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Turbulent mass and internal-energy transports in strongly compressible magnetohydro-
dynamic (MHD) turbulence are investigated in the framework of the multiple-scale
direct-interaction approximation, an analytical closure scheme for inhomogeneous
turbulence at very high Reynolds numbers. Utilising the analytical representations for
the turbulent mass and internal-energy fluxes and their transport coefficients, which
are expressed in terms of the correlation and response functions, turbulence models
for these fluxes are proposed. In addition to the usual gradient-diffusion transports,
cross-diffusion transports mediated by the density variance and the transports along
the mean magnetic field mediated by the compressional or dilatational turbulent
cross-helicity (velocity–magnetic-field correlation coupled with compressive motions)
are shown to arise. These compressibility effects are of fundamental importance since
they provide deviations from the usual gradient-diffusion transports. Analogies of the
dilatational cross-helicity effects to the magnetoacoustic waves are also argued.
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1. Introduction

Material flows and energy transfers arise as a result of non-uniform spatial
distributions of fluid material, energy, flow velocity, etc. in several forms of physical
processes such as diffusion, convection, conduction, radiation, etc. For large-scale
structures and their evolutions of mass density and internal energy or heat, turbulent
motions are considered to play essential roles in determining the effective transports
of the mass and internal energy. The turbulent mass flux 〈ρ ′u′〉 and internal-energy
flux 〈q′u′〉 are the most important turbulent correlations which determine the
spatio-temporal evolutions of the mean density ρ and the mean internal energy Q
(ρ ′: density fluctuation, u′: velocity fluctuation, q′: internal-energy fluctuation, 〈· · ·〉:
ensemble average). In real-world turbulent flows at very large Reynolds numbers, the
turbulent mass and internal-energy fluxes are so dominant that proper evaluation and
modelling of 〈ρ ′u′〉 and 〈q′u′〉 are of crucial importance.
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2 N. Yokoi

There are several levels of modelling of the mass and internal-energy fluxes. In the
simplest case, the turbulent fluxes are modelled using an algebraic gradient-diffusion
approximation with a prescribed distribution of the mixing length for expressing
the eddy diffusivities. The gradient-diffusion approximations of the turbulent mass
and internal-energy fluxes, 〈ρ ′u′〉 = −κT∇ρ and 〈q′u′〉 = −ηT∇Q, respectively, are
most widely used in the engineering, geophysical and astrophysical fields (Tennekes
& Lumley 1972; Turner 1973; Kaviany 2001; Kupka 2009). However, it is well
recognised that the gradient diffusion is not necessarily the best approximation for
the turbulent transport: the so-called ‘gradient-transport fallacy’ (Tennekes & Lumley
1972). Firstly, the transport coefficient is not dynamically derived but obtained just by
a dimensional analysis as in the mixing-length theory. Secondly, the gradient-transport
model assumes the locality of the turbulent transport in space and time. In the
real-world turbulence, non-locality in space and time often plays an important role in
determining the effective transport. In particular, in the convective turbulence at high
Rayleigh numbers, implementation of the non-local effects due to plumes and thermals
is known to be very important. How to incorporate the turbulent entrainment effects
into the modelling of the turbulent mass and heat fluxes is one of the central issues
in convective turbulence (Linden 2000; Kaviany 2001). Thirdly, in general, in the
presence of some breakage of symmetry in turbulence, not only transport enhancement
but also transport suppression due to turbulence shows up. This is typically the case
in dynamos, where the turbulent magnetic diffusivity (a gradient diffusion) can be
counter-balanced by some other effects represented by the field-generation mechanisms
such as the α effect (Parker 1955; Moffatt 1978; Krause & Rädler 1980), also the case
in turbulent magnetic reconnections, as has been recently pointed out (Higashimori,
Yokoi & Hoshino 2013; Yokoi, Higashimori & Hoshino 2013; Widmer, Büchner
& Yokoi 2016a,b). Such a transport suppression mechanism is also investigated in
hydrodynamic turbulence in the context of the helicity effect in global flow generation
(Yokoi & Yoshizawa 1993; Yokoi & Brandenburg 2016).

In astrophysical flow phenomena, turbulence is considered to play a key role in
determining the effective material and energy transports. One of the most important
topics related to strongly compressible MHD turbulence is star formation. In order to
understand the dynamic properties of galaxies, it is required to understand how, where
and under which conditions stars form. It is considered that the star formation rate
is controlled by molecular cloud formation and support by supersonic turbulence in
the interplay with gravity (Mac Low & Klessen 2004; McKee & Ostriker 2007). For
the recent developments of numerical studies of the interstellar turbulence, including
comparisons with theories and observations, the reader is referred to, for example,
elaborate works by Federrath & Klessen (2012) and Kritsuk, Ustyugov & Norman
(2017) and works cited therein.

In the usual turbulence simulation studies with a periodic box, the effects of
turbulence on the star formation rate are often argued in the context of the dependence
on the amount of compression induced by the turbulence forcing mechanism,
the global sonic Mach number, the degree of magnetisation represented by the
externally imposed magnetic field and/or the Alfvén Mach number, etc. At the same
time, in order to treat the dynamic behaviour of star formation, it is desirable to
understand how and how much turbulent transport we have in realistic astrophysical
parameters. In the framework of inhomogeneous turbulence or turbulence modelling
with non-uniform mean fields, the transports of the material, momentum, energy, etc.
due to turbulence are represented by turbulence correlations such as the turbulent
mass flux, the Reynolds and turbulent Maxwell stresses, the turbulent energy flux, etc.
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The dynamic properties of the star formation rate should be argued in terms of how
the turbulent transport coefficients coupled with the mean-field inhomogeneities are
determined by the compressible properties of the magnetised turbulence. In this sense,
test or validation of the model expressions in realistic star formation situations would
be of primary importance.

Another important astrophysical application of the compressible MHD turbulence
is the core collapse supernova (CCSN) explosion problem: to understand how the
stalled shock transitions into a dynamic explosion. It has been recently recognised
that turbulence enables the CCSN explosion. How to model turbulence effects in
neutrino heating is one of the central issues for understanding the explosion condition
(Mabanta & Murphy 2018). Several types of turbulence models have been examined
in comparison with two-dimensional numerical simulations. It is shown that the usual
local gradient-diffusion transport models of the turbulent energy flux are inappropriate,
as has been demonstrated in comparison with a series of three-dimensional simulations
of the turbulent stellar interiors (Meakin & Arnett 2010). Instead, a global balance
model representing the coherent plume effects gives much more reasonable results
(Murphy & Meakin 2011).

As the turbulence modelling in the CCSN explosion shows as an example, a
turbulence model just based on the simple local gradient transport, which represents
the primary local transport effect, is not sufficient in many cases. At least we
need some deviations from the gradient-diffusion models. In order to get a proper
model, heuristic arguments are not necessarily enough. Rather, we should start from
the fundamental equations, and derive more generic expressions for the turbulence
correlations relevant to the mean-field equations.

The multiple-scale direct-interaction approximation (multiple-scale DIA) is an
analytical closure scheme which treats inhomogeneous turbulence with non-uniform
mean fields at very high Reynolds numbers (Yoshizawa 1984) (also for applications to
magnetohydrodynamic (MHD) turbulence, see Yoshizawa 1990; Yoshizawa & Yokoi
1993; Yokoi 2013). This theoretical formulation is suitable for a systematic derivation
of the analytical expressions of the turbulent correlations in strongly nonlinear and
inhomogeneous systems. As compared with the previous multiple-scale attempt
in compressible MHD turbulence analysis with a Markovianised approximation in
the configuration space (Yoshizawa 1996), the present approach requires highly
elaborate calculations. At the cost of such lengthy analytical calculations, we obtain
more precise expressions since we use more accurate treatments based on exact
mathematical relationships in wavenumber space. In this paper, with the aid of this
multiple-scale DIA scheme, we investigate a full system of equations for strongly
compressible MHD turbulence. In a recent paper (Yokoi 2018) (hereafter denoted as
Paper 1), special emphasis was placed on the turbulent electromotive force 〈u′ × b′〉
in the mean magnetic induction equation. Here in this work, we focus our attention
on the turbulent mass flux 〈ρ ′u′〉 and the turbulent internal-energy flux 〈q′u′〉.

