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SUMMARY
This paper presents an adaptive distributed control strategy for n-serial-flexible-link manipulators.
The proposed adaptive controller is used for flexible-link-manipulators: (1) to solve the tracking
control problem in the joint space, and (2) to reduce vibrations of the links. The dynamical model
of flexible link manipulators is reorganized to take the form of n interconnected subsystems. Each
subsystem has a one-joint and one-link pair. The system parameters are deemed to be unknown.
The adaptive distributed strategy controls one subsystem in each step, starting from the last one.
The nth subsystem is controlled by assuming that the remaining subsystems are stable. Then,
proceeding backward to the (n-1)th system, the same strategy is applied, and so on, until the first
subsystem is reached. The gradient-based estimator is used to estimate the parameters of each
subsystem. The control law of the ith subsystem uses its own estimated parameters and the estimated
parameters of all upper level subsystems. The global stability of the error dynamics is proved
using Lyapunov approach. This algorithm was implemented in real time on a two-flexible-link
manipulator, and a comparison with the non-adaptive version shows the effectiveness of this approach.

KEYWORDS: Distributed control, Adaptive control, Flexible-link manipulators, Error dynamics,
Stability

1. Introduction
Flexible link manipulators present some inherent advantages over conventional rigid robots, such
as lower energy consumption, faster response, relatively smaller actuators, higher payload-to-weight
ratio and lower overall cost. They can be found in a large diversity of applications, including nuclear
maintenance, microsurgery, space robots, contouring control, collision control, pattern recognition and
many others. Due to all these advantages and applications, the control of flexible link manipulators
has received considerable attention in the literature.1,2 They are multivariable systems, and their
dynamics are strongly coupled and highly nonlinear. The dynamical model of flexible manipulators
can be considered as one multi-input and multi-output (MIMO) system, and one controller is
considered for all links and joints. Many control strategies are proposed in the literature using
this configuration. When the system parameters are known, linear control,3−5 feedback linearization
control,6−8 and sliding-mode control9−12 have been proposed for flexible link manipulators control
problems. A proportional, integral, derivative (PID) controller was used in ref. [5] to control the
flexible manipulator. The controller is presented as a general second-order linear regulator and its
parameters are systematically chosen by pole placement. A feedback control using a conventional
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motor with a gear actuator affected by nonlinear friction torque is presented in ref. [8] to solve the
tracking problem of a flexible manipulator in joint space. A sliding mode controller is proposed in
ref. [10] for a two-link flexible manipulator to control the end-point position. An inverse dynamics
terminal sliding mode control strategy is proposed. Low-order adaptive controllers were applied
to large scale examples in ref. [13] and had led to successful implementations of simple direct
adaptive control. Decentralized simple adaptive control of nonlinear systems was studied in ref. [14].
The passivity results for linear time-invariant systems were extended to non-linear and non-stationary
systems, thus guaranteeing stability of adaptive control of non-linear square systems. Adaptive control
is used when the system parameters are unknown.15−17 Non-adaptive and adaptive controllers are
proposed in ref. [17] for a one-flexible link manipulator to track desired trajectories in the joint space.
The asymptotic stability of the error dynamics is proved using Lyapunov theory. For a four-link flexible
manipulator, a new robust control is proposed in ref. [18]. Indeed, an H∞ controller for regional pole
placement is designed for the uncertain linearized system. The controller is evaluated by simulation,
and tests on an experimental manipulator show that the proposed controller performs better than an LQ
controller. Intelligent control methods have been applied to flexible link manipulators. A two-stage
direct fuzzy logic controller was developed in ref. [19]. One stage controls the rigid motion, while
the second controls the flexible deformations and modifies the output of the first stage to reduce the
induced vibrations. The latter approach was taken in order to reduce the number of rules needed in the
fuzzy knowledge base controller. An intelligent proportional integral (iPI) controller was presented in
refs. [20, 21] to control the extremity of a flexible-link manipulator. The authors conclude in ref. [20]
that the PI and PID controllers produce better performance when the step and square-wave inputs are
applied to a flexible manipulator, but the PI controller yielded better trajectory tracking performance.

When using the dynamical model as one MIMO system, all joints and links are controlled by a single
controller. In general, the control algorithm is a single one, but not so the control actions, since the
control gains may be different for each link. In this case, the control structure becomes more complex
and the real-time implementation in industrial applications is not easy.22 To overcome this problem,
the dynamical model of a flexible manipulator can be viewed as an interconnection of multiple
subsystems, where each subsystem is controlled using one controller. Using this configuration,
decentralized controls were proposed in refs. [23-26] for flexible link manipulators. An indirect
adaptive decentralized control for a class of two time-scale interconnected systems is proposed in
ref. [23]. The dynamics of the slow subsystem are developed using the integral manifold method
and the dynamics of the fast modes are presented by the fast subsystem. The adaptive controller
uses the effects of unmodeled dynamics, identification errors and parameter variations. The virtual
decomposition control (VDC) was used in ref. [26] for serial-chain manipulator. Every subsystem is
controlled by its own VDC and the regressor-based adaptive control is used to estimate the unknown
parameters. The distributed control strategy was also used for rigid manipulators27 in order to track
a desired trajectory in the workspace. The distributed control strategy consists in controlling the last
subsystem while assuming that the remaining subsystems are stable. Then, going backward to the
last-but-one subsystem, the same strategy is applied, and so on until the first one. This distributed
control strategy is modified to take into account the flexibility of the links.28,29. Contrary to rigid
manipulators, flexible manipulators are under-actuated systems, i.e., the deflection variables are not
actuated. In this case, a subsystem has two parts: in addition to a joint as in a rigid manipulator, it
must also include the corresponding flexible link. In ref. [29], the distributed control is applied to the
two-flexible-link manipulator to track desired trajectories in the workspace. The redefinition output
technique has been used to select a non-collocated output, ensuring the stability of internal dynamics.
Only local stability was proved for this control strategy. An extension of this approach was proposed
and tested on the two-flexible-link manipulator in order to ensure the global stability of the tracking
error, the desired track trajectory in the joint space, and to minimize the links’ vibration.28 In these
previous works, the distributed control strategy was applied assuming that the system parameters
were perfectly known.

