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Abstract
New concepts have emerged in the past few years that help us to better understand the

emergence and spread of antimicrobial resistance (AMR). These include, among others, the

discovery of the mutator state and the concept of mutant selection window for resistances

emerging primarily through mutations in existing genes. Our understanding of horizontal gene

transfer has also evolved significantly in the past few years, and important new mechanisms of

AMR transfer have been discovered, including, among others, integrative conjugative elements

and ISCR (insertion sequences with common regions) elements. Simultaneously, large-scale

studies have helped us to start comprehending the immense and yet untapped reservoir of both

AMR genes and mobile genetic elements present in the environment. Finally, new PCR- and

DNA sequencing-based techniques are being developed that will allow us to better understand

the epidemiology of classical vectors of AMR genes, such as plasmids, and to monitor them in a

more global and systematic way.
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Introduction

Because of the considerable use of antimicrobial agents in

human and veterinary medicine and animal husbandry,

antimicrobial resistance (AMR) has developed into a

prime illustration of how bacterial populations can readily

adapt and react to selective pressure. We have witnessed,

during the past decades, not only the emergence of a

multitude of new resistance mechanisms, but also their

spread across entire bacterial populations and ecological

niches. This article will review some recent insights into

the mechanisms used by bacteria to develop resistance

to antimicrobials, and how AMR can spread or emerge

repeatedly in entire populations.

The molecular mechanisms of emergence
and transmission

Resistance to antimicrobials can be acquired in two ways:

(i) mutations in pre-existing or previously acquired genes,

and (ii) horizontal gene transfer (HGT), the acquisition

of new genes from other bacteria. Depending on the

antimicrobial, both mechanisms can play important roles

in the development of the dramatic AMR situation that

we face today.

Emergence of AMR through mutations

It is the interplay between the occurrence of random

mutations and selective antimicrobial pressure that drives

specific resistant mutants through evolutionary bottle-

necks and ultimately to multiply and emerge out of the*Corresponding author. E-mail: pboerlin@uoguelph.ca
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overall anonymity. Excellent reviews have been dedicated

to the resistance mechanisms for specific antimicrobials

(see for instance Schwarz et al., 2006), and these topics

will not be reviewed here. Instead, the following section

of this article will focus on two important notions that

have emerged recently in the context of AMR develop-

ment and spread. The first is the ‘mutator state’ and the

second is the concept of ‘selection windows’ and ‘mutant

preventing concentration’.

Mutators
Mutations occur on a regular basis in every living

organism as a consequence of either alterations in

existing DNA or errors during DNA replication. Since

mutations are more likely to have deleterious than

advantageous effects on the survival of an individual

cell, bacteria have evolved a range of proofreading and

DNA repair mechanisms (for a review, see for instance

Chopra et al., 2003 or Horst et al., 1999). However, the

genes encoding these control mechanisms may them-

selves undergo mutations, thus resulting in bacteria

with increased mutation rates – the so-called ‘mutators’

(Chopra et al., 2003). Recent studies have demonstrated

surprisingly high frequencies of mutators in natural

populations (LeClerc et al., 1996; Matic et al., 1997),

suggesting that they may play an important role in the

evolution and adaptation of bacteria to changing environ-

ments (Travis and Travis, 2002; Tanaka et al., 2003).

Bacterial populations may undergo bursts of mutations

when encountering new selection pressures (Giraud

et al., 2001). Such bursts are caused by the selection of

bacteria with new advantageous characteristics that,

like deleterious mutations, are more prone to emerge

in mutator than in non-mutator strains. There is therefore

a co-selection of bacteria in the mutator state together

with the selection of advantageous mutations. This is of

particular advantage to a population in a highly variable

environment or when multiple successive mutations

are needed to attain an optimally adapted phenotype

(Tenaillon et al., 1999; Denamur and Matic, 2006). This

mechanism is thought to play a role in the emergence

of resistance to antimicrobial agents arising through

mutations (Blazquez, 2003; Macia et al., 2005), such as

for fluoroquinolones (Komp Lindgren et al., 2003; Levy

et al., 2004; Trong et al., 2005). It may also play a role

in the acquisition of resistance genes through HGT,

because the most frequent mutations leading to the

mutator state (i.e. mutations in methyl-directed mismatch

repair genes such as mutS and mutL in Enterobacter-

iaceae) also significantly increase the efficiency of HGT

and of homologous recombination (Rayssiguier et al.,

1989; Townsend et al., 2003). Furthermore, the mere

stress and DNA alteration provided by some antimicro-

bials may induce the SOS system of bacteria and, con-

sequently, the activity of error-prone DNA polymerases,

which results in a transient mutator state (Foster,

2007). Thus, exposure to fluoroquinolones increases

the frequency of mutants resistant to this class of anti-

microbials in an exposed bacterial population (Cirz et al.,

2005).