The organisation of this paper is as follows. In § 2, the fundamental MHD equations
and the turbulent correlations relevant to the mean-field evolutions are presented. In
§ 3, the procedure of the multiple-scale direct-interaction approximation is briefly
shown. In § 4, the analytical expressions of the turbulent mass and internal-energy
fluxes are derived, and turbulence modelling on the basis of the theoretical results is
presented. In § 5, physical interpretations of the effects causing the deviations from
the gradient-diffusion transports are presented, followed by the comparison with the
linear MHD-wave effects. Concluding remarks including notes on the source of the
compressional turbulent cross-helicity are given in § 6.
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2. Turbulent correlations
2.1. Fundamental equations

The equations of the density ρ, the velocity u, the internal energy q and the magnetic
field b are given by

∂ρ

∂t
+∇ · (ρu)= 0, (2.1)

∂

∂t
ρuα +

∂

∂xa
ρuauα =−

∂p
∂xα
+

∂

∂xa
µsaα
+

1
µ0
(j× b)α + f αex, (2.2)

∂

∂t
ρq+∇ · (ρuq)=∇ · (κ∇θ)− p∇ · u+ φ, (2.3)

∂b
∂t
=−∇× e, (2.4)

with Ohm’s law for moving media:

j=
1
µ0
∇× b= σ(e+ u× b), (2.5)

where p is the plasma gas pressure, µ the viscosity, j the electric-current density, e the
electric field, κ the thermal conductivity, µ0 the magnetic permeability, σ the electric
conductivity and sαβ the deviatoric or traceless part of the velocity strain defined by

sαβ =
∂uβ

∂xα
+
∂uα

∂xβ
−

2
3
∇ · uδαβ . (2.6)

In (2.2), f ex represents the external forces including the gravity force and external
forcing. In what follows, we pay more attention to the theoretical formulation of the
nonlinear turbulence dynamics that does not directly depend on specific forcing effects,
so we neglect f ex hereafter. In (2.3) φ is the dissipation function that represents the
conversion of kinetic and magnetic energies to heat through the molecular effects:

φ =µsab ∂ua

∂xb
+

1
σ

j2. (2.7)

In the following theoretical calculations, φ is also neglected since our main interests
lie in the p-related effects in the turbulent transport. Note that these treatments do
not deny the importance of the external forces and the dissipation function. Actually,
in order to sustain turbulence and its evolution properties, including energies and
helicities, those effects play important roles.

The pressure p is related to the temperature θ and the internal energy q as

p= Rρθ = (γs − 1)ρq, (2.8)

where
q=CV(θ)θ. (2.9)

Here, CV is the specific heat at constant volume, R is the gas constant and γs is the
ratio of CP (the specific heat at constant pressure) to CV .
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From (2.4) and (2.5), the induction equation of the magnetic field is written as

∂b
∂t
=∇× (u× b)+ η∇2b (2.10)

or
∂b
∂t
+ (u · ∇)b= (b · ∇)u− b∇ · u+ η∇2b, (2.11)

where η is the magnetic diffusivity defined as η= 1/(σµ0).

2.2. Mean-field equations
In contrast to the constant density cases, the physical interpretation of the mean-field
transport expressions is not unique when the density varies. Due to the additional
correlations originating from the variable density, the system of the mean-field
transport equations is much more complicated. The structure and the meaning of the
transport expression; which turbulence correlations appear and what is their physical
interpretation, depend on the averaging formulation. If we adopt mass-weighted
averaging, the density-fluctuation correlations can be formally removed from the
mean transport expressions. This allows the variable density case to be treated in a
strong analogy with the constant density case. Because of this property, mass-weighted
averaging is often adopted in compressible turbulence studies. As an example of the
recent works with mass-weighted decomposition, Aluie (2011) applied this formulation
to the energy transfer function of compressible turbulence, and argued that the cascade
of the mean kinetic energy occurs in a conservative and scale-local manner due to
the statistical decoupling between the mean kinetic and internal-energy budgets.

Although all the different averaging formulations are algebraically equivalent to
each other, their physical interpretations of the turbulence correlations can be entirely
different. As for detailed descriptions on the statistical averaging in variable density
fluid turbulent motion, the reader is referred to chapter 5 of Chassaing et al. (2002),
which includes the formal mathematical relationship and physical comparison between
the mass-weighted and Reynolds averaging.

In the mass-weighted averaging formulation, all the density-fluctuation correlations
are implicitly embedded in the mean values. This makes it very difficult to identify
all the density-fluctuation correlation effects. In order to see the explicit effects of the
density fluctuation in the mass and internal-energy equations, we adopt ensemble or
Reynolds averaging in this work.

With the Reynolds averaging denoted by 〈· · ·〉, a field quantity f is divided into the
mean F and the fluctuation around it, f ′, as

f = F+ f ′, F= 〈f 〉, (2.12)

with

f = (ρ, u, q, θ, b, j, e), (2.13a)
F= (ρ,U,Q, Θ,B, J,E), (2.13b)
f ′ = (ρ ′, u′, q′, θ ′, b′, j′, e′). (2.13c)

With the Reynolds decomposition (2.12), the mean density equation is given by

∂ρ

∂t
+∇ · (ρU)=−∇ · 〈ρ ′u′〉. (2.14)
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The mean velocity equation is written as

∂

∂t
ρUα
+

∂

∂xa
ρUaUα

=−(γs − 1)
∂

∂xα
ρQ+

∂

∂xα
µSaα

+ (J×B)α

−
∂

∂xα

(
ρ〈u′au′α〉 −

1
µ0
〈b′ab′α〉 +Ua

〈ρ ′u′α〉 +Uα
〈ρ ′u′a〉

)
+ RαU, (2.15)

where µ is the mean part of the viscosity and S= {Sαβ} is the deviatoric or traceless
part of the mean velocity strain tensor defined by

Sαβ =
∂Uβ

∂xα
+
∂Uα

∂xβ
−

2
3
∇ ·Uδαβ . (2.16)

The mean internal-energy equation is written as

∂

∂t
ρQ+∇ · (ρUQ)=∇ ·

(
κ

CV
∇Q
)
−∇ · (ρ〈q′u′〉 +Q〈ρ ′u′〉 +U〈ρ ′q′〉)

− (γs − 1)(ρQ∇ ·U+ ρ〈q′∇ · u′〉 +Q〈ρ ′∇ · u′〉)+ RQ, (2.17)

where κ is the mean part of the diffusivity. And the mean magnetic induction equation
is written as

∂B
∂t
=∇× (U×B+ 〈u′ × b′〉)+ η∇2B. (2.18)

In (2.15) and (2.17), RU and RQ are the terms expected to be small, whose detailed
expressions are suppressed here.

In the mean-field equations (2.14), (2.15), (2.17) and (2.18), we have the turbulent
mass flux 〈ρ ′u′〉, the Reynolds stress 〈u′u′〉, the turbulent Maxwell stress 〈b′b′〉,
the turbulent heat flux 〈q′u′〉, the turbulent electromotive force 〈u′ × b′〉, etc.
These turbulence correlations represent the turbulence effects and play key roles
in determining the effective transports due to turbulence. The evaluation of these
turbulent correlations is the central objective of this work.

