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SUMMARY
Human rhythmic movement is generated by central pattern generators (CPGs), and their application
to robot control has attracted interest of many scientists. But the coupling relationship between the
central nervous system and the CPG network with external inputs is still not unveiled. According
to biological experiment results, the CPG network is controlled by the neural system; in other
words, the interaction between the central nervous system and the CPG network can control human
movement effectively. This paper offers a complex human locomotion model, which illustrates the
coupling relationship between the central nervous system and the CPG network with proprioception.
Based on Matsuoka’s CPG model (K. Matsuoka, Biol. Cybern. 52(6), 367–376 (1985)), the stability
and robustness of the CPG network are analyzed with external inputs. In order to simulate the
coupling relationship, the Radial Basis Function (RBF) neural network is used to simulate the
cerebral cortex, and the Credit-Assignment Cerebellar Model Articulation Controller algorithm
is employed to realize the locomotion mode conversion. A seven-link biped robot is chosen to
simulate the walking gait. The main discoveries include: (1) the output of a new CPG network,
which is stable and robust, can be treated as proprioception. Proprioception provides the central
nervous system with the information about all joint angles; (2) analysis on a new locomotion model
reveals that the cerebral cortex can modulate CPG parameters, leading to adjustment in walking
gait.

KEYWORDS: Central pattern generator (CPG); Proprioception; Central nervous system; CA-CMAC;
Human locomotion.

1. Introduction
Through neurophysiological studies of animal locomotion, it has been determined that the basic
rhythmic movements are controlled by central pattern generators (CPGs). Due to their simplicity and
effectiveness, the Matsuoka CPG model1 has been widely applied to the robot control and modeling
and to the motion simulation of humans.2–5 In human locomotion, proprioception also plays an
important role in detecting the state of the body and serving as a sensory feedback for underlying
neural circuits.

Proprioception is the ability to know where our body is at all times. Kondo et al.6 showed that
the automatic movement was mainly realized at the spinal cord based on proprioceptive feedback.
Ehrsson et al.7 showed that the body was distinguished from other objects by its involvement in the
correlation or matching of special patterns of intersensory information. Ehrsson8 also demonstrated
that multisensory correlations were sufficient to determine the perceived location of one’s own body.
Overholt et al.9 treated proprioception as a sense of body position and movement that supported
control over many automatic motor functions such as posture and locomotion. Beers et al.10 studied
the precision of proprioceptive localization of hand in humans. They demonstrated that proprioception
provides the central nervous system with the information about the spatial location of body parts. The
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Fig. 1. The locomotion model.

central nervous system needs to know the angles of all joints between the hand and the body so as
to combine these angles with known segment lengths to localize a hand. Bartsch et al.11 treated the
CPG as a proprioception in the locomotion of a humanoid robot.

The central nervous system plays a key role in human locomotion. The accurate movement
controlled by neural circuits, such as the walking gait, involves the cerebral cortex and the
cerebellum. The basic mechanisms of the locomotion control are located in the spinal cord whose
interneurons are involved in the CPG network and pattern formation.12,13 Takakusaki and Okumura13

demonstrated that the cerebellum could receive massive proprioceptive information and operate
as a “comparator” for the control of movements. After comparing and calculating differences
between two signals, i.e., the command signal from the cerebral cortex and the sensory feedback
from the spinal cord, the cerebellum sends differences to the cerebral cortex and the spinal cord.
Therefore, it is an important work to study the coupling relationship between the central nervous
system and the CPG network with proprioception in the fields of motor neurology and robot motor
control.

This paper is organized as follows. Section 2 presents a new locomotion model and a new CPG
network, including the explanation of the model principle and the analysis of the stability and
robustness of the CPG network. Section 3 shows the model of the central nervous system. The
simulations are given in Section 4. The conclusions and future works are made in Section 5.

2. Locomotion Model and CPG Network Model

2.1. Locomotion model
A new locomotion model selecting the gait as a research object is built on the basis of biological
relationship between the locomotion and the central nervous system.13 This new model includes the
central nervous system and the CPG network, as shown in Fig. 1.

