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Abstract. In this work, we analyse the sequence of bifurcated equilibria in two-
dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied un-
der the assumption of a constant equilibrium pressure gradient, not altered by the
formation of a magnetic island. The formation of an island when the symmetric
equilibrium becomes unstable is studied as a function of the tearing-mode stability
parameter ∆′ and of the diamagnetic frequency, by employing fixed-point numeri-
cal technique and an initial-value code. At larger values of ∆′, a tangent bifurcation
takes place, above which no small-island solutions exist. This bifurcation persists
up to fairly large values of the diamagnetic frequency (of the order of one-tenth of
the Alfvén frequency). The implications of this phenomenology for the intermittent
MHD dynamics observed in tokamaks is discussed.

1. Introduction
A common feature of laboratory and space plasmas is the observation of inter-
mittent enhancement of magnetohydrodynamic (MHD) activity. In the case of
tokamak plasmas, one can include in this category of phenomena sawtooth relax-
ation, the so-called edge-localized modes (ELMs) occurring in high-confinement
regimes, and, as extreme events, disruptions that lead to a sudden termination of
the current discharge (Kadomtsev 1992). Sometimes these events are preceded by
a well-identified precursor, namely the occurrence of an observable slowly growing
magnetic island inside the plasma.

One of the problems encountered when trying to understand theoretically this
phenomenology in tokamaks is that one usually finds that the excitations that
break the symmetry of the initially axisymmetric state are of the ‘soft’ type. For
values of some control parameter p slightly above the stability threshold pc of the
axisymmetric state, the system settles in a neighbouring state of slightly broken
symmetry, for example an equilibrium with a small saturated magnetic island.

In certain situations, one can rule out the occurrence of a hard transition, directly
from the symmetric equilibrium, on energetic grounds. This is when one can show
that the amount of energy that can be released during the transition is proportional
to some positive power of p − pc. This energy thus tends to zero at the transition
point. In this case, hard transitions are ruled out because they would require a
finite release of energy at threshold.

The difficulty in understanding the frequently observed ‘hard’ excitations on the
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basis of perturbation analysis around the initially axisymmetric state has become
known as the ‘trigger’ problem (Wesson et al. 1991).

In general, abrupt changes of observable quantities are conveniently described in
the conceptual framework of bifurcation theory (Guckenheimer and Holmes 1986).
In particular, hard excitations can generically appear as a tangent (saddle-node)
bifurcation or a subcritical (hard) Hopf-type bifurcation. Upon a slow variation of
the control parameter, both types of bifurcations lead to abrupt (“catastrophic”)
changes in some observable quantity.

In a previous paper, Tebaldi et al. (1996) explored the possibility of overcoming
the difficulty posed by the trigger problem by investigating the nature of a second
bifurcation of the non-symmetric saturated state. This was done for a slab model
of reduced resistive MHD (RRMHD), by varying the tearing-mode stability pa-
rameter ∆′ as control parameter. (We recall that ∆′ is defined as the jump in the
logarithmic derivative of the eigenfunctions of linear ideal MHD across the singular
layer, where resistivity becomes important.)

The main result was that, after a first bifurcation (occurring near ∆′ = 0) leading
to a saturated tearing mode with a magnetic island of small amplitude, the system
undergoes a tangent bifurcation at L∆′ ≈ 1, where L is a macroscopic scale length.
Above this value of ∆′, no equilibrium with a small island exists. The system jumps
to a state where the island width is of the order of the system size.

To the extent that the island width is somewhat less than the system size, we
expect the findings of Tebaldi et al. (1996) to be largely independent of geometry.
Therefore they suggest a qualitative explanation of sudden reconnection events
observed in laboratory plasmas. On the basis of our analysis, we proposed that
these events would occur from a state of already-broken symmetry when the second
bifurcation (a catastrophe) takes place. This state of slightly broken symmetry can
be identified as the precursor state in which a small stable island can in principle
be observed.

There are two main aims of this paper. The first is to carry out a more detailed
analysis of the parametric dependence of the first bifurcated equilibrium than what
was done in Tebaldi et al. (1996), by employing analytical perturbation theory and
numerical methods. The second is to begin to study how the island is affected by the
diamagnetic terms, by extending the previous model to include the drift velocity
under the assumption of constant (frozen) pressure gradients.

For practical reasons, we shall still restrict our investigation to the two-
dimensional (2D) MHD model, although it should be noted that, in principle, a com-
plete analysis of the stability of islands would require the use of three-dimensional
(3D) models, since further bifurcations can break the surviving symmetry. We find
that the 2D phenomenology turns out to be sufficiently rich to be able to reproduce,
at least qualitatively, some of the experimental observations.

Here we briefly review some of the previous literature.
An analytical calculation of the saturated island width had been carried out by

Thyagaraja (1981) using an expansion in the parameter ∆′L. The author found two
coalescent solutions in the region where such an expansion breaks down (∆′ ≈ 1/L).