In this paper, the system parameters are assumed to be unknown, and a distributed adaptive control
strategy is developed for flexible link manipulators. First, the dynamical model is reorganized to take
the form of n interconnected subsystems, using a nonsingular transformation matrix. In this form,
each subsystem includes one joint and its corresponding flexible link. Then, the distributed adaptive
control strategy is used from the last subsystem proceeding backwards until the first one. Each
subsystem is controlled while assuming that the remaining subsystems are stable and follow their

https://doi.org/10.1017/S0263574716000448 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574716000448


1564 Distributed adaptive control strategy for flexible link manipulators

desired trajectories. Since each subsystem contains its own parameters and the parameters of upper
level subsystems, the unknown parameters of the last subsystem are first estimated and then used in
the lower level (n-1)th subsystem. The adaptive control law of each subsystem is developed using its
own estimated parameters and the parameters that were estimated in the previous steps. Lyapunov’s
theory is used to conclude the global stability. A real-time implementation on a two-flexible-link
manipulator is given as an example of the proposed control strategy in order to show the effectiveness
of this method.

The paper is organized as follows: Section 2 presents the modeling and problem formulation. The
distributed adaptive control strategy of a multi-flexible-link manipulator is presented in Section 3.
Section 4 presents the stability analysis of the errors dynamics. In Section 5, the proposed control
strategy is applied to a two-flexible-link manipulator and experimental results are shown. Finally,
conclusions are given in Section 6.

2. Modeling and Problem Formulation
The n-flexible-link manipulator is shown in Fig. 1. The links are presented in a cascade form and
actuated with individual motors. An inertial payload is clamped to the end effectors. The motion of
each link is assumed to be in the horizontal plane, and has a very small deflection. Using Lagrange
equations, the dynamical model of an n DOF flexible manipulator is given by ref. [30]:

M (q) q̈ + C (q, q̇) q̇ + Dq̇ + Kq = Lτ, (1)

where M is the inertia and mass matrix, C(q, q̇)q̇ is the Coriolis and centrifugal forces vector, D

is the friction matrix, K is the rigidity matrix, and L is the input matrix. q represents the vector of
the generalized coordinates and τ is the vector of the applied torques. For n rigid coordinates and n
flexible links, the deformation of the ith flexible link is given as follows:

vi (x, t) =
zi∑

j=1

ϕij (x) qf ij (t) i = 1, . . . , n, (2)

where qf ij is the j th generalized flexible coordinate, ϕij (x) is its j th shape function, and zi is
the number of the retained flexible modes of the ith flexible link. The total number of the flexible
modes is z = ∑n

i=1 zi and the number of the rigid modes is n. Note that in terms of actual real-time
implementation of the dynamics Eq. (1), it would be worth mentioning that O(n) methods exist for
forward and inverse dynamics computations.31 One approach to apply these methods to flexible-
link manipulator dynamics equations is to discretize the flexible links into many small rigid-bodies
connected by flexible elements. In such cases (as well as in cases of manipulators with many rigid
links), this O(n) complexity is very important since it saves significantly on the O(n3) or O(n4) that
would result from the direct implementation of the dynamics equations, as done in following sections.

Usually, the dynamical model (1) is written as an interconnection of rigid and flexible parts as
follows:30

[
Mr Mrf

MT
rf Mf

][
q̈r

q̈f

]
+
[

Cr Crf

CT
rf Cf

][
q̇r

q̇f

]
+
[

0 0

0 Df

][
q̇r

q̇f

]
+
[

0 0

0 Kf

][
qr

qf

]
=
[

τ

0

]
,

(3)
where Mr and Mf are the mass and inertia matrices for the rigid and the flexible parts, respectively.
Mrf is a coupled element. The same decomposition is used for the Coriolis matrix C(q, q̇). Kf is the
stiffness diagonal matrix and Df is the damping diagonal matrix of the flexible part. The subscripts
r and f denote the rigid and flexible modes. In this work, we consider only the first flexible mode of
each link, then: zi = 1 and z = n.

The generalized coordinate (q = [qT
r qT

f ]T ) includes the rigid coordinates in the first n elements
and the remaining n elements are the flexible coordinates. In this paper, to develop the distributed
control law, we need to reorganise the elements given in the generalized coordinates and the dynamical
model to take the form of n interconnected subsystems. Each subsystem has a joint/link pair. Then,
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Fig. 1. Flexible-link manipulator.

there exists a non-singular matrix of transformation Tr such as

q̄ = Trq, (4)

where q = [qT
r qT

f ]T = [qr1 · · · qrn qf 1 · · · qf n ]T is the original generalized coordinate vector, q̄ =
[q1 · · · qi · · · qn]T =

[
qr1 qf 1︸ ︷︷ ︸

q1
· · ·

qri qf i︸ ︷︷ ︸
qi

· · ·
qrn qf n︸ ︷︷ ︸

qn

]T

is the new one, qi = [qri qf i ]T is the generalized

coordinate associated with the ith subsystem (ith joint and link), and the transformation matrix Tr is
given by:

Tr =

q1

qi

qn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 i n︷ ︸︸ ︷
1 0 . . . 0 0 0 . . . 0 0 0

0 0 . . . 0 0 0 . . . 0 0 0

0 0 . . . 0 1 0 . . . 0 0 0

0 0 . . . 0 0 0 . . . 0 0 0

0 0 . . . 0 0 0 . . . 0 0 1

0 0 . . . 0 0 0 . . . 0 0 0

...

...

...