2.3. Fluctuation equations
Subtracting the mean-field equations (2.14), (2.15), (2.17) and (2.18) from the
fundamental equations (2.1)–(2.3) and (2.11), we obtain the equations of the
fluctuations as

Dρ ′

Dt
+∇ · (ρ ′u′)+ ρ∇ · u′ =−(u′ · ∇)ρ − ρ ′∇ ·U+∇ · 〈ρ ′u′〉, (2.19)

Du′α

Dt
= −(u′ · ∇)u′α +

1
ρ

∂

∂xa
µs′aα − (γs − 1)

(
∂q′

∂xα
+

Q
ρ

∂ρ ′

∂xα

)
+

1
µ0ρ
[(b′ · ∇)b′α + (B · ∇)b′α] − (u′ · ∇)Uα

− (γs − 1)
(
ρ ′

ρ

∂Q
∂xα
+

q′

ρ

∂ρ

∂xα

)
+

1
µ0ρ

(b′ · ∇)Bα −
ρ ′

ρ

DUα

Dt
+ Rαu , (2.20)
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Dq′

Dt
+ (u′ · ∇)q′ −

1
ρ
∇ ·

(
κ

CV
∇q′
)
+ (γs − 1)Q∇ · u′

=−(u′ · ∇)Q− (γs − 1)
(

q′ +
ρ ′

ρ
Q
)
∇ ·U, (2.21)

Db′

Dt
+ (u′ · ∇)b′ − (b′ · ∇)u′ − η∇2b′ − (B · ∇)u′ +B∇ · u′

=−(u′ · ∇)B+ (b′ · ∇)U− b′∇ ·U+ Rαb , (2.22)

where D/Dt(= ∂/∂t + U · ∇) is the mean-flow convective derivative, and Ru and Rb
are the higher-order terms whose detailed expressions are suppressed here.

If the fluctuations or perturbations are small, the nonlinear products of them can
be neglected in the evolution of the fluctuation fields. This quasi-linearity is often
the starting point of the linear wave and instability studies. However, this is not the
case for fully developed turbulent flows with astrophysical and geophysical interests.
In realistic turbulent flows with large kinetic and magnetic Reynolds numbers, the
nonlinear coupling terms, such as ∇ · (ρ ′u′) in (2.19), (u′ · ∇)u′ and (b′ · ∇)b′ in
(2.20), (u′ · ∇)q′ in (2.21), (u′ · ∇)b′ and (b′ · ∇)u′ in (2.22), etc., are not small and
cannot be neglected at all. Here, we have to simultaneously treat the effects of strong
nonlinearity and inhomogeneity. In the following section, we present a framework of
how to address such nonlinear and inhomogeneous turbulent flows.

3. Multiple-scale analysis
In order to evaluate the turbulent correlations, we analyse the equations of the

fluctuation density ρ ′ (2.19), fluctuation velocity u′ (2.20), fluctuation internal
energy q′ (2.21) and fluctuation magnetic field b′ (2.22) in the framework of
the multiple-scale direct-interaction approximation. This is a closure scheme for
inhomogeneous turbulence at very high Reynolds numbers (Yoshizawa 1984).

The formal procedure of the multiple-scale analysis is constituted by:

(i) introduction of multiple scales;
(ii) Fourier representation with respect to the fast variable;

(iii) scale-parameter expansion;
(iv) basic-field expansion and introduction of the Green’s functions;
(v) statistical assumption on the lowest-order fields;

(vi) calculation of the correlations with renormalisation.

Since application of this scheme to fully compressible magnetohydrodynamic
(MHD) turbulence was already presented in our recent paper (Yokoi 2018) (Paper 1),
here we do not show the details of each stage, but show the basic idea of the
formulation. As for the detailed procedure of the approximation, the reader is referred
to Paper 1. Also on the basic assumptions and approximations of the scheme, see
Yokoi (2013).

(i) Introduction of multiple scales
We introduce two scales by the fast and slow variables as

ξ = x, X= δx; τ = t, T = δt. (3.1a−d)

If δ is small, the variations of X and T are not negligible only when the original
variables x and t change considerably. In this sense, X and T are suitable for
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describing the slow variations, and are called the slow variables, while ξ and τ are fast
variables. With these variables, a field quantity f is assumed to be decomposed into

f = F(X; T)+ f ′(ξ ,X; τ , T). (3.2)

Under (3.1), the spatial and time partial derivatives are written as

∇x =∇ξ + δ∇X,
∂

∂t
=
∂

∂τ
+ δ

∂

∂T
. (3.3a,b)

This is a derivative expansion: the derivatives with respect to the slow variables, ∇X
and ∂/∂T , show up with δ. We apply this multiple-scale procedure with (3.1)–(3.3) to
the fundamental equations.

(ii) Fourier representation with respect to the fast variable
We use the Fourier representation with respect to the fast spatial variable ξ as

f ′(ξ ,X; τ , T)=
1

(2π)3

∫
dkf̂ ′(k,X; τ , T) exp[−ik · (ξ −Uτ)]. (3.4)

The factor ik · (ξ −Uτ) means that the fast-varying turbulence is treated in the frame
moving with the velocity U. Hereafter, the hat for the Fourier component f̂ is dropped.

(iii) Scale-parameter expansion
Then, the fluctuation fields are expanded with respect to a scale parameter δ:

f ′ =
∞∑

n=0

δnf ′n. (3.5)

Note that the scale parameter δ is associated with the large-scale inhomogeneities as
in (3.3). The lowest-order field is homogeneous, and the mean-field inhomogeneity
effects are taken into account through the higher-order terms in δ.

(iv) Basic-field expansion and introduction of the Green’s functions
In the framework of the multiple-scale DIA, the system of equations of the

fluctuation fields f ′ = (ρ ′, u′, q′, b′) is formally solved with the aid of the Green’s
functions associated with the lowest-order fields f ′0 = (ρ

′

0, u′0, q′0, b′0). These Green’s
functions G′ρ , G′u, G′q and G′b are nonlinearly coupled to each other. Actually, even
in the solenoidal case without the density or internal-energy fluctuations, we have
to introduce at least four Green’s functions for the velocity and magnetic-field
fluctuations: G′uu for the velocity response to the velocity, G′ub for the velocity
response to the magnetic field, G′bu for the magnetic-field response to the velocity,
G′bb for the magnetic-field response to the magnetic field. This situation is too much
complicated. In order to reduce this complexity, we introduce the basic fields. The
lowest-order fields f ′0 = (ρ

′

0, u′0, q′0, b′0) are expanded as

f ′0 = f ′B +
∞∑

m=1

f ′0m, (3.6)

where m is the number of iterations. The system of lowest-order field equations is
solved in an iterative manner.
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Here we should note the following point on the solenoidal property of each order of
the field quantities. In the present multiple-scale formulation with (3.3), the divergence
of a fluctuating vector field is written as

∇ · f ′(x; t)=
∂f ′a(ξ ,X; τ , T)

∂ξ a
+ δ

∂f ′a(ξ ,X; τ , T)
∂Xa

, (3.7)

or equivalently in the wavenumber space as

∇ · f ′(k,X; τ , T)=−ikaf ′a(k,X; τ , T)+ δ
∂f ′a(k,X; τ , T)

∂Xa
I

, (3.8)

where
∂

∂Xa
I
= exp(−ik ·Uτ)

∂

∂Xa
exp(ik ·Uτ) (3.9)

is the so-called interaction representation of the spatial derivative associated with (3.4).
In order to secure the divergence-free condition for the solenoidal or incompressible
field quantities, we introduce the solenoidal field f ′S(k,X; τ , T) as

f ′S
α(k,X; τ , T)= f ′α(k,X; τ , T)+ δ

kα

k2

∂f ′a(k,X; τ , T)
∂Xa

I
, (3.10)

which satisfies the solenoidal condition as

kaf ′S
a(k,X; τ , T)= kaf ′a(k,X; τ , T)+ δ

kaka

k2

∂f ′b(k,X; τ , T)
∂Xb

I
= 0 (3.11)

in the wavenumber space (Hamba 1987).
We introduce the Green’s functions of the basic fields, which are uncoupled with

each other, as

∂G′ρ(k; τ , τ ′)
∂τ

− ika
∫∫

δ(k− p− q) dp dqu′B
a( p; τ)G′ρ(q; τ , τ

′)= δ(τ − τ ′), (3.12)