In another work, Wesson et al. (1985) considered tearing instabilities in cylindri-
cal geometry. By heuristically modifying the linear eigenvalue problem to include
the effect of the modification of the equilibrium field due to the island, an equation
for the saturated island width of the form ∆′nonlinear(w) = 0 was obtained. This equa-
tion has two solutions, which coalesce when a critical value of the current is reached.
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Above this value, no solution exists. This was proposed as a possible mechanism for
low-β disruptions.

However, one must stress that these results are perturbative, being essentially
based on an expansion in the parameter ∆′, which is only appropriate to treat the
region around the first bifurcation. This expansion breaks down when approach-
ing any subsequent bifurcation point. Thus any conclusion about the nature of a
subsequent bifurcation can only be speculative when it is based on the methods of
Thyagaraja (1981) and Wesson et al. (1985).

The analysis of Saramito and Maschke (1993) is valid beyond the first bifurcation.
Those authors, however, considered only situations with constant slab aspect ratio
and used S as a bifurcation parameter. In a later work, Parker et al. (1990) studied
the bifurcation sequence in RRMHD with an initial-value code, using a variable
slab aspect ratio at a constant Lundquist number (S ≈ 102). No tangent bifurcation
was detected in either work. It should be noted, however, that both investigations
were carried out by employing rigid boundary conditions (zero radial flows at the
walls). This choice strongly limits the island growth, since the radial flow far from
the reconnecting region would normally tend to grow together with the island.
Thus a more natural boundary condition would seem to be ∂vx/∂x→ 0.

This paper is organized as follows. Section 2 is devoted to the illustration of the
MHD model and Sec. 3 to the numerical techniques. In Sec. 4, we review the stabil-
ity analysis of the symmetric equilibrium. The bifurcation analysis for stationary
islands is in Sec. 5 and the interpretation of these results is given in the Appendix.
The case of a rotating island, still under investigation, is treated in Sec. 6. Conclu-
sions and a discussion of possible developments are given in Sec. 7.

2. The MHD model
The MHD model used in this work is a generalization of single-helicity reduced
resistive magnetohydrodynamics (RRMHD) (Kadomtsev and Pogutse 1974). The
normalized model equations can be written as

∂tU + v∗∂yU + [φ,U ] = [J, ψ] + µ∇2U, (2.1)

∂tψ + [φ, ψ] = −η(J − J0). (2.2)

These equations are defined on a two-dimensional domain with coordinates x and
y. With reference to the magnetic geometry of a tokamak, x can be thought of as a
radial coordinate, labelling the equilibrium flux surfaces, and y as a poloidal coordi-
nate. The third direction is considered ignorable. The model equations describe the
evolution of the plasma vorticity U = ∇2φ, where φ is the electric potential (which
plays the role of the stream function), and of the magnetic flux function ψ associ-
ated with the magnetic field in the plane (a constant magnetic field is assumed in
the ignorable direction). The other fields in (2.1) and (2.2) are the current density
J = −∇2ψ and the equilibrium current density J0, associated with the equilibrium
flux function ψ0. Moreover, for any two fields A andB, [A,B] ≡ ∂xA∂yB−∂yA∂xB,
so that [φ, ·] = v ·∇ is the usual advection operator.

Lengths are normalized to a macroscopic length L, which is a measure either
of the size of the system or of the scale length of the variation of the equilibrium
magnetic field. Times are normalized to the Alfvén time τA = L/vA, where vA =
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Bp/ρ
1/2 is the poloidal Alfvén speed associated with the equilibrium field Bp (ρ is

the mass density).
The dissipation is measured by the viscosity µ and by the resistivity η, which, in

these units, are respectively the inverses of the Reynolds number R, µ = 1/R, and
of the Lundquist number S (magnetic Reynolds number), η = 1/S.

In this simple model, the diamagnetic effect is measured by the equilibrium ion
drift velocity v∗. The possible inclusion of the electron drift velocity v∗e in Ohm’s
law would not alter qualitatively the behaviour of this model, as long as one neglects
the evolution of the plasma pressure. In this case, v∗e would appear in (2.2), as an
additional term v∗e ∂yψ. This term can be transformed away by going to a reference
frame moving at the velocity v∗e . Thus one does not lose generality by ignoring v∗e
in (2.2).

Of course, a more complete model would require the addition of a third equation
for the plasma pressure (or temperature), which also would allow the analysis of the
important effects of the nonlinearity in the diamagnetic terms. The treatment of
this effect is, however, beyond the scope of this work. One should regard the analysis
presented here as a first step towards understanding the role of the diamagnetic
terms on the formation of magnetic islands.

The model given by (2.1) and (2.2) is completed by specifying the domain on
which the dynamics takes place, the functional form of the equilibrium magnetic
field and the boundary conditions. In the rest of this work, the domain is taken
to be a square box (slab) [−Lx, Lx]× [−Ly, Ly], where the normalized lengths are
of order one. It is convenient to take Lx = π and Ly = π/ε, where the slab aspect
ratio ε has been introduced. The normalized equilibrium flux function is taken to
be symmetric,

ψ0 = cosx. (2.3)

Thus the magnetic field has a null along the line x = 0. One can anticipate that a
magnetic island will develop around this line when the equilibrium is unstable.