...

n+1 n+i 2n︷ ︸︸ ︷
0 0 . . . 0 0 0 . . . 0 0 0

1 0 . . . 0 0 0 . . . 0 0 0

0 0 . . . 0 0 0 . . . 0 0 0

0 0 . . . 0 1 0 . . . 0 0 0

0 0 . . . 0 0 0 . . . 0 0 0

0 0 . . . 0 0 0 . . . 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)
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Using (4), the dynamical model (1) can be written as follows:

M (q) T −1
r

¨̄q + C (q, q̇) T −1
r

˙̄q + DT −1
r

˙̄q + KT −1
r q̄ = Lτ, (6)

where ¨̄q = Tr ¨̄q and ˙̄q = Tr q̇.
Equation (6) is equivalent to the following expression:

M̄ (q) ¨̄q + C̄ (q, q̇) ˙̄q + D̄ ˙̄q + K̄q̄ = L̄τ, (7)

where M̄(q) = TrM(q)T −1
r ; C̄(q, q̇) = TrC(q, q̇)T −1

r ; D̄ = TrDT −1
r ; K̄ = TrKT −1

r , L̄ = TrL, and
q̄ is given previously.

The dynamical model (7) takes the form of n interconnected subsystems given as follows:

⎡
⎢⎢⎣

M̄T
1 (q)

...

M̄T
n (q)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q̈1

...

qn

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

C̄T
1 (q, q̇)

...

C̄T
n (q, q̇)

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q̇1

...

q̇n

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

D̄T
1

...

D̄T
n

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q̇1

...

q̇n

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

K̄T
1

...

K̄T
n

⎤
⎥⎥⎦
⎡
⎢⎢⎣

q1

...

qn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

L̄1

...

L̄n

⎤
⎥⎥⎦ , (8)

where qi = [qri qf i ]T ; M̄T
i = [M̄i1 . . . M̄ii . . . M̄in]2×2n; C̄T

i = [C̄i1 . . . C̄ii . . . C̄in]2×2n

D̄T
i = [0 . . . 0 D̄ii 0 . . . 0]2×2n; K̄T

i = [0 . . . 0 K̄ii 0 . . . 0 ]2×2n, M̄ij =
[

Mr M̄ij
Mrf M̄ij

Mrf M̄ij
Mf M̄ij

]
2×2

;

C̄ij =
[

Cr C̄ij
Crf C̄ij

Crf C̄ij
Cf C̄ij

]
; D̄ii =

[
0 0
0 Df i

]
; K̄ii =

[
0 0
0 Kf i

]
; L̄i =

[
0 . . . 0 1 0 . . . 0
0 . . . 0 0 0 . . . 0

]
2×n

.

Let us define the sliding surface as follows:

s =
[

sr

sf

]
=
[

˙̃qr + λr q̃r

˙̃qf + λf q̃f

]
=
[

q̇rd − q̇r + λr q̃r

q̇f d − q̇f + λf q̃f

]
=
[

u̇r − q̇r

u̇f − q̇f

]
= u̇ − q̇, (9)

where s = [ sT
r sT

f ]T = [ sr1 · · · srn sf 1 · · · sf n ]T . λr and λf are two positive gains; q̃r , q̃f are errors
of rigid and flexible parts, respectively.

Using the transformation matrix, a new form of the sliding surface can be written as follows:

s̄ = Trs = [
s1 · · · si · · · sn

]T = [
sr1 sf 1 · · · sri sf i . . . srn sf n

]T
. (10)

The same idea is used for u, then u̇ = [ u̇r u̇f ]T = [ u̇r1 · · · u̇rn u̇f 1 · · · u̇f n ]T and

˙̄u = Tr u̇ = [
u̇1 · · · u̇i · · · u̇n

]T = [
u̇r1 u̇f 1 · · · u̇ri u̇f i . . . u̇rn u̇f n

]T
. (11)

The properties that will be used in the control law development can be deduced from the dynamical
model as follows:

P1: M, Mrr, Mff , Dff and Kff are positive definite matrices.

P2: The inertia-mass matrix M(q) and the Coriolis matrix C(q, q̇) satisfy the following skew-
symmetric property:30

XT
(
Ṁ(q, q̇) − 2C(q, q̇)

)
X = 0 ∀X ∈ R(n+z). (12)

Let the desired trajectory associated with the rigid part of the ith subsystem, its first- and second-
order derivatives, be qrdi(t), q̇rdi(t) and q̈rdi(t), respectively, and qf di(t), q̇f di(t) and q̈f di(t) are those
associated with the flexible part of this subsystem. The objective is to track the desired trajectories in
the joint space and to reduce the vibrations of the links. The desired positions of the flexible modes
are then set to zero.
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3. Adaptive Distributed Control Strategy
This section presents the development of a distributed adaptive control strategy for an n-flexible-
link manipulator to track-desired trajectories in the joint space while reducing links vibrations. The
distributed control strategy consists in controlling the flexible manipulator, starting from the last
subsystem and then working backward until the first one. Each subsystem is controlled by assuming
that the remaining ones are stable. For the nth subsystem, the equation of motion is derived from (8)
as follows:

M̄T
n (q) ¨̄q + C̄T

n (q, q̇) ˙̄q + D̄T
n

˙̄q + K̄T
n q̄ = L̄nτ, (13)

where M̄T
n = [M̄n1 . . . M̄ni . . . M̄nn]2×2n; C̄T

n = [C̄n1 . . . C̄ni . . . C̄nn]2×2n; D̄T
n = [02×2 . . . 02×2

D̄nn]2×2n; K̄T
n = [02×2 . . . 02×2 K̄nn]2×2n and L̄n = [ 0 0 · · · 1

0 0 · · · 0 ]2×n.
The generalized coordinate associated with the nth subsystem is given by:

Q̄n = [
qrd1 qf d1 · · · qrd(n−1) qf d(n−1) qrn qf n

]T = [
qd1 · · · qd(n−1) qn

]T
. (14)

Note that the rigid and flexible coordinates of the nth subsystem are the controlled ones, while the rigid
and flexible coordinates of the remaining subsystems are the desired ones. Using the new coordinate,
the corresponding equation of motion becomes:

M̄T
n

(
Q̄n

) ¨̄Qn + C̄T
n

(
Q̄n,

˙̄Qn

)
˙̄Qn + D̄T

n
˙̄Qn + K̄T

n Q̄n = L̄nτ, (15)

where the velocity ˙̄Qn is the time derivative of Q̄n and the acceleration ¨̄Qn is the time derivative of
˙̄Qn.

