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This work aims to investigate experimentally the effect of the Reynolds number Re, based
on the nozzle diameter D, on jet mixing manipulation using an unsteady radial minijet.
A novel artificial intelligence (AI) control system has been developed to manipulate the
jet over Re = 5800–40 000. The system may optimize simultaneously the control law and
a time-independent parameter, which dictate the actuation ON/OFF states and amplitude,
respectively. The control parameters include the mass flow rate, excitation frequency and
diameter ratios (Cm, fe/f 0 and d/D) of the minijet to the main jet as well as the duty cycle
(α) of minijet injection. Jet mixing is quantified using Ke and K0, where K is the decay
rate of the jet centreline mean velocity, and subscripts e and 0 denote the manipulated
and unforced jets, respectively. It has been found that the maximum Ke achievable does
not vary with Re. Scaling analysis of the huge volume of experimental data obtained
from the AI system reveals that the relationship Ke = g1 (Cm, fe/f 0, α, d/D, Re, K0) may
be reduced to Ke/K0 = g2 (ζ ), where g1 and g2 are different functions and the scaling
factor ζ = (Cm/α)(D/d)1−n(1/Re)(fe/fe,opt)

m, m and 1 − n are the power indices, and
subscript opt denotes the value at which Ke is maximum. The scaling law is discussed
in detail, along with the physical meanings of the dimensionless parameters Ke/K0, ζ ,
(Cm/α)(D/d)1−n(1/Re) and (fe/fe,opt)

m.
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1. Introduction

As one of classical shear flows, the turbulent jet has been extensively studied in the past
due to its vast range of applications in, e.g. aero and automobile engines, combustion,
heat transfer and chemical reactors. Therefore, it is of both fundamental and practical
significance to investigate how to manipulate a turbulent jet to achieve the desired
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entrainment and mixing. Recent review articles by Reynolds et al. (2003), Knowles &
Saddington (2006) and Henderson (2010) provide excellent compendiums for published
papers on jet control.

Jet control can be passive and active. The former requires no power input, such as
changing the geometric shape of nozzles (Mi & Nathan 2010), which is efficient and
reliable. The latter, such as speaker- or plasma-based and fluidic control (e.g. Arbey &
Williams 1984; Samimy et al. 2007; Yang & Zhou 2016), needs additional power input
but may achieve more flexible and drastic flow modifications than the former (Perumal
& Rathakrishnan 2022). Active methods are further divided into open- and closed-loop
control, depending on whether sensor signals are used to drive actuation. Closed-loop
control provides an opportunity to achieve a better performance than open-loop techniques.
As such, various closed-loop control schemes have been developed for diversified
applications, such as suppressing vortex shedding in wakes (Zhang, Cheng & Zhou 2004;
Beaudoin et al. 2006; Pastoor et al. 2008), flow separation control (Gautier & Aider
2013) and jet mixing enhancement (Wu et al. 2016). Based on the time scale of the
control loop and whether a model is required in a closed-loop system, Brunton & Noack
(2015) classified the most used closed-loop systems into three categories: (i) stabilizing
laminar flow, (ii) adaptive control of turbulence and (iii) model-free tuning of control
laws. Category (i) is an in-time closed-loop control, usually based on white-box, grey-box
or black-box model (Kim & Bewley 2007), where the ‘in-time’ means the time scale of
the actuation response is much smaller than that of a natural flow. The white-box model,
such as the direct solutions to Navier–Stokes equations, may resolve all flow features,
while the grey-box model, e.g. the proper orthogonal decomposition model, captures
merely limited flow features. Some successful applications of using a reduced-order model
for the in-time control of fluid systems can be found in Noack, Morzynski & Tadmor
(2011). The black-box model (e.g. transfer functions) only represents the input–output
relationship. Category (ii) is based on the steady-state system response, and can be used
only to optimize the given design of control laws in a slow manner as compared with the
time scale of physical processes (Brunton & Noack 2015), e.g. extremum-seeking and
slope-seeking control (Beaudoin et al. 2006). Category (iii) may realize rapid in-time
control but needs a thorough understanding of the flow physics; examples include the
proportional–integral–derivative (Zhang et al. 2004) and opposition control (Choi, Moin
& Kim 1994) methods. However, a fluid system such as turbulent jet mixing enhancement
involves a large range of temporal and spatial scales with complex nonlinear interactions.
This makes model-based control difficult to implement. These challenges motivate the
search for model-free control laws using machine learning methods, such as artificial
neural networks and genetic programming (GP).

GP was developed in the 1990s and was rediscovered in fluid mechanics as machine
learning control (MLC) by Gautier et al. (2015). Recently, the MLC method has been
applied in numerous experiments and numerical simulations for control law optimization
(Noack 2018). For example, MLC shows an extraordinary ability to find the optimal
control law when deployed to enhance turbulent jet mixing using six independent unsteady
minijets (Zhou et al. 2020). In the experimental systems of MLC developed so far,
however, the discovered control law either regulates slowly, often less than 2 Hz, the
actuation strength (Gautier et al. 2015) or determines rapidly only the ON/OFF states
of actuators, with the actuation strength or amplitude and the Reynolds number Re fixed
(e.g. Li et al. 2017; Wu et al. 2018a). Given varying flow conditions such as changing
Re, the actuation strength may need to be optimized as well in order to obtain the best
control performance. Then one issue naturally arises. Can we develop an MLC or artificial
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intelligence (AI) control system that may optimize both actuation states and strength
simultaneously? Furthermore, an AI control system may produce hundreds or thousands
of control laws (e.g. Zhou et al. 2020) and accordingly a huge amount of data where all the
control variables, along with the cost function or control goal, are physically connected.
Can we extract an in-depth physical insight into the underlying control mechanism and
inter-connection between the control variables based on a careful analysis of the data?

The effect of Re on an unforced jet has been investigated by e.g. Ricou & Spalding
(1961), Panchapakesan & Lumley (1993), Hussein, Capp & George (1994) and Mi, Xu
& Zhou (2013). These investigations unveiled that the centreline velocity, jet decay, ratio
of mass entrainment to the mass flow rate at the jet exit and mean velocity profiles are
independent of Re for 10 000 ≤ Re ≤ 20 000. There have also been several studies on the
Re effect of jet control. For example, Parekh, Leonard & Reynolds (1988) studied a jet
controlled by an axial acoustic actuator at one end of the upstream plenum chamber and 4
equidistantly placed radial acoustic actuators around the nozzle exit with phases of 0°, 90°,
180° and 270° at Re from 104 to 105. The bifurcating jet could be produced at a frequency
ratio between the axial and radial excitations of 2, and the excitation amplitude required
to produce bifurcating jets was found to increase with Re. Wu, Wong & Zhou (2018b)
manipulated a turbulent round jet based on single-frequency radial fluidic injection using
a dual-input–single-output extremum-seeking technique. With the actuation frequency and
mass flow rate ratio optimized simultaneously, the maximum jet entrainment/mixing rate
was found to be unchanged from Re = 5700 to 13 300. The same conclusion was reached
when this technique was further extended to three control parameters, with the duty cycle
α of an unsteady minijet simultaneously optimized, by Fan et al. (2020). However, there
is a lack of information on the dependence on Re of the inter-relationship between the jet
entrainment or mixing rate and the control parameters. The possible important impact of
Re on the control performance has yet to be thoroughly documented in the literature.