The boundary conditions are taken to be periodic in both directions. Although
periodicity is natural in the y direction, it seems somewhat odd to use it in the
radial direction x. In reality, when the island width w is sufficiently smaller than
the system size, w� Lx, the only effect of periodicity is to add a duplicate island
around the line x = ±π. When the islands are small, they do not interact. Far from
the island, in the region around the lines x = ± 1

2π, there is no poloidal flow, but one
must in general allow some radial flow, whose magnitude adjusts to the evolving
island. Thus, when the island is sufficiently small, employing periodic boundary
conditions is physically equivalent to imposing a freely evolving radial flow (with
no poloidal flow) at the location x = ± 1

2π.
The dissipation coefficients are taken to be constant. In the case of the resistivity,

this implies that the equilibrium electric field E0 in the ignorable direction is not
uniform, since E0 = ηJ0. We feel that this is a small price to pay for simplicity.
Alternatively, one could take E0 and η to be prescribed functions of x, or of the
flux function ψ, as has been done by other authors. Note in particular that by
chosing E0 = const and η = η(ψ), one can construct solutions with exactly zero
flow everywhere, as in Sykes and Wesson (1981). However, in this case, one has to
specify the functional form η(ψ) in a somewhat arbitrary manner. In reality, it seems
to us that all the choices that one can make within a strictly two-field MHD model
have some drawbacks. The point is of course that the resistivity is in principle
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a function of the temperature. There is simply no way to determine it uniquely
without the addition of at least a third equation for the electron temperature.

Thus the system of equations (2.1) and (2.2) is controlled by four dimensionless
parameters. We choose ε, v∗, S and the magnetic Prandtl number P = R/S. In
the rest of this paper, P is kept fixed, P = 0.2 (this value, chosen for numerical
convenience, is somewhat larger than that given by Braginskii 1985).

3. Numerical techniques
Various numerical techniques were employed. When possible, fixed-point methods
were used as an efficient way to track the sequence of equilibria, relying on bifur-
cation theory (which is predictive). In addition, a pseudospectral initial-value code
was employed to benchmark the fixed-point calculations or when studying the tran-
sient dynamics. In some cases, transients were studied with an initial-value code
employing a direct truncation of the model equations to the relevant degrees of
freedom.

3.1. Fixed-point method

In order to solve the system of equations (2.1) and (2.2), a spectral decomposition
is adopted for the unknowns, choosing the eigenfunctions of the Laplacian as the
complete orthogonal set for the expansion. One has

(φ, ψ) =
∑

k

(φk, ψk)eik·x, k = (l,mε), l and m integers. (3.1)

We truncate the expansion to a finite set L of 2N wave vectors (‘modes’) such that if
k belongs to L then −k also belongs to L. This gives 4N ordinary differential equa-
tions for 4N real unknowns. Moreover, in the special case v∗ = 0, a 2N -dimensional
invariant subspace exists characterized by imaginary amplitudes for the magnetic
and velocity fields, which allows one to reduce the system to 2N equations. Dif-
ferent sets L have been considered, starting from a ‘ball’ around the origin with
N = 100 and adding modes in a slab centred at m = 0 up to N = 200.

The time-independent version of (2.1) and (2.2) can be cast in the form F(a, p) = 0
where a are the unknowns and p the set of control parameters. A suitable tool to
find the solutions is Newton’s method, used in connection with the theorems of
bifurcation theory (Tebaldi 1989). One should stress that the relevant features of
the method are the capability of finding both stable and unstable equilibria and
its efficiency in following the sequence of equilibria when parameters are varied.
Unstable equilibria are also essential to obtain the bifurcation diagram and then
to understand the dynamics in the nonlinear regimes.

3.2. Pseudospectral code

Since the model equations are supplemented with periodic boundary conditions, a
suitable initial-value code is a spectral code, which advances in time the Fourier
components of the relevant field. The code that we employed adopts the pseu-
dospectral method to compute the nonlinear terms, which in Fourier space take
the form of convolutions. After computing the derivatives in Fourier space, the
fields are transformed to real space, where the nonlinearities are simple products
at each grid point. The result is then transformed back to Fourier space. In this
way, the number of operations needed to compute the nonlinearities scales like
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N logN instead of the unfavourable scaling like N 2 that one would get with direct
evaluation of the convolutions.

4. Stability of the symmetric equilibrium
It is known (Furth et al. 1963), that a symmetric magnetic configuration can be
unstable to symmetry breaking perturbations under certain conditions. The stabil-
ity boundary of the reference equilibrium can be obtained with linear theory by
imposing the condition that the frequency be real. Upon writing φ = φ̃(x)e−iωt+iky

and ψ = ψ0 + ψ̃(x)e−iωt+iky, and using (2.3), one obtains the linearized version of
(2.1) and (2.2):

(ω − ω∗)∇2φ̃ = k sin x[∂x
2ψ̃ + (1− k2)ψ̃] + iµ∇4φ̃, (4.1)

ωψ̃ − k sin x φ̃ = iη∇2ψ̃, (4.2)

where

ω∗ = v∗k, k = mε, ∇2 ≡ ∂x2 − k2.