The mutator state may also be involved in the gen-

eration and spread of b-lactamase variants, particularly

of extended-spectrum b-lactamases (ESBLs) (Woodford

and Ellington, 2007). Two different studies have made use

of in vitro models to mimic the evolution of blaTEM in

mutator strains and have shown that variants of TEM-1

similar to those observed in Nature can be obtained under

such circumstances (Stepanova et al., 2008), including the

otherwise unlikely accumulation of multiple mutations

leading to the blaTEM-52 variant (Orencia et al., 2001).

Although there is no formal proof that this phenomenon

is occurring in Nature, the higher prevalence of mutators

among clinical Escherichia coli isolates that produce ESBL

than among non-ESBL producers (Baquero et al., 2005)

strongly supports the hypothesis. Thus, ways to avoid

mutators and their effects on the emergence of resistant

isolates may become part of the strategies that we will

have to envision in our fight against resistance.

The mutant selection window (MSW)
Common knowledge suggests that minimal inhibitory

concentrations (MICs) should drive treatment dosage for

bacterial infections (Drlica, 2003). However, there is a

range of antimicrobial concentrations just above the MIC

which would kill or inhibit susceptible bacteria, but at

which the few spontaneous mutants in the infecting

bacterial population would be able to survive or multiply.

This range of concentrations is called MSW (Zhao and

Drlica, 2001). The lower limit of the MSW is usually

considered to be between the MIC and MIC99 of the

organism under scrutiny (Zhao and Drlica, 2001; Drlica

and Zhao, 2007). The upper MSW limit, or mutant

prevention concentration (MPC), has been defined as

the concentration at which no resistant mutant can grow

when testing 1010 cells in vitro (Drlica, 2003). The width

of the MSW is a function of the microorganism, the

antimicrobial agent, and the spectrum and type of MIC

changes provided by mutations. In some cases, the MPC

may be so high that it cannot be reached realistically in

clinical settings and the principles of mutant selection

prevention discussed here may not apply. This is, for

instance, the case for many AMR genes, whose acquisition

results in a major MIC shift to levels not achievable by any

treatment. Also, under in vivo conditions, and depending

on the mode of activity of the antimicrobial (i.e.

bacteriostatic or bactericidal) and the organisms, the MPC

may need to be adjusted further (Drlica and Zhao, 2007).

The concept of MSW may have many practical

implications in the case of stepwise mutations or of the

acquisition of resistance genes that provide only small

changes in MIC, and when multiple mutations are needed

to reach clinically significant resistance levels. Prime

examples of such situations are found in human medicine

in relation to treatment of mycobacterial diseases
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(Almeida et al., 2007). Fluoroquinolones, which are more

relevant to veterinary medicine, represent another ex-

ample of the potential implications of the MSW concept.

In most bacteria, high-level fluoroquinolone resistance is

essentially the result of multiple cumulative mutations

(Hopkins et al., 2005). In vitro as well as in vivo ex-

periments show, for instance, that Staphylococcus aureus

mutants with elevated fluoroquinolone MICs can be

selected by levofloxacin concentrations within the MSW,

but neither below nor above it (Firsov et al., 2003; Cui

et al., 2006). The phenomenon is bound to be the same

and of general relevance for many other combinations of

organism and fluoroquinolone (see for instance Croisier

et al., 2004; Ferran et al., 2007; Olofsson et al., 2007), as

well as for other antimicrobial agents (Goessens et al.,

2007; Zinner et al., 2008). When using antimicrobials for

which the concept of MSW is applicable, special care may

have to be applied, including, if possible, the determina-

tion of MPCs. In particular, some treatment modalities,

which leave local in vivo antimicrobial concentrations too

close to the MICs of the organism (i.e. within the MSW)

for extended periods of time may be prone to select

resistant mutants. Long acting formulations can poten-

tially lead to such unwanted situations (Drlica and Zhao,

2007). It is also possible that this approach should be

applied to the use of new generation b-lactams in the

treatment of infections by organisms that already possess

a resistance mechanism to b-lactams of earlier genera-

tions. Such organisms may present a slightly elevated

MIC and a higher MPC for new generation b-lactams

when compared with fully susceptible isolates. This may

facilitate the selection of ESBL mutants through the result-

ing elevated MSW.

