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Abstract

The quantum behavior of the system composed of an electron in an electromagnetic field
is described by the Dirac equation, whose solution is a wave function represented by a col-
umn matrix with four components. We prove, without using any approximation, that these
components can be put in a form which reveals directly the values of the electron energy,
laser beam intensity, or amplitude of the electric field intensity, for which the quantum
electrodynamics effects are generated. Our results are in good agreement with the exper-
imental data reported in the literature. We prove that the four components of the wave
function verify the continuity equation of quantum electrodynamics. Our treatment is
in good agreement with the Compton relation. We show that the interaction of electrons
with laser beams could be modeled using classical approaches regardless of the laser
beam intensity as long as the electrons are non-relativistic, in agreement with published
experimental data.

Introduction

We consider a system composed of an electron which interacts with electromagnetic (EM)
field. The analysis of the experiments from literature (Bula et al., 1996; Burke et al., 1997;
Bamber et al., 1999; Kirsebom et al., 2001) shows that the quantum electrodynamics (QED)
effects, including the strong interactions between electron spin magnetic momentum and
EM field, occur for electron energies of the order of few tens of GeV or higher, for typical
laser beam intensities comprised between 1018 and 1019 W/cm2 (Bula et al., 1996; Burke
et al., 1997; Bamber et al., 1999), or for amplitude of the electric field intensity of the order
of 1013 V/m (Kirsebom et al., 2001). The solution of the Dirac equation, for this system, is
a column matrix having four elements (Dirac, 1958). In this paper, we prove that the system
of four partial differential equations, which is equivalent to the Dirac equation, leads to a sim-
ple solution, which reveals directly the conditions of the generation of the quantum effects, in
good agreement with the above experimental results. Our solution is different of the solutions
from literature, for similar interactions (Volkov, 1935; Brown and Kibble, 1964; Panek et al.,
2002; Boca and Florescu, 2009; Harvey et al., 2009; Krajewska and Kaminski, 2012), the list
not being exhaustive.

Our calculation is performed with the aid of a periodicity property of the system composed
of an electron in EM field (Popa, 2011), which is validated by numerous published experimen-
tal data. We have used this periodicity property to simplify the modeling of many applications
involving the interaction between electrons and laser beams. For instance, we proved that this
property leads to new polarization effects of the radiation generated by the collision between
laser beams at arbitrary angles and relativistic electron beams (REBs) (Popa, 2012). This prop-
erty can be used to calculate the radiation damping parameters in the interaction between very
intense laser beams and REBs (Popa, 2014a). We have presented a lot of other applications of
this property in the books Popa (2014b and 2014c).

The paper is structured as follows. The section Initial data presents initial data necessary for
our analysis, namely initial hypotheses related to the system composed of electron in an EM
field and the Dirac equation, written for this system. In the section Solution of the system
equivalent to the Dirac equation and its verification, we solve the system of equations equiv-
alent to the Dirac equation in the laboratory frame of reference and give a verification of its
solution. The section Solution of the system of equations in the rest frame of the relativistic
electron presents the solution of the system of equations in the rest frame of reference of rel-
ativistic electrons, for interactions between laser beams and REBs. In the section Discussion of
our solution in the light of experimental data from literature, we discuss our theoretical results
in the light of experimental data from literature.

The equations are written in the International System (IS).
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Initial data

Initial hypotheses

We analyze a system composed of a very intense EM field that
interacts with an electron. We consider the following initial
hypotheses:

(h1) We consider that the EM field is plane, elliptically polar-
ized. In a Cartesian system of coordinates, the intensity of the
electric field and of the magnetic induction vector, denoted,
respectively, by EL and BL, are polarized in the plane xy, while
the wave vector, denoted by kL, is parallel to the axis oz. The
expression of the electric field is

EL = EM1 cos hi+ EM2 sin hj (1)

with

h = vLt − |kL|z + hi and |kL|c = vL (2)

where i, j, and k are versors of the ox, oy, and oz-axes, EM1, EM2

are the amplitudes of the electric field oscillations in the ox and oy
directions, ωL is the angular frequency of the laser EM field, c is
the light velocity, ηi is an arbitrary initial phase and t is the
time in the xyz system in which the motion of the electron is
studied.

From the properties of the EM field, it follows that the corre-
sponding magnetic induction vector is

BL = −BM2 sin hi+ BM1 cos hj (3)

with

EM1 = cBM1, EM2 = cBM2 and cBL = k× EL (4)

where BM1 and BM2 are the amplitudes of the magnetic field oscil-
lations in the oy and ox directions.

(h2) The electric potential of the field is constant. Since the
magnetic potential vector of the field, denoted by AL, results
from the relation EL = −∂AL/∂t, we obtain from (1)

AL = −AM1 sin hi+ AM2 cos hj (5)

with

AM1 = EM1

vL
and AM2 = EM2

vL
(6)

where AM1 and AM2 are the amplitudes of the magnetic potential
vector oscillations in the ox and oy directions.

We note by a1 and a2 the relativistic parameters and have:

a1 = eEM1

mcvL
and a2 = eEM2

mcvL
(7)

Dirac equation, written in the laboratory frame system

We write the Dirac equation when the EM field is described by
Eqs. (1)–(6). In virtue of hypothesis (h2), we write the Dirac equa-
tion [see Dirac (1958), page 257] using our notations, in IS, as

follows:

[ p̂0 − r1(s, p̂+ eAL) − r3mc]c = 0 (8)

where

p̂0 =
ih−
c

∂

∂t
, p̂x = −ih− ∂

∂x
, p̂y = −ih− ∂

∂y
and

p̂z = −ih− ∂

∂z

(9)

e is the absolute value of the electron charge, ψ is the column
matrix of the wave function, having four elements, and σ1, σ2,
σ3, ρ1, ρ2, and ρ3 are the matrix operators which were been
used by Dirac in his equation. These matrices are as follows:

s1 =

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠, s2 =

0 −i 0 0

i 0 0 0

0 0 0 −i

0 0 i 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠,

s3 =

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

and

r1 =

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠, r2 =

0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠,

r3 =

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

In agreement with the Dirac’s notations, we have

(s, p̂+ eAL) = s1( p̂x + eALx) + s2( p̂y + eALy)
+ s3( p̂z + eALz) (10)