4.1. Stability when v∗ = 0

The case v∗ = 0 is made simpler by the fact that ω2 is real. The reference equilibrium
is destabilized when ω2 goes through zero. The stability boundary is obtained by
solving

0 = k sin x[∂x
2ψ̃ + (1− k2)ψ̃] + iµ∇4φ̃, (4.3)

− k sin x φ̃ = iη (∂x
2ψ̃ − k2ψ̃). (4.4)

As usual, these equations can be solved by asymptotic matching. Far from the lines
x = 0 and x = ±π, where the magnetic field vanishes, the solution of (4.3) and (4.4)
is approximated by the solution of the outer equations

0 = ∂x
2ψ̃out + (1− k2)ψ̃out, (4.5)

− k sin x φ̃out = iη (∂x
2ψ̃out − k2ψ̃out). (4.6)

The outer solutions depend on the sign of κ2 ≡ 1 − k2, being exponentials when
κ2 < 0 and sinusoids when κ2 > 0. It turns out that only sinusoids can be matched
to the solution of (4.3) and (4.4) in the region around x = 0 and x = ±π (the inner
solution). These correspond to k 6 1. When k > 1, no solution to (4.3) and (4.4)
exists except the trivial one with zero amplitude. Thus k > 1 is a sufficient condition
for the stability of the reference equilibrium. Since k = mε, withm a positive integer,
this sufficient condition is ε > 1. As ε decreases, the first instability occurs for mode
number m = 1 at some ε 6 1. The corresponding outer solutions are conveniently
chosen to be of the form

ψ̃out = ψ̄ cosκ(x + 1
2π) for − π� x� 0, (4.7)

ψ̃out = ψ̄ cosκ(x− 1
2π) for 0� x� π. (4.8)

The parameter

∆′ ≡ lim
x→0+

∂x log ψ̃out − lim
x→0−

∂x log ψ̃out

is usually introduced to discuss the stability condition. Thus

∆′ = 2κ tan( 1
2κπ). (4.9)
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This equation shows that, for the given equilibrium and for a given mode number
m, there is a one-to-one correspondence between ∆′ and the slab aspect ratio ε.
Thus, throughout this paper, we shall use these two quantities interchangeably as
a control parameter.

In the special case when µ = 0, the outer equations must be extended to the
points x = 0 and x = ±π. Differentiability at these points requires κ = 0. Thus the
stability boundary of the zero-viscosity case is

∆′ = 0.

This is the usual result from tearing-mode theory (Furth et al. 1963) in the absence
of viscosity. However, since ψ̃ = ψ̄, with ψ̄ constant, the flow is singular in this case,
φ̃ = iηkψ̄/ sin x. The role of the finite viscosity is to remove the singularity. At the
same time, the stability boundary is shifted to some ε = εc < 1 or ∆′ = ∆′c > 0

The inner equations are obtained by approximating

sin x ≈ x, k ≈ 1, ∇4φ̃ ≈ d4φ̃

dx4

and

ψ̃ ≈ ψ̄ (constant-ψ approximation),

while ∂2
xψ̃ must be allowed to vary in the layer. The resulting equations depend on

the arbitrary amplitude ψ̄:

0 = x∂2
xψ̃in + iµ∇4φ̃in, (4.10)

− xφ̃in = iη (∂x
2ψ̃in − ψ̄). (4.11)

It is convenient to introduce the length δ = (µη)1/6 and to employ new normaliza-
tions ξ ≡ δx and φ̃in(x) ≡ (iηψ̄/δ)g(ξ). One gets

d4g(ξ)
dξ4 + ξ2g(ξ)− ξ = 0, (4.12)

d2ψ̃in

dx2 =
ψ̄

ξ

d4g(ξ)
dξ4 . (4.13)

By matching the logarithmic derivatives of ψ̃in and ψ̃out, one determines the sta-
bility boundary:

∆′c =
1
ψ̄

(
dψ̃in

dx

)
x→∞

= δ

∫ ∞
0

dξ
1
ξ

d4g(ξ)
dξ4 . (4.14)

The integral on the right-hand side is finite since g(ξ) is localized around ξ ≈ 1. In
order to compute the precise value of ∆′c, one needs to solve (4.12). However, since
the integral in (4.14) is a number, one can conclude that ∆′c scales as δ:

∆′c ∼ δ ∼ P 1/6S−1/3. (4.15)

4.2. Stability when v∗� 0

When v∗ � 0, the stability analysis is complicated by the fact that ω � 0 at
threshold and the phase difference between φ̃ and ψ̃ is not just 1

2π. The resulting
equation has complex coefficients and depends on an additional parameter that
cannot be absorbed in the normalizations. As a consequence, there seem to be no
way to determine the functional dependence of ∆′c on the dimensionless parameters
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Figure 1. Normalized island width ws for the equilibria Po, P+, Q and Q∗ versus ∆′ for
S = 1000. Solid lines denote stability, dotted lines instability.

without completely solving the relevant linear problem. Some numerical results are
reported in Sec. 6.