∂G′u
αa(k; τ , τ ′)
∂τ

+ νk2G′u
αa(k; τ , τ ′)+

1
3
νkαkbG′u

ba(k; τ , τ ′)

− 2i
∫∫

δ(k− p− q) dp dqMαbc
c u′B

b( p; τ)G′u
ca(q; τ , τ ′)= δαaδ(τ − τ ′), (3.13)

∂G′q(k; τ , τ ′)
∂τ

+ λk2G′q(k; τ , τ
′)

−i
∫∫

δ(k− p− q) dp dq Nαbc
c qau′B

b( p; τ)G′q(q; τ , τ
′)= δ(τ − τ ′), (3.14)

∂G′b
αa(k; τ , τ ′)
∂τ

+ ηk2G′b
αa(k; τ)

−i
∫∫

δ(k− p− q) dp dqNαbc
c u′B

b( p; τ)G′b
ca(q; τ)= δαaδ(τ − τ ′). (3.15)

Note that these equations for the basic-field Green’s functions are the same as the
ones for homogeneous and isotropic MHD turbulence.
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In the following, we present the analytical results obtained in Paper 1 for the
lowest-order fields f ′0 = (ρ

′

0, u′0, q′0, b′0) and the first-order fields f ′1 = (ρ
′

1, u′1, q′1, b′1).
With the Green’s functions (3.12)–(3.15), the zeroth-order field f ′0 = (ρ

′

0, u′0, q′0, b′0)
can be solved in an iterative manner. The first iteration gives

ρ ′0(k; τ)= ρ
′

B(k; τ)+ ikaρ

∫ τ

−∞

dτ1G′ρ(k; τ , τ1)u′B
a(k; τ1), (3.16)

u′0
α(k; τ)= u′B

α(k; τ)+ i(γs − 1)ka
∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)q′B(k; τ1)

+ i(γs − 1)
Q
ρ

ka
∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)ρ

′

B(k; τ1)

+
i
µ0ρ

∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)

∫∫
δ(k− p− q) dp dqMabc

c b′B
b( p; τ1)b′B

c(q; τ1)

−
i
µ0ρ

Bbkb
∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)b′B

a(k; τ1), (3.17)

q′0(k; τ)= qB(k; τ)+ i(γs − 1)Qka
∫ τ

−∞

dτ1G′q(k; τ , τ1)u′B
a(k; τ1), (3.18)

b′0
α(k; τ) = b′B

α(k; τ)− iBbkb
∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)u′B

a(k; τ1)

+ iBakb
∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)u′B

b(k; τ1). (3.19)

Also, we formally solve the equations of f ′1 = (ρ
′

1, u′1, q′1, b′1) to obtain

ρ ′1(k; τ) = ikaρ

∫ τ

−∞

dτ1G′ρ(k; τ , τ1)u′B
a(k; τ1)−

∂ρ

∂Xa

∫ τ

−∞

dτ1G′ρ(k; τ , τ1)u′B
a(k; τ1)

−
∂Ub

∂Xb

∫ τ

−∞

dτ1G′ρ(k; τ , τ1)ρ
′

B(k; τ1)−

∫ τ

−∞

dτ1G′ρ(k; τ , τ1)
Dρ ′B(k; τ1)

DT

− ρ

∫ τ

−∞

dτ1G′ρ(k; τ , τ1)
∂u′B

a(k; τ1)

∂Xa
, (3.20)

u′1
α(k; τ)= i(γs − 1)ka

∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)q′1(k; τ1)

+ i(γs − 1)
Q
ρ

ka
∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)ρ

′

1(k; τ1)

+
2i
µ0ρ

∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)

∫∫
δ(k− p− q) dp dqMabc

c b′0
b( p; τ1)b′1

c(q; τ1)

−
i
µ0ρ

Bbkb
∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)b′1

a(k; τ1)

−
∂Ua

∂Xb

∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)u′0

b(k; τ1)

− (γs − 1)
1
ρ

∂Q
∂Xa

∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)ρ

′

0(k; τ1)
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− (γs − 1)
1
ρ

∂ρ

∂Xa

∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)q′0(k; τ1)

−
1
µ0ρ

∂Ba

∂Xb

∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)b′0

b(k; τ1)

−
1
ρ

(
∂U a

∂T
+Ub ∂Ua

∂Xb

) ∫ τ

−∞

dτ1G′u
αa(k; τ , τ1)ρ

′

0(k; τ1), (3.21)

q′1(k; τ) = i(γs − 1)Qka
∫ τ

−∞

dτ1G′q(k; τ , τ1)u′1
a(k; τ1)

−
∂Q
∂Xa

∫ τ

−∞

dτ1G′q(k; τ , τ1)u′0
a(k; τ1)

− (γs − 1)
∂Ua

∂Xa

∫ τ

−∞

dτ1G′q(k; τ , τ1)q′0(k; τ1)

− (γs − 1)
Q
ρ

∂Ua

∂Xa

∫ τ

−∞

dτ1G′q(k; τ , τ1)ρ
′

0(k; τ1)

−

∫ τ

−∞

dτ1G′q(k; τ , τ1)
Dq′0(k; τ)

DT

− (γs − 1)Q
∫ τ

−∞

dτ1G′q(k; τ , τ1)
u′0

a(k; τ1)

∂Xa
, (3.22)

b′1
α(k; τ)=−iBbkb

∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)u′1

a(k; τ1)

+ iBakb
∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)u1

′ b(k; τ1)−
∂Ba

∂Xb

∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)u′0

b(k; τ1)

+
∂Ua

∂Xb

∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)b′0

b(k; τ1)−
∂Ub

∂Xb

∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)b′0

a(k; τ1)

−

∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)

Db′0
a(k; τ1)

DT

+Bb
∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)

∂u′0
a(k; τ1)

∂Xb
− Ba

∫ τ

−∞

dτ1G′b
αa(k; τ , τ1)

∂u′0
b(k; τ1)

∂Xb
.

(3.23)

(v) Statistical assumption on the lowest-order fields
The lowest-order or basic fields f ′B = (ρ

′

B, u′B, q′B, b′B) are homogeneous. We assume
the homogeneous and isotropic properties for the basic-field statistics as

〈ρ ′B(k; τ)ρ ′B(k
′
; τ ′)〉

δ(k+ k′)
= 〈Q′ρ(k; τ , τ

′)〉 =Qρ(k; τ , τ ′), (3.24)

〈q′B(k; τ)q′B(k
′
; τ ′)〉

δ(k+ k′)
= 〈Q′q(k; τ , τ

′)〉 =Qq(k; τ , τ ′), (3.25)

〈ϑ ′B
α(k; τ)ϑ ′B β(k′; τ ′)〉
δ(k+ k′)

=Dαβ(k)QϑϑS(k; τ , τ ′)+Παβ(k)QϑϑC(k; τ , τ ′)+
i
2

kc

k2
εαβcHϑϑ(k; τ , τ ′), (3.26)
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1
2δ(k+ k′)

[〈u′B
α(k; τ)b′B

β(k′; τ ′)〉 + 〈b′B
α(k; τ)u′B

β(k′; τ ′)〉]

=Dαβ(k)QwS(k; τ , τ ′)+Παβ(k)QwC(k; τ , τ ′), (3.27)

where ϑ ′ represents either one of the velocity and magnetic-field fluctuations, u′ and
b′, and Dαβ and Παβ are the solenoidal projection operator and the compressible
counterpart defined by

Dαβ(k)= δαβ −
kαkβ

k2
, Παβ(k)=

kαkβ

k2
. (3.28a,b)

In (3.24)–(3.27), Qρ , Qq, QϑϑS(≡ QϑS), QϑϑC(≡ QϑC), QwS and QwC are the spectral
functions of the density variance, internal-energy variance, solenoidal and compressible
parts of kinetic energy (for ϑ = u) or magnetic energy (for ϑ = b) and the counterparts
of cross-helicity of the basic fields, respectively. Statistical properties (3.24)–(3.27)
are natural extensions of the generic mathematical expressions for homogeneous
isotropic turbulence (Batchelor 1953; Hinze 1975; Moffatt 1978; Lesieure 2008) to
compressible MHD turbulence.

