈ N

∗ large enough and N = [(m+ B)/A] + 1 ≥ 1. If (2.16) is
satisfied, then there exists a Cm symplectic change of coordinatesS0 : (R2, 0) ý such that
on a neighborhood of o, {

(S0)∗Z1 = Z2,

S0(o) = 0, DS0(o) = id.
(2.17)

We apply the preceding theorem to the case Z1 = X
(1)
0 and Z2 = J∇Q0,N (X(1)0 ,

Q0,N given by Proposition 2.3 when ε = 0). In view of Proposition 2.3, the condition
(2.16) is satisfied and we hence get a symplectic diffeomorphism S0 satisfying S0(o) = 0,
DS0(o) = id, and such that on a neighborhood of o,

(S0)∗X(1)0 = J∇Q0,N .

For each value of t ∈ R/Z and ε ∈ I , the diffeomorphism (S0 ◦ btε) fixes the origin
and its derivative at the origin is the identity. It can thus be extended as a symplectic
Cm-diffeomorphism Rtε of R

2 (cf. Lemma B.1). Note that the dependence of Rtε with
respect to t is smooth and 1-periodic (t ∈ R/Z). We now define on R/Z × R

2 the
time-periodic vector field X(2)ε : (t , (x, y)) ∈ (R/Z)× R

2 → R
2 by

X(2),tε =
defin.

(∂tR
t
ε) ◦ (Rtε)−1 + (Rtε)∗Xtε, (2.18)

and we observe that on a neighborhood of o,

(Rt0)∗X0 = X
(2)
0 = J∇Q0,N .

Because the conjugacy relation (2.18) is equivalent to (see §2.2.1)

for all t , s, Rtε ◦ φt ,sXε ◦ (Rsε)−1 = φ
t ,s
X
(2)
ε

,

we get by taking t = 1, s = 0, and setting Rε := R1
ε = R0

ε , the following corollary.

COROLLARY 2.4. If m ∈ N
∗ is large enough and N = [(m+ B)/A] + 1, there exists

a smooth family (Rε) of Cm symplectic diffeomorphisms of R
2 such that Rε(o) = o,

DRε(o) = id, and on a neighborhood of o,

f (1)ε : =
defin.

Rε ◦ fε ◦ (Rε)−1 (2.19)

= φ1
J∇Qε,N +ON+1(x, y). (2.20)

Moreover,

(R0)∗X0 = J∇Q0,N . (2.21)
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Note that the last equation shows that

f
(1)
0 = φ1

J∇Q0,N
. (2.22)

2.4. Symplectic Sternberg normal form for the diffeomorphism f
(1)
ε . Theorem 2.2 has

a version for smooth germs of symplectic diffeomorphisms which are hyperbolic at the
origin. This is theorem 1.1 of [7]. In our paper, we shall need a parametric version of that
result, which is not explicitly stated in [7] but that can be checked after close examination
of the proof.

PROPOSITION 2.5. There exist constants A1, B1 depending on λ ∈ R
∗ such that the

following holds. Let m ∈ N
∗ large enough and N = [m/2] − 3. If (g1,ε)ε∈I and (g2,ε)ε∈I

(I � 0 some open interval of R) are two continuous (with respect to ε ∈ I ) families of Cm

symplectic diffeomorphisms(R2, o) ý such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

for all ε, g1,ε(o) = g2,ε(o) = o,
Dg1,0(o) = diag(λ, λ−1) (is hyperbolic),
g1,ε(x, y) = g2,ε(x, y)+ON+1(x, y),
g1,0 = g2,0,

(2.23)

then, there exists a continuous family (S(1)ε )ε (with respect to ε ∈ I small enough) of
Ck symplectic diffeomorphisms such that S(1)ε (o) = o, DS(1)ε (o) = id with k = [NA1 −
B1] − 1, and {

S
(1)
ε ◦ g1,ε ◦ (S(1)ε )−1 = g2,ε,
S
(1)
0 = id.

2.5. Proof of Proposition 2.1. It will be a consequence of Corollary 2.4 and
Proposition 2.5.

We first choose N so that k = [NA1 − B1] − 1 and we define m by N = [(m+
B)/A] + 1. If k is large enough, m will satisfy the assumption of Corollary 2.4. We then
apply Proposition 2.5 to g1,ε = f

(1)
ε , g2,ε = φ1

J∇Qε,N , which satisfies (2.23) (note that
(2.20) is satisfied). This provides us with a continuous family (S(1)ε )ε of Ck symplectic
diffeomorphisms defined in a fixed neighborhood of o such that S(1)ε (o) = o, DS(1)ε (o) =
id, and on a neighborhood of o,{

S
(1)
ε ◦ f (1)ε ◦ (S(1)ε )−1 = φ1

J∇Qε,N ,
S
(1)
0 = id.

(2.24)

We can extend these S(1)ε as symplectic Ck diffeomorphisms S(2)ε of R
2 which depend

continuously on ε (cf. Lemma B.1). We then define

ε,k = S(2)ε ◦ Rε
and we observe that on a neighborhood of o,{

ε,k ◦ fε ◦−1
ε,k = φ1

J∇Qε,N ,

(0,k)∗X0 = J∇Q0,N ;
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indeed, the first equality comes from (2.19 and the first equation of (2.24), while the second
is a consequence of (2.21) and the second equation of (2.24).

To conclude the proof, we rename qε,N , Qε,N as qε,k , Qε,k .

Note: From now on, and until the end of §8, we shall work in the setting of Theorem 2.1
with a family of Ck symplectic diffeomorphisms satisfying conditions (H1)–(H4).

3. Dynamics in a neighborhood of the origin
The purpose of this section is to estimate the time spent by the orbits of the flow �tJ∇Qε
in the neighborhood V of the hyperbolic point o.

To do that, we perform one more change of coordinates.
Let us define the following diffeomorphisms �1, �2{

for all (x, y) ∈ R
∗+ × R, �1(x, y) = (ln x, xy),

for all (x, y) ∈ R × R
∗+, �2(x, y) = (− ln y, xy).

(3.25)

Because d(ln x) ∧ d(xy) = d(− ln y) ∧ d(xy) = dx ∧ dy, we see that �i , i = 1, 2, are
symplectic.

Let I1, I2 ⊂ R
∗+ be some open intervals such that I1 × {0} and {0} × I2 are both

contained in V.

LEMMA 3.1. Let (x∗, y∗) ∈ (I1 × R) ∩ V and t̄I2(x∗, y∗) = inf{t > 0 : φtJ∇Qε(x∗, y∗) ∈
(R × I2) ∩ V}. Then the following hold.
(1) There exists c(I1, I2) ≥ 1 such that if 0 < x∗y∗ �I1,I2,λ 1, one has

c(I1, I2)
−1 |ln(x∗y∗)|

λ
≤ t̄I2(x∗, y∗) ≤ c(I1, I2)

|ln(x∗y∗)|
λ

. (3.26)

(2) For any (x, y) in a neighborhood of (x∗, y∗) and any t in a neighborhood of
t̄I2(x∗, y∗),

�2 ◦ φtJ∇Qε ◦�−1
1 : (u, v) �→ (u+ τ tε (v), v), (3.27)

with

τ tε(v) = tq ′
ε(v)− ln v. (3.28)

Proof. (1) We evaluate t̄I2(x∗, y∗). Because

φtJ∇Qε(x∗, y∗) = (e−tq ′
ε(x∗y∗)x∗, etq

′
ε(x∗y∗)y∗),

we have etq
′
ε(x∗y∗)y∗ ∈ I2 if and only if

t ∈
]

ln((x∗y∗)−1 × x∗ min I2)

q ′
ε(x∗y∗)

,
ln((x∗y∗)−1 × x∗ max I2)

q ′
ε(x∗y∗)

[
.

Hence for x∗y∗ small enough,∣∣∣∣t̄I2(x∗, y∗)− |ln(x∗y∗)|
q ′
ε(x∗y∗)

∣∣∣∣ ≤ max(|ln(x∗ min I2)|, |ln(x∗ max I2)|)
q ′
ε(x∗y∗)

.
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Because for 0 < x∗y∗ � 1 one has q ′
ε(x∗y∗) � λ, there exists c(I1, I2) such that if x∗y∗

small enough (how small depends on I1, I2, λ), the inequality (3.26) is satisfied.
(2) We write

�2 ◦ φtJ∇Qε ◦�−1
1 = �2 ◦�−1

1 ◦�1 ◦ φtJ∇Qε ◦�−1
1 = �2 ◦�−1

1 ◦ φt
J∇Q̃ε ,

with Q̃ε(u, v) = (Qε ◦�−1
1 )(u, v) = qε(v). Because φt

J∇Q̃ε (u, v) = (u− tq ′
ε(v), v) and

�2 ◦�−1
1 (u, v) = (u− ln v, v), we get (3.28).

4. Fundamental domains and first return maps
We construct in this section adapted fundamental domains Fε,y∗ for the maps (fε)ε
satisfying conditions (H1)–(H4) of Theorem 2.1 and define their first return maps f̂ε in
Fε,y∗ .

4.1. Fundamental domains. Let V be the domain of Theorem 2.1. One can choose
x∗ > 0 such that, for any ε small enough,

(x∗, 0) ∈ V and f−1
ε (x∗, 0) /∈ V.

For y∗ > 0 small enough, we define the vertical segment

Lx∗,y∗ := {(x∗, ty∗), 0 < t < 1}
and the domain

Fε,x∗,y∗

as the interior of the contour defined by (see Figure 2)
(a) the segment [fε(x∗, 0), (x∗, 0)];
(b) the transversal Lx∗,y∗ ;
(c) the piece of hyperbola joining (x∗, y∗) to fε(x∗, y∗) (cf. Remark 2.1);
(d) the curve fε(Lx∗,y∗).
We shall often drop the index x∗ in the notations of Lx∗,y∗ , Fε,x∗,y∗ and simply set

Ly∗ := Lx∗,y∗ and Fε,y∗ = Fε,x∗,y∗ .

If y∗ is small enough, one has Fε,y∗ , Ly∗ ⊂ V. We set

F̃ε,y∗ = Fε,y∗ ∪ Ly∗ .