5. Results without diamagnetic effects
Previous results concerning the structure of the bifurcation diagram in the case
v∗ = 0 have been reported in Tebaldi et al. (1996). Here we summarize those results
and report on a more detailed study of the scaling of the small-island solutions in
the proximity of the first bifurcation at ∆′ = ∆′c.

5.1. Bifurcation diagram at v∗ = 0

The sequence of equilibria with stationary magnetic islands when v∗ = 0 was stud-
ied for 0 < ∆′ < 1.15 and S up to 1000 using the fixed-point code. The results
where found to be essentially unaffected by the truncation procedure. The main
result is shown in Fig. 1, where the island width w for the different equilibria is
plotted against ∆′. Stable and unstable equilibria are indicated by solid and dotted
lines respectively.

As expected, the initial symmetric equilibrium with w = 0 (denoted by Po) be-
comes unstable to tearing-like perturbation when ∆′ = ∆′c = 0.19. This value is
consistent with the estimate given in (4.15). The bifurcation is a pitchfork, and
a new stable equilibrium with a small magnetic island, denoted by P+, appears.
When ∆′ = ∆′Q = 0.41, a pair of equilibria – one stable (denoted by Q) and one
unstable (Q∗) – appear via tangent bifurcation. At a higher value ∆′ = ∆′P = 0.75,
another tangent bifurcation occurs, characterized by the coalescence of Q∗ with
the small-island solution P+. Above this value, the only stable solution is Q.

For completeness, in Fig. 2, we show the contour plots of ψ and φ for the three
equilibria P+, Q∗ and Q at a value of ∆′ just under ∆′P . One can see that in the case
of P+ the magnetic island retains approximately its linear shape. This is less so for
the velocity field, which is, however, still organized in four main convective cells. By
comparison, the island width of the Q equilibrium is comparable to the equilibrium
scale length. The corresponding velocity field is more complicated, with four main
elongated vortices aligned along the separatrices.

We also checked that, in the ∆′ range under study, the bifurcation diagram is
stable to a further increase of S. There are indications that the position of the
tangent bifurcation points depend regularly on the resistivity (giving rise to small
O(1/S) corrections). On the other hand, the position of the symmetry-breaking
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Magnetic field

(a)

Fluid field

(b)

Magnetic field

(c)

Fluid field

(d)

Magnetic field

(e)

Fluid field

(f )

Figure 2. Contour plots of ψ and φ at ∆′ slightly less than ∆′P for P+ (a, b), Q∗ (c, d)
and Q (e, f).

bifurcation depends non-regularly on the resistivity, with ∆′c ∼ S−1/3, as explained
in the Appendix.

5.2. Scaling of the island width near ∆′c
The behaviour of the island width in the small-island regime is shown in Figs 3–5.
One can distinguish two regimes. The first, which occurs when the control param-
eter ε is just above the threshold of the symmetry-breaking bifurcation, is char-
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Figure 3. Amplitude of the l = 0,m = 1 component versus (εc − ε)1/2 near threshold.
S = 1000, v∗ = 0. Square-root regime.
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Figure 4. Log–log plot of the amplitude of the l = 0,m = 1 component versus ε near
threshold. Quadratic regime and offset parabolic fit (dotted line).

acterized by a square-root dependence of the amplitude on the departure from
threshold, as generally the case with this type of bifurcations. This is shown clearly
in Fig. 3, where the amplitudeA0,1 of the l = 0,m = 1 mode, obtained by fixed-point
calculations, is plotted against (εc − ε)1/2.

For higher values of the amplitude, but still such that the island width is much
smaller than the system size, the square-root behaviour turns into a quadratic
dependence of A0,1 on 1− ε, so that the island width, which is proportional to A1/2

0,1 ,
scales linearly. In this regime, the relaxation towards the fixed points is sufficiently
fast that one can track the whole portion of the A0,1 versus 1 − ε curve by using
the initial-value code with a slowly varying ε. The result is shown in Fig. 4 (solid
line). The dotted line represents the offset parabolic fit A0,1 = 0.0102+18.34(1− ε)2

in the range 0.9 6 ε 6 0.96. The two scaling ranges are combined in Fig. 5.
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Figure 5. Amplitude of the l = 0,m = 1 component versus ε near threshold. Combined
square-root and quadratic regimes.

6. Results with diamagnetic effects
As already mentioned in Sec. 3.1, the full 4N -dimensional system of ordinary differ-
ential equations, 2N being the number of modes considered, has to be investigated
in the general case v∗� 0.