Dirac has multiplied the relation (8) by the following factor

p̂0 + r1(s, p̂+ eAL) + r3mc (11)

on the left, and obtained, after a mathematical processing, the fol-
lowing relation [see Dirac (1958), page 265]:

[ p̂20 − ( p̂+ eAL)2 −m2c2]c

+ −h− e(s,BL) + ir1
h− e
c
(s, EL)

[ ]
c = 0

(12)

Taking into account the relations (1), (3), and (9), Eq. (12)
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becomes

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇ + eAL)2 −m2c2
[ ]

c

+
−h− e(−s1BM2 sin h+ s2BM1 cos h)
+ ir1

h− e
c
(s1EM1 cos h+ s2EM2 sin h)

⎡⎣ ⎤⎦c = 0

(13)

which can be written, with the aid of (4), as follows:

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇ + eAL)2 −m2c2
[ ]

c

+ h− e
c
(−s2 + ir1s1)EM1 cos h · c

+ h− e
c
(s1 + ir1s2)EM2 sin h · c = 0

(14)

We consider the above matrices σ1, σ2, and ρ1. A simple calcu-
lation leads to the expressions of the matrices which enter in Eq.
(14):

−s2 + ir1s1 = i

0 1 0 1

−1 0 1 0

0 1 0 1

1 0 −1 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠,

s1 + ir1s2 =

0 1 0 1

1 0 −1 0

0 1 0 1

−1 0 1 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

(15)

By introducing the expressions from Eq. (15) into Eq. (14), we
obtain the following form of the Dirac equation

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇ + eAL)2 −m2c2
[ ] c1

c2

c3

c4

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

+ h− e
c
i

0 1 0 1

−1 0 1 0

0 1 0 1

1 0 −1 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

c1

c2

c3

c4

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

EM1 cos h+ h− e
c

0 1 0 1

1 0 −1 0

0 1 0 1

−1 0 1 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

c1

c2

c3

c4

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠EM2 sin h = 0

which can be written as follows:

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇+ eAL)2 −m2c2
[ ] c1

c2

c3

c4

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

+ h− e
c

i

c2 +c4

−c1 +c3

c2 +c4

c1 −c3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦EM1 cos h+

c2 +c4

c1 −c3

c2 +c4

−c1 +c3

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦EM2 sin h

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠=0

(16)

Solution of the system equivalent to the Dirac equation and
its verification

Solution of the system

Written in terms of the components ψ1, …, ψ4 of ψ, the Dirac
equation, given by (16), is equivalent to the following system of
four equations with four unknown:

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇ + eAL)2 −m2c2
[ ]

c1

+ h− e
c
(c2 + c4)(iEM1 cos h+ EM2 sin h) = 0

(17)

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇ + eAL)2 −m2c2
[ ]

c2

− h− e
c
(c1 − c3)(iEM1 cos h− EM2 sin h) = 0

(18)

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇ + eAL)2 −m2c2
[ ]

c3

+ h− e
c
(c2 + c4)(iEM1 cos h+ EM2 sin h) = 0

(19)

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇ + eAL)
2 −m2c2

[ ]
c4

+ h− e
c
(c1 − c3)(iEM1 cos h− EM2 sin h) = 0

(20)

We observe that the expressions from square brackets in Eqs.
(17)–(20) are identical to the operator from the Klein–Gordon
equation, divided by − c2 (Messiah, 1962), and we have:

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇ + eAL)2 −m2c2
[ ]

cKG = 0 (21)

where ψKG is the solution of the Klein–Gordon equation.
Supposing that Fj(η), with j = 1, 2, 3, 4, are functions of η, and

taking into account the relations (2), (5), and |kL|c = vL, we can
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easily obtain ∇[eALFj(h)] = 0, eAL∇Fj(h) = 0 and [(1/c2)
(ih− ∂/∂t)2 − (−ih− ∇)2]Fj(h) = 0. Taking into account these rela-
tions, together with (7) and (21), we obtain the following relation:

1
c2

ih− ∂

∂t

( )2

− (−ih− ∇ + eAL)2 −m2c2
[ ]

cKGFj(h)

= −cKG(e2A2
L +m2c2)Fj(h) =

− cKG ·m2c2(1+ a21 sin
2 h+ a22 cos

2 h)Fj(h)

(22)

In virtue of Eq. (22) we can see easily that the solution of the
system (17)–(20) is of the form:

c1 = CcKG[1+ F1(h)] (23)

c2 = CcKG[1+ F2(h)] (24)

c3 = CcKG[−1+ F1(h)] (25)

c4 = CcKG[1− F2(h)] (26)

where c is a constant of normalization. This solution corresponds
to F1 = F3 and F2 = F4.

We introduce the functions from Eqs. (23) to (26) in Eqs.
(17)–(20) and, with the aid of Eq. (22), we have:

−cKGm
2c2(1+ a21 sin

2 h+ a22 cos
2 h)F1(h)

+ h− e
c
2cKG(iEM1 cos h+ EM2 sin h) = 0

(27)

−cKGm
2c2(1+ a21 sin

2 h+ a22 cos
2 h)F2(h)

− h− e
c
2cKG(iEM1 cos h− EM2 sin h) = 0

(28)

−cKGm
2c2(1+ a21 sin

2 h+ a22 cos
2 h)F1(h)

+ h− e
c
2cKG(iEM1 cos h+ EM2 sin h) = 0

(29)

cKGm
2c2(1+ a21 sin

2 h+ a22 cos
2 h)F2(h)

+ h− e
c
2cKG(iEM1 cos h− EM2 sin h) = 0

(30)

We consider also the following relations

E1rms = 1��
2

√ EM1, E2rms = 1��
2

√ EM2 (31)

ES = m2c3

eh− , Y1e = E1rms

ES
and Y2e = E2rms

ES
(32)

where E1rms and E2rms are the root mean squares of the

components ELx and ELy of the electric field, ES is the
Schwinger electric field, while Y1e and Y2e are parameters entering
in QED calculations (Bamber et al., 1999).