The second or Παβ-related terms: QuC in (3.26) with ϑ = u and QwC in (3.27),
represent the turbulent kinetic energy and cross-helicity modes projected on to the
wave vector k. The physical origins of QuC and QwC are the non-solenoidal property of
the compressional turbulent motion u′C (∇ · u′C 6= 0). With the compressional motion
u′C, neither of the divergence of the velocity–velocity nor velocity–magnetic-field
correlation tensors in the configuration space, Uαβ(r, t) ≡ 〈u′α(x; t)u′β(x+ r; t)〉 nor
Wαβ(r, t) ≡ 〈u′α(x; t)b′β(x+ r; t)〉 vanishes even when the system is statistically
isotropic:

∂

∂ra
Uaα(r, t)=−〈[∇ · u′(x)]u′α(x+ r)〉 =−〈[∇ · u′C(x)]u

′α(x+ r)〉 6= 0, (3.29)

∂

∂ra
Waα(r, t)=−〈[∇ · u′(x)]b′α(x+ r)〉 =−〈[∇ · u′C(x)]b

′α(x+ r)〉 6= 0. (3.30)

These properties lead to the non-divergence-free spectral correlation tensor in
wavenumber space, resulting in the compressional or Παβ(= kαkβ/k2)-related parts
of them, QuC in (3.26) and QwC in (3.27). These parts will be referred to as the
compressional or dilatational energy and cross-helicity, respectively. A possible role
of the dilatational cross-helicity will be argued later in § 5.

Under the assumptions of (3.24)–(3.27), they are related as

〈ρ ′B
2
〉 =

∫
Qρ(k; τ , τ ) dk, (3.31)

〈q′B
2
〉 =

∫
Qq(k; τ , τ ) dk, (3.32)

〈u′B
2
〉/2=

∫
Qu(k; τ , τ ) dk=

∫
QuS(k; τ , τ ) dk+

∫
QuC(k; τ , τ ) dk, (3.33)

〈b′B
2
〉/2=

∫
Qb(k; τ , τ ) dk, (3.34)

〈u′B · b
′

B〉 =

∫
Qw(k; τ , τ ) dk.=

∫
QwS(k; τ , τ ) dk+

∫
QwC(k; τ , τ ) dk. (3.35)
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(vi) Calculation of the correlations with renormalisation
The correlations in the configuration space are calculated from their counterparts in

the wavenumber space as

〈 f ′(x; t)g′(x; t)〉 =
∫

dk〈 f ′(k; τ)g′(k; τ)〉/δ(0)

=

∫
dk
(
〈 f ′0g′0〉 + 〈 f

′

0g′1〉 + 〈 f
′

1g′0〉 + · · ·
)
/δ(0). (3.36)

From the formal solutions of the lowest- and first-order fields, equations (3.16)–(3.23),
we can calculate the turbulent correlations.

Following the direct-interaction approximation (DIA), the basic-field propagators
(bare propagators) are replaced with their exact counterparts in the calculations of the
equations of the correlation and response functions (line renormalisation) (Kraichnan
1959).

In this formulation, the nonlinear coupling terms of the fluctuations are not
truncated. This is marked contrast with the so-called quasi-linear or first-order
smoothing approximations, where the nonlinear coupling terms with respect to the
fluctuation fields are truncated. In the DIA formulation, the nonlinear coupling terms
in the expansion series are evaluated by selecting the most important types of terms
(direct interaction) in it and summing them to infinity (partial summation). This
partial summation or renormalisation procedure is very useful in dealing with the
strong nonlinearity in the turbulent field equations.

On the other hand, we introduced the concept of the basic fields, resulting in an
uncoupled set of Green’s functions by adding an infinitesimal disturbance to the
nonlinear equations. The resulting equations of the Green’s functions, (3.12)–(3.15),
are in this sense linearised ones. Note that, by definition of Green’s function, such
linearisation is required for the superposition properties. Then the lowest-order fields
coupled with each other are solved in an iterative manner.

4. Turbulent mass and internal-energy fluxes
4.1. Turbulent mass flux

The turbulent mass flux is calculated as

〈ρ ′u′〉 = 〈ρ ′0u′0〉 + 〈ρ
′

0u′1〉 + 〈ρ
′

1u′0〉 + · · ·
= 〈ρ ′Bu′B〉 + 〈ρ

′

Bu′01〉 + 〈ρ
′

Bu′10〉 + · · ·

+ 〈ρ ′01u′B〉 + 〈ρ
′

01u′01〉 + · · · + 〈ρ
′

10u′B〉 + · · · . (4.1)

From (3.16)–(3.23), each term in (4.1) is expressed as∫
dk〈ρ ′B(k; τ)u

′

B
α(−k; τ)〉/δ(0)= 0, (4.2)∫

dk〈ρ ′B(k; τ)u
′

01
α(−k; τ)〉/δ(0)= 0, (4.3)

∫
dk〈ρ ′B(k; τ)u

′

10
α(−k; τ)〉/δ(0)

=−
1
3
(γs − 1)

1
ρ

∂Q
∂Xα

∫
dk
∫ τ

−∞

dτ1[2GuS(k; τ , τ1)+GuC(k; τ , τ1)]Qρ(k; τ , τ1)
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−
1
3

1
ρ

DUα

DT

∫
dk

∫ τ

−∞

dτ1[2GuS(k; τ , τ1)+GuC(k; τ , τ1)]Qρ(k; τ , τ1), (4.4)∫
dk〈ρ ′01(k; τ)u

′

B
α(−k; τ)〉/δ(0)= 0, (4.5)∫

dk〈ρ ′1(k; τ)u
′

B
α(−k; τ)〉/δ(0)

=−
1
3
∂ρ

∂Xα

∫
dk
∫ τ

−∞

dτ1Gρ(k; τ , τ1)[2QuS(k; τ , τ1)+QuC(k; τ , τ1)], (4.6)∫
dk〈ρ ′01(k; τ)u

′

01
α(−k; τ)〉/δ(0)

=−
1

3µ0
Bα
∫

dkk2
∫ τ

−∞

dτ1

∫ τ

−∞

dτ2Gρ(k; τ , τ1)GuC(k; τ , τ2)QwC(k, τ1, τ2).

(4.7)

Here, we have used identity relations based on the properties of the solenoidal and
compressional projection operators, Dαβ and Παβ (3.28), such as

kaDαa
= 0, (4.8)∫

dkkaΠαa
=

∫
dkka kαka

k2
=

∫
dkkα = 0, (4.9)∫

dkDαa
=

2
3
δαa
∫

dk, (4.10)∫
dkΠαa

=
1
3
δαa
∫

dk, (4.11)

DαbΠ ab
= 0, (4.12)∫

dkkakeΠαbΠ ab
=

1
3
δeα
∫

dk. (4.13)

These relations are mathematically rigorous and make the theoretical calculations
accurate and simple by eliminating several coupling terms that give identically null
contributions.

For the sake of brevity of description, we adopt the abbreviated forms of spectral
and time integrals as

I0{A, B} =
∫

dk
∫ τ

−∞

dτ1A(k; τ , τ1)B(k; τ , τ1), (4.14)

I2n{A(1), B(2),C(2)
} =

∫
dkk2n

∫ τ

−∞

dτ1

∫ τ

−∞

dτ2A(k; τ , τ1)B(k; τ , τ2)C(k; τ1, τ2).