Furthermore, as expected, the symmetric equilibrium becomes unstable because
of a supercritical Hopf bifurcation, giving rise to a time-periodic solution. In gen-
eral, the problem of investigating the existence and stability of periodic solutions is
far more demanding than the one for equilibria, even if in principle the definition of
a Poincaré map (Guckenheimer and Holmes 1986)] leads one to study the existence
and stability of fixed points for the map, according to Floquet theory.

In our case, however, the problem can still be recast as a fixed-point one because
the time-periodicity of the bifurcated state is only due to a rotation frequency for
the island, like in a rigid-body rotation.

Equations (2.1) and (2.2) can be written in the form F(a, p, ω) = 0, where a are
4N −1 unknowns (there is an arbitrary phase) for the real Fourier amplitudes, ω is
the unknown rotation frequency and p is the set of control parameters. Newton’s
method can still be used to find the solutions, but convergence turns out to be much
slower than for the case v∗ = 0, which seriously limits the possibility of investigation
when dealing with large islands. In this case, the initial-value code was employed
as a complementary tool.

Here we summarize how the bifurcation diagram is affected by the diamagnetic
effects. The critical value εc at which the symmetric equilibrium undergoes the
Hopf bifurcation is a decreasing function of v∗, i.e. the transition takes place at
higher values of ∆′. This is consistent with the general notion that the diamagnetic
effects are stabilizing when treated linearly, as is done in this work. (By comparison,
nonlinear diamagnetic terms can be destabilizing in certain regimes, as in Samain
(1984).) The rotation frequency of the island is an increasing function of v∗, but its
magnitude at threshold is much smaller (by a factor of order 10−3) than the dia-
magnetic frequency. Thus the transition condition is now represented by a critical
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Figure 6. Plot of the angular frequency ωc as a function of the control parameters v∗c and
1− εc (thick solid line), and the critical line in the (v∗c , 1− εc) plane (thick dashed line). The
thin dashed lines represent the projections of the ωc curve on the (v∗c , ωc) and (ωc, 1 − εc)
planes.
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Figure 7. Angular frequency of the island as a function of ε (v∗ = 0.1).

line in the (v∗, ε) plane. The results at threshold are summarized in Fig. 6, where
the angular frequency ωc of the island at its birth is plotted against the critical
values of the two control parameters v∗c and 1− εc (thick solid line). Also shown is
the critical line in the (v∗, ε) plane (thick dashed line) and the projections of the ωc
curve on the other two planes (thin dashed lines).

As one departs from threshold, the island rotates progressively faster, although
its frequency stays significantly smaller than the diamagnetic frequency. The de-
pendence of the angular frequency of the island in the case v∗ = 0.1 is shown in
Fig. 7. At constant, ε the size of the island is a decreasing function of v∗, again
showing the stabilizing role of v∗.

The values of ε at which the two tangent bifurcations take place are also affected
by v∗. As v∗ grows, the two critical values become closer, until at some point the
two tangent bifurcations coalesce and disappear (the S-shaped curve characteristic
of the bifurcation diagram unfolds). This occurs at v∗ ≈ 0.1, i.e. for a diamagnetic
velocity that is a factor 10 below the Alfvén speed. This phenomenon is clearly
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Figure 8. Bifurcation diagrams for the cases (from left to right) v∗ = 0.05, v∗ = 0.1 and
v∗ = 0.15.

shown in Fig. 8, where the bifurcation diagram is outlined for three cases v∗ = 0.05,
v∗ = 0.1 and v∗ = 0.15. At v∗ = 0.05, there are still coexisting stable equilibria for
certain values of ε, whereas a single-value equilibrium curve is found for v∗ = 0.15.

7. Final discussion and conclusions
In this work, we have analysed the sequence of the first bifurcations in two-
dimensional resistive MHD. The role of the ion diamagnetic frequency on the island
dynamics has also been considered, in a simplified way.

Perturbation calculations have confirmed and clarified the numerical results ob-
tained in Tebaldi et al. (1996) for the stability analysis of the symmetric equilibria
and for the parameter scalings of the bifurcated one.

The analysis of the sequence of bifurcations in the presence of the diamagnetic
effect, although still in a preliminary stage, has confirmed qualitatively the bi-
furcation diagram obtained in Tebaldi et al. (1996), up to a critical value of the
diamagnetic velocity v∗c (of the order of one-tenth of the Alfvén speed). Thus the
disappearance of moderately large islands because of a tangent bifurcation as a
possible mechanism for ‘hard’ excitations is confirmed also in the case of island
rotation.