4.2. First return maps. Our aim in this subsection is to define the first return map of fε
in F̃ε,y∗ .

Because �ε is a separatrix for fε, we can define (see Remark 2.2)

N(ε) =
defin.

min{n ∈ N
∗, f−n

ε (]fε(x∗), x∗]) ⊂ V}.
We note that if ε is small enough, N(ε) is independent of ε, so we shall denote it by N.
Moreover, if ε and y∗ are small enough,

N =
defin.

min{n ∈ N
∗, f−n

ε (F̃ε,y∗) ⊂ V}. (4.29)
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FIGURE 2. Fundamental domain Fε,y∗ for fε and the first return map f̂ε .

LEMMA 4.1. There exists a constant 0 < c∗ < 1 such that, for (x, y) ∈ Fε,c∗y∗ ,

ñε(x, y) : =
defin.

min{j ∈ N
∗, f jε (x, y) ∈ f−N

ε (F̃ε,y∗)} < ∞. (4.30)

One has

ñε(x, y) � ln(xy)/λ. (4.31)

Proof. Note that the domain f−N
ε (Fε,y∗) ⊂ Ṽ is the interior of the contour defined by:

(a) the segment [f−(N−1)
ε (x∗, 0), f−N

ε (x∗, 0)] ⊂ Wu
fε
(o) ∩ V ⊂ {0} × R;

(b) the curve f−N
ε (Ly∗);

(c) a curve joining f−N
ε (x∗, y∗) to f−(N−1)

ε (x∗, y∗);
(d) the curve f−(N−1)

ε (Ly∗),
and

f−N
ε (F̃ε,y∗) = f−N

ε (Fε,y∗) ∪ f−N
ε (Ly∗).

Note that the lines f−N
ε (Ly∗), f

−(N−1)
ε (Ly∗) are transversal to the segment [f−(N−1)

ε

(x∗, 0), f−N
ε (x∗, 0)].

Now let (x, y) ∈ F̃ε,y∗ . We denote byHx,y the hyperbola

Hx,y := {(x′, y′), x′y′ = xy},
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and if z, z′ ∈ Hx,y , byHx,y(z, z′), the arc of hyperbola ofHx,y between z and z′ which is
open in z and closed in z′. If y > 0 is small enough, Hx,y intersects f−N

ε (F̃ε,y∗) ⊂ V in
an arc of hyperbola of the form Hx,y(p, f−1

ε (p)) with p ∈ f−(N−1)
ε (Ly∗) and f−1

ε (p) ∈
f

−N
ε (Ly∗). The sets f−j

ε (Hx,y(p, f−1
ε (p)), j ≥ 0 form a partition of the semi-arc of

parabola
⋃
n≥0 Hx,y(p, f−n

ε,k (p)) which contains (x, y). In particular, there exists j ≥ 0

(in fact j ≥ 1) such that (x, y) ∈ f−j
ε (Hx,y(p, f−1

ε (p)) or equivalently

f jε (x, y) ∈ Hx,y(p, f−1
ε (p)) ⊂ f−N

ε (F̃ε,y∗).

This proves (4.30).
To prove (4.31), we note that there exists an interval I2 not containing 0 and depending

only on x∗, y∗ such that f−N
ε (F̃ε,y∗) ⊂ R × I2. We then use Lemma 3.1 and the fact that

|t̄I2(x, y)− ñε(x, y)| ≤ 1.

We now define

nε = N + ñε. (4.32)

By (4.31), one has

nε(x, y) � ln(xy)/λ. (4.33)

The map f̂ε : F̃ε,c∗y∗ → F̃ε,y∗ , defined by

f̂ε = f nεε , (4.34)

is the first return map of fε in F̃ε,y∗ (for points starting in F̃ε,c∗y∗). Note that f̂ε is not Ck

on the whole domain F̃ε,c∗y∗ .

4.3. Estimates on first return maps. We denote for a ∈ R

Ta : (u, v) �→ (u+ a, v)

and we recall the definition (3.25) of the symplectic diffeomorphisms �1, �2.
We observe that there exist open sets W1 ⊂ R

∗+ ∩ R, W2 ⊂ R × R
∗+ such that, for any

ε and y∗ > 0 small enough,

F̃ε,y∗ ⊂ W1 ⊂ V, f
−N
0 (F̃ε,y∗) ⊂ W2 ⊂ V.

LEMMA 4.2. There exists a Ck function σ0,N ∈ Ck(R∗+, R) such that on �2(W2), one has

�1 ◦ f N0 ◦�−1
2 = Tσ0,N . (4.35)

Proof. From condition (H4), one can write on R
2

f0 = φ1
J∇H0

and hence

f
N
0 = φ

N
J∇H0

where H0 |V = Q0.
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If (u, v) ∈ �2(W2) and (ũ, ṽ) = �1(f
N
0 (�

−1
2 (u, v))), one then has

Q0(�
−1
1 (ũ, ṽ)) = Q0(f

N
0 (�

−1
2 (u, v))) = Q0(�

−1
2 (u, v))

and hence

q0(ṽ) = q0(v)

and thus ṽ = v. Because the map (u, v) �→ (ũ, ṽ) is symplectic, this forces ũ = u+
σ̃0,N(v) for some Ck function σ̃0,N ; this function can be extended as a Ck function
σ0,N : R → R.

Recall the definition (4.34) of f̂ε.

LEMMA 4.3. There exists a continuous family (η̂ε)ε of Ck symplectic diffeomorphisms
defined on R

2 and a neighborhood W of f−1
ε (F̃ε,y∗) ∪ F̃ε,y∗ ∪ fε(F̃ε,y∗) such that{

limε→0 ‖η̂ε − id‖k = 0,

η̂ε(W ∩ (R × {0}) ⊂ R × {0} (4.36)

and on a neighborhood of F̃ε,c∗y∗ , one has

�1 ◦ f̂ε ◦�−1
1 = η̂ε ◦ T

l̂ε
, (4.37)

where

l̂ε(v) = σ0,N(v)+ n̂ε(u, v)q ′
ε(v)− ln v with n̂ε = ñε ◦�−1

1 . (4.38)

Proof. We write (we use (4.34), (4.32), (H3)):

f̂ε = f N+ñε
ε

= f Nε ◦ φñεJ∇Qε
= ηε ◦ f N0 ◦ φñεJ∇Qε ,

with

ηε = f Nε ◦ f−N
0 . (4.39)

As a consequence, if we set

η̂ε = �1 ◦ ηε ◦�−1
1 and n̂ε = ñε ◦�−1

1 , (4.40)

we have, using (4.35),

�1 ◦ f̂ε ◦�−1
1 = η̂ε ◦ (�1 ◦ f N0 ◦�−1

2 ) ◦ (�2 ◦ φñεJ∇Qε ◦�−1
2 ) ◦ (�2 ◦�−1

1 )

= η̂ε ◦ Tσ0,N ◦ φñε◦�
−1
1

J∇(Qε◦�−1
2 )

◦ T− ln v

= η̂ε ◦ Tσ0,N ◦ T n̂ε
q ′
ε

◦ T− ln v

= η̂ε ◦ Tσ0,N+n̂εq ′
ε−ln v ,

which is (4.37) together with (4.38).
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Note that by (4.39), (4.40), Remark 2.2, and the fact that R � ε �→ fε ∈ Ck(Vk , R2) is
continuous, one has

{
limε→0 ‖η̂ε − id‖Ck = 0,

η̂ε(W ∩ (R × {0})) ⊂ R × {0}.

5. Renormalization
We define in this section a renormalization f̄ε of the map fε. The first return map f̂ε of
fε in the fundamental domain Fε,y∗ that we have constructed in §4 is not differentiable
at every point (see (4.37), (4.38), and the fact that the integer valued function n̂ε has, in
general, discontinuity points). However, if one glues the ‘vertical’ boundaries of Fε,y∗ by
fε, we obtain an abstract open annulus F̃ε,y∗/fε (see §§5.1 and 5.2) and the map f̂ε is now
Ck on it. We can uniformize this abstract annulus so that it becomes the standard (with
the usual topology) open annulus R/Z× ]0, c[ (some c > 0), see §5.3, and the map f̂ε in
these new coordinates turns into a Ck diffeomorphism f̄ε defined on (part of) this standard
annulus. This is the (one should say ‘a’ instead of ‘the’ since the uniformizing/normalizing
procedure is not unique) renormalized diffeomorphism associated to fε. Uniformizing the
annulus is equivalent to conjugating fε to (x, y) �→ (x + 1, y) on a domain containing
Fε,y∗ . This procedure is, in a different context, the one described in [24]. We shall
often call the uniformization operation normalization in reference to the corresponding
renormalization procedure defined for quasi-periodic cocycles, cf. [6, 14].

5.1. Gluing. Let F be an open set of R2, L a one-dimensional submanifold of R2 and
f an orientation preserving smooth diffeomorphism from a neighborhood of F ∪ L to a
neighborhood of f (F ∪ L). We assume that:
(1) f (F ∪ L) ∩ (F ∪ L) = ∅;
(2) F ∪ L is a two-dimensional submanifold of R

2 with boundary and this boundary
is ∂(F ∪ L) = L; in particular, for any point p ∈ L, there exists an open set Up,
p ∈ Up ⊂ R

2, and a smooth diffeomorphism ϕp : Up → ϕp(Up) ⊂ R
2 such that

ϕp(Up ∩ L) = ϕp(Up) ∩ (R × {0}) and ϕp(Up ∩ F) = ϕp(Up) ∩ (R × R
∗+);

(3) for any p ∈ F ∪ L and Up, one has Up ∩ f (F ∪ L) = ∅;
(4) for any p ∈ L one has f−1(f (Up) ∩ F) = ϕ−1

p (ϕp(Up) ∩ (R × R
∗−)), for any of the

previous chart (Up, ϕp) at p.
We define the topological space (F ∪ L, T) as being the set F ∪ L endowed with the

following topology T: a subset S of F ∪ L is an element of T (that is an open set) if for
every p ∈ S, there exists an open set V ⊂ R

2 (contained in a neighborhood ofF ∪ Lwhere
f is defined) such that V ∩ f (F ∪ L) = ∅ and p ∈ (V ∪ f (V )) ∩ (F ∪ L) ⊂ S.