In Fig. 1, the cerebral cortex predicts the CPG network parameter values corresponding to the
next gait and sends these to the CPG network and the cerebellum according to environmental change
and the current gait. The cerebellum compares the parameter values from the cerebral cortex with
those from the CPG network. After calculating the mean square deviation, which is treated as
compensation, the cerebellum sends the compensation to the CPG network. Through the mode of
conversion, the outputs of the CPG network are changed into the positions and angles, which inspire
the musculoskeletal system, and the walking gait is obtained. At the same time, these parameters’
values of the CPG network feed back to the cerebellum. In the following seven-link biped robot
model, the sensory information is joint angles, which correspond to these CPG outputs. Therefore,
the CPG feedbacks are the proprioception in the new model.

In order to explain the locomotion model, a seven-link biped robot model14 is used to simulate the
walking gait, as shown in Fig. 2.

In Fig. 2, each foot trajectory can be denoted by a vector Xa = [xa(t), za(t), θa(t)]T , where
(xa(t), za(t)) is the coordinate of the ankle position and θa(t) denotes the angle of the ankle. The hip
trajectory can be denoted by vector Xh = [xh(t), zh(t), θh(t)]T , where (xh(t), zh(t)) is the coordinate
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Fig. 2. Model of a biped robot.

of the hip position and θh(t) denotes the hip angle. The parameters are set as ltr = 50 cm, lth =
30 cm, lsh = 30 cm, lan = 10 cm, lab = 10 cm, laf = 13 cm, m0 = 43 kg, m1 = m2 = 10 kg, m3 =
m4 = 5.7 kg, and m5 = m6 = 3.3 kg.15

2.2. CPG network model
Every joint of the robot is driven by a neural oscillator that consists of two simulated neurons in
mutual inhibition. The adjacent two CPGs are coupled, and the CPG model16,17 is shown in Fig. 3.

Hence, the CPG model can be described by
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Function g(•) is a piecewise linear function defined by g(x) = max(o,x), which represents a
threshold property of the neurons. Variables u

f
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i , and yi represent the membrane potential and the

firing rate of the neurons, respectively. Two variables v
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properties that ubiquitously exist in real neurons. Parameter c denotes the tonic input, and parameter
wij is the strength of mutual inhibition from neuron i to j. Parameters w and b represent the strength
of mutual and self-inhibition, respectively. Parameters Tr and Ta are the time constants that determine
the reaction times of variables u

f

i , ue
i and v

f

i , ve
i .

In this model, the neurons are coupled to one another in a depressive manner, and the entire
walking behavior undergoes an adaptation process by causing an oscillation in each joint movement.
The movement of a joint is coupled with that of other joint. The entire walking behavior converges
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to a certain stable walking pattern in a harmonious manner through the adaptation process of an
oscillator.

Based on the CPG model given in Fig. 3, the CPG network, i.e., the arrangement of CPGs in the
biped robot,18 is shown in Fig. 4.
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The topology of the CPG network is annular. These adjacent CPGs are coupled to one another
with different values of joint angles. The new CPG network can be described by
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, (2)

where wij = w, and theta1, theta2, theta3, theta4, theta5, and theta6 are the outputs of these six
joints, respectively. These variables xi(i = 1, . . . , 7) and xi(i = 8, . . . , 14) represent the membrane
potentials and the self-inhibitory inputs respectively.

The maximal Lyapunov exponent (MLE) describes the time asymptotic rate of separation of
infinitesimally close trajectories. A positive MLE is usually taken as an indication that the system is
chaotic. The zero MLE indicates that a limit cycle exists in the system. The Lyapunov exponents of
a stable fixed point are all negative. The diagrams of the Lyapunov exponents of CPGs’ outputs are
shown in Fig. 5 with Tr = 0.1 and Ta = 1, and the initial input values are [0, 0, 0.1, 0, 0, 0, 0, 0, 0,
0, 0.1, 0, 0.1, 0.1]. Parameters b, c, w are varied in the interval [1,100] in step of 0.5. In Fig. 5(a), the
MLEs of CPGs’ outputs are zero for b ∈ [3.5, 11] , [12, 18.5] , [19.5, 26.5] , suggesting that the
states of CPGs’ outputs are limit cycles. Otherwise, the MLEs are negative or positive, suggesting
that the states of CPGs’ outputs are stable or chaotic. In Fig. 5(b), the MLEs of CPGs’ outputs are
zero for c ∈ [2, 100], which means that the states of CPGs’ outputs are limit cycles. Otherwise, the
MLEs are negative, indicating that the states of the CPGs’ outputs are stable. In Fig. 5(c), the MLEs
of CPGs’ outputs are zero for w ∈ [1, 1.5], which means that the states of CPGs’ outputs are limit
cycles. Otherwise, the MLEs are negative or positive, indicating that the states of the CPGs’ outputs
are stable or chaotic.
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Fig. 5. Lyapunov exponent diagrams of CPGs’ outputs with parameters b, c, w. (a) b ∈ [1, 100]. (b) c ∈ [1, 100].
(c) w ∈ [1, 100].
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Fig. 6. Outputs and phase diagrams of CPGs. (a) Outputs of CPGs. (b) Phase diagrams of CPGs.