As far as the actual time scale of the hard transition is concerned, this depends
simultaneously on the intrinsic time scale associated with the dynamics around the
tangent bifurcation and on the time scale at which the control parameter changes.
The generic equation in normal form near the tangent bifurcation is

dξ

dt
= ξ2 + δp, (7.1)

where ξ is a coordinate on the centre manifold and δp is the deviation of the con-
trol parameter from the bifurcation point. This equation is normalized, but it is
reasonable to conjecture that, for the present MHD problem, the time would be
normalized to the Alfvén time. If we assume that δp evolves around zero at some
slower time scale, for example dδp/dt = η� 1, then a rescaling of (7.1) shows that ξ
departs substantially (mathematically, it would go to infinity) from ξ = 0 in a time
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of order tξ ∼ η1/3 � η. In the present MHD problem, δp is essentially ∆′, so, in
most experimental situations, η would be the inverse of the current diffusion time
and the hard transition would take place in a time proportional to S1/3 (in Alfvén
time units), much faster than the current profile evolution time.

The different choice of boundary conditions is, in our view, the reason why our
results differ from previous investigations by Saramito and Maschke (1993) and
Parker et al. (1990) of a similar problem, where rigid boundary conditions at the
wall, which force the radial flow to zero, were adopted.

We stress that our approach, being based on a fixed-point method, differs from
most of the previous nonlinear analyses, which were traditionally carried out as
initial-value problems, typically by deriving an approximate equation for the island
dynamics, and by following the growth of an island from the neighbourhood of an
unstable symmetric equilibrium. However, where the comparison is possible, we
find that, in general, our results are consistent (at least qualitatively) with the
information provided by such analyses.

The initial-value approach in the small-∆′ (� 1/L) limit leads to classic algebraic
Rutherford growth (Rutherford 1973), followed by island saturation on the resistive
time scale (White et al. 1977; Dagazian and Paris 1986). The scaling of the small-
island size above the first bifurcation given in White et al. (1977), as a function of
∆′, agrees with our findings.

For very large ∆′� (1/L)S1/3, the island is expected to reach the macroscopic size
on the Sweet–Parker time scale (Sweet 1958; Parker 1957), while in the intermediate
regime 1/L � ∆′ � (1/L)S1/3, Waelbroeck (1993) has shown that a transition
between Rutherford and Sweet–Parker regimes occurs. Therefore, on the basis of
the work of Waelbroeck (1993), no saturation is expected for ∆′L exceeding some
critical value of order unity, which again is consistent with our finding of a tangent
bifurcation at ∆′L ≈ 1, above which no small-island solution exists.

The advantage of the fixed-point method is that it is better suited for analysing
the nature of the bifurcations, since it provides also information on the unstable
equilibria. Furthermore, it avoids the difficulty, encountered by the initial-value
approach, that, near the bifurcations, the natural time scales become extremely
long.

One may ask how generic our findings could be if one were, for example, to
consider a different geometry with realistic (tokamak-type) boundary conditions.
As a general guideline, one expects that, whenever the island size is sufficiently
smaller than the system size, the phenomenology observed in our model should be
universal. In this respect, we regard the choice of periodic boundary conditions,
originally dictated by numerical convenience, to be acceptably close to the realis-
tic, free-boundary, conditions that one should, in principle, employ in cylindrical or
toroidal geometry. We stress that the occurrence of tangent bifurcations in dynam-
ical systems is generic, and therefore stable to small modifications of the system.
On the other hand, one should be aware that additional phenomena can in principle
appear in fully 3D geometry, where new degrees of freedom are allowed. If addi-
tional, intrinsically 3D, bifurcations were to appear before the tangent bifurcation
then this would change the phenomenology described in this work. A 3D stability
analysis of the 2D saturated islands is required to address this question.

Since our original motivation was to study the intermittent MHD phenomena
observed in tokamaks, a natural question is what happens in reality when those
hard events take place. Strictly speaking, on the basis of our analysis, one would be
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tempted to conclude that a true disruption takes place, as in Wesson et al. (1985),
since we find that, after the tangent bifurcation, the final state has an island of
macroscopic size.

However, one should also consider that RRMHD gives only a partial description
of the plasma. In particular, the fast transport processes occurring during the crash
are not described by our model (at the very least, a third equation for the temper-
ature should be added to describe this situation). These processes could introduce
a feedback in the system that limits the growth of the magnetic island. If this were
the case then intermittent relaxation events like ELMs would occur. In this respect,
it is worth recalling that a tangent bifurcation is the basic ingredient of a common
intermittency scenario in fluids (Pomeau and Manneville 1980).
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Appendix. Interpretation of the results without diamagnetic effects
In this appendix, we study analytically the dependence of the small-island solution
on the departure from the stability boundary of the symmetric equilibrium.

The usual approach to obtain small-amplitude solutions above the symmetry-
breaking point is based on a simultaneous expansion of the deviations from the
symmetric equilibrium, ψ̃ and φ̃, and of the control parameter, ∆′, in terms of a
new smallness parameter λ:

ψ̃ = λa1 + λ2a2 + ... , (A 1)

φ̃ = λb1 + λ2b2 + ... , (A 2)

∆′ = ∆′c + λc1 + λ2c2 + ... . (A 3)

These expansions are then inserted into the original equations. A sequence of con-
ditions between the coefficients is obtained by matching equal powers in λ. Even-
tually, the series (A 3) is inverted to the desired order in ∆′−∆′c, and the expression
for λ is inserted back into the expansions for ψ̃ and φ̃. Here we only summarize the
main findings with this procedure.