Unsteady fluidic injection may have a number of control parameters, including the mass
flow rate, excitation frequency and diameter ratios, Cm, fe/f 0 and d/D, of minijet to main jet
as well as the duty cycle α of minijet injection, where f 0 is the preferred-mode frequency of
an unforced main jet. Perumal & Zhou (2018) conducted an empirical scaling analysis on
a jet manipulated by single unsteady minijet at Re = 8000. Their study reveals that the jet
centreline mean velocity decay rate Ke = f 1 (Cm, d/D, α) may be reduced to Ke = f 2 (ξ ) and
the scaling factor ξ = (

√
MR/α)(d/D)n, where f 1 and f 2 are different functions,

√
MR =

Cm(D/d) is physically the effective momentum ratio per pulse and n is a function of α.
Here MR is the momentum ratio of the minijet to the main jet. However, Re and fe/f 0 have
not been considered in this scaling law. A variation in Re may influence jet mixing (e.g.
New, Lim & Luo 2006; Mi et al. 2013) and hence the centreline mean velocity decay rate
K0 for an unforced jet. As such, under manipulation, Ke may also depend on K0 given a
varying Re. One important question naturally arises: Can we find a physically meaningful
scaling factor ζ so that Ke = g1 (Cm, fe/f 0, α, d/D, Re, K0) may be reduced to Ke = g2 (ζ )?
Such a scaling factor ζ is of great significance, and may be used to design unsteady fluidic
injectors for full-scale practical applications (Wickersham 2007).

This work aims to address the issues raised above. An extended AI control system,
termed a hybrid AI control system hereinafter, is developed to manipulate a turbulent jet
based on a pulsed minijet, with a view to maximizing its mixing. The system is capable
of searching simultaneously a near-optimal control law and a time-independent parameter
in spite of a variation in Re. The Re effect on control performance and the optimal control
parameters are investigated over Re = 5800–40 000, covering the regimes of Re < Recr and
Re ≥ Recr to document the effect of Re on jet mixing, where Recr is the critical Reynolds
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Figure 1. (a) Schematic of experimental set-up; (b) sketch of principle of the hybrid AI system.

number, ∼10 000, at which turbulent ‘mixing transition’ starts (Mi et al. 2013). A scaling
analysis is then performed based on the massive data produced from the AI system. The
manuscript is organized as follows. Section 2 describes the experimental set-up. Section 3
introduces the hybrid AI system. The Re effect on control performance is presented in § 4.
A scaling law is extracted from experimental data in § 5, along with a detailed discussion
of involved dimensionless parameters. This work is concluded in § 6.

2. Experimental details and unforced jet

2.1. Jet facility and actuator system
The jet rig to produce an axisymmetric main jet, along with the assembly to generate a
pulsed minijet, is the same as used in Wu et al. (2018a) and is briefly introduced here.
As shown in figure 1(a), the nozzle is extended with a 47 mm long smooth tube with
the same inner diameter D = 20 mm as the nozzle exit. A radial pinhole of diameter d
is made 17 mm upstream of the main jet exit. Two pinhole diameters, i.e. 0.5 mm and
1.0 mm, are chosen, resulting in d/D = 1/20 and 1/40, respectively. Seven different
Reynolds numbers Re ≡ ŪjD/ν, varying from 5800 to 40 000, are examined, where Uj
is the velocity measured at the centre of the jet exit (x* = 0.05), the overbar denotes time
averaging and ν is the kinematic viscosity of air. In this paper, an asterisk superscript
denotes normalization by D or/and Ūj. The coordinate system (x, y, z) is defined in
figure 1(a), with its origin at the centre of the jet exit.
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The mass flow rate of the minijet through the pinhole is measured using a mass flow
controller (FLOWMETHOD FL-802) with a measurement range of 0–7 l min−1, whose
experimental uncertainty is no more than 1 %. The duty cycle and frequency of the minijet
injection are controlled using an electromagnetic valve that is operated on an ON/OFF
mode with a maximum operating frequency of 500 Hz.

2.2. Flow measurement and control instruments
The instantaneous velocity in the jet is measured using a single hot-wire. The sensor is a
1 mm long tungsten wire of 5 μm diameter operated, at an overheat ratio of 1.8,
on a constant temperature mode (Dantec Streamline). The hot-wire is mounted on a
three-dimensional traverse system to measure the jet centreline velocities, Uj and U5D,0, at
the jet exit and 5D downstream, respectively, without control and also U5D,e under control.
The output signal is offset, amplified and filtered by a low-pass filter at a cutoff frequency
of 500 Hz before being digitized at a sampling frequency FRT of 10 kHz. The hot-wire
is calibrated at the jet exit using a Pitot tube and a micromanometer (Furness Controls
FCO510). The experimental uncertainty in measured Ūj, Ū5D,e or Ū5D,0 is estimated to be
within 2 %.

The real-time control is implemented via a National Instrument PXI system, which
consists of a chassis, a multi-function I/O Device (PXIe-6356) and a controller
(PXIe-8821). A LabVIEW Real-Time module is used for digitizing the analogue signal
and providing control commands for the mass flow controller and electromagnetic valve
at a loop time of 100 μs (FRT = 10 kHz). The same sampling rate is used for the velocity
data acquisition and control command generation. As discussed in Wu et al (2018a), the
available duty cycles α are determined by FRT and periodic excitation frequencies fe.
For instance, there are 48 possible α values available for use given FRT = 10 kHz and
fe = 200 Hz.

2.3. Unforced jet characteristics
In the absence of control, Ū∗ exhibits a ‘top-hat’ profile (figure 2a) and the corresponding
root-mean-squared (r.m.s.) velocity u∗

rms is less than 0.06 (figure 2b) at Re = 20 000. Both
Ū∗ and u∗

rms collapse reasonably well with Mi et al.’s (2013) data at Re = 20 100. The
displacement thickness δ and momentum thickness θ estimated from the velocity profile
are 0.57 mm and 0.21 mm, respectively, at the nozzle exit for Re = 8000 (Perumal & Zhou
2021), which are very close to their counterparts (0.56 mm and 0.24 mm) measured at
approximately the same Re (=8050) by Mi et al (2013). The shape factor H = δ/θ is 2.71,
slightly higher than the Blasius flat plate value (H = 2.59), suggesting that the boundary
layer at the nozzle exit is close to laminar. With increasing Re, both δ and θ decrease, as
noted by Mi et al. (2013), and H drops to 2.49 and 2.41 for Re = 13 300 and 20 000,
respectively, suggesting a turbulent boundary layer at the nozzle exit. The streamwise
variations of Ū∗ and u∗

rms also agree with each other between the two studies (figure 2c,d).
The flow visualization images for an unforced jet at various Re are presented in figure 3.

At Re = 5800 and 8000 (figure 3a,b), the quasi-periodical ring vortices exhibit laminar
features during the initial rollup process and then gradually transition to turbulence. Once
Re exceeds 10 000 (figure 3c,d), the vortices appear to be turbulent from the beginning
and the jet spreads out more rapidly than Re < 10 000. This is also supported by the
streamwise fluctuating velocity signals U* measured along the jet axis for the natural jet at
Re = 8000–20 000 (figure 4). The flow is clearly laminar near the nozzle exit (x* ≤ 3.0) at
Re = 8000 but displays random fluctuations, a feature of turbulence, starting from Re = 10
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Figure 2. (a,b) Radial distributions of Ū∗ and u∗
rms measured at x* = 0.05 in the (x–y) plane and (c,d)

streamwise variations of centreline mean and r.m.s. velocities for Re = 20 000. Mi et al. (2013) is included
for comparison.
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Figure 3. Flow visualization of unforced jet in the (x–y) plane for (a) Re = 5800, (b) 8000, (c) 10 600 and
(d) 13 300.