The system (27)–(30), together with (31) and (32) lead to the
following expressions of the functions F1 and F2:

F1 = 2
��
2

√ (iY1e cos h+ Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h
(33)

F2 = − 2
��
2

√ (iY1e cos h− Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h
(34)

Introducing the expressions from (33) and (34) into (23)–(26),
we obtain:

c1 = CcKG 1+ 2
��
2

√ (iY1e cos h+ Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(35)

c2 = CcKG 1− 2
��
2

√ (iY1e cos h− Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(36)

c3 = CcKG −1+ 2
��
2

√ (iY1e cos h+ Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(37)

c4 = CcKG 1+ 2
��
2

√ (iY1e cos h− Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(38)

In the paper Popa (2011), at pages 023824–13, and in the book
Popa (2014b), at page 26, we proved, without any approximation,
that the Klein–Gordon equation is verified by the function

cKG = exp
iS
h−

( )
(39)

where S is the action function, which is the solution of the relativ-
istic Hamilton–Jacobi equation (Landau and Lifshitz, 1959;
Jackson, 1999):

c2(∇S+ eAL)2 − ∂S
∂t

( )2

+ (mc2)2 = 0. (40)

In Appendix A we give a brief proof that the function ψKG,
given by Eq. (39), verifies the Klein–Gordon equation and in
Appendix B we calculate the expression of the S function.

With the aid of Eq. (39), the solution of the Dirac equation
becomes:

c1 = C exp
iS
h−

( )
1+ 2

��
2

√ (iY1e cos h+ Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(41)

c2 = C exp
iS
h−

( )
1− 2

��
2

√ (iY1e cos h− Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(42)
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c3 = C exp
iS
h−

( )
−1+ 2

��
2

√ (iY1e cos h+ Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(43)

c4 = C exp
iS
h−

( )
1+ 2

��
2

√ (iY1e cos h− Y2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(44)

Verification of the solution

We prove now that the solution represented by Eqs. (41)–(44) ver-
ifies the continuity equation from QED. According to Eqs.
(1.1.28) and (1.1.29) from Weinberg (1995), the continuity equa-
tion is given by the following relations:

∂r

∂t
+∇ · J = 0 (45)

with

r = |c|2, J = cc+ac (46)

where ρ is the probability density, j is the probability current den-
sity and the components of the matrix α are as follows:

a1 =

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠, a2 =

0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠,

a3 =

0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

Using the above relations, we calculate the expressions of the
probability density ρ, and of the components of the current prob-
ability, Jx, Jy, and Jz and obtain:

r = c
∗
1 c

∗
2 c

∗
3 c

∗
4

( ) c1

c2

c3

c4

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

= c
∗
1c1 + c

∗
2c2 + c

∗
3c3 + c

∗
4c4

(47)

Jx = cc+a1c

= c c
∗
1c

∗
2 c

∗
3 c

∗
4

( ) 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

c1

c2

c3

c4

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠

= c(c
∗
1c4 + c

∗
2c3 + c

∗
3c2 + c

∗
4c1) (48)

In a similar manner, we obtain

Jy = cc+a2c = ci(−c
∗
1c4 + c

∗
2c3 − c

∗
3c2 + c

∗
4c1) (49)

Jz = cc+a3c = c(c∗
1c3 − c∗

2c4 + c∗
3c1 − c∗

4c2) (50)

Noting

K = 2
��
2

√

1+ a21 sin
2 h+ a22 cos2 h

(51)

we introduce the components of the wave function, given by Eqs.
(41)–(44) in Eq. (47) and obtain:

r = c
∗
1c1 + c

∗
2c2 + c

∗
3c3 + c

∗
4c4

= C2[1+ K(−iY1e cos h+ Y2e sin h)]
[1+ K(iY1e cos h+ Y2e sin h)]

+ C2[1− K(−iY1e cos h− Y2e sin h)]
[1− K(iY1e cos h− Y2e sin h)]

+ C2[−1+ K(−iY1e cos h+ Y2e sin h)]
[−1+ K(iY1e cos h+ Y2e sin h)]

+ C2[1+ K(−iY1e cos h− Y2e sin h)]
[1+ K(iY1e cos h− Y2e sin h)]

= C2[1+ K2(Y2
1e cos

2 h+ Y2
2e sin

2 h)]

+ C2
K(−iY1e cos h+ Y2e sin h)
+ K(iY1e cos h+ Y2e sin h)

[ ]
+ C2[1+ K2(Y2

1e cos
2 h+ Y2

2e sin
2 h)]

+ C2
−K(−iY1e cos h− Y2e sin h)
− K(iY1e cos h− Y2e sin h)

[ ]
+ C2[1+ K2(Y2

1e cos
2 h+ Y2

2e sin
2 h)]

+ C2
−K(−iY1e cos h+ Y2e sin h)
− K(iY1e cos h+ Y2e sin h)

[ ]
+ C2[1+ K2(Y2

1e cos
2 h+ Y2

2e sin
2 h)]

+ C2
K(−iY1e cos h− Y2e sin h)
+ K(iY1e cos h− Y2e sin h)

[ ]
= 4C2[1+ K2(Y2

1e cos
2 h+ Y2

2e sin
2 h)]

(52)

which can be written as

r = 4C2 1+ 8(Y2
1e cos

2 h+ Y2
2e sin

2 h)
(1+ a21 sin

2 h+ a22 cos2 h)2
[ ]

(53)

Similarly, we introduce the expressions of the components of
the wave function given by Eqs. (41)–(44) in Eqs. (48)–(50)
and, by simple calculations, obtain

Jx = 0, Jy = 0 (54)

Jz = 4cC2 −1+ 8(Y2
1e cos

2 h+ Y2
2e sin

2 h)
(1+ a21 sin

2 h+ a22 cos2 h)2
[ ]

(55)
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We observe that ρ and Jz are periodic functions of only one var-
iable, which is η. From Eqs. (53)–(55) we have:

∂r

∂t
= dr

dh
∂h

∂t
= dr

dh
vL

= 32C2 d
dh

Y2
1e cos

2 h+ Y2
2e sin

2 h

(1+ a21 sin
2 h+ a22 cos2 h)2

[ ]
vL

(56)

∇J = ∂Jz
∂z

= dJz
dh

∂h

∂z
= dJz

dh
(−|kL|)

= 32cC2 d
dh

Y2
1e cos

2 h+ Y2
2e sin

2 h

(1+ a21 sin
2 h+ a22 cos2 h)2

[ ]
(−|kL|)

(57)

We see that, in virtue of relations (56), (57), and |kL|c = vL,
the continuity Eq. (45) is verified.