HGT and AMR

For the majority of antimicrobials, resistance is mainly

caused by the acquisition of new resistance genes rather

than by spontaneous mutations. The exact origin of these

genes is frequently unknown, but most of them appar-

ently originate from environmental organisms. Some

AMR genes seem to originate from natural antibiotic

producers, where they protect the bacterium against its

own weapons (Webb and Davies, 1993; Davies, 1994; Lu

et al., 2004). Others have been suggested to play different

roles in their original host, including detoxification of

components other than antimicrobials, and a variety of

other metabolic (Martinez, 2008) and signaling functions

(Davies et al., 2006; Linares et al., 2006; Fajardo and

Martinez, 2008). A vast but broadly unknown reservoir

of such genes is still lurking in natural environments

(D’Costa et al., 2007), thus providing transferrable

resources for other bacteria for many years to come.

The genetic elements involved in the spread
of resistance genes
The movement of AMR genes can take place at two

distinct levels (Fig. 1), and different elements are involved

at each level. At the intracellular level, AMR genes can

move within the genome, including between chromo-

some and replicons such as plasmids and phages.

Transposons and integrons are the major elements

involved in these movements; they rely on both homo-

logous and non-homologous recombination. In the

case of inter-cellular movement (horizontal spread) of

AMR genes, three major mechanisms are potentially
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Fig. 1. Molecular mechanisms and elements involved in the spread of AMR. For details of the involvement of each mechanism
and element in the spread of AMR, please refer to the respective sections in the text. Overlapping mechanisms/elements
indicate functional or physical linkage. Specific elements may be involved to variable degrees in both intra- and inter-cellular
mobility and the width of each element is only an approximation of its respective involvement in these two levels of mobility.
Because of the multidimensional nature of interactions, the relationships between elements may in fact be more direct than
possibly represented in this figure. ISCR: the atypical class of insertion sequences with common regions.
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involved: transformation (uptake of naked DNA), trans-

duction (transfer by bacteriophages) and conjugation

(transfer by plasmids and other conjugative elements).

Numerous reviews have been written on these mechan-

isms and their role in the transfer of AMR (see for instance

Aarestrup, 2006; Schwarz et al., 2006). Therefore, this

article will focus essentially on recent developments in

that field.

Evolving integrons
Resistance integrons of classes 1 and 2 (Fluit and Schmitz,

2004) are widespread and well established among

pathogens and commensal bacteria, resulting in a plethora

of publications on their diversity and distribution in

bacteria from animals and humans. Through their gene

capture ability and association with widespread transpo-

sons such as Tn21 (Liebert et al., 1999) and Tn7 (Hansson

et al., 2002), they play a major role in the development

and spread of multiresistance. New AMR genes keep

showing up in classical and modified integrons. This is,

for instance, the case with the newly identified qnr genes

for quinolone resistance (Wang et al., 2003), as well

as with more classical genes such as the sulfonamide

resistance gene sul3 (Bischoff et al., 2005; Antunes et al.,

2007). Thus, known integrons are continuously evolving

in order to provide bacteria with the tools to resist newer

antimicrobials. In addition, recent findings on integron

diversity and evolution suggest that they are much more

diverse than originally thought (Boucher and Corey,

2008). They probably originated and evolved in environ-

mental bacteria (Gillings et al., 2008) and spread across

a very broad range of microorganisms, by both vertical

and horizontal transfer (Nemergut et al., 2008). Some

integrons, such as those of class 1, have evolved from

their original host to become vectors of resistance, and

to spread in commensal and pathogenic bacteria from

animals and humans through their associations with

transposons (see for instance the model of evolution for

class 1 integrons proposed by Gillings and collaborators

in Gillings et al., 2008). However, a wealth of other

integrons exists that may surface as additional AMR gene

carriers in the future (Gillings et al., 2008).

Transposons, insertion sequences and ISCR elements
Insertion sequences (ISs) and composite or complex

transposons have long been known to play a major role in

the mobilization of AMR genes (for an introductory

review, see for instance Bennett, 2008). Recently, a new

class of mobile genetic elements with characteristics

similar to IS91 has emerged. These are designated as

ISCRs to stress their relationships with insertion sequence

elements and the presence of conserved recombinase

sequences (refered to as common regions) that facilitated

their identification (Toleman et al., 2006b; Toleman and

Walsh, 2008). ISCRs are characterized by a transposase-

like gene but lack the typical repeats found at the ends of

classical ISs. They are flanked and delimited by sequences

called oriIS and terIS (for origin and termination of

replication), and they typically transpose using a rolling

circle replication mechanism, which makes them very

different from classical ISs (Mendiola et al., 1994; Toleman

et al., 2006b). They seem to insert relatively randomly in

any DNA molecule and, very importantly, the termination

mechanism for the replication of ISCRs is not very

accurate (Tavakoli et al., 2000; Toleman et al., 2006a).