600 and becoming more evident at Re = 20 000. Mi et al.’s (2013) extensive hot-wire
measurements over Re = 4000–20 000 indicated that the mean flow decay rate and spread
vary with Re given Re < 10 000 and tend to become Re-independent for Re > 10 000.
Furthermore, the small-scale turbulence properties, such as the mean dissipation rate of
kinetic energy and the Kolmogorov and Taylor microscales, vary differently between the
two Re ranges. It seems plausible from both the present and Mi et al.’s measurements
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Figure 4. Typical signals of instantaneous streamwise U* measured along jet centreline (y* and z* = 0) for
the natural jet at Re = 8000–20 000. The same scale is applied for all signals.

that Re = 10 000 is a critical Reynolds number across which the jet turbulence behaves
distinctly.

The power spectral density functions of streamwise velocity U measured along the
centreline for x* = 2–6 show a pronounced peak at f 0 = 100–680 Hz for Re = 5800–
40 000, as shown by Fan et al. (2017) for Re = 8000–16 000, suggesting the occurrence
of the preferred-mode structures. The corresponding Strouhal number St(≡f0D/Ūj) varies
between 0.45 and 0.50, falling in the range of 0.24–0.64 for a natural jet (Crow &
Champagne 1971). The unforced jet develops slowly at x* ≤ 5, and the Re-related variation
of jet centreline mean velocity is small, within 2.5 %, for 4050 ≤ Re ≤ 20 100 (Mi et al.
2013).

2.4. Evaluation of jet decay rate and mixing
Following Zhou et al. (2012) and Perumal & Zhou (2018), the decay rate Ke of the jet
centreline mean velocity is used to evaluate jet entrainment rate, defined by

Ke = Ūj − Ū5D,e

Ūj
, (2.1)

where Ū5D and Ūj denote the jet centreline mean velocities at x* = 5 and x* ≈ 0,
respectively. This quantity may also provide a measure for the mixing efficacy of the jet
based on the following considerations. Firstly, as documented by Fan et al. (2017), the
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Figure 5. Normalized streamwise mean velocities measured along the y axis at different axial locations for
Cm = 5.0 %, fe/f 0 = 0.5, α = 0.1 and d/D = 1/20 at Re = 13 300.

difference �K between the Ke values with and without control reaches a maximum at
x* ≈ 5 (their figure 7), that is, Ke estimated based on the streamwise velocity measured at
x* = 5 is most sensitive to control. Secondly, Ke is correlated with both the jet half-width
and potential core length. Zhou et al. (2012) demonstrated that Ke is related approximately
linearly to an equivalent jet half-width Req = [RHRV ]1/2, where RH and RV are the jet
half-widths in two orthogonal planes, that is, Ke is directly connected to the entrainment
rate of the manipulated jet. Furthermore, an increase in Ke corresponds to a decrease in
the potential core length of the jet (Perumal & Zhou 2018), implying that Ke may provide
a measure for jet mixing. Finally, this one-point criterion for jet mixing has also been
used by other researchers (e.g. Breidenthal et al. 1985; Wickersham 2007). Breidenthal
et al. (1985) used an aspirating probe to measure the concentration fluctuation c of two
mixing streams, i.e. a rectangular duct flow and a transverse jet, and noted that the decay
rate of the r.m.s. value crms of c was almost linearly related to the momentum ratio of
the transverse jet to the rectangular duct flow. This relationship persisted over x* = 1 ∼ 10
(see their figure 5). As such, they used the single decay rate of crms, measured at x* = 8.9,
to characterize the mixing of the two streams and argued that this decay rate provided a
measure for the mixing efficacy of turbulence.

The main jet may deflect when manipulated asymmetrically using a single minijet.
One question naturally arises as to whether the jet decay rate may be estimated correctly
from the centreline mean velocities. Perumal & Zhou (2018) manipulated a round jet at
Re = 8000 using a single minijet injection and presented the normalized mean velocity
profiles in two orthogonal planes (see their figure 6) for the manipulated jet at Cm = 1.0 %,
fe/f 0 = 0.5, α = 0.1 and d/D = 1/20. The manipulated jet exhibited a reasonable symmetry
about the geometric centre (y* = 0 or z* = 0), showing a slight deviation in the location of
the maximum velocity from this centre and causing an error of no more than 1 % in Ke.
This deviation apparently depends on Cm which is presently up to 5.0 %. As such, figure 5
presents the normalized streamwise mean velocities measured along the injection direction
(y axis) at different axial locations for Cm = 5.0 %, fe/f 0 = 0.5, α = 0.1 and d/D = 1/20
(Re = 13 300). Evidently, the difference between the maximum velocity and the velocity at
the geometric centre is very small, resulting in an error of no more than 1 % in Ke at x* = 3.
This difference diminishes with increasing x*. It may be concluded that the effect of the jet
defection, due to a single minijet injection, is negligibly small in the present experimental
conditions. Note that this difference may grow appreciably for a quasi-steady control, i.e.
at large α and fe/f 0, when the jet column deflects away from the geometric centreline,
producing an increased artificial mixing (Perumal & Zhou 2018).
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corresponding to the benchmark of an unforced jet. The open square symbol denotes the best individual for each
generation. (b,c) Evolution of the control parameters, associated with the best individual in each generation,
and the corresponding Ke: (b) Re = 8000, (c) 20 000.

3. Controller design: hybrid AI system

Following our previous work (Wu et al. 2018a; Zhou et al. 2020), the cost function J is
defined as Ū5D,e normalized with Ūj

J = Ū5D,e

Ūj
= 1 − Ke. (3.1)

Apparently, minimizing J is equivalent to maximizing Ke.
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Figure 7. The optimum control parameters obtained at different Re from AI control. The open symbols
correspond to the data obtained at a fixed Cm = 1.2 %.

The major difference between the presently developed hybrid AI and previously reported
AI/MLC systems (e.g. Parezanović et al. 2015; Li et al. 2017; Wu et al. 2018a; Zhou et al.
2020) is that the latter searches only for the control laws, while the former optimizes an
independent control parameter (Cm), along with the control laws. The GP-based systems,
developed by Wu et al. (2018a) and Zhou et al. (2020), may work on a multi-frequency
forcing mode and/or a sensor-based feedback mode. The former, characterized by α, fe
and a number of distinct frequencies in the control law, is found to overwhelm the latter in
performance. As such, only is the former presently examined, and the control law assumes
following form:

b(t) = B(h(t), k), (3.2)

where B is a vector consisting of functions generating actuation commands, argument k is
a set of random constants and h(t) is a set of input harmonic functions of time t, viz.

h(t) = [h1h2 . . . h11]T , hi = cos(2πfit), i = 1, 2, . . . , 11. (3.3)

The choice of eleven harmonic functions follows Wu et al. (2018a). Here, B can be
linear, quadratic or any other nonlinear function, and a large range of frequencies can be
generated in the control signals. The control law in previously reported AI systems yields
in general a time-variant binary signal for multi-frequency forcing (e.g. Li et al. 2017;
Wu et al. 2018a; Zhou et al. 2020), with a fixed actuation strength (Cm). Yet, it may be
desirable to optimize, other than the control law, a time-independent parameter, say Cm, to
maintain the best control performance with varying flow conditions, such as Re. Note that
a genetic algorithm (GA) works only on a population of constants and is thus suited for
optimizing the parameters, such as Cm, of a preset open-loop control law (e.g. Qiao et al.
2021; Yu et al. 2022), while GP works on a population of hierarchical computer programs
of varying sizes and shapes (Koza 1990), which may cover the open-loop control laws
of different forms (such as single- or multi-frequency forcing laws) or the function of
real-time feedback/feedforward sensor signals in a closed-loop system. As such, the latter
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is characterized by a larger search space than GA and often outperforms the former, as
illustrated by Li et al. (2017) for reducing the drag of a car model. We may modify GP
by replacing the time-dependent functions with time-independent functions in order to
optimize the time-independent parameters, as a GA does. Combining this modified GP
with a ‘conventional’ GP forms a so-called hybrid AI system, which may optimize not
only the parameters of a preset open-loop control law but also the control laws, be they
open or closed loop.