There exists a vector pn = [ pnr

pnf
] ∈ �bnr+bnf with components depending on the manipulators’

parameters (masses, moments in inertia, etc.), such as:

Wn

(
Q̄n,

˙̄Qn, t
)

pn + RMn = M̄T
n

(
Q̄n

)
¨̄u + C̄T

n

(
Q̄n,

˙̄Qn

)
˙̄u + D̄T

n
˙̄u, (16)

where ˙̄u is given in (11), and Wn = [
Wnr 0

0 Wnf

]
is the regressor matrix which contains all known

functions, WT
nr ∈ �bnr and WT

nf ∈ �bnf , bnr and bnf are the number of unknown parameters of rigid
and flexible parts. RMn is the remaining term, which is independent of the parameters pn.

The control law of the last subsystem can be proposed as follows:

τn = Kdnrsnr + Tn + Wnrp̂nr + RMnr − δτnr , (17)

where

Tn =
⎧⎨
⎩

snf

(
Kdnf snf + Kf nq̃f n + Wnf p̂nf + RMnf + δτnf

)
snr

0
, (18)

Wnp̂n =
[

Wnrp̂nr

Wnf p̂nf

]
= ˆ̄MT

n

(
Q̄n

)
¨̄u + ˆ̄CT

n

(
Q̄n,

˙̄Qn

)
˙̄u + ˆ̄DT

n
˙̄u, (19)

δτn =
[

δτnr

δτnf

]
= (

δM̄T
n

)
¨̄u + (

δC̄T
n

)
˙̄u, (20)

and Kdn = [ Kdnr 0
0 Kdnf

]; δMnj = ∑n−1
j=1

∂Mnj (q)
∂qj

|qjd
q̃j + OMnj

(q̃j ) δCnj = ∑n−1
j=1

∂Cnj (q,q̇)
∂qj

|qjd
q̃j +∑n−1

j=1
∂Cnj (q,q̇)

∂q̇j
|qjd

˙̃qj + OCnj
(q̃j , ˙̃qj )OMij

andOCij
are the high-order terms of the Taylor series for

Mij (q) and Cij (q), respectively.
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The adaptive laws for the rigid and flexible parts are given as follows:

˙̂pnr = KvnrW
T
nrsnr ,

˙̂pnf = Kvnf WT
nf snf ,

(21)

where Kvnr and Kvnr are some positive definite gains.
The same strategy is used backward for the remaining subsystems. Taking for example the ith

subsystem, the equation of motion using the new associated coordinate is given as follows:

M̄T
i

(
Q̄i

) ¨̄Qi + C̄T
i

(
Q̄i,

˙̄Qi
˙̄Qi‘

)
˙̄Qi + D̄T

i
˙̄Qi + K̄T

i Q̄i = L̄iτ, (22)

where M̄T
i = [ M̄i1 · · · M̄ii . . . M̄in ]T ; C̄T

i = [ C̄i1 · · · C̄ii . . . C̄in ]T ; L̄i = [ 0 . . . 010 · · · 0
0 . . . 000 · · · 0 ]2×n;

D̄T
i = [ D̄i1 · · · D̄ii . . . D̄in ]T ; K̄T

i = [ K̄i1 · · · K̄ii . . . K̄in ]T ; M̄ii = [
MrM̄ii

MrfM̄ii

MrfM̄ii
MfM̄ii

]2×2; C̄ii =
[

CrC̄ii
CrfC̄ii

CrfC̄ii
CfC̄ii

]2×2; D̄ii = [ 0 0
0 Df i

]2×2 and K̄ii = [ 0 0
0 Kf i

]2×2 and the corresponding coordinate is:

Q̄i = [
qd1 · · · qd(i−1) qi qd(i+1) qdn

]T
, (23)

qdj = [qrdj qf dj ]T , j = 1, . . . , n and j �= i, and qi = [qri qf i ]T .
There exists a vector pi = [pir pif ]T ∈ �bir+bif with components depending on the manipulators’

parameters and the regressor matrix Wi = [ Wir 0
0 Wif

], which contains all known functions such as:

Wi

(
Q̄i,

˙̄Qi, t
)

pi + RMi = M̄T
i

(
Q̄i

)
¨̄u + C̄T

i

(
Q̄i,

˙̄Qi

)
˙̄u + D̄T

i
˙̄u, (24)

where RMi are the terms independent of pi .
The proposed control law is given as follows:

τi = Kdirsir + Ti + Wirp̂ir + RMir − δτir , (25)

where

Ti =
⎧⎨
⎩

sif

(
Kdif sif + Kf iq̃f i + Wif p̂if + RMif + δτif

)
sir

; sir �= 0

0 ; sir = 0
(26)

Wip̂i =
[

Wirp̂ir

Wif p̂if

]
= ˆ̄MT

i

(
Q̄i

)
¨̄u + ˆ̄CT

i

(
Q̄i,

˙̄Qi

)
˙̄u + ˆ̄DT

i
˙̄u, (27)

δτi =
[

δτir

δτif

]
= δM̄T

i
¨̄u + δC̄T

i
˙̄u, (28)

and δM̄ij = ∑n

j = 1
j �= i

∂M̄ij (q)

∂qj
|qjd

q̃j + OM̄ij

(
q̃j

)
; Kdi = [

Kdir 0
0 Kdif

]δC̄ij = ∑n

j = 1
j �= i

∂C̄ij (q,q̇)

∂qj
|qjd

q̃j +∑n

j = 1
j �= i

∂C̄ij (q,q̇)

∂q̇j
|qjd

˙̃qj +
OC̄ij

(
q̃j , ˙̃qj

)
OMij

and OCij
are the high-order terms of the Taylor series for Mij (q) and Cij (q),

respectively.
The corresponding adaptive laws are given as follows:

˙̂pir = KvirW
T
ir sir ,

˙̂pif = Kvif WT
if sif .