Termination frequently occurs beyond the limit marked

by the terIS site, thus allowing for the mobilization of

sequences adjacent to the ISCR elements, including AMR

genes. ISCRs appear to have played a major role in the

emergence and spread of a variety of recently identified

AMR genes, including a number of ESBLs, and in the

evolution of complex integrons. These complex integrons

have resulted in combinations and clusters of AMR genes

that would not have been possible through classical

integrons alone (see for instance Toleman et al., 2006a,

2006b). The qnr genes for quinolone resistance are typical

examples of such complex integrons in which ISCRs have

played a major role in bringing together AMR gene

combinations, including fluoroquinolone and extended-

spectrum b-lactam resistance genes, on single conjugative

plasmids (Wang et al., 2003; Nordmann and Poirel, 2005;

Garnier et al., 2006; Quiroga et al., 2007).

AMR plasmids
Conjugative or mobilizable plasmids are the most common

transmission vectors for AMR genes. Many of them carry

multiple resistance genes leading to what can be termed

‘infectious multiresistance’. This topic will not be devel-

oped further here (for more information, see for instance

Bennett, 2008). Despite the major relevance of plasmids

in AMR, it is surprising how little has been attempted in

the study of their diversity and epidemiology in relation to

AMR in a broad and systematic way. The exponential

growth of DNA sequencing capabilities and of informatics

for sequence analysis and annotation have opened new

avenues for a more comprehensive understanding of the

molecular epidemiology of AMR plasmids. The blaCMY-2

plasmids, encoding resistance to extended-spectrum

cephalosporins, provide a good illustration of this

evolution. Restriction analysis of plasmids has been the

workhorse of microbiologists in assessing global relation-

ships between plasmids; four to five groups of blaCMY-2

plasmids were originally identified using this approach

(Carattoli et al., 2002; Giles et al., 2004). Recently,

Carattoli and collaborators have developed new tools

for plasmid characterization and molecular epidemio-

logical analysis. They first developed an accessible PCR-

based replicon-typing system that classifies plasmids by

incompatibility group (Novick, 1987; Carattoli et al.,

2005). This system is significantly less tedious than the

classical incompatibility grouping technique (Couturier

et al., 1988). Although some plasmids remained untyp-

able by this method, these researchers showed that

blaCMY-2 plasmids belong mainly to the I1 and A/C
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incompatibility groups, which have spread between

continents (Carattoli et al., 2006; Hopkins et al., 2006).

AMR plasmids within specific incompatibility groups

present a relatively conserved backbone structure on

top of which variable accessory regions, such as AMR

genes, insert (Schluter et al., 2007). This conserved

backbone can be used to compare the evolutionary

relationships among plasmids in order to track plasmid

movement across bacterial populations, and can con-

sequently help us to better understand how mobile

accessory elements move in and out of plasmids. Plasmid

multilocus sequence typing (pMLST) (Garcia-Fernandez

et al., 2008) is one approach that makes use of the

conserved backbone mentioned above to classify

plasmids. This method may replace restriction analysis

of plasmids by providing similar but more reproducible

results (Garcia-Fernandez et al., 2008). However, it may

be less discriminatory than restriction analysis, and will

not replace entirely the notoriously tedious and difficult

sequencing of entire AMR plasmids.

Bacteriophages and AMR
Although they represent important mechanisms in the

long-term evolution of pathogens, transformation and

transduction have been considered to be not very sig-

nificant in HGT of AMR genes. Recent reports on the

transduction of multiple AMR genes from the Salmonella

genomic island 1 (SGI1) of Salmonella Typhimurium

DT104 (Schmieger and Schicklmaier, 1999) and of

the extended-spectrum cephalosporin resistance gene

blaCMY-2 of Salmonella Heidelberg (Zhang and LeJeune,

2008) suggest that bacteriophages may play a more im-

portant role than originally thought in the transfer of AMR

genes. Further studies are certainly warranted on this

subject.