Figure 1(b) presents a schematic for the hybrid AI control, where the control law b(t)
contains two independent actuation commands, i.e. time-dependent binary signal b1(t) and
time-independent parameter b2, viz.

b(t) = [b1(t), b2]T = [B(h(t), k), B(k)]T . (3.4)

Control law b1(t) is in the form of a Heaviside function H to drive the electro-magnetic
valve, producing and varying multiple excitation frequencies ( fe) and duty cycle (α), while
b2 is a function of 17 random constants ranging from −1 to 1, and dictates Cm. The ensuing
actuation produces a pulsed minijet whose maximum velocity is proportional to Cm and
1/α before the minijet is choked (Perumal & Zhou 2018).

The optimization process is the same as in Wu et al. (2018a) and Zhou et al. (2020).
Briefly, linear genetic programming (LGP) acts as a regression solver to search for a law
in the form of (3.4) that minimizes the cost function J involving four major components:
(i) creating a population of Ni = 100 control laws, (ii) evaluating the performance of each
control law, (iii) checking whether the minimum J is converged and (iv) evolving to the
next generation where 100 new control laws are generated based on the performance of the
previous generation. Please refer to Li et al. (2017) for a detailed description of LGP.

4. Reynolds number effect on control performance

The robustness of the hybrid AI control is examined by performing experiments with Re
varying from 5800 to 40 000. Figure 6(a) shows the learning curves of the AI control
at Re = 8000 and 20 000, where a colour bar consists of the costs J corresponding to
the 100 control laws of each generation. The square symbol marks the first and best
cost of this generation and the remaining costs grow monotonically with their indices.
The curve formed by the square symbols unveils the best performance from generation 1
to 7. The parameters associated with the best control law in each generation vary with
increasing generation number G; so does the corresponding Ke (figure 6b). The fe/f 0
of the best performing individual converges to 0.52 at G = 2. The effective excitation
at the subharmonic of f 0 has been previously reported by e.g. Freund & Moin (2000)
and Wu et al. (2018a). With G increasing from 1 to 6, Cm and α gradually decline
from 2.0 % and 50 % to 1.2 % and 7 %, respectively, the resulting Ke grows from 0.40
to 0.51. Interestingly, the ratio Cm/α correlates well with Ke; in general, a larger Cm/α
leads to a higher Ke. The converged fe/f 0, α and Cm are almost identical to those found
from the conventional GP-based AI control (Wu et al. 2018a) where the optimal Cm is
predetermined from conventional open-loop control with fe/f 0 and α fixed at 0.5 and 0.15,
respectively. This comparison demonstrates that the present hybrid AI system is capable
of optimizing simultaneously Cm and the multi-frequency forcing law in the context of a
more complex control landscape.

At other Re values, the learning curve is qualitatively the same as shown in figure 6(a).
Nevertheless, the parameters associated with the best control law in each generation may
exhibit different variations. The best control law of each generation is always associated
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with a single fe/f 0, approximately 0.52, at Re < 10 000 but may be characterized by
multiple frequencies, as seen from the power spectra (not shown) of the control signals,
at Re > 10 000, e.g. at G = 3 in figure 6(c), which presents the evolution of the control
parameters associated with the best individual in each generation, and the corresponding
Ke. Nevertheless, the multiple frequencies always reduce to a single frequency fe/f 0 ≈ 0.5
once the learning process is converged.

Figure 7 presents the dependence on Re of the maximum Ke, i.e. Ke,max, along with the
corresponding control parameters under the optimal control law. Interestingly, Ke,max is
found to be approximately constant, at between 0.51 and 0.53, for the Re range examined,
that is, the best control performance is essentially unchanged and so is the optimal fe/f 0
or ( fe/f 0)opt (≈ 0.5). This result reconfirms Wu et al.’s (2018b) finding from an adaptive
control technique over Re = 5800–13 300. However, the other control parameters exhibit a
significant variation with Re. The optimum Cm or Cm,opt, the optimum duty cycle αopt and
the optimum pulse width τ opt (= αopt/fe,opt) of minijet injection decrease from 1.5 %, 25 %
and 5.0 ms to 1.2 %, 7 % and 1.0 ms, respectively, from Re = 5800 to 8000 (Re < Recr). The
value of Cm,opt rises gradually from 1.2 % to 2.2 % from Re = 8000 to 40 000, suggesting a
larger minijet momentum to maintain the penetration depth or the best control performance
at a higher Re, which complies with our instinct. The observed distinct behaviours of the
control parameters between the Re ranges of 5800–8000 and 10 000–40 000 may have
a link to the occurrence of the jet transition from laminar to turbulence in the range of
Re = 8000–10 000 (Mi et al. 2013). As expected, the variations in αopt and τ opt are similar
to each other. Given a fixed Cm, a smaller α or pulse width τ of minijet injection should
lead to a higher injection velocity or momentum per pulse, thus catering the need for a
higher momentum at larger Re. For the presently used electromagnetic valve, the nominal
smallest τ achievable is 0.8 ms. This may explain why τopt ≈ 0.8 ms at Re ≥ 16 000.
When τ opt reaches its minimum for Re = 24 000, a further increase in Re will lead to a
larger αopt as f 0 and hence fe,opt rises with Re. Nevertheless, the inability to reduce τ

further is compensated by the increased Cm so that Ke,max does not fall appreciably. There
is a considerable increase in τ opt , reaching approximately 3.1 ms, from Re = 8000 to 10
700, but there is accordingly an appreciable rise in Cm that acts to maintain the penetration
depth and hence Ke,max. The observation points to that the hybrid AI control may find an
optimum combination of fe/f 0, α and Cm to achieve Ke,max for given Re.

For the purpose of comparison, figure 7 also includes the optimal parameters ( fe/f 0)opt
(≈ 0.5), αopt (= 12.5 %) and τ opt (≈ 1.0 ms) obtained at Re = 13 300 from the same
experimental rig using a conventional AI control, with Cm fixed at 1.2 %, as developed
by Wu et al. (2018a). Their ( fe/f 0)opt is the same but αopt and τ opt are smaller than
the present results; however, their Ke,max (= 0.48) is 10 % lower than the present result,
apparently resulting from the fixed Cm (= 1.2 %), which is inadequate to achieve the
maximum penetration depth at Re = 13 300.