We can then define the following differentiable structure on (F ∪ L, T) as follows:
(a) if p ∈ F, we define the local chart Cp := (Wp, id), where Wp is an open set of R2

such that p ∈ Wp ⊂ F; and (b) if p ∈ L, we define the local chart Cp := (Wp, ψp) where
Wp is the open set of F ∪ L (see condition (3)), Wp = (F ∪ L) ∩ (Up ∪ f (Up)) (here
(Up, ϕp) is the local chart for p ∈ L as defined in (2)), and where ψp is defined by
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FIGURE 3. Gluing: (Fε,y∗ ∪ Ly∗ )/fε .

(we use condition (4)){
ψp = ϕp on Up ∩ (F ∪ L) = ϕ−1

p ((ϕp(Up) ∩ (R × R+)),
ψp = ϕp ◦ f−1 on f (Up) ∩ F = f ◦ ϕ−1

p ((ϕp(Up) ∩ (R × R
∗−)).

We denote by A the collection of all these local charts Cp and we set (F ∪ L)/f = (F ∪
L, T,A).

Remark 5.1. If we assume in addition that f preserves the standard symplectic form
dx ∧ dy on R

2, we can endow (F ∪ L)/f with a symplectic form ω.

Remark 5.2. If g : F→ g(F) is a smooth diffeomorphism defined in a neighborhood of
F, it induces a smooth diffeomorphism (that we still denote g) g : (F ∪ L)/f → (g(F) ∪
g(L))/(g ◦ f ◦ g−1).

Remark 5.3. If F = [0, 1[ × ]0, 1[, L = ]0, 1[ and f = T1 : (x, y) �→ (x + 1, y), one
sees that (F ∪ L)/T1 is (diffeomorphic to) the standard open annulus (R/Z× ]0, 1[,
canonical) endowed with its canonical differentiable structure.

5.2. The space (Fε,y∗ ∪ Ly∗)/fε. If ε and y∗ are small enough, item (1) is satisfied and
we can find charts (p, Up) such that items (2)–(4) are satisfied. See Figure 3. We can then
define the manifold (Fε,y∗ ∪ Ly∗)/fε. We shall see that it is an annulus without boundary,
cf. Lemma 5.3.

Note that if 0 < c∗ < 1, the smaller set F̃ε,c∗y∗ = Fε,c∗y∗ ∪ Lc∗y∗ is an open subset
of (Fε,y∗ ∪ Ly∗)/fε (which means that it belongs to T) and it can be endowed with
the topology and differentiable structure induced by the inclusion. We denote (Fε,c∗y∗ ∪
Lc∗y∗)/fε the thus obtained submanifold of (Fε,y∗ ∪ Ly∗)/fε. The following lemma is then
tautological.

LEMMA 5.1. The map f̂ε induces a Ck map F̃ε,c∗y∗/fε → F̃ε,y∗/fε.

We shall need in §6 the following lemma.
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LEMMA 5.2. There exists a probability measure with positive density πε,y∗ on F̃ε,y∗/fε
which is f̂ε invariant: for any measurable set A ∈ F̃ε,y∗/fε such that f̂−1

ε (A) ∈ F̃ε,y∗/fε,
one has πε,y∗(A) = πε,y∗(f̂

−1
ε (A)).

Proof. We shall in fact construct this measure πε,y∗ on the bigger set F̂ε,y∗/fε,

F̂ε,y∗ = F̃ε,y∗ ∪ σ(F̃ε,y∗),
where σ : R2 → R

2 is the reflection (x, y) �→ (x, −y) (it commutes with fε in V, see
condition (H3)). From Remark 5.1, there exists a symplectic form ωε on F̂ε,y∗/fε. Note
that the first return map f̂ε is not defined on the whole set F̂ε,y∗/fε but nevertheless

(f̂ε)
∗ωε = ωε

whenever this formula makes sense. The probability measure πε,y∗ defined by

πε,y∗(A) =
∫
A

|ωε|
/ ∫

Fε,y∗
|ωε|

is f̂ε invariant.

5.3. Normalization of fε. We now uniformize the abstract annulus F̃ε,y∗/fε. To do that,
it is enough to normalize fε in the sense of item 2 of the following lemma.

LEMMA 5.3. (Normalization Lemma) There exists a continuous family (hε)ε of (not
necessarily symplectic) Ck-diffeomorphisms defined on a neighborhood of F̃ε,y∗ such that
for some c > 0:
(1) hε sends F̃ε,y∗/fε to the standard open annulus ((R/Z)× ]0, c[, canonical);
(2) hε ◦ fε ◦ h−1

ε = T1 : (x, y) �→ (x + 1, y);
(3) hε([x∗, fε(x∗)] × {0} = [0, 1[ × {0}.
Proof. Using condition (H3) and the change of coordinates (3.25) of §3, we see that on a
neighborhood of F̃ε,y∗ , one has (we use the notation (x, y) for (u, v))

�1 ◦ fε ◦�−1
1 = Tq ′

ε
: (x, y) �→ (x + q ′

ε(y), y).

If gε is the (not necessarily symplectic) smooth diffeomorphism

gε : (x, y) �→
(

x

q ′
ε(y)

, y
)

, (5.41)

one has

gε ◦�1 ◦ fε ◦�−1
1 ◦ g−1

ε = T1. (5.42)

The set (gε ◦�1)(Fε,y∗) is of the form

(gε ◦�1)(Fε,y∗) = {(x, y), y ∈ [0, c], γε(y) ≤ x ≤ γε(y)+ 1},
where c > 0, γε : [0, c] → R+ is Ck , γε(0) = 0, and the map R � ε �→ γε ∈
Ck([0, c], R) is continuous. This indeed follows from the definition of F̃ε,y∗ in §4.1,
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the definition of �1 (3.25), and (5.41), (5.42). As a consequence, if we denote

jε : (x, y) �→ (x − γε(y), y), (5.43)

we have ⎧⎪⎪⎨
⎪⎪⎩
jε ◦ T1 = T1 ◦ jε,
jε((gε ◦�1)(Fε,y∗)) = ]0, 1[ × ]0, c[,

jε((gε ◦�1)(Ly∗)) = {0} × ]0, c[.

(5.44)

By Remarks 5.2 and 5.3, the map

hε = jε ◦ gε ◦�1 (5.45)

is a diffeomorphism that sends F̃ε,y∗/fε to the standard annulus ([0, 1[ × ]0, c[)/T1 �
(R/Z)× ]0, c[ and such that

hε ◦ fε ◦ h−1
ε = T1.

To conclude the proof, we notice (2) is an immediate consequence of the definition
(5.45) of hε.

Remark 5.4. Note that if Ta(x, y) = (x + a(y), y), one has

(hε ◦�−1
1 ) ◦ Ta ◦ (hε ◦�−1

1 )−1 = Tã , ã(y) = a(y)/q ′
ε(y).

5.4. The renormalization f̄ε of fε. There exists δ ∈ ] 0, c[ such that the map

f̄ε =
defin.

hε ◦ f̂ε ◦ h−1
ε : R/Z× ]0, δ[ → R/Z× ]0, c[ (5.46)

is well defined and is a Ck diffeomorphism onto its image.

PROPOSITION 5.4. One has

f̄ε = η̄ε ◦ Tlε , (5.47)

where η̄ε is a Ck diffeomorphism defined on R/Z× ]0, δ[ and lε ∈ Ck(]0, c[, R/Z); they
satisfy

lε(y) = σ0,N(y)

q ′
ε(y)

− ln y
q ′
ε(y)

mod Z, (5.48)

lim
ε→0

‖η̄ε − id‖Ck = 0, (5.49)

η̄ε : (x, y) �→ (x + aε(x, y), y + ybε(x, y)), (5.50)

where aε ∈ Ck , bε ∈ Ck−1 are functions defined on R/Z × (0, δ).
Moreover, the map f̄ε preserves a probability measure π̄ε,y∗ with positive density

defined on R/Z× ]0, c[.

Proof. By (4.37) and Remark 5.4 after Lemma 5.3,

f̄ε = (hε ◦�−1
1 ) ◦ η̂ε ◦ (hε ◦�−1

1 )−1 ◦ (hε ◦�−1
1 ) ◦ T

l̂ε
◦ (hε ◦�−1

1 )−1

= η̄ε ◦ Tlε ,
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where

η̄ε = (hε ◦�−1
1 ) ◦ η̂ε ◦ (hε ◦�−1

1 )−1 and lε(y) = (1/q ′
ε(y))l̂ε(y). (5.51)

Because η̄ε := (hε ◦�−1
1 ) ◦ η̂ε ◦ (hε ◦�−1

1 )−1 and f̄ε are Ck , the function lε : ]0, c[ →
R/Z is also Ck and

lε(y) = (1/q ′
ε(y))l̂ε(y).

By (4.38) (remember that n̂ε takes its value in Z),

lε(y) = σ0,N(y)

q ′
ε(y)

+ n̂ε(x, y)− ln y
q ′
ε(y)

= σ0,N(y)

q ′
ε(y)

− ln y
q ′
ε(y)

mod Z,

which is (5.48).
Equation (5.49) is a consequence of the definition of η̄ε, cf. (5.51), the first equation of

(4.36), and of the fact that R � ε �→ hε ∈ Ck is continuous (Lemma 5.3).
We now claim that if η̄ε(x, y) = (x + aε(x, y), y + b̄ε(x, y)), one has for any y,

b̄ε(x, 0) = 0. (5.52)

Indeed, because

η̄ε := (hε ◦�−1
1 ) ◦ η̂ε ◦ (hε ◦�−1

1 )−1,

equality (5.52) is a consequence of the second equation of (4.36), of item (3) of Lemma
5.3, and of the fact that �1(R

∗+ × {0}) = R
∗+ × {0}.

To prove (5.50), we thus notice that equality (5.52) gives us for b̄ε a decomposition{
b̄ε(x, y) = ybε(x, y),

bε ∈ Ck−1.