Integrative conjugative elements (ICEs) and
genomic islands
Besides plasmids and bacteriophages, a number of other

mobile elements involved in transfer of AMR have

emerged in recent years, tentatively grouped under the

concept of ICE (Burrus et al., 2002). Such elements, in

contrast with plasmids, are not self-replicating but integrate

into the chromosome (with a variable site-specificity,

dependent on the element and the host bacterium) to be

stably passed from one generation to the next. They

encode both excision and integration mechanisms, as

well as transfer between bacteria by modes of conjugation

(Burrus and Waldor, 2004). Conjugative transposons,

such as the archetypal tetracycline-resistance transposon

Tn916, are the best known examples of ICEs of

importance for AMR in human and veterinary medicine

(Franke and Clewell, 1981; Rice, 1998). They are wide-

spread among Gram-positive organisms such as strepto-

cocci and enterococci but are also frequently found

in Bacteroides spp. and other anaerobes. Since their

discovery (Franke and Clewell, 1981), the list of host

species for these elements has broadened continuously,

and we now know that they can even be found

among Enterobacteriaceae (Murphy and Pembroke,

1995; Hochhut et al., 1997).

Although genomic islands were first identified in

relation to virulence (for a review, see for instance

Schmidt and Hensel, 2004), they are also important in the

spread of AMR genes. Their mode of transmission is not

entirely clear but genomic islands are thought to be

transferred by bacteriophages, and in ways similar to ICEs

(Burrus et al., 2004). Two genomic islands have become

famous for their role in the spread of AMR in the past

decades – the SGI1 and the chromosomal elements

responsible for methicillin resistance in coagulase-

positive staphylococci.

SGI1 was first discovered in relation to the interconti-

nental spread of the pentaresistant (ampicillin, chloram-

phenicol, streptomycin, sulfonamide, tetracycline or

ACSSuT) Salmonella Typhimurium phage type DT104

(Poppe et al., 1998; Threlfall, 2000). Molecular investiga-

tions later showed that the AMR genes responsible for this

resistance profile are all clustered together (Briggs

and Fratamico, 1999), and are part of a larger genomic

island of approximately 43 kilobase pairs (Boyd et al.,

2001). Several of these AMR genes (blaPSE-1 for ampicillin,

floR for chloramphenicol, aadA2 for streptomycin and

tetG for tetracycline) were not the most common ones

usually encoding resistance to these antimicrobials in

Enterobacteriaceae and their origin still remains uncer-

tain. The AMR genes of SGI1 are part of a complex

integron in which two type 1 integrons have come

together with tetracycline and florfenicol–chlorampheni-

col resistance genes of plasmid origin (Boyd et al., 2001).

SGI1 shares many features with ICEs, including the

presence of recombinase genes for excision and integra-

tion, but seem to lack the self-transfer components

of these elements. Nevertheless, in vitro experiments

have demonstrated that helper plasmids can provide

the necessary apparatus for an effective transfer of

SGI1 between bacteria (Doublet et al., 2005). As a proof

that this potential mobility is not just a laboratory

curiosity, numerous reports show that SGI1 has now

spread to many Salmonella serovars other than Typhi-

murium, integrating relatively consistently at identical

sites in the chromosome of these bacteria (Doublet

et al., 2005; Mulvey et al., 2006). In addition, numerous

variants of SGI1 have emerged through homologous

recombination and transposition events (Mulvey et al.,

2006).

The first methicillin-resistant Staphylococcus aureus

(MRSA) emerged very shortly after the introduction of

this antimicrobial in clinical practice (Jevons et al., 1963).

Methicilllin resistance in MRSA is caused by the presence

of an alternative b-lactam-insensitive penicillin-binding

protein (PBP2a) encoded by the mecA gene (Matsuhashi

et al., 1986). This gene is located within staphylococcal

cassette chromosome (SCCmec) elements, which also
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encode recombinases allowing for the excision and

integration of the cassettes downstream of a specific

locus called orfX (Katayama et al., 2000). At least seven

major types of SCC cassettes have been identified

to date in MRSAs (Deurenberg and Stobberingh, 2008).

Molecular investigations on methicillin-resistant and

-susceptible strains have demonstrated that these cassettes

have been acquired repeatedly by a variety of S. aureus

strains as well as by the same clonal lineages (Enright

et al., 2002). After this acquisition, the resulting MRSA

clones spread internationally. The exact origin of the mec

genes found in MRSA is not entirely clear, but the high

homology between a PBP of Staphylococcus sciuri and

PBP2a suggests that they may have originated in this

organism (Wu et al., 2001). Other studies suggest that

the assembling of the SCC, including the amalgamation

of the mec genes with the crr recombinase genes, may

have taken place in coagulase-negative staphylococci

(Hanssen and Ericson Sollid, 2006). SCCmec similar to

those of MRSA have also been demonstrated in coagulase-

negative staphylococci such as Staphylococcus epidermi-

dis, and these organisms are considered by some as a

reservoir of SCCs (Wisplinghoff et al., 2003; Hanssen

and Ericson Sollid, 2006). After the first emergence of

hospital-associated MRSA, community-acquired MRSA

emerged (for a review, see for instance Boucher et al.,

2008), and we now face the emergence of MRSA in

animals. They were first detected in horses (Weese, 2004)