Solution of the system of equations in the rest frame of the
relativistic electron

The analysis of the experimental data from literature shows that
the quantum effects are significant in interactions between very
intense laser beams and REBs having energies of the order of
few tens of GeV (Bula et al., 1996; Burke et al., 1997; Bamber
et al., 1999; Kirsebom et al., 2001). For this regime, it is conve-
nient to study the interaction between EM field and electron in
the rest reference frame of the electron.

We consider an interaction between the laser beam and a REB
which collide head-on with each other. The initial conditions,
written in the laboratory reference system, denoted by S(t, x, y, z),
are as follows:

t = 0, x = y = z = 0, vx = vy = 0, vz = −|V0| and h = hi

(58)

where vx, vy, and vz are the components of the electron velocity in
the system S.

The relations (1)–(6) remain valid in the S system, and they
are used to calculate the components of the EM field in the
inertial system of reference denoted by S′(t′, x′, y′, z′), in
which the initial velocity of the electron is zero. The
Cartesian axes in the systems S(t, x, y, z) and S′(t′, x′, y′, z′)
are parallel. In our case, the S′ system moves with velocity
−|V0| along the oz-axis.

Since the phase of the EM field is a relativistic invariant
(Jackson, 1999), the initial conditions in the inertial system S′

are as follows:

t′ = 0, x′ = y′ = z′ = 0, v′x′ = v′y′ = v′z′ = 0 and h = h′ = hi

(59)

where v′x′ , v
′
y′ and v′z′ are the components of the electron velocity

in S′.
We calculate now the parameters of the laser field, denoted by E′

L,
B′

L, k′L, and v′
L, in the S′ system. We denote the four-dimensional

wave vectors by (ωL/c, kLx, kLy, kLz) and (v′
L/c, k

′
Lx′ , k

′
Ly′ , k

′
Lz′ ) in

the systems S and S′, respectively.

In virtue of the Lorentz transformation, given by relations
(11.22) of Jackson (1999), we have

v′
L

c
= vL

c
g0(1+ |b0|) (60)

k′Lz′ = |k′L| = |kL|g0(1+ |b0|) (61)

k′Lx′ = kLx = k′Ly′ = kLy = 0 (62)

where

b0 = − |V0|
c

k and g0 = (1− b
2
0)

− 1
2 (63)

The phase of the EM wave is

h = vLt − kL · r + hi = v′
Lt

′ − k′L · r′ + hi = h′ (64)

where r and r′ are the positions vectors of the electron in the two
systems.

We write equations (11.149) from Jackson (1999) in IS and
with the aid of Eqs. (4) and (63), we obtain the following expres-
sions for the components of the EM field in the S′ system:

E′
L = g0(EL + b0 × cBL) = g0(1+ |b0|)EL (65)

B′
L = g0(BL − b0 × EL/c) = g0(1+ |b0|)BL (66)

where the relations between the amplitudes of the components
of the electric field, in the systems S and S′, are as follows

E′
M1 = g0(1+ |b0|)EM1 and E′

M2 = g0(1+ |b0|)EM2 (67)

In virtue of the relations (60) and (67), it follows that the rel-
ativistic parameters are relativistic invariants because we have

a′1 =
eE′

M1

mcv′
L
= eEM1

mcvL
= a1 and a′2 =

eE′
M2

mcv′
L
= eEM2

mcvL
= a2 (68)

According to the theory presented in Section 68 from Dirac
(1958), the Dirac equation has the same form in the inertial sys-
tems S and S′, and the Eqs. (8) and (12) from pages 257 and 265
of Dirac (1958), can be written in the system S′, as follows:

[ p̂′0′ − r1(s, p̂′ + eA
′
L)− r3mc]c′ = 0 (69)

and

[( p̂′0′ )
2 − (s, p̂′ + eA′

L)
2 −m2c2]c′

+ −h− e(s,B′
L)+ ir1

h− e
c
(s, E′

L)

[ ]
c′ = 0

(70)
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where

(s, p̂′ + eA′
L) = s1( p̂

′
x′ + eA′

Lx′ )

+ s2( p̂
′
y′ + eA′

Ly′ )+ s3( p̂
′
z′ + eA′

Lz′ )
(71)

p̂′0′ = ih−
c
· ∂

∂t′
, p̂′x′ = −ih− ∂

∂x′
,

p̂′y′ = −ih− ∂

∂y′
and p̂′z′ = −ih− ∂

∂z′

(72)

and the matrices ρ and σ have the same form in the systems S
and S′.

An identical treatment, as that presented in the subsection
Solution of the system, leads to the following system, which is
equivalent to the Dirac equation:

1
c2

ih− ∂

∂t′

( )2

− (−ih− ∇′ + eA′
L)

2 −m2c2
[ ]

c′
1

+ h− e
c
(c′

2 + c′
4)(iE′

M1 cos h
′ + E′

M2 sin h′) = 0

(73)

1
c2

ih− ∂

∂t′

( )2

− (−ih− ∇′ + eA′
L)

2 −m2c2
[ ]

c′
2

− h− e
c
(c′

1 − c′
3)(iE′

M1 cosh
′ − E′

M2 sinh
′) = 0

(74)

1
c2

ih− ∂

∂t′

( )2

− (−ih− ∇′ + eA′
L)

2 −m2c2
[ ]

c′
3

+ h− e
c
(c′

2 + c′
4)(iE′

M1 cos h
′ + E′

M2 sin h′) = 0

(75)

1
c2

ih− ∂

∂t′

( )2

− (−ih− ∇′ + eA
′
L)

2 −m2c2
[ ]

c′
4

+ h− e
c
(c′

1 − c′
3)(iE′

M1 cos h− E′
M2 sin h) = 0

(76)

where c′
1, . . . ,c

′
4 of ψ

′ are the four unknown and the expressions
from square brackets in Eqs. (73)–(76) are identical to the opera-
tor from the Klein–Gordon equation, divided by − c2 (Messiah,
1962).