(29)
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Parameters’ 
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Fig. 2. The ith control law.

The ith control law is presented in Fig. 2.
The n control laws can be written as follows:

τ = Kdrsr + T + Wrp̂r + RM − δτr , (30)

where Wrp̂r = [W1r p̂1r . . . Wnr p̂nr ]T , T = [T1 . . . Tn ]T , δτr = [ δτr1 . . . δτrn ]T , sr =
[ sr1 . . . srn ]T and Kdr = diag(Kdri)

The adaptive laws are given as follows:

˙̂pr = KvrW
T
r sr ,

˙̂pf = Kvf WT
f sf ,

(31)

where Kvr = diag(Kvri) and Kvf = diag(Kvf i) are some positive definite gain matrices.
Figure 3 shows the distributed adaptive control strategy. Starting with the last subsystem, and

using its own estimated parameters, the nth control law is developed. Then, going backward to the
(n-1)th subsystem, the control law is computed using its own estimated parameters and the estimated
parameters of the nth (upper level) subsystem. For an ith subsystem, the controller depends on its
own estimated parameters and the estimated parameters of all upper level subsystems ((i+1)th, . . . .,
nth). The same strategy is used for each subsequent subsystem until the first one.

4. Stability Analysis
The global stability is studied by inserting the control law (30) in the initial dynamical model (1).
From (9), the velocity q̇ and the acceleration can be written as follows:

q̇ = u̇ − s,
q̈ = ü − ṡ. (32)

Using (32) and (1), the error dynamics can be deduced as follows:

M (q) ṡ + C (q, q̇) s + Ds + Kds = M (q) ü + C (q, q̇) u̇ + Du̇ + Kds + Kq − Lτ. (33)
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Proposition 1. The error dynamics (33) is equivalent to the following expression:

M (q) ṡ + C (q, q̇) s + Ds + Kds =
[ −T + Wrp̃r

Wf pf + RMf + δτf + Kdf sf + Kff q̃f

]
. (34)

Proof: See Appendix.

For the stability analysis, let us define the following positive Lyapunov function:

V = 1

2
sT M (q) s + 1

2
p̃T K−1

v p̃, (35)

where p̃ = [
p̃r

p̃f
]; Kv = diag(Kvr, Kvf ), p̃T K−1

v p̃ = p̃T
r K−1

vr p̃r + p̃T
f K−1

vf p̃f

The time derivative of V (t) gives:

V̇ (t) = 1
2sT M (q) ṡ + 1

2sT Ṁ (q) s + ˙̃pT
K−1

v p̃,

= sT

(
−C (q, q̇) s − Ds − Kds +

[ −T + Wrp̃r

Wf pf + RMf + δτf + Kdf sf + Kff ef

])
+ 1

2sT Ṁ (q) s + ˙̃pT
K−1

v p̃,

= −sT (D + Kd ) s + sT

([ −T + Wrp̃r

Wf pf + RMf + δτf + Kdf sf + Kff ef

])
+ ˙̃pT

K−1
v p̃,

= −sT (D + Kd ) s + Rs,

where

Rs = sT

([ −T + Wrp̃r

Wf pf + RMf + δτf + Kdf sf + Kff ef

])
+ ˙̃pT K−1

v p̃ = sT τs + ˙̃pT K−1
v p̃. (36)

Proposition 2. Using the dynamical model (1) and the control law (30), the error dynamics is
globally asymptotically stable and the time derivative of V (t) is equivalent to the following expression:

V̇ (t) = −sT (D + Kd ) s, (37)

Proof: See Appendix

5. Experimental Results
The system considered in this work is the two-flexible-link manipulator manufactured by Quanser,
shown in Fig. 4.

The system consists of two motors, two flexible links, and a payload. It moves in the horizontal
plane and is connected by rigid revolute joints. Two motors actuate the system and generate the
torques. Each flexible link is assumed uniform, and has a mass mi and length li . (X̂0, Ŷ0) is the fixed
reference frame. (X1, Y1) moves with the first link, while (X2, Y2) moves with the second link. The
flexible links are modeled as Euler–Bernoulli beams, and the deformations of the links are assumed
to be small. The tips’ deflection is measured using two strain gauges clamped at the base of each
flexible beam. Table I shows the system parameters.

The model of the two-flexible-link system given in ref. [32] is modified in this work by only
considering the first flexible mode of each link. Then, we have n = 2, z = 2 and z1 = z2 = 1. The
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Table I. System parameters.

Parameter Link 1 Link 2

Link length (li) 0.202 m 0.2 m
Link moment of inertia 0.17 kg.m2 0.0064 10–6 kg.m2

Elasticity 2.068 1011 N/m2 2.068 1011 N/m2

Gear ratio 100 50
Drive torque constant 0.119 Nm/A 0.0234 N.m/A
Drive moment of inertia 7.63 10−4 kg.m2 44.55 10−6 kg.m2

Rotor moment of inertia 6.28 10−6 kg.m2 1.03 10−6 kg.m2

Maximum rotation +/− 90 deg +/− 90 deg

Fig. 4. Two-flexible-link manipulator.

dynamical model of the two-flexible-link manipulator is given in (3), where

Mrr =
[

M11 M12

M21 M22

]
; Mrf =

[
M13 M14

M23 M24

]
; Mff =

[
M33 M34

M43 M44

]
; Crr =

[
C11 C12

C21 C22

]
;

Crf =
[

C13 C14

C23 C24

]
; Cff =

[
C33 C34

C43 C44

]
; Dff =

[
Df 1 0

0 Df 2

]
and Kff =

[
Kf 1 0

0 Kf 2

]
.