and companion animals (Weese, 2005), but recent

findings suggest that they may be even more widespread

in swine (de Neeling et al., 2007). Interestingly, whereas

MRSA strains found in pets are similar to strains prevalent

in humans, those from horses seem to be less frequent

in humans. The emerging strains from swine seem to

belong to a new clone previously absent in humans,

although it is now found in populations at risk such as

veterinarians and pig farmers (Huijsdens et al., 2006; van

Loo et al., 2007; Khanna et al., 2008). SCCmec have spread

to coagulase-positive staphylococci other than S. aureus,

and can now also be found in the mainly animal-

associated Staphylococcus pseudintermedius (formerly

called Staphylococcus intermedius) (Bannoehr et al.,

2007; Loeffler et al., 2007; Zubeir et al., 2007; Griffeth

et al., 2008).

The global picture

The interplay of mutations and HGT

Whether originally by mutation or HGT, the impact of

resistance on human and animal health is, at least in part,

a function of the spread of that resistance across bacterial

populations. If selection pressure is sustained and a

mutation event is simple, de novo mutation in pathogens

can occur many times over, as is the case in the response

of Campylobacter to fluoroquinolone selection pressure

(Zhang et al., 2003). If selection pressure is sustained, and

the mutation or assembly of resistance elements complex,

the key to the human or animal health impact may lie

mainly in clonal spread, as was the case for the global

dissemination of the ACSSuT penta-resistance cassette,

originally associated primarily with Salmonella Typhi-

murium DT104 (Threlfall, 2000). In other scenarios, the

key to global dissemination may be the ease of HGT

between bacterial strains or species, e.g. the spread of

blaCMY-2 in Salmonella and other Enterobacteriacea. The

recent example of the withdrawal of ceftiofur use in

broiler hatching eggs in Québec Canada and subsequent

changes in the prevalence of extended-spectrum cepha-

losporin resistance in human and chicken Salmonella,

and chicken E. coli (Government of Canada, 2007; Irwin

et al., 2008) provides population evidence of both clonal

and horizontal spread, i.e. the gene is present in different

species of Enterobacteriacea (likely horizontal spread)

but also widespread in Salmonella Heidelberg recovered

from chickens and humans (likely clonal spread). The

blaCMY-2 gene was first identified in Klebsiella in Greece

before spreading to other pathogens and commensals

(Bauernfeind et al., 1996). There is similar evidence of

both clonal and horizontal dissemination in the spread of

the blaCTX-M gene around the world (Cantón and Coque,

2006; Liu et al., 2007; Machado et al., 2008).

The relevance of the distinction between clonal
spread and HGT

From a public/animal health perspective, and since both

mechanisms are ultimately involved in the spread of AMR,

it is unclear if there is relevance to the distinction between

clonal spread and HGT in the spread of AMR. Although

this distinction helps to refine our understanding of the

epidemiology or resistance in specific situations, for many

purposes, AMR epidemiology could be regarded on a

global scale without any regard to its mode of transfer and

with more attention to the potential routes of spread

(Fig. 2). Clonal spread may be more rapid and driven by

specific selection pressures, many unclear and not always

related to antimicrobial use only. Clonal extinctions and

replacements may also take place. These could possibly

be driven by interventions directed at specific serotypes,

including, in the case of resistant clones, modification to

antimicrobial selection pressure, or the vagaries of clonal

biology (e.g. the subsidence of Salmonella Typhimurium

DTs 29 and 204, the apparent current subsidence of

DT104, the reasons for which remain unclear (Threlfall,

2000, 2008)). HGT is potentially more sustained and

overall less erratic, as genes or genetic elements shift on

an apparent regular basis between bacteria occupying

overlapping but different ecological niches. The transfer

of individual genes and genetic elements becomes

particularly important if the traffic between non-pathogen

resistance gene reservoir (e.g. commensal E. coli) and
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pathogens (e.g. Salmonella, Shigella and Klebsiella) is

happening on anything more than an occasional basis.