An identical procedure, as that presented in the subsection
Solution of the system, leads to the following solution of this
system:

c′
1 = C′c′

KG 1+ 2
��
2

√ (iY ′
1e cos h+ Y ′

2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(77)

c′
2 = C′c′

KG 1− 2
��
2

√ (iY ′
1e cos h− Y ′

2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(78)

c′
3 = C′c′

KG −1+ 2
��
2

√ (iY ′
1e cos h+ Y ′

2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(79)

c′
4 = C′c′

KG 1+ 2
��
2

√ (iY ′
1e cos h− Y ′

2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(80)

where c′
KG is the solution of the Klein–Gordon equation, written

in the S′ system, C′ is the constant of normalization, and Y ′
1e and

Y ′
2e are given by the following relations:

Y ′
1e =

E′
1rms

ES
= 1��

2
√ · E

′
M1

ES
= 1��

2
√ · g0(1+ |b0|)EM1

ES
(81)

Y ′
2e =

E′
2rms

ES
= 1��

2
√ · E

′
M2

ES
= 1��

2
√ · g0(1+ |b0|)EM2

ES
(82)

In Appendix A we prove that

c′
KG = exp

iS′

h−
( )

(83)

where S′ is the action function, written in the inertial system
S′. Introducing this expression in Eqs. (77)–(80), we obtain
the following solution of the system of equations in the inertial
system S′.

c′
1 = C′ exp

iS′

h−
( )

1+ 2
��
2

√ (iY ′
1e cos h+ Y ′

2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(84)

c′
2 = C′ exp

iS′

h−
( )

1− 2
��
2

√ (iY ′
1e cos h− Y ′

2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(85)

c′
3 = C′ exp

iS′

h−
( )

−1+ 2
��
2

√ (iY ′
1e cos h+ Y ′

2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(86)

c′
4 = C′ exp

iS′

h−
( )

1+ 2
��
2

√ (iY ′
1e cos h− Y ′

2e sin h)
1+ a21 sin

2 h+ a22 cos2 h

[ ]
(87)

We observe that both, the system of equations which is equiv-
alent to Dirac equation, and its solutions, have the same form if
they wrote in the S and S′ systems.

Discussion of our solution in the light of experimental data
from the literature

In order to simplify the analysis, without loss of generality, we
assume in this section that the incident laser field is linearly polar-
ized. That is, its components are

EL = EM cos hi, BL = BM cos hj and AL = −AM sin hi (88)
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where

EM = cBM and AM = EM
vL

(89)

In this case, the components of the wave function in the system
S′ become

c′
1 = C′ exp

iS′

h−
( )

1+ 2
��
2

√
· iY ′

e · cos h′

1+ a2 sin2 h′

( )
(90)

c′
2 = C′ exp

iS′

h−
( )

1− 2
��
2

√
· iY ′

e · cos h′

1+ a2 sin2 h′

( )
(91)

c′
3 = C′ exp

iS′

h−
( )

−1+ 2
��
2

√
· iY ′

e · cos h′

1+ a2 sin2 h′

( )
(92)

c′
4 = C′ exp

iS′

h−
( )

1+ 2
��
2

√
· iY ′

e · cos h′

1+ a2 sin2 h′

( )
(93)

where

a = eEM
mcvL

(94)

and

Y ′
e =

E′
rms

ES
= 1��

2
√ E′

M

ES
= 1��

2
√ g0(1+ |b0|)EM

ES
(95)

To our knowledge, the only experiments showing QED effects
in the literature involve interactions between very intense EM
beams and REB. In this respect, we confine ourselves to discussing
the experimental data from Bula et al. (1996); Burke et al. (1997);
Bamber et al. (1999); and Kirsebom et al. (2001). In all these cases
the calculations are made in the rest frame of the electron.

Bula et al. (1996) and Bamber et al. (1999) present experimen-
tal data for nonlinear Compton scattering of Nd:glass laser beams
at 1.054 and 0.527 μm wavelengths on relativistic electron
bunches. The peak laser intensities and electron energies are Ip
= 1018 W/cm2 and Ee = 46.6 GeV in Bula et al. (1996) and Ip =
0.5 × 1018 W/cm2 and Ee = 46.6 and 49.1 GeV in Bamber et al.
(1999). The values of the QED parameter Y ′

e for which the non-
linear Compton scattering effect takes place, are, respectively, 0.17
for λL = 1.054 μm and 0.27 for λL = 0.527 μm (Bamber et al.,
1999). In other words, the quantum effects are evidenced exper-
imentally when the parameter Y ′

e, given by Eq. (95), has values
of the order of few tenths. This happens when the root mean
square of the electric field in the system S′ is of the order of
few tenths of Schwinger field.

Burke et al. (1997) present an experiment in which electron–
positron pairs are produced at the interaction between a Nd:
glass laser beam having Ip = 1019 W/cm2 at a wavelength of
0.527 μm, and a 46.6 GeV electron energy. The conditions of gen-
eration of quantum effects are roughly similar to those from Bula
et al. (1996); Bamber et al. (1999).

In Kirsebom et al. (2001) the influence of the electron spin on
the energy loss of ultra-relativistic electrons in huge EM fields is
shown experimentally. According to Fig. 2 from that paper, the
minimum value of the electron energy at which this effect takes
place is Ee = 35 GeV, when the amplitude of the intensity of
the electric field is EM = 1013 V/m. With the aid of the relations
γ0 = Ee/(mc2), |b0| = (1− 1/g20)1/2 � 1 and Y ′

e = (2g0EM)/
( ��

2
√

ES), we obtain γ0 = 6.85 × 104, and Y ′
e = 0.734.

On the other hand, the term Y ′
e can be written as follows:

Y ′
e =

E′
rms

ES
= eh− cB′

rms

m2c3
= 2

eh−
2m

B′
rms

( )
1

mc2
(96)

where the expression in parenthesis is the energy of interaction
between electron spin and a magnetic field having an intensity
equal to B′

rms. In virtue of the experimental data presented in
Kirsebom et al. (2001), the interactions between the electron
spin and magnetic field are significant when Ee > 35 GeV and
Y ′
e has values of the order of a few tenths of unity. This happens

when the value of the energy of interaction between the electron
spin and magnetic field is of the order of a few tenths of the value
of the rest energy of the electron.