The control strategies presented in the previous sections are applied and implemented on this
system.

The experimental setup of the serial two-flexible-link robot manipulator is shown in Fig. 5. It
consists of a Q8 terminal board, a DAQ system, sensors such as strain gauges, an encoder and limit
switches. The proposed controllers are tested in real time using Workshop (RTW) of Mathworks R©
(Fig. 6).

The desired trajectories of the joints are represented by polynomial functions given by the following
expressions33 (Fig. 7):

qrd1 (t) = a10 + a11t + a12t
2 + a13t

3 + a14t
4 + a15t

5, (38)

qrd2 (t) = a20 + a21t + a22t
2 + a23t

3 + a24t
4 + a25t

5, (39)
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Fig. 5. Quanser two-link flexible robot.
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Fig. 6. Real time setup.

for 0 ≤ t ≤ Tf = 5s. For t ≥ Tf , qrd1(t) = π
4 and qrd2(t) = π

8 . For the flexible mode:

qf d1 (t) = qf d2 (t) = 0. (40)
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Fig. 7. Desired trajectories of rigid part: (a)–(b) position, (c)–(d) velocity, (e)–(f) acceleration.

Using a trial and error method, the controller’s gains are chosen as follows: for the distributed adaptive
control strategy, the selected gains are Kd1r = 15; Kd1f = 10, Kd2r = 25 and Kd2f = 10.

For an ith subsystem, the previous theoretical development of the control law is given in the
general case. For the sake of simplicity and the real-time implementation, a finite-order Taylor series
is fixed. The Taylor series is limited to the first order. Then, OMij

= OCij
= 0.

The uncertain parameters are chosen as follows:

• For the second subsystem, p2 = [p2r p2f ]T : p2r = [b121 b123 b251 ]T and p2f = [b153 b551 ]T .
Then, τ2 is developed using p̂2.

• For the first subsystem, p1 = [p1r p1f ]T : p1r = [p2 Jeq1 ]T and p1f = [p1r b331 ]T ; τ1 is
developed using p̂2, Ĵeq1 and b̂331

where bijk are given in ref. [30] and Jeq1 = Jh1 + Jo1 + mh2l
2
1 + m2l

2
1 + mpl2

1 .
The experimental results of the adaptive distributed control are shown in Figs. 8–10.
To show the contribution of the developed adaptive distributed control method, the results were

compared with a non-adaptive control version and a classical controller like PD. The experimental
results of the non-adaptive controller28 are given in Figs. 11–13, and PD control results are shown in
Figs. 14–16.

According to the experimental results, a good tracking is obtained in the joint space for the
distributed adaptive control strategy. The tracking of the desired trajectory of joint 1 is shown in
Fig. 8a and that of joint 2 is given in Fig. 8b. The tracking errors of joints 1 and 2 are given in
Fig. 8c and d, respectively. The good quality of the tracking obtained is confirmed by the tracking
errors, which do not exceed 0.0025 rad for joint 1 and 0.001 rad for joint 2. For the flexible part,
the desired trajectories are set to zero to reduce vibrations in the links. The errors, shown in Fig. 9,
are less than 0.0005. The control input for joints 1 and 2 are given in Fig. 10. The maximum torque
reaches up to 5N. The non-adaptive version and the PD control were tested on the two-flexible-link
manipulator using the same desired trajectories. Figure 11 shows the tracking of the two joints, and
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Fig. 8. Adaptive Distributed Control: (a)–(b) joints tracking trajectories; (c)–(d) joints tracking errors.

errors 

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1
x 10

-3

(a)

e
f1

0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2
x 10

-4

(b)
time (s)

ef
2

Fig. 9. Adaptive control: errors of flexible part.
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Fig. 10. Adaptive control: control input.
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Fig. 11. Non-adaptive Distributed Control: (a)–(b) joints tracking trajectories; (c)–(d) joints tracking errors.

the corresponding tracking errors. The tracking errors of the flexible part are given in Fig. 12, while
the input torque signals are given in Fig. 13. The results of the PD control are given in Figs. 14–16.
Indeed, Fig. 14 shows the tracking of the first and second joints, as well as the corresponding tracking
errors. Figure 15 presents the tracking errors of the flexible part, and the input torques are shown in
Fig. 16. For the adaptive distributed control method, the tracking errors of the joints and the links’
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Fig. 12. Distributed control: errors of the flexible parts.
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Fig. 13. Distributed control: control input.

vibrations are smaller than those resulting from non-adaptive control and PD control. Therefore, we
can conclude that the adaptive controller reduces the links’ vibrations and provides a good tracking
of the desired trajectories when compared to the non-adaptive and/or PD controllers.

6. Conclusion
This paper presents a distributed adaptive control strategy for flexible link manipulators. This
control strategy takes advantage of the configuration of n serial-link manipulators by using the
dynamical model as a set of interconnected subsystems. Each subsystem has a joint/link pair. Next,
the distributed control strategy consists in controlling the last subsystem while assuming that the
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Fig. 14. PD control: (a)–(b) joint tracking trajectories; (c)–(d) joint tracking errors.
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Fig. 15. PD control: errors of flexible parts.

remaining subsystems are stable. Then, going backward to the last-but-one subsystem, the same
strategy is applied, and so on, until the first one. The control law of a subsystem uses its own estimated
parameters and the parameters already estimated in the upper level subsystems. The global stability
is proved using Lyapunov theory. Experimental results compared with a non-adaptive controller and
PD controller show that the distributed adaptive control strategy provides good tracking and reduces
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Fig. 16. PD control: input torques.

the links’ vibrations. The workspace tracking control is a good challenge control problem for flexible
links manipulators. This approach could be extended in an eventual future work for controlling the
manipulator’s tip position, but additional constraints must be taken into consideration such as the
stability of the internal dynamics.
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Appendix
Proof of Proposition 1
From the error dynamics (33), let us define the second term as follows:

τs = M (q) ü + C (q, q̇) u̇ + Du̇ + Kds + Kq − Lτ. (A1)

Using the transformation matrix Tr and Eqs. (4), (9) and (11), we can write ü = T −1
r

¨̄u; u̇ = T −1
r

˙̄u;
s = T −1

r s̄ and q = T −1
r q̄. Equation (A1) becomes:

τs = M (q) T −1
r

¨̄u + C (q, q̇) T −1
r

˙̄u + DT −1
r

˙̄u + KdT
−1
r s̄ + KT −1

r q̄ − Lτ. (A2)

By multiplying (A2) by the transformation matrix Tr , we obtain:

τ̄s = M̄ (q) ¨̄u + C̄ (q, q̇) ˙̄u + D̄ ˙̄u + K̄d s̄ + K̄q̄ − L̄τ, (A3)
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where τ̄s = Trτs ; M̄(q) = TrM(q)T −1
r ; C̄(q, q̇) = TrC(q, q̇)T −1

r ; D̄ = TrDT −1
r ; K̄ = TrKT −1

r ; L̄ =
TrL.

For the ith subsystem, τ̄si is the ith element of τ̄s and is given as follows:

τ̄si = M̄T
i (q) ¨̄u + C̄T

i (q, q̇) ˙̄u + D̄T
i

˙̄u + K̄T
i q̄ + K̄T

di s̄ − L̄iτ, (A4)

where M̄T
i = [M̄i1 . . . M̄ii . . . M̄in]2×2n; C̄T

i = [C̄i1 . . . C̄ii . . . C̄in]2×2n; L̄iτ = [ τi 0 ]T .

D̄T
i = [

02×2 . . . D̄ii . . . 02×2
]

2×2n
; K̄T

i = [
02×2 . . . K̄ii . . . 02×2

]
2×2n

,

K̄T
di = [

02×2 . . . K̄dii . . . 02×2
]T

.

Using the Taylor series, we can write

M̄ij (q) = M̄ij (Qi) + DM̄ij (Qi)
T (q − Qi) + 1

2!
(q − Qi)

T
{
D2M̄ij (Qi)

}
(q − Qi) + . . .

where DM̄ij (Qi) is the gradient of M̄ij evaluated at q = Qi and D2M̄ij (Qi) is a Hessian matrix.
Then, we can write:

M̄ij (q) = M̄ij (Qi) + ∂M̄ij (q)

∂ [q1 · · · qi−1qi+1 . . . qn]

∣∣∣∣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1d

...

q(i−1)d

q (i + 1) d

...
qnd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 − q1d

...

qi−1 − q(i−1)d

qi+1 − q(i+1)d

...

qn − qnd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ OMij

(
q̃j

)
,

= M̄ij (Qi) −
n∑

j=1
j �=i

∂M̄ij (q)

∂qj

∣∣∣∣
qjd

q̃j + OMij

(
q̃j

)
,

M̄ij (q) = M̄ij (Qi) − δM̄ij , (A5)

where δM̄ij = ∑n
j=1
j �=i

∂M̄ij (q)
∂qj

|qjd
q̃j − OMij

(q̃j ) and OMij
are the remaining terms given as follows:

OMij
(q̃j ) = M̄ij (q) − M̄ij (Qi) +∑n

j=1
j �=i

∂M̄ij (q)
∂qj

|qjd
q̃j . The same idea is used for the Coriolis

matrix C

C̄ij (q, q̇) = C̄ij

(
Qi, Q̇i

)− δC̄ij . (A6)

Using (A5) and (A6), we can write:

M̄T
i (q) = M̄T

i (Qi) − δM̄T
i ,

C̄T
i (q, q̇) = C̄T

i

(
Qi, Q̇i

)− δC̄T
i ,

(A7)

and (A4) becomes

τ̄si = M̄T
i (Qi) ¨̄u + C̄T

i

(
Qi, Q̇i

)
˙̄u − δM̄T

i
¨̄u − δC̄T

i
˙̄u + D̄T

i
˙̄u + K̄T

i q̄ + K̄T
di s̄ − L̄iτ, (A8)

where δτi = [δτir δτif ]T = δM̄T
i

¨̄u + δC̄T
i

˙̄u; K̄T
i q̄ = [ 0 Kff iqf i ]T ; K̄T

di s̄ = [Kdirsir Kdif sif ]T .
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Using (24), the last Eq. (A8) can be written as follows:

τ̄si =
[

Wirpir + RMir + Kdirsir − δτir − τi

Wif pif + RMif − δτif + Kdif sif + Kff iqf i

]
. (A9)

Using (25), we can deduce

τ̄si =
[ −Ti + Wirp̃ir

Wif pif + RMif − δτif + Kdif sif + Kff i q̃if

]
, (A10)

where p̃ir = pir − p̂ir and ˙̃pir = − ˙̂pir (the system parameters pir are assumed constant, then ṗir =
0); q̃if = qf i − qf di = qf i .

The n elements of τ̄s can be written as follows:

τ̄s = [
τ̄s1 . . . τ̄sn

]T
. (A11)

As for q, u̇ and ṡ, τs can be reorganized as rigid and flexible parts using the matrix Tr

τs = T −1
r τ̄s = [

τsr1 · · · τsrn τsf 1 · · · τsf n

]T
, (A12)

where τsir = −Ti + Wirp̃ir and τsif = Wif pif + RMif − δτif + Kdif sif + Kff ief i .
Then, (A3) can be written as

τs =
[ −T + Wrp̃r

Wf pf + RMf − δτf + Kdf sf + Kff q̃f

]
, (A13)

where T = [T1 . . . Tn ]T ; Wrp̃r = [W1r p̃1r . . . Wnr p̃nr ]T ; Wf pf = [W1f p1f . . . Wnf pnf ]T

δτf = [
δτf 1 . . . δτf n

]T
; Kdf = diag

(
Kdf i

)
; Kff = diag

(
Kff i

)
; i = 1 . . . n.