Finally, to conclude the proof of the proposition, we observe that because the map
f̂ε : F̃ε,c∗y∗/fε → F̃ε,y∗/fε preserves the probability measure πε,y∗ , cf. Lemma 5.2, the
diffeomorphism f̄ε : R/Z× ]0, δ[ → R/Z× ]0, c[ preserves the probability measure
π̄ε,y∗ = (hε)∗πε,y∗ defined on R/Z× ]0, c[ (in the sense that if A ⊂ R/Z× ]0, c[ is a
Borelian set such that f̄−1

ε (A) ⊂ R/Z× ]0, c[, one has π̄ε,y∗(A) = π̄ε,y∗(f̄
−1
ε (A))).

6. Applying the translated curve theorem
We apply in this section Rüssmann’s (or Moser’s) translated curve theorem to some
rescaled version f̊ε,n of the renormalization f̄ε of fε defined in §5.4.

6.1. The translated curve theorem. Let ψ : R/Z× ]e−1, 1[ → R/Z × R (ln e = 1) be
a Ck diffeomorphism defined on the annulus (or cylinder) R/Z× ]e−1, 1[. We say that the
graph Grγ := {(x, γ (x)) : x ∈ R/Z} of a continuous map γ : R/Z → R/Z× ]e−1, 1[ is
translated by ψ if for some t ∈ R,

ψ(Grγ ) = Grt+γ (6.53)
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and invariant if t = 0. If Grγ satisfies (6.53), there exists an orientation preserving home-
omorphism of the circle g : R/Z → R/Z such that ψ(x, γ (x)) = ψ(g(x), t + γ (g(x)).
If t = 0 (respectively t �= 0), we define (respectively with a clear abuse of language) the
rotation number of (ψ on) the invariant (respectively translated) graph Grγ as the rotation
number of the circle diffeomorphism g. We say that ψ has the intersection property if
for any continuous γ : R/Z → R/Z× ]e−1, 1[, the curve Grγ := {(x, γ (x)) : x ∈ R/Z}
intersects its image ψ(Grγ ). Note the following important fact: If ψ has the intersection
property, any translated graph by ψ is invariant.

We state the translated curve theorem by Rüssmann [17] (which implies the invariant
curve theorem by Moser [15]):

THEOREM 6.1. (Rüssmann, [17]) There exists k0 ∈ N for which the following holds. Let
k ≥ k0, C, μ > 0, and l : R/Z → R a Ck map satisfying the twist condition,

min
y

|∂yl(y)| > μ > 0 and ‖l‖Ck0 ≤ C, (6.54)

and define

ψ0 : (x, y) �→ (x + l(y), y).

There exists ε0 = ε0(C, μ) > 0 such that for any Ck diffeomorphism

ψ : R/Z× ]e−1, 1[ → R/Z × R

satisfying

‖ψ − ψ0‖Ck0 < ε0, (6.55)

the diffeomorphism ψ admits a set of positive Lebesgue measure of Ck−k0 translated
graphs contained in (R/Z)× ]e−3/4, e−1/4[. Moreover, all these translated graphs have
Diophantine rotation numbers (they are in a fixed Diophantine class DC(κ , τ) (the
exponent is τ and the constant κ) that can be prescribed in advance once μ is fixed (k0

then depends on τ and ε0 on κ and τ )).

6.2. The rescaled diffeomorphism f̊ε,n. Let f̄ε be the renormalized map defined in §5.4
and define uε, vε by

f̄ε(x, y) = (x + uε(x, y), y + vε(x, y)).

Because f̄ε = η̄ε ◦ Tlε (cf. (5.47)), one has using (5.50):

uε(x, y) = lε(y)+ aε(x + lε(y), y),

vε(x, y) = ybε(x + lε(y), y).

Now, let n ∈ N
∗ large enough so that

]e−(n+1), e−n[ ⊂ ]0, δ[ (6.56)

(the δ of (5.46)) and introduce the rescaled Ck diffeomorphism f̊ε,n defined on the annulus
R/Z× ]e−1, 1[ by

f̊ε,n =
defin.

�en ◦ f̄ε ◦�−1
en , (6.57)
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FIGURE 4. The diffeomorphism f̄ε on R/Z × [e−(n+1), e−n].

where �en : (x, y) �→ (x, eny). Let us denote

f̊ε,n(x, y) = (x + uε,n(x, y), y + vε,n(x, y)).

A computation shows that:{
uε,n(x, y) = lε,n(y)+ aε(x + lε,n(y), e−ny),
vε,n(x, y) = ybε(x + lε,n(y), e−ny),

(6.58)

where

lε,n(y) = lε(e
−ny). (6.59)

We can now state the following important proposition the proof of which occupies the
next subsection.

PROPOSITION 6.1. Assume that k ≥ k0 + 2 (k is the regularity in conditions (H1)–(H4)
and k0 is the one of Theorem 6.1). There exists ε1 > 0 such that the following holds. If |ε| ≤
ε1 and n � 1, f̊ε,n admits a set of positive Lebesgue measure of invariant Ck−k0−2-graphs
in R/Z× ]e−1, 1[.

6.3. Proof of Proposition 6.1.

6.3.1. Twist condition for lε,n.

LEMMA 6.2. There exist C, μ > 0 such that, for any ε small enough and any n � 1, the
map lε,n satisfies the twist condition (6.54) provided k ≥ k0 + 1.

Proof. Using (5.48), (6.59), we have

lε,n(y) = lε(e
−ny)

= σ0,N(e
−ny)

q ′
ε(e

−ny)
+ n

q ′
ε(e

−ny)
− ln y
q ′
ε(e

−ny)
mod Z

= σ0,N(0)+ n

λ
− ln y

λ
+ θε,n(y) mod Z,
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where

‖θε,n‖Ck−1([e−1,1]) = O(e−n);

this last inequality is a consequence of the fact that qε(s) = λs +O(s2) is continuous with
respect to ε (cf. condition H2) and of the fact that σ0,N is Ck (cf. Lemma 4.2). In particular,
for some Ck > 0 (depending on λ),

‖lε,n‖Ck−1 ≤ Ck

and because ∂ylε,n(y) = −1/(λy)+ ∂yθε,n(y) and y ∈ ]e−1, 1[,

|∂ylε,n(y)| ≥ 1/(2λ).

Hence (6.54) holds uniformly in ε, n with C = Ck0+1 and μ = 1/(2λ) as soon as n is large
enough.

6.3.2. f̊ε,n is close to a twist. We observe that from (5.49), (5.50), (6.58), and Lemma
6.2, one has uniformly in n,

lim
ε→0

max(‖uε,n − lε,n‖Ck−2 , ‖vε,n‖Ck−2) = 0. (6.60)

In particular, if n is large enough, inequality (6.55) is satisfied if k ≥ k0 + 2 with ψ = f̊ε,n

and ψ0 : (x, y) �→ (x + lε,n(y), y).
We see from §§6.3.1 and 6.3.2 that, if

|ε| ≤ ε1 =
defin.

ε0(Ck0+1, 1/(2λ))

and n � 1, the assumptions of Theorem 6.1 are then satisfied by f̊ε,n with k − 2 in place
of k. Under these conditions, there thus exists a set G̊ε,n of Ck−k0−2 f̊ε,n-translated graphs,
the union of which covers a set of positive Lebesgue measure in (R/T)× ]e−3/4, e−1/4[.
We just have to check that these translated graphs are indeed invariant.

6.3.3. f̊ε,n-translated graphs are invariant. Let γ̊ ⊂ (R/T)× ]e−3/4, e−1/4[ be a
f̊ε,n-translated graph: f̊ε,n(γ̊ ) = γ̊ + (0, t) for some t ∈ R. We shall prove that t = 0.
We can without loss of generality assume that t ≥ 0 (the case t ≤ 0 is treated in a similar
way).

Formula (6.60) shows that if n � 1, one has f̊ε,n(γ̊ ) ⊂ (R/T)× ]e−1, 1[. From the
conjugation relation (6.57), we see that (cf. (6.56))

γ̄ := �−1
en (γ̊ ) ⊂ (R/Z)× ]e−n−3/4, e−n−1/4[⊂ (R/Z)× ]0, δ[

is a f̄ε-translated graph such that

f̄ε(γ̄ ) = γ̄ + (0, e−nt) ⊂ (R/Z)× ]e−(n+1), e−n[⊂ (R/Z)× ]0, δ[.

Let A be the open domain of (R/Z)× ]0, c[ between (R/Z)× {0} and γ̄ . Because t ≥ 0,
one has A ⊂ f̄ε(A) ⊂ (R/Z)× ]0, c[.

Assume by contradiction that t > 0; then the set f̄ε(A) \ A contains a non-empty open
set. We have seen (cf. Proposition 5.4) that f̄ε preserves a probability measure π̄ε,y∗
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with positive density defined on (R/Z)× ]0, c[, so π̄ε,y∗(f̄ε(A) \ A) > 0. However, this
contradicts the invariance of π̄ε,y∗ by f̄ε.

The proof of Proposition 6.1 is complete. �

6.4. Invariant curves for f̄ε. We can now state the following.

THEOREM 6.2. Let k ≥ k0 + 2 and |ε| ≤ ε1. There exists ν ∈ ]0, δ[ such that, for
any ν ∈ ]0, ν[, there exists a set Ḡε,ν of Ck−k0−2, f̄ε-invariant graphs contained in
(R/Z)× ]e−1ν, ν[ such that

LebR2

( ⋃
γ̄∈Ḡε,ν

γ̄

)
> 0.

Proof. We choose n so that

]e−(n+1), e−n[ ⊂ ]0, ν[ (6.61)

and we observe that when ν → 0, one has n → ∞. Define

f̊ε,n = �en ◦ f̄ε ◦�−1
en .

By Proposition 6.1, there exists ν1 > 0 such that if ν ∈ ]0, ν1[ (n satisfying (6.61) is then
large enough), the diffeomorphism f̊ε,n admits Ck−k0−2-invariant curves in T× ]e−1, 1[
covering a set of positive Lebesgue measure; hence, f̄ε,k has Ck−k0−2-invariant curves in
T× ]e−1ν, ν[ covering a set of positive Lebesgue measure.