In this paper, the states of CPGs’ outputs are expected to be limit cycles. Based on the above
analysis, the three parameters b, c, and w are set as b = 4.5, c = 2, and w = 1.5 respectively. All the
outputs and phase diagrams of CPGs are shown in Fig. 6.

In Fig. 6, theta1 and theta6, theta2 and theta5, and theta3 and theta4 have better performance of
phase complementary. Every phase diagram is a stable limit cycle.

2.3. Evaluation of robustness
In order to confirm the robustness of a CPG network against disturbance, the external interference19

is described by

z = Asin
(

2π × x

λ

)
. (3)

Here λ and A are the period and amplitude of external interference respectively.
Figure 7 shows the limit cycle of these six joint angles when the external interferences are set to

(a) λ = 20 cm and A = 0.5 cm, or (b) λ = 20 cm and A = 4 cm. As the amplitude increases, the
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Fig. 7. Phase diagrams with (a) λ = 20 cm, A = 0.5 cm, and (b) λ = 20 cm, A = 4 cm.

deviation from the limit cycle also increases. In Fig. 7(b), these six joint angles deviate largely from
the limit cycle and finally fall to their stable state. The results show that the CPG network has high
robust performance.

3. Model of Central Nervous System
The neural network provides a robust approach to the approximation of target functions. The artificial
neural networks that can learn to interpret complex real-world sensor data are the most effective
learning methods currently known.17 In this paper, the Radial Basis Function (RBF) neural network
is employed to imitate the cerebral cortex. A typical RBF neural network has a three-layer feed-
forward structure that can be trained to learn an input–output relationship based on a data set.20 The
structure of RBF neural network is shown in Fig. 8.

In general, the RBF neural network can be applied to solve all kinds of nonlinear problems because
the mapping relationship between the input and output is nonlinear. Compared with any other kind of
neural network, the RBF neural network is featured with simple network structure, fast convergence
rate, and strong approximation ability.21

In this paper, we use the neural network to predict the CPG network parameter values that
correspond to the next gait. The neural network should adapt itself to fast gait transition with fast
convergence rate. Therefore, the RBF neural network is chosen to simulate the cerebral cortex. To
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Fig. 9. Curves of robot’s ankle and hip. (a) Curve of robot’s ankle. (b) Curve of robot’s hip.

the RBF neural network, the inputs are environmental change and the time series of the current gait.
The outputs are the parameter c and the time series of the next gait.

In Fig. 1, a pattern mapping is needed to transform the outputs of a CPG network to positions and
angles that inspire the musculoskeletal system. The Credit-Assignment Cerebellar Model Articulation
Controller (CA-CMAC) algorithm is adopted to realize this conversion.

https://doi.org/10.1017/S0263574714000708 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000708


1290 Coupling effect analysis between central nervous system and CPG network

Fig. 10. Stick figure of the walking movement based on the planning.