Commensals as a reservoir

The reservoirs of AMR genes may be thought of in two

categories – one being commensal microflora, primarily

of the gastrointestinal tract of humans and animals

(Salyers et al., 2004), but including other non-sterile body

systems. There are well-documented examples of in vitro

and in vivo transfer between commensals and pathogens

in gastrointestinal tracts and food matrices (Zhao et al.,

2001; Poppe et al., 2005; Walsh et al., 2008). This

reservoir, the development and maintenance of resistance

in it, and subsequent transfer to pathogens are thought by

many to be a more global threat to health than direct

selection pressure on the pathogens themselves, i.e. the

occasional de novo development of resistance in a

pathogen may be less frequent and less impactful than

the constant traffic from the vast commensal reservoir into

the relatively small pathogen pool. Understanding the

human and animal health impact of gene traffic between

this reservoir and pathogens is, however, blurred and

complicated by the fact that the distinction between

commensal and pathogen is artificial in several regards:

what is a commensal to one host species can be a

pathogen to another (e.g. Campylobacter in pigs and

humans); what is commensal to an individual host can be

an opportunistic pathogen to another (e.g. S. aureus,

Enterococcus; Top et al., 2008); and what is commensal

in one body system may be pathogenic in another

(e.g. extraintestinal pathogenic E. coli (ExPEC) are

commensal in the gastrointestinal tract and pathogenic

in the urinary tract or bloodstream; they may also be an

example of the spread among food animals, companion

animals, and humans (see Smith et al., 2007, for a review

of ExPEC).

Environmental reservoir

The other major reservoir of AMR determinants is the

environmental and soil microbiota; most, if not all,

transferrable AMR genes in pathogens and commensals

arose in, and were transferred from, environmental
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bacteria (D’Costa et al., 2007). The extent to which

these transfers happen on a regular basis, as opposed to

being isolated events in microbial evolution, is unclear.

However, in the modern era of antimicrobial use,

there may be an artificial selection pressure for this

transfer, not to mention disruption of natural microbial

ecosystems, under the influence of environmental anti-

microbial residues in the breeding grounds represented

by sewage, and farm and aquacultural effluent

(Kostich and Lazorchak, 2008).

The pathways of resistance transmission
(‘The Confusogram’)

The traffic of genes and genetic elements, and of resistant

commensal and pathogenic bacteria between different

hosts and ecological niches is complex (Fig. 2). Evidence

for these potential pathways is global, and evidentiary

examples for most pathways can be found in data from

many countries. However, the evidence for each pathway

is often incomplete, demonstrating plausibility for a

portion of the pathway rather than fully illuminating

the entire ‘farm to fork’ pathway for example. The

primary focus in the study of the movement, or potential

for movement, of bacteria and resistance genes between

different ecological niches has been on the direct routes

of transmission of human health concern: between

human populations directly in the community or in

health care settings, and indirectly through food, the

environment, particularly in health care settings, and

shared fomites; and from food animals to humans,

directly or through the food chain via meat, milk and

dairy products, eggs, and sea food (see, for example,

Smith et al., 1999; White et al., 2001; Huijsdens et al.,

2006; Adesiyun et al., 2007; Klevens et al., 2007; Khanna

et al., 2008; Machado et al., 2008). The global nature of

the evidence for these pathways is particularly important

in the context of international travel, animal movement

and food trade. There is also evidence for the potential

spread through other routes: between food animals

directly or via human intermediaries such as veterinarians

and farmers; between companion animals and people;

between horses and humans; from food animals to

companion animals directly or via the food chain; via

wildlife, zoo animals, insects, pet rodents and aquarium

fish; from food animals to water and soil; from humans to

water and soil; from aquaculture to water; via contami-

nated fruits and vegetables; and via animal feed (see, for

example, Österblad et al., 2001; Petersen et al., 2002;

Sengeløv et al., 2003; Weese, 2004; Dargatz et al., 2005;

Anderson et al., 2008; Lefebvre et al., 2008; Macovei et al.,

2008; Yoke-Kqueen et al., 2008). Because the epidemi-

ology of AMR is so complex, it is unlikely that

a comprehensive integrative understanding is possible,

i.e. our understanding may always be limited to

specific segments of the epidemiology of AMR – the role

of a certain genetic element, the effect of particular

risk factors, the likelihood of infection with resistant

organism given exposure to a given food, etc. The issue at

the global level has been likened by some to climate

change because of this complexity, the cumulative and

synergistic effects of various causative elements, the

separation of cause and effect by intervening variables,

and the interplay between effects of natural and human

origin. As with climate change, interventions (e.g.