In conclusion, according to the experiments from Bula et al.
(1996); Burke et al. (1997); Bamber et al. (1999); Kirsebom
et al. (2001), the QED effects are evidenced when the electron
energy, laser beam intensity and the amplitude of the intensity
of the electric field have, respectively, values of the order Ee =
40 GeV, Ip = 1018…1019 W/cm2 and EM = 1013 V/m, while the
parameter Y ′

e has values of a few tenths of unity.
We call “quantum terms” the terms appearing in the expres-

sions of the components of the wave function, which contain
the parameter Y ′

e. We observe that when the quantum terms
are negligible, the components of the wave function in Eqs.
(90)–(93) reduce to the wave function associated with classical
motion, namely C′ exp iS′/h− .

The factor 2
��
2

√
cos h′/(1+ a2 sin2 h′) from the equations of

the components of wave functions, namely Eqs. (90)–(93), takes
values between −2

��
2

√
and 2

��
2

√
. A simple calculation shows

that the quantum terms from these equations have significant val-
ues, of the order of unity, for the values of Y ′

e at which quantum
effects are evidenced experimentally. These values are shown in
Table 1. It follows that the quantum terms are significant when
they correspond to parameters at which quantum effects are evi-
denced experimentally.

It is easy to show that when the electron energy, Ee, is strongly
diminished, the quantum terms are much smaller than unity, and
the system can be treated classically. It follows that the interaction
of electrons with laser beams could be modeled using classical
approaches, regardless of the laser beam intensity, as long as
the relation Ee≪ 40 GeV is valid. This property is also valid in
the case of the interactions between non-relativistic electrons
and laser beams. In the books Popa (2014b and 2014c), we pre-
sented a synthesis of our papers referring to classical approaches
of these interactions, when Ee≪ 40 GeV. All these approaches
lead to results which are in good agreement with the experimental
data from the literature.

We show now that our results are in agreement with the
Compton relation. The coefficient which enters in the Compton
relation, and reflects the quantum behavior of the system, written
in the inertial system S′, is Y ′

C = h− v′
L/(mc2). When the coeffi-

cient Y ′
C has values of the order of unity, the quantum effects

330 Alexandru Popa

https://doi.org/10.1017/S0263034618000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034618000320


are significant, while when YC≪ 1, the system is at the classical
limit. We consider a typical value of the electron energy, Ee = 40
GeV, at which, according to our calculations, the quantum effects
become significant, and two values of the wavelength of the EM
field, namely λL = 1.054 × 10−6 m and λL = 0.527 × 10−6 m. We
use the relations γ0 = Ee/(mc2), |b0| = (1− 1/g20)1/2 � 1, ωL =
2πc/λL, and v′

L = 2g0vL and obtain, respectively, the values
0.7208 and 0.3604 for Y ′

C. In virtue of the Compton relation,
these values correspond to significant quantum effects. It follows
that there is a concordance between our calculations and the
Compton relation. Our treatment is self-consistent, because all
our classical approaches presented in Popa (2014b and 2014c)
correspond to the conditions h− vL/mc2 ≪ 1 or h− v′

L/mc2 ≪ 1,
which are valid when the Compton relation is at the classical
limit.

The property that the quantum effects are evidenced when the
initial electron energies are of the order of few tents of GeV is
reflected by the fact that the references “Bamber, Bula and
Burke” refer to similar experiments which need very energetic
electron accelerators and laser beams having intensities of the
order Ip = 1018…1019 W/cm2.

We note that the experimental data from Bula et al. (1996);
Burke et al. (1997); Bamber et al. (1999); Kirsebom et al.
(2001), for nonlinear Compton scattering, electron–positron
pairs production, or for the interaction between electron spin
and huge EM fields, correspond to values of the parameter Y ′

e
of the order of few tenths of unity. For these values, the quantum
terms in our relations begin to be significant.

We conclude that our relations are in agreement with the
experimental data from the literature, as the quantum terms
from the wave functions have significant values for electron ener-
gies and laser beam intensities at which quantum effects are
evidenced experimentally.

Conclusions

We presented a solution of the system of equations which is
equivalent to the Dirac equation, written for the system com-
posed of an electron in EM field, which depends on the phase
of the field and on the QED parameter Ye. This solution pre-
dicts significant quantum effects in the case of interactions
between very intense laser fields and relativistic electrons, for
electron energy and laser beam intensity, having values, respec-
tively, of the orders Ee = 40 GeV and Ip = 1018…1019 V/cm2, in
agreement with experiments reported in the literature. The clas-
sical models are valid for interactions between very intense laser
fields and nonrelativistic electrons, regardless of the laser beam
intensity, in agreement with numerous classical approaches
from literature.
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Appendix A Solution of the Klein–Gordon equation

We prove briefly that the function exp(iS/h− ) verifies the Klein–Gordon equa-
tion [see pages 023824–13 from Popa (2011) or page 26 from the book Popa
(2014b)]. We need to present this demonstration to show that it is valid also in
the inertial system S′ . We solve first the relativistic system of the equations of
the motion of the electron: Taking into account (1) and (3), the equations of

Table 1. Typical values of parameters a and Y ′e, in the rest frame of the
electron, in interactions between very intense laser beams and relativistic
electron beams, when quantum effects are significant. Calculations are made
for the electron energy Ee = 40 GeV, when λL = 1.054 and 0.527 μm, for two
peak values of laser intensity, Ip = 10

18 W/cm2 and Ip = 10
19 W/cm2

Ip = 10
18 W/cm2 Ip = 10

19 W/cm2

λL (μm) 1.054 0.527 1.054 0.527

a 0.6372 0.3186 2.0149 1.0075

Y ′e 0.1628 0.1628 0.5148 0.5148
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motion of the electron are

m
d
dt

(gvx) = −eEM1 cos h+ evzBM1 cos h (A1)

m
d
dt

(gvy) = −eEM2 sin h+ evzBM2 sin h (A2)

m
d
dt

(gvz) = −evxBM1 cos h− evyBM2 sin h (A3)

where vx, vy, and vz are the components of the electron velocities and

g = (1− b2
x − b2

y − b2
z )−

1
2 (A4)

with βx = vx/c, βy = vy/c and βz = vz/c. In our relations e is the absolute value of
the electron charge and m is the electron mass.