The inter-relation between the control laws and associated evolution may be presented
via a proximity map (Duriez, Brunton & Noack 2016). The idea is to represent control
laws b(t) as points in a two-dimensional feature plane γ j = (γ j,1, γ j,2), where j = 1, 2,. . . ,
Ni × G, so that the distance between feature vectors best manifests the difference between
the control laws. How to define a distance matrix Djk (j, k = 1, 2,. . . , Ni × G) between
the jth and kth b(t) is crucial in forming this feature plane. For the present actuation,
this matrix is the averaged squared Euclidean difference between the actuation command
vectors, given by

D2
jk = ||PSD(b1,j(t)) − PSD(b1,k(t))||2 + β|b2,j − b2,k| + δ|Jj − Jk|. (4.1)
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The first term on the right side of (4.1) is the square of the averaged Euclidean distance
between b1,j(t) and b1,k(t) in the frequency domain, and thus the power spectral density
functions (PSD) of b1,j(t) and b1,k(t) are used. The second term is the difference between
b2,j and b2,k weighted by a factor β. The control performance J weighted by a factor
δ is also incorporated in (4.1). The parameters β and δ may act to smooth the control
landscape and are chosen so that the maximum differences in the three terms are the same,
viz.

max
j,k=1,2...Ni×G

||PSD(b1,j(t)) − PSD(b1,k(t))||2 = β max
j,k=1,2...Ni×G

|b2,j − b2,k|

= δ max
j,k=1,2...Ni×G

|Jj − Jk|. (4.2)

Given Djk, feature vectors γ j (j = 1, 2, . . . , Ni × G) can be obtained by a classical
multi-dimensional scaling (Cox & Cox 2000) so that the distances are optimally
preserved

Ni×G∑
j=1

Ni×G∑
k=1

(||γ j − γ k|| − Djk)
2 = min . (4.3)

The feature vectors are sorted and rotated so that the first coordinate is characterized by
the largest variance, the second by the second largest, etc. Finally, control laws can be
visualized on a scatter plot or proximity map, as done by Kaiser et al. (2017) and Wu et al.
(2018a). The map provides an overall picture of the control landscape, and the feature
coordinates may correlate with some features of control, as shown by Zhou et al. (2020).

Figure 8(a) shows the proximity map of all control laws obtained in the learning process
at Re = 8000 in a three-dimensional plane (γ 1, γ 2, Cm/α). The addition of the third
coordinate is due to the fact that Cm/α is well correlated with Ke (figure 6b). Each circular
symbol represents one control law and its colour corresponds to the value of J. Given γ 1
(or γ 2), we randomly select the control laws at different γ 2 (or γ 1) in figure 8(a) and
examine carefully the control parameters, which unveils that γ 1 tends to be positively
correlated with Cm and γ 2 is adversely correlated with α for given γ 1. Furthermore, Cm/α
is adversely correlated with J or positively with Ke (figure 8a), which is fully consistent
with the fact that Cm/α corresponds physically to the penetration depth of the minijet
into the main jet (Perumal & Zhou 2018). Similar observations are made at Re = 20 000
(figure 8b).

5. Scaling Analysis

5.1. Dependence of K0 and f0 on Re
It is well known that the boundary-layer thickness at the jet exit diminishes with increasing
Re, producing a significant influence on the flow structure development and accelerating
the mixing rate (e.g. New et al. 2006; Mi et al. 2013) or centreline mean velocity decay
rate of an unforced jet. Naturally, a manipulated jet is also sensitive to this change in
the boundary-layer thickness. As such, Ke = g1 (Cm, fe/f 0, α, d/D, Re, K0), where K0 is
calculated by K0 = (Ūj − Ū5D,0)/Ūj. That is, the effect of boundary-layer thickness of
the unforced jet on jet mixing is considered via K0. Both K0 and f 0 are dependent on Re.

942 A47-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

34
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.341


A.K. Perumal, Z. Wu, D.W. Fan and Y. Zhou

0 –1 –2

–20–15–10–5
5 0

0

0.1

0.2

0.3

–2

2
0

–2

2

0

–3 –4

0

0.05

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9

1.0
J

J

Best performing individual

Best performing 

individual

0.10

0.15

1

C
m

/α
C

m
/α

γ2

γ2

γ1

γ1

(×10–6)

(×10–7)

(×10–6)

(×10–6)

(a)

(b)

Figure 8. Control landscape based on a proximity map of all tested control laws at (a) Re = 8000 and
(b) 20 000. Each circle represents an individual control law and the distance between two control laws indicates
their dissimilarity.

As shown in figure 9,

K0 = −103Re−0.83 + 0.1, (5.1)

which rises rapidly with Re for Re ≤ 10 000 but less so for Re > 10 000. On the other hand,
f 0 varies from 100 to 680 Hz (figure 9) and is linearly correlated with Re, viz.

f0 = 0.0167Re + 16. (5.2)

Both (5.1) and (5.2) are valid for Re = 5800–40 000.

5.2. Dependence of Ke/K0 on control parameters
A careful analysis of experimental data from conventional open-loop control (Perumal &
Zhou 2018) shows reasonably well collapsed Ke/K0 for different d/D provided that Cm is
re-scaled as Cm(D/d)1−n. This collapse is illustrated for Re = 13 000, where 1 − n = 0.55
for α = 0.1 (figure 10a1), 0.67 for α = 0.5 (figure 10b1) and 1.00 for α = 0.9 (figure 10c1).
As a matter of fact, n =−0.56α + 0.50, distinctly different from n =−0.31α + 0.28 at
Re = 8000 (Perumal & Zhou 2018) for the same f e/f 0 (= 0.5). Interestingly, the same
collapse is observed at f e/f 0 = 0.3 and 1.0 (figure 10a2–c2) for Re = 13 000 and n is
unchanged, although the magnitude of Ke/K0 is different. The result suggests that n is
independent of f e/f 0, that is, n depends only on α for a given Re. Similar analysis has also
been performed for other Re values to determine the dependence of n on α (figure 11a,b).
In general,

n = C1α + C2, (5.3a)
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Figure 9. Dependence of K0 and f 0 on Re for unforced jet.
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where the coefficients C1 and C2 depend on Re, as shown in figure 11, given by

C1 =
{
−9.64 × 10−5Re + 0.46, 5800 ≤ Re < 10 600
−0.56, 10 600 ≤ Re ≤ 40 000 , (5.3b)

C2 =
{

8.67 × 10−5Re − 0.42, 5800 ≤ Re < 10 600
0.51, 10 600 ≤ Re ≤ 40 000 . (5.3c)
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Apparently, n depends only on α for Re ≥ 10 600 and is physically meaningful (to be
discussed later).

The dependence of Ke/K0 on fe/f 0 is presented in figure 12(a) for α = 0.1–0.7
(Re = 8000, Cm = 1.0 %, d/D = 1/20). We may extract the dependence on α of fe,opt/f 0
at which the local maximum Ke/K0 occurs, as shown in figure 12(b), viz.

fe,opt

f0
=
{

0.5, α ≤ 0.37
−0.93α + 0.84, α > 0.37 . (5.4)

It is worth mentioning that the Ke/K0 data are not shown for α = 0.2, 0.4 0.6 and 0.8 to
avoid overcrowding in figure 12(a), although they are used to obtain figure 12(b). Similar
analysis has been performed for other Re. Interestingly, fe,opt/f 0 is independent of Re, as
found by Wu et al. (2018b) for Re = 5700–13 300 (their figure 10a).