To the lowest order, one obtains the linear theory at threshold, which determines
∆′c and the functional form of a1 and b1 (an overall amplitude is left arbitrary).
To the next order, the symmetry of the reference equilibrium dictates that c1 = 0.
Thus, to the leading order, λ ∼ (∆′ − ∆′c)

1/2 and ψ̃ ∼ (∆′ − ∆′c)
1/2 from (A 1). Thus

the island width ws scales as

ws ≈ 2ψ̃1/2 ∼ (∆′ − ∆′c)
1/4. (A 4)

The higher-order coefficients a2 and b2 are found to be large (divergent) in the
limit of small dissipation (µ → 0, η → 0). This implies that the expansion breaks
down at sufficiently large ∆′−∆′c. One can trace the breakdown to the near singu-
larity of the linear solutions a1 and b1 around x = 0 when the dissipation is small.
The role of the dissipation is to regularize such a singularity. Thus one expects the
expansion to break down when the island width exceeds the dissipative layer width:
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ws > δ, or

∆′ − ∆′c ≈ (ηµ)2/3 (A 5)

Above this value, the singularity in the outer solutions is resolved by the nonlin-
earity in the layer. The island width then replaces δ as the layer width.

For larger-island solutions, pertinent to the situation of Fig. 4, the problem is
conveniently treated by quasilinear (QL) theory. In QL theory, the interactions
between the modes with m � 0 are neglected. The only nonlinear effect is the
quasilinear modification of the symmetric equilibrium. The first consequence of
the fact that m � 0 modes do not interact is that only modes that are linearly
unstable acquire non-zero amplitude. Thus, in a neighbourhood of the stability
threshold of the m = 1 mode, one can neglect the m > 1 modes, and the perturbed
fields can be approximated as

ψ̃ = ψ̃0 + ψ̃1 cos εy, (A 6)

φ̃ = ηφ̃1 sin εy. (A 7)

In (A 7) the latter equation, the stream function has been explicitly rescaled by the
factor η.

Upon substitution into the original model equations (2.1) and (2.2), one obtains
a set of three ordinary differential equations for the three unknowns ψ̃0, ψ̃1 and φ̃1:

0 = (ψ′0 + ψ̃′0)(ψ̃′′1 − k2ψ̃1)− ψ̃1(ψ′′′0 + ψ̃′′′0 ), (A 8)

− φ̃1(ψ′0 + ψ̃′0) = ψ̃′′1 − k2ψ̃1, (A 9)

− φ̃′1ψ̃1 − φ̃1ψ̃
′
1 = 2ψ̃′′0 , (A 10)

where the contribution of the vorticity nonlinearity has been suppressed in (A 8)
since it vanishes as η → 0. Equation (A 10) can be integrated to give

ψ̃′0 = − 1
2 φ̃1ψ̃1, (A 11)

where the integration constant is zero because of the boundary conditions. Using
(A 11) one can determine that, when the island width is small, ψ̃′0/ψ

′
0� 1 uniformly

and ψ̃′0 can be neglected when it appears in the combination ψ′0 + ψ̃′0 (this can be
verified a posteriori). Thus (A 8)–(A 10) are simplified to

0 = ψ′0(ψ̃′′1 − k2ψ̃1)− ψ̃1ψ
′′′
0 − ψ̃1ψ̃

′′′
0 , (A 12)

− φ̃1ψ
′
0 = ψ̃′′1 − k2ψ̃1, (A 13)

ψ̃′0 = − 1
2 φ̃1ψ̃1. (A 14)

In the small-island expansion combined with the constant-ψ approximation ψ̃′′1 ∼
ψ̃1 and ψ̃′1 ∼ κψ̃1� ψ̃1. Thus, taking the second derivative of (A 14), one has, to the
leading order, ψ̃′′′0 = − 1

2 φ̃
′′
1 ψ̃1. Inserting this into (A 12) and eliminating ψ̃′′1 using

(A 13) finally yields a single inhomogeneous linear equation for φ̃1:

1
2A

2∂2
xφ̃1 − x2φ̃1 −Ax = 0, (A 15)

where again the constant-ψ approximation has been used by taking ψ̃1 = A =
const, and the derivatives of the equilibrium field have been approximated by their
expressions around the singular layer, ψ′0 = − sin x ≈ x, etc.

The unknown amplitude A, which plays the role of an eigenvalue, is determined
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by matching with the outer solution. This condition can be written as

∆′ =
∫ ∞

0
dx (A + xφ̃1). (A 16)

Finally, one can eliminate A from (A 15) by rescaling φ̃=A
1/2g(x/A1/2). This makes

explicit that the natural scale length in the layer is A1/2, which is essentially the
island width. The matching condition (A 16) becomes ∆′ ≈ A1/2, which is equivalent
to the quadratic scaling of Fig. 4.
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