We consider the following initial conditions

t = 0, x = y = z = 0, vx = vxi,

vy = vyi, vz = vzi and h = hi

(A5)

Using (4), the equations of motion become

d
dt

(gbx) = −a1vL(1− bz) cos h (A6)

d
dt

(gby) = −a2vL(1− bz) sin h (A7)

d
dt

(gbz) = −vL(a1bx cos h+ a2by sin h) (A8)

where a1 and a2 are the relativistic parameters, which are given by Eq. (7).
We presented an exact solution of the system (A6)–(A8) in the paper Popa

(2011). We will present now briefly this solution, as follows.
We multiply (A6), (A7), and (A8), respectively, by βx, βy, and βz. Since

b2
x + b2

y + b2
z = 1− 1/g2 their sum leads to

dg
dt

= −vL(a1bx cos h+ a2by sin h) (A9)

Taking into account (A8) and (A9) we obtain d(γβz)/dt = dγ/dt. We inte-
grate this relation with respect to time between 0 and t, using the initial con-
ditions (5), and obtain γ− γi = γβz− γiβzi. From (2) we have dη/dt = ωL(1− βz).
From the last two relations, we obtain:

1− bz =
1
vL

dh
dt

= f0
g

where f0 = gi(1− bzi) (A10)

with βxi = vxi/c, βyi = vyi/c, βzi = vzi/c and gi = 1/
���������������������
1− b2

xi − b2
yi − b2

zi

√
.

We integrate (A6) with respect to time between 0 and t, and to phase
between ηi and η, taking into account the initial conditions (A5), and, chang-
ing the variables t and η in agreement with (A10), we obtain

gbx − gibxi = −a1vL

∫t
0
(1− bz) cos hdt

= −a1

∫h
hi

cos hdh = −a1(sin h− sin hi) (A11)

or

bx =
f1
g

where f1 = −a1(sin h− sin hi) + gibxi (A12)

Similarly, integrating (A7) and taking into account (A5) and (A10), we
obtain

by =
f2
g

where f2 = −a2(coshi − cosh) + gibyi (A13)

From (A10) we obtain

bz =
f3
g

where f3 = g− f0 (A14)

We substitute the expressions of βx, βy, and βz, respectively, from (A12),
(A13), and (A14) into (A4) and obtain:

g = 1
2f0

(1+ f 20 + f 21 + f 22 ) (A15)

Using the same procedure, in Appendix B we calculate the expressions of
the electron coordinates and of the action.

The analysis of the relations (A12)–(A15) shows that the functions βx, βy,
and βz are periodic functions of only one variable, that is η.

We consider now the following relations (Landau and Lifshitz, 1959;
Jackson, 1999):

p = gmv, H = gmc2 (A16)

∇S = p− eAL and H = − ∂S
∂t

(A17)

With the aid of these relations, together with (A12)–(A15), we need to cal-
culate the following expression:

∇(∇S+ eAL)− ∂2S
c2∂t2

[ ]
= ∇p+ 1

c2
∂H
∂t

= ∂

∂x
(mcgbx) +

∂

∂y
(mcgby)

+ ∂

∂z
(mcgbz) +

1
c2

∂

∂t
(mc2g)

= mc
df1
dh

∂h

∂x
+mc

df2
dh

∂h

∂y
+mc

df3
dh

∂h

∂z

+m
dg
dh

∂h

∂t
= −mc

df3
dh

|kL| +m
dg
dh

vL

(A18)

From (2) and (A14) we have, respectively, c|kL| = ωL and df3/dη = dγ/dη, so
(A18) becomes:

∇(∇S+ eAL) − ∂2S
c2∂t2

[ ]
= 0 (A19)

We observe that the expression from the first member of the above relation
is the divergence of the energy-momentum four vector.

The relativistic Hamilton–Jacobi and Klein–Gordon equations are given by
the following relations (Landau and Lifshitz, 1959; Messiah, 1962; Jackson,
1999):

c2(∇S+ eAL)2 − ∂S
∂t

( )2

+ (mc2)2 = 0. (A20)

c2(−ih− ∇ + eAL)2 − ih− ∂

∂t

( )2

+ (mc2)2
[ ]

c = 0 (A21)

332 Alexandru Popa

https://doi.org/10.1017/S0263034618000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034618000320


where ψ is the wave function. Recall that e is the absolute value of the electron
charge.

In the paper Popa (2011), at pages 023824–13, we proved that the Klein–
Gordon equation is verified by the function exp(iS/h− ). In order to check this,
we substitute c = exp(iS/h− ) in Eq. (A21), and obtain

c2(−ih− ∇ + eAL)2 − ih− ∂

∂t

( )2

+ (mc2)2
[ ]

exp
iS
h−

( )

= c2(∇S+ eAL)2 − ∂S
∂t

( )2

+ (mc2)2
[ ]

exp
iS
h−

( )

− ih− c2 ∇(∇S+ eAL) − ∂2S
c2∂t2

[ ]
exp

iS
h−

( )
(A22)

Taking into account Eqs. (A19) and (A20), the relation (A22) becomes

c2(−ih− ∇ + eAL)2 − ih− ∂

∂t

( )2

+ (mc2)2
[ ]

exp
iS
h−

( )
= 0 (A23)

and the solution of the Klein–Gordon equation is verified.
We write now the above equations in the inertial system S′, which is

described in the section Solution of the system of equations in the rest
frame of the relativistic electron. It is easy to prove that the relativistic system
of equations of motion of the electron, (A6)–(A8), has the same form in the
inertial systems S and S′ [see (Popa, 2011), pages 023824–9], and we can write

d
dt′

(g′b′
x′ ) = −a′1v

′
L(1− b′

z′ ) cos h′ (A24)

d
dt′

(g′b′
y′ ) = −a′2v

′
L(1− b′

z′ ) sinh′ (A25)

d
dt′

(g′b′
z′ ) = −v′

L(a′1b′
x′ cos h

′ + a′2b
′
y′ sin h′) (A26)

where a′1 = a1 and a′2 = a2 are given by Eq. (68) and the initial conditions in
the systems S and S′ are given, respectively, by Eqs. (58) and (59).