We shall denote

Ḡε =
⋃

ν∈ ]0,ν1[

Ḡε,ν .

Remark 6.1. For all γ̄ ∈ Ḡε,ν , the rotation number of the circle diffeomorphism f̄ε |γ̄ is
Diophantine in a fixed Diophantine class DC(κ , τ) (see the comment at the end of the
statement of Theorem 6.1).

7. Invariant curves for fε
We define

r = k − k0 − 2

and assume that |ε| ≤ ε1.
Let γ̄ ⊂ (R/Z)× ]0, δ[, γ̄ ∈ Ḡε be a Cr invariant graph for f̄ε : (R/Z)× ]0, δ[ →

(R/Z)× ]0, c[. Note that there exists δ1 > 0 such that γ̄ ⊂ (R/Z)× ]δ1, δ[.
We can view γ̄ as an invariant graph sitting in ([0, 1[ × ]0, c[)/T1 (recall T1(x, y) =

(x + 1, y)). In particular, one can find a Cr , 1-periodic function

z̄ : R → ([0, 1[ × ]0, δ[)/T1

such that, for all t, (d/dt)z̄(t) �= 0 and

γ̄ = z̄([0, 1[), z̄(0) ∈ {0} × ]0, c[, lim
t→1− z̄(t) = T1(z̄(0)) ∈ {1} × ]0, c[.
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Let

γ̂ = h−1
ε (γ̄ ),

where hε was defined in Lemma 5.3. Because f̄ε = hε ◦ f̂ε ◦ h−1
ε (cf. (5.46)), we see that

γ̂ ⊂ h−1
ε ((R/Z)× ]δ1, δ[) ⊂ F̃ε,c∗y∗

is a Cr compact, connected, one-dimensional submanifold (without boundary) of
F̃ε,c∗y∗/fε, which is invariant by f̂ε : F̃ε,c∗y∗/fε → F̃ε,y∗/fε. Moreover, the function

ẑ =
defin.

h−1
ε ◦ z̄ : R → F̃ε,c∗y∗/fε

is a Cr , 1-periodic function and

γ̂ = ẑ([0, 1[), ẑ(0) ∈ Ly∗ , lim
t→1− ẑ(t) = fε(ẑ(0)) ∈ fε(Ly∗).

The main result of this section is the following proposition.

PROPOSITION 7.1. The set

�̂ =
⋃
n∈Z

f nε (γ̂ ) ⊂ R
2

is an invariant Cr curve for fε: it is a compact, connected, one-dimensional Cr

submanifold of R2 which is invariant by fε.

We give the proof of this proposition in §7.2.

7.1. Preliminary results. We define the function Ẑ : R → R
2

for all t ∈ R, Ẑ(t) = f
[t]
ε,k(ẑ(t − [t]))

([t] denotes the integer part of t that is the unique integer such that [t] ≤ t < [t] + 1).

LEMMA 7.2. The function Ẑ : R → R
2 is Cr .

Proof. Note that, for t ∈ [0, 1[, Ẑ(t) = ẑ(t). Also, the very definition of F̃ε,y∗/fε,k shows
that the function Ẑ is Cr on a neighborhood of t = 1. It is hence Cr on [0, 2[ and because
for j ∈ Z, Ẑ(t + j) = f

j
ε (Ẑ(t)), it is Cr on R.

Let us set

τ =
defin.

inf{t ≥ 1, Ẑ(t) ∈ F̃ε,y∗}.
Note that

2 ≤ τ < ∞. (7.62)

Indeed, the left-hand side inequality is a consequence of the fact that F̃ε,y∗ ∩fε(F̃ε,y∗) = ∅.
For the right-hand side, we observe that because Ẑ(0) = ẑ(0) ∈ F̃ε,c∗y∗ , one has (see
(4.34)), Ẑ(nε(ẑ(0))) = f

nε(ẑ(0))
ε (ẑ(0)) ∈ F̃ε,y∗ , hence τ ≤ nε(ẑ(0)) < ∞.

LEMMA 7.3. The map Ẑ : [0, τ [ → R
2 is injective.
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Proof. Assume by contradiction that Ẑ : [0, τ [ → R
2 is not injective; then, there exists

mi ∈ N, 0 ≤ si < 1,

0 ≤ mi + si < τ , i = 1, 2, Ẑ(s1 +m1) = Ẑ(s2 +m2). (7.63)

Hence, f m1
ε (γ̂ ) ∩ f m2

ε (γ̂ ) �= ∅ and if m := m2 −m1 ≥ 0, f mε (γ̂ ) ∩ γ̂ �= ∅. In particular,
there exists t ∈ [m, m+ 1[ such that Ẑ(t) ∈ F̃ε,y∗ and then t ≥ τ . As a consequence,
m > τ − 1 and because 0 ≤ m < τ (m1, m2 are both in the interval [0, τ [), one has
m = [τ ], and hence m2 = m = [τ ] and m1 = 0. We then have from (7.63), Ẑ(s2 + [τ ]) =
Ẑ(s1) ∈ F̃ε,y∗ (because s1 ∈ [0, 1[) and hence by the definition of τ , s2 + [τ ] ≥ τ , which
contradicts m2 + s2 < τ .

LEMMA 7.4. If, for some t ≥ 1, Ẑ(t) ∈ F̃ε,y∗ , then Ẑ(t) ∈ γ̂ .

Proof. Indeed, writing t = s + n, s ∈ [0, 1[, n ∈ N
∗, one has Ẑ(t) = f nε (ẑ(s)). The

integer n ≥ 1 is thus a mth return time of ẑ(s) in F̃ε,y∗ , Ẑ(t) = f̂ mε (ẑ(s)), and because γ̂
is invariant by f̂ε, it is readily seen by induction on m that f nε (ẑ(s)) ∈ γ̂ .

LEMMA 7.5. One has Ẑ(τ ) = ẑ(0).

Proof. From the definition of τ and Lemma 7.4, we have Ẑ(τ ) ∈ closure(γ̂ ) ∩
closure(Ly∗ ∪ fε(Ly∗)) and hence Ẑ(τ ) ∈ {ẑ(0), fε(ẑ(0))}. To conclude, we observe that
one cannot have Ẑ(τ ) = fε(ẑ(0)) because otherwise, one would have Ẑ(τ − 1) = ẑ(0) ∈
F̃ε,y∗ , which contradicts the definition of τ (from (7.62) τ − 1 ≥ 1).

LEMMA 7.6. The derivative of Ẑ at τ is transverse to Ly∗ .

Proof. (1) If there exists a sequence tn ∈ R, lim tn = τ , such that Z(tn) ∈ F̃ε,y∗ , then
from Lemma 7.4, one has Z(tn) ∈ γ̂ and consequently (dẐ/dt)(τ ) is tangent to γ̂ , thus
transverse to Ly∗ .

(2) Otherwise, there exists an open interval I ⊂ R, I � τ , such that, for all t ∈ I \ {τ },
Ẑ(t) /∈ F̃ε,y∗ and fε(Ẑ(t)) ∈ Fε,y∗ . From Lemma 7.4, one then has for all t ∈ I \ {τ },
Ẑ(t + 1) = fε(Ẑ(t)) ∈ γ̂ (see item (2) of §5.1), and hence Dfε(fε(Ẑ(τ ))) · (dẐ/dt)(τ )
is tangent to γ̂ and in particular transverse to fε(Ly∗). This implies that (dẐ/dt)(τ ) is
transverse to Ly∗ .

LEMMA 7.7. One has Ẑ([τ , τ + 1[) = Ẑ([0, 1[).

Proof. We define s∗ = sup{s ≥ 0 : for all t ∈ [τ , τ + s[, Ẑ(t) ∈ Fε,y∗}. From Lemmata
7.4 and 7.6, one has: (a) s∗ > 0; (b) for any t ∈ [τ , τ + s∗[, Ẑ(t) ∈ γ̂ ; and (c)
Ẑ(τ + s∗) ∈ fε(Ly∗) ∩ closure(γ̂ ) = fε(ẑ(0)) = Ẑ(1). In particular, Ẑ(τ + s∗ − 1) =
f−1
ε (Ẑ(1)) = Ẑ(0) ∈ F̃ε,y∗ and by the definition of τ , this implies s∗ ≥ 1. Now we notice

that one cannot have s∗ > 1 because otherwise τ + 1 ∈ [τ , τ + s∗[ and by definition of s∗,
Ẑ(τ + 1) ∈ Fε,y∗ ; however, Ẑ(τ + 1) = fε(Ẑ(τ )) and because Ẑ(τ ) = ẑ(0) (Lemma 7.5),
one has Ẑ(τ + 1) = fε(ẑ(0)) /∈ Fε,y∗ . We have thus proven that s∗ = 1. This implies that
Ẑ([τ , τ + 1[) = Ẑ([0, 1[).
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7.2. Proof of Proposition 7.1. We first observe that

�̂ =
⋃
n∈Z

f nε (γ̂ ) = Ẑ(R) =
⋃
n∈Z

f nε (Ẑ([0, τ + 1[)). (7.64)

Next we note the following.
(1) One has Ẑ([0, τ + 1[) = Ẑ([0, τ ]).
(2) The set Ẑ([0, τ + 1[) is fε-invariant.

Item (1) is a consequence of

Ẑ([0, τ + 1[) = Ẑ([0, τ ]) ∪ Ẑ([τ , τ + 1[)

= Ẑ([0, τ ]) ∪ Ẑ([0, 1[) (Lemma 7.7)

= Ẑ([0, τ ]) (1 ≤ τ).

Item (2) follows from item (1) and

fε(Ẑ([0, τ + 1[)) = fε(Ẑ([0, τ ]))

= Ẑ([1, τ + 1])

= Ẑ([1, τ ]) ∪ Ẑ([τ , τ + 1])

= Ẑ([1, τ ]) ∪ Ẑ([0, 1]) (Lemma 7.7)

= Ẑ([0, τ ]) (1 ≤ τ)

= Ẑ([0, τ + 1[).

Item (2) and (7.64) yield

�̂ = Ẑ([0, τ + 1[).