antimicrobial use bans, restricted labeling, voluntary

cessation of specific antimicrobial uses, clinical practice

guidelines, infection control and biosecurity practices,

development of vaccines and alternatives to antimicro-

bials, education and behavior modification programs,

etc.) targeted at identifiable issues or through specific

mechanisms may have an important and, in some

cases, measurable impact (e.g. the withdrawal of fluoro-

quinolones from use in poultry in the US (Nelson

et al., 2007), the growth promoter ban in Sweden,

Denmark and then the European Union (Aaerstrup

et al., 2001), the voluntary cessation of ceftiofur use in

broiler hatching eggs in Québec Canada (Irwin et al.,

2008)), but, ultimately, the greater value of such

interventions may be in effecting an incremental long-

term shift in the attitude of physicians, veterinarians and

other health care providers, food animal producers and

the general public toward the prudent use and conserva-

tion of antimicrobials.

Conclusion

Refinements in our understanding of AMR emergence and

transfer may help develop strategies to better control

AMR. Simultaneously, new molecular tools for tracing

genes and their carriers will also support both control

strategies and monitoring. However, given the complexity

of the transmission routes, the unexploited reservoirs of

new AMR genes and of mobile elements present in the

environment, it is unlikely that a magic bullet will ever

solve our fight against AMR. Prudent use of antimicrobials

can be refined continuously using the new information

and tools, and will always remain the cornerstone of our

strategy to protect the efficacy of both old and new

antimicrobials.
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Irwin R, Dutil L, Doré K, Finley R, Ng LK and Avery B (2008).
Salmonella Heidelberg: ceftiofur-related resistance in
human and retail chicken isolates in Canada (Speaker
Abstract S5:2). Proceedings of the American Society of
Microbiology Conference: Antimicrobial Resistance in
Zoonotic Bacteria and Foodborne Pathogens. June 15–18,
2008, Copenhagen, Denmark. American Society for Micro-
biology, Washington DC, p. 16.

Jevons MP, Coe AW and Parker MT (1963). Methicillin resistance
in staphylococci. Lancet 1: 904–907.

Katayama Y, Ito T and Hiramatsu K (2000). A new class of
genetic element, staphylococcus cassette chromosome
mec, encodes methicillin resistance in Staphylococcus
aureus. Antimicrobial Agents and Chemotherapy 44:
1549–1555.

Khanna T, Friendship R, Dewey C and Weese JS (2008).
Methicillin resistant Staphylococcus aureus colonization in
pigs and pig farmers. Veterinary Microbiology 128: 298–
303.

Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S,
Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS,
Zell ER, Fosheim GE, McDougal LK, Carey RB and Fridkin
SK (2007). Invasive methicillin-resistant Staphylococcus
aureus infections in the United States. Journal of the
American Medical Association 298: 1763–1771.

Komp Lindgren P, Karlsson A and Hughes D (2003). Mutation
rate and evolution of fluoroquinolone resistance in
Escherichia coli isolates from patients with urinary tract
infections. Antimicrobial Agents and Chemotherapy 47:
3222–3232.

Kostich MS and Lazorchak JM (2008). Risk to aquatic organisms
posed by human pharmaceutical use. Science of the Total
Environment 389: 329–339.

LeClerc JE, Li B, Payne WL and Cebula TA (1996). High mutation
frequencies among Escherichia coli and Salmonella patho-
gens. Science 274: 1208–1211.

Lefebvre SL, Reid-Smith R and Weese JS (2008). Evaluation of the
risks of shedding salmonellae and other potential patho-
gens by therapy dogs fed raw diets in Ontario and Alberta.
Zoonoses and Public Health 55: 470–480.

Levy DD, Sharma B and Cebula TA (2004). Single-nucleotide
polymorphism mutation spectra and resistance to quino-
lones in Salmonella enterica serovar Enteritidis with a

124 P. Boerlin and R. J. Reid-Smith

https://doi.org/10.1017/S146625230800159X Published online by Cambridge University Press

https://doi.org/10.1017/S146625230800159X


mutator phenotype. Antimicrobial Agents and Chemother-
apy 48: 2355–2363.

Liebert CA, Hall RM and Summers AO (1999). Transposon Tn21,
flagship of the floating genome. Microbiology and Mole-
cular Biology Reviews 63: 507–522.

Linares JF, Gustafsson I, Baquero F and Martinez JL (2006).
Antibiotics as intermicrobial signaling agents instead of
weapons. Proceedings of the National Academy of Sciences
of the United States of America 103: 19484–19489.

Linton AH (1977). Antibiotic resistance: the present situation
reviewed. Veterinary Record 100: 354–360.

Liu J-H, Wei S-Y, Ma J-Y, Zeng Z-L, Lü D-H, Yang G-X and Chen
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