An identical solution, as that for Eqs. (A6)–(A8), leads to

b′
x′ =

f ′1
g′

where f ′1 = −a1(sin h′ − sin hi) (A27)

b′
y′ =

f ′2
g′

where f ′2 = −a2(cos hi − cos h′) (A28)

b′
z′ =

f ′3
g′

where f ′3 = g′ − 1 (A29)

where

g′ = 1
2
(2+ f ′21 + f ′22) (A30)

Since the relativistic relations (A16) and (A17) have the same form in
the inertial systems S and S′, we have p′ = g′mv′ , H′ = γ′mc2,
∇′S′ = p′ − eA′

L and H′ = −∂S′/∂t′ . According to these relations, together
with (A27)–(A30), an identical calculation, as that from Eq. (A18), leads to
the following relation:

∇′(∇′S′ + eA′
L)− ∂2S′

c2∂t′2

[ ]
= 0 (A31)

It follows that the divergence of the energy-momentum four vector is also
equal to zero in the system S′ .

The relativistic Hamilton–Jacobi and Klein–Gordon equations can be writ-
ten in the system S′ , as follows:

c2(∇′S′ + eA′
L)

2 − ∂S′

∂t′

( )2

+ (mc2)2 = 0. (A32)

c2(−ih− ∇′ + eA′
L)

2 − ih− ∂

∂t′

( )2

+ (mc2)2
[ ]

c′ = 0 (A33)

We substitute c′ = exp(iS′/h− ) in Eq. (A33), and obtain

c2(−ih− ∇′ + eA′
L)

2 − ih− ∂

∂t′

( )2

+ (mc2)2
[ ]

exp
iS′

h−
( )

= c2(∇′S′ + eA′
L)

2 − ∂S′

∂t′

( )2

+ (mc2)2
[ ]

exp
iS′

h−
( )

− ih− c2 ∇′(∇′S′ + eA′
L)− ∂2S′

c2∂t′2

[ ]
exp

iS′

h−
( )

(A34)

Taking into account the Eqs. (A31) and (A32), the relation (A34) becomes

c2(−ih− ∇′ + eA′
L)

2 − ih− ∂

∂t′

( )2

+ (mc2)2
[ ]

exp
iS′

h−
( )

= 0 (A35)

and the solution of the Klein–Gordon equation, in the S′ system, is verified.

Appendix B Calculations of electron coordinates and action

We obtain the expressions of the electron coordinates using the procedure pre-
sented in Appendix A. Thus, to calculate x, we integrate the expression of βx,
given by Eq. (A12), between 0 and t, taking into account (A10) and the initial
conditions (A5). From (A10) we have dt = [γ/(ωLf0)]dη and obtain

x = c
∫t
0
bxdt =

c
vLf0

∫h
hi

[−a1(sin h− sin hi) + gibxi]dh

= c
vLf0

[a1(cos h− cos hi) + c1(h− hi)]
(B1)

Similarly, integrating the expressions of βy and βz, given by Eqs. (A13) and
(A14), we obtain

y = c
vLf0

[a2(sin h− sin hi) + c2(h− hi)] (B2)

z = c
∫t
0
bzdt =

c
vLf0

∫h
hi

(g− f0)dh

= c
vL2f 20

∫h
hi

[1− f 20 + (−a1 sin h+ c1)2

+ (a2 cos h+ c2)2]dh

= − c
8vLf 20

(a21 − a22)(sin 2h− sin 2hi)

+ c
vLf 20

[a1c1(cos h− cos hi)

+ a2c2(sin h− sin hi)] +
cc3

2vLf 20
(h− hi)

(B3)

The constants c1, c2, and c3 from Eqs. (B1)–(B3) are given by the following
relations:

c1 = a1 sin hi + gibxi (B4)
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c2 = −a2 cos hi + gibyi (B5)

c3 = 1− f 20 + 1
2
(a21 + a22) + c21 + c22 (B6)

The analysis of the relations (B1)–(B3) shows that the coordinates x, y, and
z are functions of only one variable, which is η.

We calculate now the S action. In virtue of the relations (5), (A16), and
(A17), the variation of the action can be written

dS = ∂S
∂x

dx + ∂S
∂y

dy + ∂S
∂z

dz + ∂S
∂t

dt

= ( px − eALx)dx + ( py − eALy)dy + pzdz − gmc2dt

= (p · v − eALxvx − eALyvy − gmc2)dt

(B7)

where ALx =−AM1sin η and ALy = AM2cos η.
We calculate the terms of this relation, as follows. From (A4) and (A16) we

have:

p · v − gmc2 = −mc2g(1− b
2
) = −mc2

g
(B8)

From (6), (7), (A12), (A13), (B4), and (B5) we obtain

−eALxvx − eALyvy = ceAM1 sin h
f1
g
− ceAM2 cos h

f2
g

= mc2a1
g

(−a1 sin h+ c1) sin h−mc2a2
g

(a2 cos h+ c2) cos h
(B9)

From Eq. (A10) we have dt = [γ/(ωLf0)]dη. We use this relation together
with Eqs. (B7)–(B9) and obtain:

dS = −mc2a21
vLf0

sin2 h · dh−mc2a22
vLf0

cos2 h · dh

+mc2a1c1
vLf0

sin h · dh−mc2a2c2
vLf0

cos h · dh− mc2

vLf0
dh

(B10)

We integrate (B10) with respect to phase between ηi and η and have

S = mc2

4vLf0
(a21 − a22)

∫2h
2hi

cos 2h · d(2h)

+mc2a1c1
vLf0

∫h
hi

sin h · dh−mc2a2c2
vLf0

×
∫h
hi

cos h · dh− mc2

vLf0
1+ 1

2
(a21 + a22)

[ ]
(h− hi)

(B11)

or

S = mc2

4vLf0
(a21 − a22)(sin 2h− sin 2hi)

− mc2

vLf0
[a1c1(cos h− cos hi) + a2c2(sin h− sin hi)]

− mc2

vLf0
1+ 1

2
(a21 + a22)

[ ]
(h− hi)

(B12)

It follows that S is written in the form of a function of only one variable, which
is η.
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