This last identity shows that �̂ is a connected, compact (cf. item (1)) subset of R2 which is
fε-invariant.

Let us prove that �̂ is a one-dimensional submanifold of R
2. Because Ẑ(τ ) = Ẑ(0)

(Lemma 7.5), one has

Ẑ([0, τ + 1[) = Ẑ(]0, τ + 1[) = Ẑ(]0, τ [) ∪ Ẑ(]τ − 1, τ + 1[).

From Lemmata 7.2 and 7.3, the set Ẑ(]0, τ [) is a one-dimensional submanifold of R2 as
well as the set Ẑ(]τ − 1, τ + 1[) (note that Ẑ(]τ − 1, τ + 1[) = fε(Ẑ([τ − 2, τ [)). The
intersection of these two sets is Ẑ(]τ , τ + 1[) and from Lemma 7.7, it is equal to Ẑ(]0, 1[)
which is a one-dimensional submanifold of R2. As a consequence, the union Ẑ(]0, τ [) ∪
Ẑ(]τ − 1, τ + 1[) is one-dimensional submanifold of R2.

This concludes the proof of Proposition 7.1 �

8. Proof of Theorem 2.1 (and hence of Theorem A)
As we have mentioned in §2.5, Theorem A follows from Theorem 2.1; we describe the
proof of this latter result in this section.

Let r = k − k0 − 2, |ε| ≤ ε1, and ν ≤ ν1. Theorem 6.2 yields a set Ḡε,ν of Cr ,
f̄ε-invariant graphs contained in (R/Z)× ]e−1ν, ν[, the union of which covers a set of
positive Lebesgue measure.
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In the previous section (cf. Proposition 7.1), for all ν ∈ ]0, ν1[, we have associated to
each f̄ε-invariant graph γ̄ ∈ Ḡε,ν an fε-invariant Cr -curve:

�̂ =
⋃
n∈Z

f nε (γ̂ ) where γ̂ = h−1
ε (γ̄ ). (8.65)

We denote by Ĝε,ν the set of all such curves �̂.
To prove Theorem 2.1, we just have to prove that, for all ν ∈ ]0, ν1[,

(Positive measure) LebR2

( ⋃
�̂∈Ĝε,ν

�̂

)
> 0 (8.66)

and

(Accumulation) lim
ν→0

sup
�̂∈Ĝε,ν

dist(�̂, �ε) = 0. (8.67)

8.1. Proof of (8.66) (positive measure). This is a consequence of the inclusion (cf.
(8.65))

h−1
ε

( ⋃
γ̄∈Ḡε,ν

γ̄

)
⊂

⋃
�̂∈Ĝε,ν

�̂

and of the fact that Leb2(
⋃
γ̄∈Ḡε,ν γ̄ ) > 0 (this is the content of Theorem 6.2).

8.2. Proof of (8.67) (accumulation). Let γ̄ ∈ Ḡε,ν , γ̄ ⊂ (R/Z)× ]0, ν[. From the
definition (5.45) of the diffeomorphism hε, we see that, for some positive constant Cλ
depending on λ (cf. condition (H3)),

γ̂ = h−1
ε (γ̄ ) ⊂ {(x, y) ∈ F̃ε,y∗ , xy ∈ ]0, Cλν[}.

However,

�̂ =
⋃
n∈Z

f nε (γ̂ ) =
( ⋃
n∈Z

f nε (γ̂ ) ∩ V
)

∪
⋃
n∈Z

f nε (γ̂ ) �⊂V

f nε (γ̂ ).

From condition (H3), one has⋃
n∈Z

f nε (γ̂ ) ∩ V ⊂ V ∩ {(x, y), xy ∈ ]0, Cλν[},

and hence, using Remark 2.2,

dist
( ⋃
n∈Z

f nε (γ̂ ) ∩ V, �ε ∩ V
)

= oν(1) (uniform in γ̂ ). (8.68)

Now, recalling the definition (4.29) of the integer N of §4.2, one has

⋃
n∈Z

f nε (γ̂ ) �⊂V

f nε (γ̂ ) ⊂
N⋃
n=1

f−n
ε (γ̂ ),
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and using the fact that dist(γ̂ , �ε ∩ [(x∗, 0), fε(x∗, 0)[) = oν(1), one can see that (N is
fixed)

dist
( ⋃

n∈Z
f nε (γ̂ ) �⊂V

f nε (γ̂ ), �ε ∩
N⋃
j=1

f−1
ε ([(x∗, 0), fε(x∗, 0)[))

)
= oν(1), (8.69)

where the previous limit is uniform in γ̂ .
Equations (8.68) and (8.69) give

dist(�̂, �ε) = oν(1).

8.3. KAM circles for fε. Let �̂ be a Cr invariant curve for fε of the form (8.65) and
g
�̂

the restriction of fε to �̂. The map g
�̂

can be identified with a circle diffeomorphism.
Similarly, the restriction of f̄ε to the invariant curve γ̄ yields a circle diffeomorphism gγ̄ .

Let α̂ and ᾱ be the rotation numbers of g
�̂

and gγ̄ .

LEMMA 8.1. One has {1/α̂} = ᾱ (here {·} denotes the fractional part).

Proof. We refer to the renormalization procedure defined in §§4 and 5. Let Ĵ be the arc
F̃ε,y∗ ∩ �̂. The restriction on Ĵ of f̂ε, the first return map of fε in F̃ε,y∗ , defines a Cr

diffeomorphism of the abstract circle Ĵ /fε. Classical arguments show that the rotation
number of this circle diffeomorphism is equal to {1/α̂}. However, after normalization
of fε by hε (cf. formula (5.46)), �̂ is transported to γ̄ and the Cr diffeomorphism
f̂ε : Ĵ /fε → Ĵ /fε to the circle diffeomorphism f̄ε : J̄ /T1 → J̄ /T1, where J̄ = hε(Ĵ ) ⊂
γ̄ is a fundamental domain of f̄ | γ̄ . The rotation numbers of f̂ε : Ĵ /fε → Ĵ /fε and
f̄ε : J̄ /T1 → J̄ /T1 are hence equal. However, the rotation number of f̄ε : J̄ /T1 → J̄ /T1

is (same argument as before) equal to {1/ᾱ}.
Because ᾱ can be chosen in a fixed Diophantine class DC(κ , τ) (see Remark 6.1),

the rotation number α̂ is Diophantine with the same exponent τ . By the Herman–Yoccoz
theorem on linearization of Cr -circle diffeomorphisms [10, 22], this implies that if r is
large enough (depending on τ which is fixed), the diffeomorphism g

�̂
is linearizable; in

other words, �̂ is a KAM curve. However, one has a priori no control on the Diophantine
constant of α̂.

This concludes the proof of Theorem 2.1, whence of Theorem A. �

9. Proof of Theorem B
We construct in §9.1 a symplectic diffeomorphism fpert admitting a separatrix � (see
Figure 5) and depending on a (‘large’) parameter M. We renormalize fpert like in §§4 and
5 to get a diffeomorphism f̄pert of an open annulus R/Z× ]0, c[. We prove in Proposition
9.3 of §9.2 that this renormalized diffeomorphism f̄pert sends some graphs projecting
on a fixed interval JM (see (9.81) on graphs which project on the whole circle and
which are below the initial graphs we have started from, see Figure 6. We then iterate
this procedure in §9.3 to find an orbit of f̄pert accumulating the boundary R/Z × {0}
of the aforementioned annulus: this prevents the existence of f̄pert-invariant curves close
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pert

FIGURE 5. The perturbed map fpert.

pert

FIGURE 6. The image of the graph γJM ,y by the diffeomorphism f̄pert.

to this boundary and therefore of fpert-invariant curves close to the separatrix �. The
diffeomorphism fpert is the searched for example of Theorem B.

9.1. Construction of the example. We start with a smooth autonomous symplectic vector
field of the form X0 = J∇H0, where H0 : R2 → R satisfies on some neighborhood V of
o = (0, 0)

H0(x, y) = xy on V

and has the property that � = H−1
0 (H0(0, 0)) is compact and connected. The set � is a

separatrix of

f =
defin.

φ1
J∇H0

associated to the hyperbolic fixed point o.
Fixing x∗ > 0 small enough, we can define like in §4, for y∗ > 0 small enough, a

fundamental domain F̃y∗ = Fy∗ ∪ Ly∗ ⊂ V , where Fy∗ is defined by (a)− (d) (§4.1) with
φ1
J∇H0

in place of fε. We can even assume that φ−j
J∇H0

(F̃y∗) ⊂ V , j = 1, 2. There exists
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c∗ > 0 such that the first return map,

f̂ : F̃c∗y∗ → Fy∗ ,

is well defined. We can renormalize f = φ1
J∇H0

like in §5 by first normalizing f
(cf. Lemma 5.3):

h ◦ f ◦ h−1 = T1, (9.70)

where

h : Fy∗ → [0, 1[ × ]0, c[ (9.71)

is symplectic (see (5.45), (5.41), and the fact that we choose q(s) = s) and then setting (cf.
(5.46)):

f̄ =
defin.

h ◦ f̂ ◦ h−1 : R/Z× ]0, δ[ → R/Z× ]0, c[. (9.72)

By (5.48) of Proposition 5.4, we have

f̄ = Tl , l(y) = σ(y)− ln y (9.73)

for some smooth function σ .
We can assume that h(F̃y∗) = [0, 1[ × ]0, c[ and that T −j ([0, 1[ × ]0, c[) ⊂ h−1(V ),

j = 1, 2.
We now construct a symplectic perturbation fpert : R2 → R

2 of f which admits � as a
separatrix. We shall need first the following lemma.

LEMMA 9.1. There exist b ∈ (0, 1) and a non-empty compact interval I ⊂]0, 1[ such that,
for any M > 0, there exists a smooth function ϕM : R → R satisfying:
(1) ϕM |I ≤ −bM;
(2) (b−1M/|I |) ≥ −ϕ′

M |I ≥ (M/|I |);
(3) the map sM : R → R, defined by

sM(t) =
∫ t

0
eϕM(u)du,

is an increasing smooth diffeomorphism of R that coincides with the identity on
R \ [0, 1].