(4.15)

It follows from (4.2)–(4.7) that the turbulent mass flux 〈ρ ′u′〉 is expressed as

〈ρ ′u′〉 =−κρ∇ρ − κQ∇Q− κD
DU
DT
− κBB, (4.16)

with the transport coefficients:

κρ =
1
3 I0{Gρ, 2QuS +QuC}, (4.17)
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κQ =
1
3
(γs − 1)

1
ρ

I0{2GuS +GuC,Qρ}, (4.18)

κD =
1
3

1
ρ

I0{2GuS +GuC,Qρ}, (4.19)

κB =
1

3µ0
I1{G(1)

ρ ,G(2)
uC,Q(2)

wC}. (4.20)

The first or κρ-related term in (4.16) corresponds to the so-called gradient-diffusion
approximation of the turbulent mass flux. In the presence of the mean-density
variation ∇ρ, the mass flux due to turbulence occurs in the opposite direction to
the mean-density gradient, and works so that it reduces the mean-density variation.
The transport coefficient κρ (4.17) is determined by the intensity of the turbulent
motion represented by the spectra QuS and QuC. The turbulent motions, both the
solenoidal and compressional ones, contribute to this gradient diffusion of the mass.

The second or κQ-related term corresponds to the effective mass flux due to the
mean internal energy, or equivalently the mean temperature variation, ∇Q, and may
be called the cross-diffusion due to the internal-energy inhomogeneity. The transport
coefficient κQ (4.18) is determined by the density-variance spectrum Qρ , and κQ as
well as κρ is always positive. This effect arises from strong compressibility. Depending
on the relative configurations of the mean-density and internal-energy gradients, the
cross-diffusion gives a deviation of the turbulent mass flux from the gradient diffusion
due to the mean-density variation ∇ρ. If the mean internal-energy or temperature
gradient is in the opposite direction to the mean-density gradient, the mass flux might
be effectively suppressed.

The third or κD-related term is the non-equilibrium mean velocity effect on the
turbulent mass flux. A finite material derivative of the mean velocity DU/Dt represents
a non-equilibrium variation of the mean velocity. For instance, in the case of an
impinging flow, DU/Dt is negative in the direction of the flow impinging on the wall.
Since the transport coefficient κD (4.19), which is determined by the density variance
spectrum Qρ , is always positive, a negative DU/Dt in impinging flow suggests an
enhancement of the effective mass transport due to the density fluctuation.

The fourth or κB-related term represents the effective mass transport in the direction
of the mean magnetic field B. The transport coefficient κB (4.20) is determined by
the compressional cross-helicity (i.e. the cross-helicity projected by the compressive
projection Π ) spectrum. This compressional cross-helicity corresponds to the part of
the cross-helicity which is coupled with the dilatation/contraction fluctuation motions.
Unlike κρ , κQ and κD, κB can be negative depending on the sign of the compressional
cross-helicity. This term suggests that the mass is effectively transported by turbulence
along the mean magnetic field B. This effect also gives a possibility of the turbulent
mass flux independent of the gradient of the mean density ∇ρ. This effect will be
further discussed in § 5.

4.2. Turbulent internal-energy flux
The turbulent heat flux is calculated as

〈q′u′〉 = 〈q′0u′0〉 + 〈q
′

0u′1〉 + 〈q
′

1u′0〉 + · · ·
= 〈q′Bu′B〉 + 〈q

′

Bu′01〉 + 〈q
′

Bu′10〉 + · · ·

+ 〈q′01u′B〉 + 〈q
′

01u′01〉 + · · · + 〈q
′

10u′B〉 + · · · . (4.21)
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From (3.16)–(3.23), each term in (4.21) is expressed as∫
dk〈q′B(k; τ)u

′

B
α(−k; τ)〉/δ(0)= 0, (4.22)∫

dk〈q′B(k; τ)u
′

01
α(−k; τ)〉/δ(0)= 0, (4.23)

∫
dk〈ρ ′B(k; τ)u

′

10
α(−k; τ)〉/δ(0)

=−
1
3
(γs − 1)

1
ρ

∂ρ

∂Xα

∫
dk
∫ τ

−∞

dτ1[2GuS(k; τ , τ1)+GuC(k; τ , τ1)]Qq(k; τ , τ1),

(4.24)∫
dk〈q′01(k; τ)u

′

B
α(−k; τ)〉/δ(0)= 0, (4.25)∫

dk〈q′1(k; τ)u
′

B
α(−k; τ)〉/δ(0)

=−
∂Q
∂Xα

1
3

∫
dk
∫ τ

−∞

dτ1Gq(k; τ , τ1)[2QuS(k; τ , τ1)+QuC(k; τ , τ1)], (4.26)

∫
dk〈q′01(k; τ)u

′

01
α(−k; τ)〉/δ(0)=−

1
3

1
µ0ρ

(γs − 1)Q
∫

dkk2
∫ τ

−∞

dτ1

∫ τ

−∞

dτ2

×Gq(k; τ , τ1)GuC(k; τ , τ2)QwC(k; τ1, τ2)Bα. (4.27)

It follows from (4.22)–(4.27) that the turbulent internal-energy flux 〈q′u′〉 is
expressed as

〈q′u′〉 =−ηQ∇Q− ηρ∇ρ − ηBB, (4.28)

with the transport coefficients:

ηQ =
1
3 I0{Gq, 2QuS +QuC}, (4.29)

ηρ =
1
3
(γs − 1)

1
ρ

I0{2GuS +GuC,Qq}, (4.30)

ηB =
1

3µ0ρ
(γs − 1)QI1{G(1)

q ,G(2)
uC,Q(2)

wC}. (4.31)

The first or ηQ-related term in (4.28) represents the gradient diffusion of the internal
energy. In the presence of the mean internal-energy gradient ∇Q, the effective
energy transport, mediated by the turbulent motions, is in the direction reducing
the inhomogeneity of the internal energy. The transport coefficient ηQ (4.29) is
determined by the solenoidal and compressional components of the spectral functions
of the turbulent motions.

The second or ηρ-related term represents the turbulent internal-energy flux due
to the mean-density gradient ∇ρ. In addition to the gradient diffusion due to ∇Q,
a gradient of the mean density, ∇ρ, may contribute to the internal-energy transport
through the fluctuation of the internal energy. This is a cross-diffusion term; depending
on the relative configurations of ∇ρ and ∇Q, the turbulent internal-energy flux
can deviate from the simple gradient diffusion proportional to ∇Q. The transport
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coefficient ηρ (4.30) is determined by the spectral function of the internal-energy
variance Qq, which is directly related to the density-variance spectrum Qρ or the
density variance itself 〈ρ ′2〉 as we see for the modelling of this effect in § 4.3.

The third or ηB-related term gives a possibility of enhancing the turbulent internal-
energy flux along the mean magnetic field B. The transport coefficient ηB (4.31) is
determined by the spectral function of the compressional part of the turbulent cross-
helicity. Unlike the spectral functions of the turbulent energy Qu and the turbulent
internal-energy Qq, QwC is not positive definite. Hence, the transport coefficient ηB
can be positive or negative depending on the sign of the turbulent compressional cross-
helicity. This term makes it possible for the internal energy to transport independently
of the gradient of the mean internal energy ∇Q or the gradient of the mean density
∇ρ. The physical origin of this effect is related to the magnetohydrodynamic (MHD)
wave effect. We discuss this point later in § 5.

4.3. Modelling turbulent fluxes
In order to properly evaluate the mean-field quantities, ρ, U, Q and B, from their
transport equations (2.14)–(2.15) and (2.17)–(2.18), we need the expressions for the
turbulent correlations. For example, the turbulent mass flux 〈ρ ′u′〉 and the turbulent
internal-energy flux 〈q′u′〉 provide essential contributions to the evolution of the mean
internal energy (2.17). The theoretical results for 〈ρ ′u′〉 (4.16) and 〈q′u′〉(4.28) with the
analytical expressions of the transport coefficients (4.17)–(4.20) and (4.29)–(4.31) are
written in terms of the spectral and time integrals of the Green’s functions and spectral
functions of MHD turbulence. For practical applications these analytical expressions
are too heavy, so we construct a turbulence model with one-point quantities on the
basis of the analytical results.