It would be difficult to develop a scaling law with fe/f 0 incorporated since the
dependence of Ke/K0 on fe/f 0 displays a distinct behaviour as α varies (figure 12a).
Thus, we introduce fe/fe,opt ≡ ( fe/f 0)/( fe,opt/f 0), and fe/fe,opt = 1 corresponds to the local
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(Cm/α)(D/d)1−n(fe/fe,opt)

m (α = 0.1–0.9; Re = 13 000).

maximum Ke/K0, irrespective of α. Replotting the data in figure 10(a2–b2) in terms of
the dependence of Ke/K0 on (Cm/α)(D/d)1−n for fe/fe,opt = 1.00, 0.57 and 1.71, we see a
large departure from one fe/fe,opt to another (figure 13a) but a reasonably good collapse
if (Cm/α)(D/d)1−n is replaced by (Cm/α)(D/d)1−n(fe/fe,opt)

m (figure 13b). The choice
of power index m is not so straightforward. As shown in figure 12(a), with increasing
fe/f 0, Ke/K0 climbs for fe/f 0 ≤ fe,opt/f 0 or fe/fe,opt = ( fe/f 0)/( fe,opt/f 0) ≤ 1 but declines for
fe/f 0 > fe,opt/f 0 or fe/fe,opt > 1. One may surmise that the corresponding m should be
positive and negative, respectively. After numerous trial-and-error analyses, m is found
to be 0.7 and −0.9 for fe/f 0 ≤ fe,opt/f 0 and fe/f 0 > fe,opt/f 0, respectively, which reflects
the sensitivity of Ke/K0 to the variation in fe/f 0. It is further found that the m values are
unchanged as Re varies from 5800 to 40 000, that is, m is independent of Re. Nevertheless,
the dependence of Ke/K0 on (Cm/α)(D/d)1−n(fe/fe,opt)

m exhibits a large scatter as Re
varies from 5800 to 40 000 (figure 14). However, as shown in figure 15, it is, surprisingly,
found that all the data of Ke/K0, from more than 7000 AI-generated control laws or from
conventional control (Perumal & Zhou 2018), collapse well together, with a small scatter,
once a weighting factor 1/Re is introduced in the abscissa, i.e.

ζ = Cm

α

(
D
d

)1−n 1
Re

(
fe

fe,opt

)m

. (5.5)

Here, Ke = g1 (Cm, fe/f 0, α, d/D, Re, K0) is now reduced to Ke/K0 = g2 (ζ ). The data may
be least-square fitted to a cubic function, viz.

Ke/K0 = 2.2 × 1012ζ 3 − 1.3 × 109ζ 2 + 2.6 × 105ζ + 1.0. (5.6)

The measured Ke/K0 may deviate from (5.6) by no more than 10 %, with a 95 %
confidence. Apparently, Ke/K0 is the jet entrainment ratio, indicating the enhancement
of entrainment with respect to the unforced jet.

One may wonder whether the same scaling law (5.6) could be obtained from a small
amount of data, say generated by 200 control laws instead of 7000. One test is then
performed. To ensure various control performances are covered, all the control laws for
a given Re are re-numbered based on their J values, and 25 control laws are selected with
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Figure 14. Dependence of Ke/K0 on (Cm/α)(D/d)1−n(fe/fe,opt)
m for Re = 5800–40 000 (α = 0.07–0.90,

fe/f 0 = 0.1–1.5).
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Figure 15. Dependence of Ke/K0 on (Cm/α)(D/d)1−n(1/Re)(fe/fe,opt)
m for Re = 5800–40 000, α = 0.07–0.9,

fe/f 0 = 0.1–1.5. The red curve is the least-squares fit to experimental data. Blue filled symbols correspond to
Ke,max/K0, predicted from (5.6), at a given Re.
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Cm = 1.0 %, α = 0.5

Figure 16. Comparison of the dependence of Ke/K0 on fe/fe,opt for Re = 8000 between prediction from (5.6)
(open symbol) and measurement (filled symbol) for (Cm, α, d/D) = (2.0 %, 0.3, 1/20) and (1.0 %, 0.5, 1/20).
The rectangle highlights the deviation between prediction and measurement.

the same difference in J. The dependence of Ke/K0 on (Cm/α)(D/d)1−n(1/Re)(fe/fe,opt)
m

(figure not shown) can be least-squares fitted to a curve almost identical to that shown
in figure 15, albeit with very few data falling between ζ = (1.0–1.9) × 10−4, where Re
is 5800. One may conclude that the confidence level of the scaling law would not drop
appreciably in spite of a drop in the control laws from the order of 1000 to 25 for each Re,
given Re ≥ 8000.

The way m is determined may imply a limited range of fe/fe,opt over which (5.6) is
valid. As illustrated in figure 16, Ke/K0 calculated from (5.6) agrees with measurement
for Re = 8000 at (Cm, α, d/D) = (1.0 %, 0.5, 1/20) and (2.0 %, 0.3, 1/20), thus providing
a validity for the choice of m. Note an appreciable deviation for fe/fe,opt ≥ 1.8 in Ke/K0
between calculation and measurement at α = 0.5. The measured Ke/K0 appears to change
little for fe/fe,opt ≥ 1.8. Perumal & Zhou (2018) demonstrated that an unsteady minijet
at large α (≥0.5) and fe/f 0 (≥1.0) behaves like a quasi-steady blowing, and jet mixing
is independent of both α and fe/f 0, which accounts for the deviation. The observation
suggests a critical fe/fe,opt beyond which the scaling law (5.6) is invalid, and this critical
fe/fe,opt is the fe,steady/fe,opt value at which Ke/K0 becomes independent of fe/fe,opt for a
given α. Figure 17 presents the dependence on α of fe,steady/f 0, which is extracted from the
data illustrated in figure 12(a) and least-square fitted to

fe,steady/f0 = −1.55α1.1 + 1.4. (5.7)

Then, the critical fe/fe,opt or fe,steady/fe,opt at which (5.6) may deviate appreciably from the
measured data can be obtained from (5.4) and (5.7), viz.

fe,steady

fe,opt
= fe,steady/f0

fe,opt/f0
. (5.8)

Substitution of α = 0.5 into (5.4) and (5.7) yields fe,steady/fe,opt = 1.8, which is internally
consistent with the observation from figure 16.

There is a need to understand the physical meaning of n, which may offer valuable
insight into the flow physics behind control. The physical interpretation of n is given by
Perumal & Zhou (2018) for a fixed Re. As d/D is decreased, say by half, one might have
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expected, given α = 0.1 and fe/f 0 = 0.5, that the required Cm would also reduce by 50 %
to achieve the same Ke/K0 (Re = 8000); yet, Cm was measured to drop by 60 % (their
figure 23). The additional 10 % drop results from the retardation effect of minijet injection
with contracting d/D. That is, a non-zero n reflects the need for additional Cm to achieve
the same Ke/K0 for given α. Apparently, the retardation effect depends on α and Re (5.3).
Perumal & Zhou (2018) have documented in detail the dependence of the retardation effect
on α. Thus, we present only its dependence on Re. In order to determine the dependence
of required Cm on Re to achieve the same Ke/K0 at given fe/fe,opt, α and d/D, we rewrite
(5.6) as

Ke/K0 ≈ Cm

α

(
D
d

)1−n 1
Re

(
fe

fe,opt

)m

. (5.9)

Rearranging (5.9) yields

Cm ≈ ReKe/K0α

(
d
D

)1−n( fe,opt

fe

)m

. (5.10)

Equation (5.10) can be used to predict the required Cm with varying Re for a pre-specified
Ke/K0 at given fe/fe,opt, α and d/D. It is of interest to compare the variation in Cm with Re
for a given Ke/K0 at the same fe/fe,opt, α and d/D with and without the retardation effect.
On substitution of n = 0 in (5.10), we may obtain Cm in the absence of the retardation
effect

Cm ≈ ReKe/K0α

(
d
D

)(
fe,opt

fe

)m

. (5.11)

Figure 18 compares the dependence of Cm on Re (= 5800–40 000) for a pre-specified
Ke/K0 = 6 ( fe/fe,opt = 1.0, α = 0.1, d/D = 1/20) calculated from (5.11) with that from (5.10)
where n is determined from (5.3a–c). Clearly, given the same Re, Cm calculated from
(5.10) is substantially larger, as a result of the retardation effect, than that from (5.11). For
example, at Re = 20 000, the Cm values from (5.10) and (5.11) are approximately 0.85 %
and 0.22 %, respectively. The retardation effect may depend on Re, which is defined by the
percentage increase in required Cm calculated from (5.10) as compared with (5.11), viz.