Proof. See Appendix C.

Let χ : R → R be a smooth function equal to 1 on [−c/2, c/2] and to 0 on
R \ [−(3/4)c, (3/4)c], and define

SM(x, y) = (sM(x)y)χ(y)+ xy(1 − χ(y)). (9.74)

The canonical (hence symplectic) mapping gM associated to SM :

gM(x, y) = (x̃, ỹ) ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
x = ∂SM

∂y
(x̃, y),

ỹ = ∂SM

∂x̃
(x̃, y),

(9.75)
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is equal to the identity on (R \ [0, 1])× [−c, c] and satisfies for (x, y) ∈ [0, 1[ × ]0, c/2[{
x̃ = s−1

M (x),

ỹ = s′M ◦ s−1
M (x)y.

(9.76)

The following symplectic perturbation of f :

fpert : =
defin.

h−1 ◦ (gM ◦ T1) ◦ h
= (h−1 ◦ gM ◦ h) ◦ f

(recall h satisfies (9.70)) is thus defined on R
2 and coincides with f outside f−1(F̃y∗).

Moreover, because gM(R × {0}) = R × {0},
� is a separatrix for fpert.

Now, because F̃y∗ is a fundamental domain for fpert (fpert coincide with f on F̃y∗), for
some cpert > 0 small enough, the first return map

f̂pert : f−1
pert(F̃cperty∗) → f−1

pert(F̃y∗),

is well defined and satisfies

f̂pert = (f̂ ◦ f−1) ◦ fpert.

In particular, on

[−1, 0[ × ]0, c/2[,

one has (cf. (9.72), (9.73))

f̄pert =
defin.

h ◦ f̂pert ◦ h−1 = f̄ ◦ T−1 ◦ gM ◦ T1 (9.77)

= Tl−1 ◦ gM ◦ T1 (9.78)

and

f̄pert : R× ]0, c/2[ → R× ]0, c[ satisfies f̄pert ◦ T1 = T1 ◦ f̄pert;

in particular, it defines a smooth map (R/Z)× ]0, c/2[ → (R/Z)× ]0, c[.
Note that because gM is the identity outside [0, 1] × [−c, c], it admits a T1-periodization

g̃M : R× [−c, c] → R× [−c, c] (which means that g̃M and gM coincide on [0, 1] ×
[−c, c] and g̃M commutes with T1). This g̃M is defined by the same formula (9.75) as
gM , where now the new function s̃M involved in (9.74) is the Z-periodization of sM . To
simplify the notation, we shall continue to denote g̃M and s̃M by gM and sM .

Let

t := t (x) := s−1
M (x + 1). (9.79)

LEMMA 9.2. For (x, y) ∈ [−1, 0[ × ]0, c/2[, the point (x̄, ȳ) := f̄pert(x, y) satisfies with
the notation (9.79) {

x̄ = t − 1 + σ(s′M(t)× y)− ln(s′M(t))− ln y,

ln ȳ = ln(s′M(t))+ ln y.
(9.80)
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Proof. Let (x, y) ∈ [−1, 0[ × ]0, c/2[; with the notation (x1, y1) = (gM ◦ T1)(x, y) =
gM(x + 1, y), one has from (9.78), (x̄, ȳ) = Tl−1(x1, y1) and from (9.76), (9.73),{

x1 = s−1
M (x + 1),

y1 = s′M ◦ s−1
M (x + 1)× y,

and

{
x̄ = x1 − 1 + σ(y1)− ln y1,

ȳ = y1,

and hence (9.80).

9.2. Image of a piece of graph by f̄pert. We takeM > 0 (from Lemma 9.1) large enough
and we define

JM = sM(I)− 1 ⊂ [−1, 0[, (9.81)

where I is the interval introduced in Lemma 9.1.
If y : J → R

∗+, x → y(x) is a differentiable function, we denote by γJ ,y its graph:

γJ ,y = {(x, y(x)), x ∈ J } ⊂ [−1, 0[ × ]0, c/2[.

PROPOSITION 9.3. There exists a constant ypert > 0 for which the following holds. Assume
that y : JM →]0, ypert[, x �→ y(x) is a differentiable function such that

for all x ∈ JM ,
∣∣∣∣d ln y
dx

+ 1
∣∣∣∣ ≤ 1/2.

Then, f̄pert(γJM ,y)+ (Z, 0) contains the graph γ [−1,0[,ȳ of a differentiable function ȳ :
[−1, 0[ → R

∗+ (see Figure 6)

γ[−1,0[,ȳ = {(x̄, ȳ(x̄)), x̄ ∈ [−1, 0[},
such that

for all x̄ ∈ [−1, 0[,
∣∣∣∣d ln ȳ
dx̄

+ 1
∣∣∣∣ ≤ 1/2; (9.82)

sup
x̄∈[−1,0[

ln ȳ(x̄) ≤ sup
x∈JM

ln y(x)− bM . (9.83)

Moreover, for some interval J 1
M ⊂ JM , one has

γ[−1,0[,ȳ = f̄pert(γJ1,y). (9.84)

We prove this proposition in §9.2.2.

9.2.1. Preliminary results. If we introduce the variable

ϕ = ln(s′M(t)) = ln s′M ◦ s−1
M (x + 1) (recall t = s−1

M (x + 1)),

we can write (9.80) as

(x̄, ȳ) = fpert(x, y(x)) ⇐⇒
{
x̄ = t − 1 + σ(eϕ × y(x))− ϕ − ln y(x),

ln ȳ = ϕ + ln y(x).
(9.85)
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Note that the maps I � t �→ ϕ = ln s′M(t) ∈ ϕ(I) and JM � x �→ ϕ = ln s′M ◦ s−1
M (x + 1)

∈ ϕM(I) are smooth diffeomorphisms. In particular, the maps ϕM(I) � ϕ �→ x̄ and
ϕM(I) � ϕ �→ ln y, ϕM(I) � ϕ �→ ln ȳ are well defined and smooth.

LEMMA 9.4. For any ϕ such that t ∈ I , one has∣∣∣∣ dtdϕ
∣∣∣∣ ≤ |I |/M ≤ 1/4.

Proof. This follows from the identity (recall ϕ = ln(s′M(t)), s′M = eϕM )

dt

dϕ
= 1
dϕ/dt

= 1
ϕ′
M(t)

and the estimates given by the second item of Lemma 9.1 (M is assumed to be large
enough).

LEMMA 9.5. One has

sup
ϕM(I)

∣∣∣∣dx̄dϕ + 1
∣∣∣∣ ≤ 1/4, (9.86)

sup
ϕM(I)

∣∣∣∣d ln ȳ
dϕ

− 1
∣∣∣∣ ≤ 1/4. (9.87)

Proof. Indeed, from (9.85),

dx̄

dϕ
= dt

dϕ
+ eϕσ ′(eϕ × y)

dy

dϕ
− 1 − d ln y

dϕ

= dt

dϕ
+ yeϕσ ′(eϕ × y)

d ln y
dϕ

− 1 − d ln y
dϕ

= −1 + A

with

A = dt

dϕ
+ yeϕσ ′(eϕ × y)

d ln y
dϕ

− d ln y
dϕ

.

Note that (recall x = sM(t)− 1, s′M = eϕM )

d ln y
dϕ

= d ln y
dx

dx

dt

dt

dϕ
= d ln y

dx
eϕ
dt

dϕ

so, by Lemma 9.4,

|A| ≤ (|I |/M)+ (ye−bM‖σ ′‖0 + 1)e−bM(|I |/M)
∣∣∣∣d ln y
dx

∣∣∣∣
and if M is large enough,

|A| ≤ 1/4. (9.88)

In a similar way,

d ln ȳ
dϕ

= 1 + d ln y
dx

dx

dt

dt

dϕ
= 1 + d ln y

dx
eϕ
dt

dϕ
= 1 + B
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with

|B| ≤ 2e−bM × (1/4) ≤ 1/4 (M � 1). (9.89)

9.2.2. Proof of Proposition 9.3. From (9.86) of Lemma 9.5, we see that the map
ϕM(I) � ϕ �→ x̄ ∈ R is a diffeomorphism onto its image J̄M ⊂ R, and hence the maps
JM � x �→ x̄ ∈ J̄M and I � t �→ x̄ ∈ J̄M are diffeomorphisms. Note that from (9.86), one
has

|J̄M | ≥ (3/4)|ϕM(I)|
and from item (2) of Lemma 9.1, one has

|J̄M | ≥ (3/4)(M/|I |)× |I | > 2; (9.90)

there thus exists an interval J 1
M ⊂ JM such that the map J 1

M � x �→ x̄ ∈ n+ [−1, 0[
(for some n ∈ Z) is a differentiable homeomorphism. Replacing ȳ(x̄) by ȳ(x̄ + n) shows
(9.84).

We now prove (9.82): for x̄ ∈ [−1, 0[,∣∣∣∣d ln ȳ
dx̄

+ 1
∣∣∣∣ ≤ 1/2. (9.91)

Indeed, let I1 ⊂ I be the image of [0, 1[ by J̄M � x̄ �→ t ∈ I ; from Lemma 9.5, for any
ϕ ∈ ϕM(I1), one has for some A, B ∈ [0, 1/4]

dx̄

dϕ
= −1 + A,

d ln ȳ
dϕ

= 1 + B,

so that ∣∣∣∣d ln ȳ
dx̄

+ 1
∣∣∣∣ =

∣∣∣∣
(
d ln ȳ
dϕ

/
dx̄

dϕ

)
+ 1

∣∣∣∣ =
∣∣∣∣ 1 + B

−1 + A
+ 1

∣∣∣∣ ≤ 1/2.

The preceding discussion shows that the map ȳ : [−1, 0[ � x̄ �→ ȳ(x̄) is a well-defined
differentiable function, that its graph is included in fpert(γJM ,y)+ (Z, 0), and that (9.82)
holds.