The Green’s functions represent how much the past states affect the present states.
The characteristic times of turbulence may be defined with the aid of the Green’s
functions as

τs =

∫ τ

−∞

dτ1〈G′s(k; τ , τ1)〉 =

∫ τ

−∞

dτ1Gs(k; τ , τ1), (4.32)

with s = (ρ, u, q, b). Utilising these time scales, the transport coefficients κρ (4.17),
κQ (4.18), κD (4.19), κB (4.20), ηQ (4.29), ηρ (4.30) and ηB (4.31) may be modelled
as

κρ =Cκρτρ〈u′2〉/2, (4.33)

κQ =CκQ(γs − 1)τuρ
〈ρ ′2〉

ρ2 , (4.34)

κD =CκDτuρ
〈ρ ′2〉

ρ2 , (4.35)

κB =CκB
1
µ0ρ

τρτucρ〈u′ · b′〉C, (4.36)

ηQ =CηQτq〈u′2〉/2, (4.37)

ηρ =Cηρ(γs − 1)τu
〈q′2〉
ρ
=Cηρ(γs − 1)3

τuτ
2
q

τ 2
ρ

Q2

ρ

〈ρ ′2〉

ρ2 , (4.38)

ηB =CηB
1
µ0ρ

(γs − 1)τqτucQ〈u′ · b′〉C. (4.39)
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In the second equality of (4.38), use has been made of the approximate relations:

q′ '−(γs − 1)τqQ∇ · u′ (4.40)

and

∇ · u′ '−
1
τρ

ρ ′

ρ
(4.41)

(see (2.19) and (2.21) with (3.16) and (3.18)).
The gradient-diffusion-related coefficients κρ (4.33) and ηQ (4.37) are determined

by the turbulent energy 〈u′2〉/2, which includes both solenoidal and compressive
fluctuation motions. These effects are present even in the solenoidal case. The
cross-diffusion effects κQ (4.34) and ηρ (4.38) and the non-equilibrium effect κD
(4.35) ddepend on the density variance 〈ρ ′2〉, which is expected to be relevant in
strongly compressible turbulence. The turbulent mass and internal-energy fluxes
along the mean magnetic field B, κB (4.36) and ηB (4.39), are determined by the
compressional part of the turbulent cross-helicity, 〈u′ · b′〉C. These compressional
turbulent cross-helicity effects (i.e. cross-helicity effects coupled with the compressible
motions) are further discussed in the following section (§ 5).

4.4. Correspondence to turbulent entropy flux
In the astrophysical and geophysical contexts, the entropy s, in place of the internal
energy q, is often adopted as one of the key statistical quantities. From the first law
of thermodynamics:

dq=−pd(1/ρ)+ θ ds, (4.42)

the evolution equation of s is written as

θ
Ds
Dt
=

Dq
Dt
+ p

D
Dt

1
ρ
=

Dq
Dt
−

p
ρ2

Dρ
Dt

(4.43)

in relation with the equations of the internal energy and density, q and ρ (Mihalas &
Weibel-Mihalas 1984).

Applying ensemble or Reynolds decomposition of the variables θ , s, q, p and ρ into
(4.43) and taking an average, we obtain the evolution equation of the mean entropy,
S, which contains the convective flux 〈s′u′〉 contribution. An elaborated analysis of the
expression of the turbulent entropy flux 〈s′u′〉 requires another paper, but from (4.43),
the turbulent entropy flux may be approximated as

〈s′u′〉 =
1
Θ
〈q′u′〉 −

1
Θ

P
ρ2 〈ρ

′u′〉. (4.44)

The expressions of the turbulent fluxes of the internal energy and mass, 〈q′u′〉 (4.28)
and 〈ρ ′u′〉 (4.16), suggest that the primary part of the expression of 〈s′u′〉 may be
written as

〈s′u′〉 =−ηQ
1
Θ
∇Q+ κρ

1
Θ

P
ρ2∇ρ. (4.45)

With the expressions for the transport coefficients ηQ (4.29) and κρ (4.17), and their
models (4.37) and (4.33), the turbulent entropy flux may be modelled as

〈s′u′〉 =−χS∇S, (4.46)
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where χS is the transport coefficient proportional to the turbulent kinetic energy
〈u′2〉/2. This expression is similar to the one obtained by Rogachevskii & Kleeorin
(2015) for low Mach number flows. Note that, among several transport coefficients,
the gradient-diffusion coefficients, ηQ and κρ , arise even in the case of no or weak
compressibility. Of course, the full expressions for 〈ρ ′u′〉 (4.28) and 〈q′u′〉 (4.16)
infer some additional terms for 〈s′u′〉. A more elaborated analysis in the context of
astrophysical and geophysical applications will be reported in the future.

With (4.43), we construct the mean entropy ρS equation (S = 〈s〉) (Braginsky &
Roberts 1995; Rogachevskii & Kleeorin 2015). In the mean entropy equation, we have
the turbulent flux of entropy ρ〈s′u′〉. In some of the literature, the effect of the entropy
flux is expressed by (1/Θ)∇ · Θρ〈s′u′〉, which coincides with the formulation with
the turbulent flux of internal energy. From the definition of the entropy (4.42) and
the equation of state (2.8) with (2.9), the internal-energy fluctuation is written as

q′ =
[

s′ +CV(γs − 1)
ρ ′

ρ

]
Θ. (4.47)

The convective flux Θρ〈s′u′〉, which is often used in the current studies, corresponds
to the second term on the right-hand side in (2.17) with the low Mach number
approximation of (4.47) (q′ =Θs′).

5. Dilatational cross-helicity effects and magnetohydrodynamic waves
5.1. Dilatational cross-helicity effects

The fourth term in (4.16) and the third term in (4.28) imply possibilities of the
turbulent mass and internal-energy fluxes along the mean magnetic field, respectively.
They deserve further consideration, since they may lead to deviations from the
gradient-diffusion approximation for the turbulent fluxes, expressed by ∇ρ in 〈ρ ′u′〉
and ∇Q in 〈q′u′〉, in the compressible MHD turbulence.

As we saw in (4.20) and (4.31) and their models (4.36) and (4.39), the transport
coefficients κB and ηB are expressed and modelled as

κB =
1

3µ0

∫
dkk2

∫ τ

−∞

dτ1

∫ τ

−∞

dτ2Gρ(k; τ , τ1)Guc(k; τ , τ2)QwC(k; τ1, τ2)

≡
1

3µ0
I1{G(1)

ρ ,G(2)
uC,Q(2)

wC}

= CκB
1
µ0ρ

τρτucρ〈u′ · b′〉C (5.1)

and

ηB =
1

3µ0

∫
dkk2

∫ τ

−∞

dτ1

∫ τ

−∞

dτ2Gq(k; τ , τ1)Guc(k; τ , τ2)QwC(k; τ1, τ2)

≡
1

3µ0
I1{G(1)

q ,G(2)
uC,Q(2)

wC}

= CηB
1
µ0ρ

(γs − 1)τqτucQ〈u′ · b′〉C, (5.2)

where τρ , τq and τuc are the characteristic time scales of the density, internal energy
and compressible velocity evolutions. The transport coefficients κB and ηB coupled
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with the mean magnetic field B are constituted of the compressional or dilatational
part of the turbulent cross-helicity, 〈u′ · b′〉C. In order for these effects to work, both
the compressibility and the cross-correlation between the velocity and magnetic-field
fluctuations should present simultaneously.