�Cm = ([Cm](5.10) − [Cm](5.11))/[Cm](5.11). (5.12)

The value of �Cm increases with Re for Re < 10 600 and becomes independent of Re
for Re ≥ 10 600 (figure 18), as n does (figure 11b). At Re = 20 000, the required Cm
to achieve a pre-specified Ke/K0 = 6 ( fe/fe,opt = 1.0, α = 0.1, d/D = 1/20) from (5.10) is
2.8 times higher than from (5.11). Evidently, n plays a significant role in characterizing
the retardation effect of the minijet, which contracts with increasing α and reaches zero at
α = 0.9, where n ≈ 0 (Perumal & Zhou 2018).

5.3. Physical interpretation of similarity parameters
Some interesting inferences can be made from the scaling law (figure 15 or (5.6)). Firstly,
it is important to understand physically ξ /Re, where ξ = (Cm/α)(D/d)1−n is interpreted
as the effective penetration depth at a given Re = 8000 (Perumal & Zhou 2018). Yang
et al. (2016) and Perumal & Zhou (2018) demonstrated that the distribution of u∗

rms at the
nozzle exit and the minijet penetration depth into the main jet are correlated. Figure 19
shows the radial distributions of u∗

rms= urms/Ūj measured at x* = 0.05 ( fe/fe,opt = 1)
along the injection (x–y) plane for ξ /Re = 0.3 × 10−4 at Re = 8000, 13 000 and 20 000.
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Figure 17. Dependence of fe,steady/f 0 on α extracted from the dependence of Ke/K0 on fe/f 0, as illustrated in
figure 12(a).
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Figure 18. Dependence of Cm and �Cm on Re ( fe/fe,opt = 1.0, α = 0.1, d/D = 1/20) calculated from
((5.10)–(5.12)) for a pre-specified Ke/K0 = 6.

Interestingly, given the same ξ /Re, the u∗
rms distributions are qualitatively the same despite

different combinations of Cm, α, d/D and Re, suggesting that the penetration depth, as
marked in figure 19, is the same given the same ξ /Re, that is, there is a correspondence
between ξ /Re and the penetration depth. Perumal & Zhou (2018) pointed out that ξ is
physically the effective momentum ratio of the minijet to the main jet per pulse of injection
or the effective penetration depth for a fixed Re. The present finding points to the fact that
ξ/Re is a more general definition for the effective momentum ratio of the minijet to the
main jet per pulse of injection, which is valid even in the context of varying Re.

Secondly, to gain insight into the physics behind fe/fe,opt, we present in figure 20(a1–c2)
typical images from flow visualization (Re = 8000) in the injection plane (x–z) for
fe/fe,opt < 1, fe/fe,opt = 1 and fe/fe,opt > 1 at ξ /Re = 0.3 × 10−4, along with the signals of
instantaneous streamwise U* measured at (x∗ , y*, z*) = (1.5, 0, 0.45). The sharp peaks
in the signals represent the perturbation induced by the injection. Once manipulated, the
shear layer rolls up early on the injection side (cf. unforced flow shown in figure 3b) and
the vortex dynamics is very different, depending on fe/fe,opt. There exist three different
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Figure 19. Radial distributions of the streamwise fluctuating velocity u∗
rms= urms/Ūj measured at x* = 0.05

( fe/fe,opt = 1) for ξ /Re = 0.3*10−4.

states of the manipulated jet depending on fe/fe,opt. State 1 corresponds to fe/fe,opt = 1,
at which the optimal separation takes place between incomplete ring vortices. As shown
in figure 20(b1), an incomplete ring vortex V2 induced by minijet injection is advected
downstream without direct interaction with a following vortex V1 induced by the next
cycle of injection. This assertion is complemented by the velocity signal in figure 20(a1),
where the peaks are distinctly separated. It seems plausible that the ring vortices with
the minimum but clear separation produce the maximized jet decay rate (figure 16). State
2 corresponds to a smaller fe/fe,opt (= 0.57) or an increased gap between the successive
ring vortices, as shown in figure 20(a2,b2). Evidently, the incomplete ring vortex V4
needs more time to grow before interacting with the next one V3. This increased gap
seems to facilitate the establishment of less anti-symmetrically arranged vortices about
the centreline in the (x–y) plane (figure 20a2, cf. figure 20a1), resembling more a
natural jet and resulting in a reduced jet decay rate (figure 16). Under state 3, where
fe/fe,opt > 1, the spatial separation between the vortices V5 and V6 contracts, as illustrated
in figure 20c2 ( fe/fe,opt = 1.71), and the interaction between the vortices is intensified.
This is corroborated by the hot-wire signal (figure 20c1), which shows the peaks closely
separated from each other. This interaction may incur the occurrence of turbulent puff-like
structures, causing a retreat of penetration (Hermanson, Wahba & Johari 1998; Johari
2006) and weakened mixing. Johari, Pacheco-Tougas & Hermanson (1999) made a similar
observation for jet in cross-flow and pointed out that a decrease in spacing between the
vortical structures resulted in increased interaction and reduced penetration. Thus, the jet
decay rate under state 3 also drops compared with state 1 (figure 16). The three states
observed at Re = 8000 are also evident at other Re (not shown) given an identical ξ /Re. The
similarity parameter fe/fe,opt on which states 1–3 strongly depend physically corresponds
to the spatial separation between successive vortices formed during minijet injection
(figure 20a2–c2). Thus, the jet mixing depends on the penetration depth of the minijet
into the main jet (ξ /Re) and the interaction between vortices ( fe/fe,opt) in the manipulated
jet, and ζ is physically the momentum ratio (the momentum per pulse of injection to the
inertia momentum of main jet) times the frequency ratio.
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Figure 20. (a1–c1) Typical U* signals measured at (x∗ , y*, z*) = (1.5, 0, 0.45) for fe/fe,opt = 0.57, 1 and 1.71 at
ξ /Re = 0.3 × 10−4 for Re = 8000. (a2–c2) Typical flow structures from flow visualization in the injection plane
(x–z) at representative fe/fe,opt, where the vortices V1–V6 result from minijet injection at ξ /Re = 0.3 × 10−4 for
Re = 8000.