There remains to prove (9.83). By the second equality of (9.85), if (x̄, ȳ(x̄)) =
fpert(x, y), one has

ln ȳ(x̄) ≤ ln y(x)− bM ≤ sup
x∈JM

ln y − bM

and as a consequence, because the map JM ⊃ J 1
M � x �→ x̄ ∈ [−1, 0[ is a bijection, (9.83)

holds. �

9.3. End of the proof of Theorem B. We shall prove that if M is large enough, the
diffeomorphism fpert constructed in §9.1 provides the searched for example of Theorem B.

Let M be large enough and y0 ∈ ]0, ypert[; we define the function

y0 : [−1, 0[ → R, x �→ y0e
−x .
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Using inductively Proposition 9.3, we construct differentiable functions

yn : [−1, 0[ → R

such that, for every n ∈ N
∗,

for all x ∈ JM ,
∣∣∣∣d ln yn
dx

+ 1
∣∣∣∣ ≤ 1/2, (9.92)

γ[−1,0[,yn ⊂ f̄pert(γJM ,yn−1)+ (Z, 0), (9.93)

sup
x∈[−1,0[

ln yn(x) ≤ sup
x∈JM

ln yn−1(x)− bM . (9.94)

Inclusion (9.93) implies the existence of a decreasing sequence of non-empty compact
intervals Kn ⊂ JM such that

γ[−3/4,−1/4],yn = f̄ npert(γKn,y0) mod (Z, 0).

In particular, if x∞ ⊂ ⋂
n∈N∗ Kn, one has

for all n ∈ N
∗, f̄ npert((x∞, y0)) ∈ γ[−3/4,−1/4],yn ⊂ γ[−1,0[,yn mod (Z, 0). (9.95)

From (9.94),

sup
x∈[−1,0[

yn(x) ≤ e−nbMy0,

and hence, using (9.95), we see that f̄ npert((x∞, y0)) accumulates R × {0}:
f̄ npert((x∞, y0)) ∈ [−1, 0[ × ]0, e−nbMy0[ mod (Z, 0). (9.96)

As a consequence of (9.77) and of the fact that, for some constant C > 0

for all ν ∈ ]0, c[, h−1([−1, 0[ × ]0, ν[) ⊂ f−1
pert(F̂Cν)

(this is owing to the fact that the diffeomorphism h given by (9.71) is indeed defined on a
neighborhood of F̃y∗), one has

f̂ npert(h
−1(x∞, y0)) ∈ f−1

pert(F̂Ce−nbMy0
).

Because f̂pert is the first return map of fpert in f−1
pert(F̂y∗), there exists a sequence (pn)n∈N ∈

N
N, limn→∞ pn = ∞ such that

f
pn
pert(h

−1(x∞, y0)) ∈ f−1
pert(F̂Ce−nbMy0

). (9.97)

However, this last fact prevents the existence of invariant circles in �� accumulating
the separatrix � of fpert. More precisely, let W be a neighborhood of � in � ∪�� (we
recall that �� is the bounded connected component of R2 \�), such that

h−1(x∞, y0) /∈ W .

We claim that W \� does not contain any fpert-invariant circle �. Indeed, if this were
not the case, the topological annulus A ⊂ W having � and � for boundaries would be
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FIGURE 7. The diffeomorphism ¯̄fpert on R/Z × [e−(n+1), e−n]. Compare with Figures 4 and 6.

fpert-invariant (by topological degree theory). However, this is impossible because one
would have at the same time

h−1(x∞, y0) /∈ A and f
pn
pert(h

−1(x∞, y0)) ∈ A
for some large pn (see (9.97)).

Remark 9.1. If we define the renormalization ¯̄fpert of fpert by considering the first return
map of fpert in Fy∗ instead of f−1

pert(Fy∗), as we have done to construct f̄pert, the dynamics

of ¯̄fpert looks more like the one pictured in Figure 7. The comparison of this picture and
that of Figure 4 illustrates the effect of the perturbative assumption in Theorem A.
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AAP project from CY Cergy Paris Université.

A. Appendix. Proof of Lemma 2.2
We write for j ≥ 2

Ht
ε(z) = λεz1z2 +

∑
2≤i≤[j/2]

aε,i × (z1z2)
i +

∑
i1,i2∈N

i1+i2=j+1

hε,i1,i2(t)z
i1
1 z

i2
2 +Oj+2(z),

where aε,i ∈ R and the hε,i1,i2(·) are smooth 1-periodic functions. We define

Hε,2(z) = λεz1z2.

We first observe that if Gtε is a solution of{
Gtε(z) = Oj+1(z),

Ht
ε(z)+ ∂tG

t
ε(z)+ {Gtε, Ht

ε,2}(z) = q̃ε(z1z2),
(A.98)
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for some q̃ε(u) = λεu+ ∑
2≤i≤[(j+1)]/2 ãε,i × ui , ãε,i ∈ R, then Gtε solves (2.15). We

then have to solve (A.98) for some q̃ε and some Gtε of the form

q̃ε(u) = λεu+
∑

2≤i≤[(j+1)]/2

ãε,i × ui

Gtε(z) =
∑

i1+i2=j+1

gε,i1,i2(t)z
i1
1 z

i2
2 = Oj+1(z),

where the gε,i1,i2(·) are 1-periodic. This amounts to finding 1-periodic solutions to the
equations

hε,i1,i2(t)+ ∂tgε,i1,i2(t)− λε(i1 − i2)gε,i1,i2(t) = 0 if i1 �= i2, (A.99)

hε,i,i (t)+ ∂tgε,i,i (t) = ãε,i if i1 = i2 = i, (A.100)

for each couple (i1, i2) ∈ N
2 such that i1 + i2 = j + 1. Note that in (A.100), this last

equality occurs only if j + 1 is even and i = (j + 1)/2. Equation (A.100) is then easily
solved by setting

ãε,i =
∫
R/Z

hε,i,i (t) dt , gε,i,i (t) = −
∫ t

0
(hε,i,i (s)− ãε,i ) ds.

Equation (A.99) always admits unique 1-periodic solutions of the form{
gε,i1,i2(t) = eλε(i1−i2)t cε,i1,i2 − ∫ t

0 e
(t−s)λε(i1−i2)hε,i1,i2(s) ds,

where cε,i1,i2 = (eλε(i1−i2) − 1)−1 ∫ 1
0 e

(1−s)λε(i1−i2)hε,i1,i2(s) ds.

In the preceding solutions, the dependence on ε is smooth and if, for ε = 0, the functions
h0,i1,i2 do not depend on t, we see that g0,t1,t2 is a constant.

This concludes the proof of Lemma 2.2. �

B. Appendix. Extension of symplectic diffeomorphisms
LEMMA B.1. Let (ε)ε∈ ]−ε0,ε0[ be a smooth (or continuous) family of Ck symplectic
diffeomorphisms C1-close to the identity, defined on some open disk D(o, δ) of R2, and
such that ε(o) = o. Then, there exists (̃ε)ε∈ ]−ε0,ε0[, a smooth (or continuous) family of
Ck symplectic diffeomorphisms of R2 such that on D(o, δ/2), one has ̃ε = ε.

Proof. We use the notation ε(x, y) = (x̃, ỹ). Because ε is symplectic, the 1-form
ỹdx̃ − ydx is closed and defined on a disk D(o, 4δ/5) of center o and radius 4δ/5 (we
assume ε C1-close to the identity so that we can use the implicit function theorem).
It is hence locally exact and there exists a function Sε(y, ỹ) such that ỹdx̃ − ydx = dSε.
Now the function Fε(x, ỹ) = −Sε(y, ỹ)+ (x̃ − x)ỹ is defined onD(0, 3δ/4) and satisfies
(y − ỹ)dx + (x̃ − x)dỹ = dFε or equivalently,

ε(x, y) = (x̃, ỹ) ⇐⇒
{
x̃ = x + ∂ỹFε(x, ỹ),

y = ỹ + ∂xFε(x, ỹ).
(B.101)

Note that we can choose (Fε)ε as a Ck-family of Ck+1-functions such that Fε(o) = 0,
DFε(o) = 0.
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We can then choose χ : R2 → R as a smooth function which is equal to 1 onD(o, 2δ/3)
and 0 outside D(o, 3δ/4), set

F̃ε = χ × Fε,

and define ̃ε by (B.101) with Fε replaced by F̃ε. The family of diffeomorphisms (̃ε)ε is
a smooth (or continuous) family of exact symplectic Ck-diffeomorphisms.

C. Appendix. Proof of Lemma 9.1
Let χ : R → [0, 1] be a smooth even function with support in [−1/2, 1/2] such that
χ(0) = 1 and which is increasing on [−1/2, 0]. There exists α ∈ ]0, 1/4[ such that, for all
x ∈ ]−2α, 2α[, one has χ(x) > 1/2 and

βmin := min
[−2α,−α]

χ ′ > 0, βmax := max
[−2α,−α]

χ ′ > 0.

We define for ρ ∈ ]0, 1/12] and CM > 0,

ϕM(x) = a(ρ, CM)χ
(
x − 1/3

1/12

)
− CMχ

(
x − 2/3
ρ

)
,

where a(ρ, CM) > 0 is chosen so that∫ 1

0
eϕM(u)du = 1.

Let I = (2/3)+ ]−2αρ, −αρ[. For x ∈ I, one has

ϕM(x) ≤ −CM/2 = −CMαβmin/(2αβmin),

ϕ′
M(x) ≤ −(CM/ρ)βmin = −(CMαβmin)/(αρ) = −CMαβmin/|I|,
ϕ′
M(x) ≥ −(CM/ρ)βmax = −(CMαβmax)/(αρ) = −(βmax/βmin)CMαβmin/|I|.

Fixing ρ (for example ρ = 1/12) and taking

b−1 = max
(
βmax

βmin
, 2αβmin

)
, CM = M

αβmin
,

provides the first two items of Lemma 9.1.
Let us check the third item is satisfied. From the definition of sM , one has s′M(x) =

eϕM(x) = 1 for x /∈ [0, 1]. Because sM(0) = 0, one has sM(x) = x for x ≤ 0. Similarly,
because

sM(1) =
∫ 1

0
eϕM(u)du = 1,

we have sM(x) = x for x ≥ 1.
Because in any case s′(x) > 0, this concludes the proof of Lemma 9.1. �
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