The CA-CMAC22 can be considered as an associative memory network, and it performs two
subsequent mappings: f : X → A, h : A → P , whereXis M-dimension input space,A is an N-
dimension association cell vector, and P is one-dimension output space. The output is shown in Eq. (4),

ys =
N∑

j=1

Csωj , (4)

where N is the number of memory elements, ys is the output of state s, ωj is the weight of the j th
memory element, and Cs is the flag whether thej th memory element is activated. If activated, the
value is 1, otherwise the value is 0. The update rule to the weights is described by

ωi
j = ωi−1

j + αCs

{
(f (j ) + 1)−1∑m
l=1 (f (l) + 1)−1

}
×

(
ys −

N∑
j=1

Csω
i−1
j

)
, (5)

where α is the learning rate, and f (j ) is the activated times of thej th memory cell.
In comparison with other algorithms, CA-CMAC has the advantage of very fast learning and it has

a unique property of quickly training certain areas of memory without affecting the whole memory
structure. The advantage of speed in training is very important in fast gait transition, and the local
generalization is particularly suitable for local area features’ conversion.23

4. Simulations and Results

4.1. Simulation scheme
Simulation is conducted to verify the proposed locomotion model. The walking gait is planned,15 and
the angles of planning gait corresponding to periodic oscillations are generated by the CPG network.
In this simulation, the environmental change is supposed to be the height of the obstacle, which is
proportional to the amplitude of the CPG network. Matsuoka24 showed that the amplitude of the CPG
network is proportional to the tonic input c if other parameters are fixed. The relation is described
by

Ax = c

2(Tr+Ta )
Taw

− 1 + 2
π

(w + b) sin−1
(

Tr+Ta

Taw

) , (6)

where Ax is the amplitude.
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Fig. 11. Fitting curves between the planning and output angles.
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Fig. 12. Stick figure of the walking movement.

Therefore, the environmental change is proportional to the parameter c. In the locomotion model,
the cerebral cortex predicts the value of parameter c, which corresponds to the next gait according to
the environmental change and current gait. The cerebellum calculates the mean square deviation of a
cycle oscillation, which is treated as compensation.

Many scientific researchers have used the stick figure to demonstrate their studies.15,25–27

Therefore, the stick figure is also used to simulate the locomotion model in this paper.

4.2. Simulation
The parameters are set as Tc = 3 s, Td = 0.6 s, qb = 0.2 rad, qf = 0.2 rad, Ds = 50 cm, Tm = 1.2 s,
Lao = 25 cm, Hao = 15 cm, Hhmin = 73 cm, Hhmax = 74 cm, xed = 20 cm, and xsd = 30 cm. From
the viewpoint of stability, we assume that the hip motion parameter θh(t) is constant when there is
no waist joint; in particular, θh(t) = 0.5π rad on level ground.15 Then the curves of the robot’s ankle
and hip are obtained, as shown in Fig. 9.

According to the planning and kinetics, the stick figure of the walking movement is obtained as
shown in Fig. 10.

During the training of an RBF neural network, the environmental value is developed from 0 to
10 cm and the step is 0.1. The value of the corresponding parameter c is changed from 15 to 25 and
the step is also 0.1. The sampling numbers of CPG are 300. In the walking gait planning, the value
of parameter Hao is changed from 15 to 25 cm. These six joint angles are needed to be converted
in this simulation. Hence, the six parallel CA-CMACs are chosen to realize the pattern mapping for
N = 5 in Eq. (4) and α = 0.2 in Eq. (5). In the simulation, the initial value of Hao is 15 cm and it
is changed to 25 cm. According to the simulation scheme, the fitting curves between the planning
angles and the output angles based on CA-CMAC are obtained in Fig. 11, and the stick figure of the
walking movement is expressed in Fig. 12.

Comparing Fig. 10 with Fig. 12, the cerebral cortex can adjust the value of parameter c when the
environmental value is changed from 0 to 10 cm. Hence, the robot can avoid the obstacle in its moving
course. From the simulation results, we can see that the outputs of a CPG network can be treated as
proprioception that provides the central nervous system with the information about all joints’ angles.
Therefore, we can draw a conclusion that the cerebral cortex can modulate the CPG parameters to
adjust the walking gait.

5. Conclusions
In the present study, we focused on the human locomotion model and the CPG network. The CPG
network outputs treated as the proprioception cannot only inspire the musculoskeletal system to
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obtain natural gait but also be a feedback to the central nervous system to modulate the walking gait
of robot. Here we only discuss the coupling effect between the CPG network and the central nervous
system. Their complex dynamic characters deserve further investigation.
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