The error dynamics (33) is equivalent to:

M (q) ṡ + C (q, q̇) s + Ds + Kds =
[ −T + Wrp̃r

Wf pf + RMf − δτf + Kdf sf + Kff q̃f

]
. (A14)

Proof of Proposition 2
As given in Section 2, s̄, τ̄s , K̄−1

v p̃ and ¯̃̇p can be obtained by changing the order of elements of the
vectors: s, τs , K−1

v p̃ and ˙̃p. Then, we can write

sT τs = s̄T τ̄s =
n∑

i=1

s̄T
i τ̄si =

n∑
i=1

sT
i τsi , (A15)

˙̃pT K−1
v p̃ = ¯̃̇pT K̄−1

v p̃ =
n∑

i=1

¯̃̇pT
i K̄−1

vi p̃i =
n∑

i=1

˙̃pT
i K−1

vi p̃i , (A16)

and

Rs =
n∑

i=1

s̄T
i τ̄si + ¯̃̇pT

i K̄−1
vi p̃i =

n∑
i=1

sT
i τsi + ˙̃pT

i K−1
vi p̃i =

n∑
i=1

Rsi, (A17)
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where Rsi = sT
i τsi + ˙̃pT

i K−1
vi p̃i ; τ̄si =

[ −Ti + Wir p̃ir

Wif pif + RMif + δτf i + Kdf i sf i + Kf i q̃if

]
; p̃i = [ p̃ir p̃if ]T .

We can write

˙̃pT
i K−1

vi p̃i = [
˙̃pT
ir

˙̃pT
if

] [K−1
vir 0

0 K−1
vif

][
p̃ri

p̃f i

]
= ˙̃pT

irK
−1
vir p̃ir + ˙̃pT

if K−1
vif p̃if . (A18)

Then,

Rsi = [
sir sif

] [ −Ti + Wirp̃ir

Wif pif + RMif + δτf i + Kdf isf i + Kf iq̃if

]
+ ˙̃pT

irK
−1
vir p̃ir + ˙̃pT

if K−1
vif p̃if ,

= −sirTi + sirWir p̃ir + sif

(
Wif pif + RMif + δτf i + Kdf isf i + Kf iq̃if

)
+ ˙̃pT

irK
−1
vir p̃ir + ˙̃pT

if K−1
vif p̃if ,

= −sirTi + (
sirWir + ˙̃pT

irK
−1
vir

)
p̃ir + sif

(
Wif pif + RMif + δτf i + Kdf isf i + Kf iq̃if

)
+ ˙̃pT

if K−1
vif

(
pif − p̂if

)
,

= (
sirWir + ˙̃pT

irK
−1
vir

)
p̃ir +

(
sif Wif + ˙̃pT

if K−1
vif

)
pif − sirTi

+sif

(
RMif + δτf i + Kdf isf i + Kf iq̃if

)− ˙̃pT
if K−1

vif p̂if .

The system parameters pir and pif are assumed constant, then: p̃ir = pir − p̂ir ;

p̃if = pif − p̂if ; ˙̃pir = − ˙̂pir and ˙̃pif = − ˙̂pif . Then: Rsi = (
sirWir − ˙̂p

T

ir K−1
vir

)
p̃ir + (

sif Wif −
˙̂p
T

if K−1
vif

)
pif − sirTi + sif

(
RMif + δτf i + Kdf isf i + Kf iq̃if

)+ ˙̂p
T

if K−1
vif p̂if

Using the adaptive laws of the ith subsystem:

˙̂pir = KvirW
T
ir sir , (A19)

˙̂pif = Kvif WT
if sif , (A20)

then,

Rsi = −sirTi + sif

(
RMif + δτf i + Kdf isf i + Kf iq̃if

)+ ˙̂pT
if K−1

vif p̂if . (A21)

Using (26), the Eq. (A21) becomes:

Rsi = −sir

[
sif

(
Kdif sif + Kf iq̃f i + Wif p̂if + RMif + δτif

)
sir

]
+ ˙̂pT

if K−1
vif p̂if ,

+sif

(
RMif + δτf i + Kdf isf i + Kf iq̃if

)
= −sif

(
Kdif sif + Kf iq̃f i + Wif p̂if + RMif + δτif

)
+sif

(
Kdif sif + Kf iq̃f i + RMif + δτif

)+ ˙̂pT
if K−1

vif p̂if ,

= −sif

(
Kdif sif + Kf iq̃f i + RMif + δτif

)+ sif

(
Kdif sif + Kf iq̃f i + RMif + δτif

)
+
(

˙̂pT
if K−1

vif − sif Wif

)
p̂if .

Using the adaptive law (A20), we can conclude that Rsi = 0. Then Rs = 0 and the time derivative
of V becomes:

V̇ (t) = −sT (D + Kd ) s (A22)
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Since D and Kd are positive matrices, V̇ (t) ≤ 0. V (t) is a continuous function of p̃. Using (A22),
V (t) is non-increasing in t. We can conclude then that s, p̃ ε L∞. From the definition of s given
in (9), q̃ εL∞ and from the definition of T , T εL∞. Using the error dynamics (34), ṡεL∞. On
the other hand, we have − ∫∞

0 V̇ dt = V (0) − V (∞) < ∞ or equivalently,
∫∞

0 ‖s ‖2dt < ∞, i.e.,
sεL2. Assuming that the Lyapunov derivative is uniformly continuous and using Barbalat Lemma,34

we can conclude that s → 0 as t → ∞, i.e., q̃, ˙̃q → 0 asymptotically as t → ∞. Note that recent
work35,36 mitigates LaSalle’s Invariance Principle stability conditions37 reaching stability conclusions
for non-autonomous systems under milder conditions, in particular without requiring the hard uniform
continuity condition.
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