Thirdly, the ratio Ke,max/K0 drops rapidly with increasing Re for Re < 10 600 but very
slowly for Re ≥ 10 600 (figure 21), which may be described by

Ke,max/K0 ≈ 2.24 ∗ 1015Re−3.7 + 6.8. (5.13)

This feature is primarily due to the variation in K0 with increasing Re (figure 9) as Ke,max

is unchanged (figure 7). As such, ζ = (ξ/Re)(fe/fe,opt)
m and ξopt = ((

√
MR/α)(d/D)n)opt

at which Ke,max/K0 occurs. Then, at fe/fe,opt = 1, (5.9) may be rewritten as

Ke,max/K0 ≈
(√

MR
α

(
d
D

)n
)

opt

1
Re

(
fe,opt

fe,opt

)0.7

= ξopt

Re
= ζopt. (5.14)

Thus, given Re, Ke,max/K0 may be estimated from (5.13). As ζopt = ξopt/Re is connected
to the effective penetration depth of the minijet into main jet and hence Ke/K0, the drop in
Ke,max/K0 with Re can be directly correlated to the reduced effective minijet penetration
into main jet measured in terms of ξopt/Re. One may wonder why the effective penetration
depth or ξopt/Re contracts with increasing Re. Figure 21 presents a variation with Re in
the normalized stroke length L/d determined at Ke,max/K0. Physically, L represents the
slug of jet fluid ejected during each pulse of injection or the amount of fluid injected
during one injection (Steinfurth & Weiss 2020) and, following Johari (2006), is estimated
by L = (1/Am)

∫ τopt
0

∫
A Um dAm dt = Ūmτopt, where τopt = α/fe,opt, the minijet velocity

Ūm = Cm (D/d)2Ūj (Perumal & Zhou 2018) and Am is the minijet exit area. Johari
(2006) found that the minijet-generated flow structure depended on L/d, characterized by
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( fe/fe,opt = 1.0) obtained from (5.14) and the variation of stroke length ratio L/d with increasing Re when the
control performance is optimal ( fe/fe,opt = 1.0).
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Figure 22. Dependence of Cm on Re for fe/fe,opt = 1.0, <1.0 and >1.0 (α = 0.1, d/D = 1/20), predicted from
(5.10) for a pre-defined Ke/K0 = 6.

turbulent puffs for 25 < L/d < 75 and an elongated steady jet structure for L/d > 75, and the
penetration depth of the latter was significantly smaller than that of the former. Figure 21
shows that L/d grows with Re and indeed exceeds 75 for Re ≥ 10 600. This provides an
explanation for the observation that Ke,max/K0 or ξopt/Re drops greatly from Re = 8000 to
10 600 (figure 21).

Fourthly, given a pre-specified Ke/K0 = 6 and (α, d/D) = (0.1, 1/20), we may determine
the relation between Cm and Re from (5.10) for fe/fe,opt = 0.57, 1.0 and 1.71. Figure 22
shows that Cm is always least at fe/fe,opt = 1.0, regardless of Re.

Finally, Wickersham (2007) investigated the effect of excitation frequency of pulsed
injection on a jet of Re = 71 000–355 000 manipulated by two pulsed injections. They
argued that, under the optimal pulsing condition, the minijet penetrated farther into the jet
and the induced vortices were able to persist longer downstream, thus enhancing mixing.
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In the study of a pulsed jet in cross-flow, Johari (2006) also reported that the maximum
mixing can be achieved with pulsed jets if the pulsing parameters are chosen specifically
to create compact vortex rings and subsequent interaction among vortical structures.
Nevertheless, to the best of our knowledge, there has been no report in the literature on
the parameters that determine the optimal pulsing condition. This condition is evident
from (5.14), determined by ξopt /Re and fe/fe,opt = 1, and hence ζopt, that is, Ke,max/K0 is
achieved at the maximum penetration ξopt /Re and meanwhile the vortices thus formed
under minijet injection are optimally separated from each other, as dictated by fe/fe,opt = 1.

6. Conclusions

A novel hybrid AI system has been developed to manipulate a turbulent jet using a single
pulsed radial minijet over a range of Re (= 5800–40 000). Four control parameters are
investigated, i.e. Cm (= 0.1 %–8.0 %), fe/f 0 (= 0–1.2), α (= 0.1–0.9) and d/D (= 1/20,
1/40). The following conclusions can be drawn out of this work:

(i) The developed hybrid AI algorithm may optimize simultaneously a control law
and a time-independent variable Cm, overcoming the drawback of the previous
AI system based on the LGP algorithm that can be used to optimize only the
control laws (e.g. Zhou et al. 2020). At Re = 8000, for example, the system
successfully finds the optimal control law, which consists of two sub-control
laws that govern a time-dependent pulse signal b1(t) (α = 7 %, fe/f 0 = 0.52) and
a time-independent mass flow rate signal b2 (Cm = 1.2 %), respectively. Proximity
map analysis performed based on all the control laws reveals that the ratio Cm/α,
corresponding physically to the penetration depth of the pulsed minijet, dictates the
control performance (figure 8). The system exhibits good robustness as Re varies
from 5800 to 40 000, finding essentially the same maximum Ke and the same optimal
fe/f 0.

(ii) The AI system produces more than 7000 control laws for eight Re values examined
and subsequently a tremendous amount of data involving six intrinsically related
variables Ke, K0, Cm, fe/f 0, α and Re. Careful analysis of the data, along with
those produced from a conventional open-loop control technique, which include
one more variable, d/D, unveils, surprisingly, a scaling law, that is, the relationship
Ke = g1 (Cm, fe/f 0, α, d/D, Re, K0) may be reduced to Ke/K0 = g2 (ζ ), where the
scaling factor ζ = (Cm/α)(D/d)1−n(1/Re)(fe/fe,opt)

m. This law governs the effect
of Re on jet manipulation using an unsteady minijet. Here, Ke/K0 accounts for the
effect of Re on the control performance, while ζ is physically the momentum ratio
(Cm/α)(D/d)1−n(1/Re) (the momentum per pulse of minijet injection to the inertia
momentum of the main jet) times the frequency ratio (fe/fe,opt)

m, the latter providing
a measure for the spatial separation between successive vortices (figure 20a2–c2).
The manipulated jet may exhibit three states, i.e. state 1 – fe/fe,opt = 1, state 2 –
fe/fe,opt > 1 and state 3 – fe/fe,opt < 1, dictated by (fe/fe,opt)

m. State 1 is associated
with the optimally separated vortices, resulting in Ke,max/K0, while states 2 and
3 yield closely and over-separated vortices, respectively, both causing a decline in
Ke/K0 (figure 16).

(iii) Several inferences can be made from the scaling law. Firstly, Ke/K0 increases with
ζ . Secondly, given that ξ = (Cm/α)(D/d)1−n may be interpreted as the effective
momentum ratio of the minijet per pulse of injection to the main jet at a given
Re (Perumal & Zhou 2018), ξ /Re carries the same physical meaning, although
with a more general sense, valid even in the context of varying Re. Thirdly, with
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ζ = (ξ/Re)(fe/fe,opt)
m, ζopt at which Ke,max/K0 occurs for any given Re depends

on ξopt and (fe/f0)m
opt. The value of ξopt drops from Re = 8000 to 10 600 and then

rises for a further increase in Re (figure 21). Evidently, jet mixing depends on both
the penetration depth and the interaction between vortices or ξ /Re and (fe/fe,opt)

m,
whose optimum values lead to the maximized mixing. The optimal pulsing condition
at which the maximum effective penetration of the minijet into the main jet occurs
corresponds to ξopt (Wickersham 2007). At fe/fe,opt = 1, the minijet creates compact
vortex rings (Johari 2006), which may persist farther downstream (Wickersham
2007), thus maximizing jet mixing. The similarity parameter ζ unveils that, for given
α, the required Cm to achieve a pre-defined jet mixing or a constant Ke/K0 is the
smallest at fe/fe,opt = 1 or the most efficient, irrespective of Re (figure 22). Finally,
with increasing Re, Ke,max/K0 diminishes rapidly for Re < 10 600 but very slowly
for Re ≥ 10 600 (figure 21). The stroke length ratio L/d rises with Re (figure 21).
Once L/d exceeds 75, the minijet flow structure is characterized by turbulent puffs,
associated with the distributed vorticity and greater entrainment rate (Johari 2006),
instead of vortex rings, resulting in a reduced effective penetration depth and hence
a smaller Ke,max/K0.
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