For the compressional cross-helicity effects, fluid dynamics related to the dilatational
motions ∇ · u′C should play an essential role. To get a deeper understanding of these
turbulent transports along the mean magnetic field, we first examine the turbulent mass
flux 〈ρ ′u′〉 by considering a simple situation of the density and velocity fluctuations.
From the fluctuation equations of the density ρ ′ (2.19) and the velocity u′ (2.20), the
time evolution of ρ ′ and u′ are respectively approximated as

Dρ ′

Dt
'−ρ∇ · u′, (5.3)

Du′

Dt
'

1
µ0ρ

(B · ∇)b′. (5.4)

These can be integrated with respect to time, and the variations of the density
fluctuation and velocity fluctuation, δρ ′ and δu′, are primarily expressed as

δρ ′ '−τρρ∇ · u′, (5.5)

δu′ ' τu
1
µ0ρ

(B · ∇)b′, (5.6)

with some other constraints such as the solenoidal condition of the magnetic-field
fluctuation ∇ · b′ = 0. As we see from (2.19) and its expanded expression in the
wavenumber space (3.16), the density fluctuation ρ ′ is directly related to the turbulent
dilatation/contraction ∇ · u′. Also the magnetic fluctuation being inhomogeneous
along the mean magnetic field, (B · ∇)b′, may lead to the variation of the velocity
fluctuation δu′ along the direction of the magnetic fluctuation variation. For evaluating
the turbulent mass flux 〈ρ ′u′〉, we utilise these expressions.

We consider a compressible fluid plasma element located in a uniform mean
magnetic field B (figure 1). Because of the compressibility, we have a finite turbulent
dilatation/contraction (∇ · u′ 6= 0). Note that the magnitude of the density fluctuation
depends on the strength of the compressibility. By considering the equation of the
density variance 〈ρ ′2〉, we expect a large density fluctuation at a location with a large
mean-density variation (see arguments in § 6 of Paper 1). In the expansion or positive
turbulent dilatation case (∇ · u′ > 0), the variation of the density fluctuation δρ is
negative as

δρ ′ =−τρρ∇ · u′ < 0 (5.7)

(figure 1a,c).
Note that, in general, both u′C (compressible component of u′) and the solenoidal

magnetic-field fluctuation b′ have components in the direction of the mean magnetic
field B. First we assume that the turbulent cross-helicity associated with the turbulent
dilatation is positive (〈u′ · b′〉C>0). This corresponds to a situation where the magnetic
fluctuation b′ longitudinal to the mean magnetic field B is statistically aligned with
the counterpart of the velocity fluctuation u′ (figure 1a). Because of this assumption
of positive compressional cross-helicity, the direction of the longitudinal magnetic
fluctuation b′

‖
is statistically aligned with the longitudinal velocity fluctuation u′

‖
(the

suffix ‖ denotes the component along the mean magnetic field B). For a positive
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(a) (b)

(c) (d)

FIGURE 1. Compressional cross-helicity effect. (a) Dilatation and positive compressional
cross-helicity (CCH) (∇ · u′> 0 and 〈u′ · b′〉C > 0); (b) contraction and positive CCH (∇ ·
u′ < 0 and 〈u′ · b′〉C > 0); (c) dilatation and negative CCH (∇ · u′ > 0 and 〈u′ · b′〉C < 0);
(d) contraction and negative CCH (∇ · u′ < 0 and 〈u′ · b′〉C < 0).

compressional cross-helicity (〈u′ · b′〉C > 0), an expansion for the plasma along B
(∇ · u′

‖
> 0) is statistically equivalent to ∇ · b′

‖
> 0. In this case, as shown by the thin

dashed line in figure 1(a), the variation of the velocity fluctuation (5.6) is positive in
the direction of B as

δu′
‖
= τu

1
µ0ρ

(B · ∇)b′
‖
> 0. (5.8)

Note that because of the solenoidal property of the magnetic field, ∇ · b′ = 0 should
be always satisfied. It follows from (5.7) and (5.8) that the turbulent mass flux
estimated by 〈δρ ′δu′〉 due to the compressional turbulent cross-helicity is along the
mean magnetic field but antiparallel to B (thick dashed line in figure 1a). In the
contraction or negative dilatation case (∇ · u′ < 0), δρ ′ in (5.7) turns out to be
positive while δu′

‖
in (5.8) becomes negative. As a result, 〈δρ ′δu′〉 is exactly the

same as in the expansion or positive dilatation case (figure 1b). Irrespective of the
sign of the turbulent dilatation, the turbulent mass flux 〈ρ ′u′〉 due to the coupling
of the mean magnetic field B and compressional cross-helicity 〈u′ · b′〉C is along but
antiparallel to B as long as the 〈u′ · b′〉C > 0 is positive (figure 1a,b).

On the other hand, for the negative compressional cross-helicity (〈u′ · b′〉C < 0), the
turbulent mass flux due to the compressional cross-helicity effect is along and parallel
to the mean magnetic field B (figure 1c,d).
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This is a simplified explanation for the fourth or κB-related term in (4.16) with the
transport coefficient (4.20) or the model expression (4.36):

〈ρ ′u′〉B =−κBB, (5.9)

with κB being proportional to the compressional cross-helicity (5.1).
Entirely similar arguments can be made for the turbulent internal-energy flux 〈q′u′〉.

In this case, the equation of the turbulent internal energy (2.21) should be used in
place of the equation of the turbulent density (2.19). Equation (5.3) is replaced by
the time evolution of q′ approximated by

Dq′

Dt
'−(γs − 1)Q∇ · u′ (5.10)

from (2.21). The variation of the turbulent internal-energy, δq′, can be estimated as

δq′ '−τq(γs − 1)Q∇ · u′ (5.11)

from (3.18). Then, the turbulent internal-energy flux is given as

〈q′u′〉B =−ηBB, (5.12)

with ηB being (5.2). As with the turbulent mass flux 〈ρ ′u′〉B, the turbulent internal-
energy flux 〈q′u′〉B is along the mean magnetic field B in the opposite (or same)
direction to B for the positive (or negative) dilatational cross-helicity. Irrespective
of the sign of the turbulent dilatation, the direction of the internal-energy flux is
determined by the sign of the dilatational turbulent cross-helicity. One interesting
point is that in the isothermal process (γs = 1) this internal-energy transport due to
the dilatational cross-helicity does not show up, since in this case the internal-energy
variation due to the turbulent dilatation disappears as (5.11).

Here we should note that, in the above physical pictures, the sign of the dilatational
turbulent cross-helicity is just assumed or prescribed. In reality, turbulent fields
including the velocity and magnetic-field fluctuations evolve subjected to the nonlinear
dynamics of the MHD turbulence with inhomogeneous mean fields. A self-consistent
treatment of the spatio-temporal evolution of the turbulent cross-helicity can be
done only by solving the transport equation of the turbulent cross-helicity under
the mutual influence of the mean and turbulence fields (e.g. see Yokoi & Hoshino
2011; Yokoi 2013). This point will be argued later in § 6. However, in the linearised
MHD equations, the perturbations including the velocity and magnetic-field ones
obey definite and specific modes following the dispersion relations. Since those linear
wave arguments provide us with some understanding on the dilatational turbulent
cross-helicity effect, we present such arguments in the following subsection, § 5.2.

5.2. Magnetohydrodynamic waves
In the presence of the mean magnetic field B, the time-dependent disturbances of the
velocity and magnetic fields are propagated as magnetohydrodynamic (MHD) waves.
If we restrict our attention to small-amplitude disturbances, we can consider small-
scale perturbations as wave-like solutions of the linearised MHD equations.

As is shown in appendix A, the dispersion relation (A 12) has three roots. One is the
transverse or shear Alfvén wave mode given by (A 16), and the other two are the fast
and slow magnetoacoustic wave modes given by (A 17). In the following, these wave
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FIGURE 2. Magnetohydrodynamic wave configuration.

modes are argued in relation to the turbulent mass and internal-energy fluxes due to
the dilatational cross-helicity effect.

In order to describe the eigenvector solutions of the velocity, magnetic-field and
electric-field perturbations, δu, δb and δe, it is convenient to define a mutually
orthogonal system of unit vectors. The unit vector in the direction of the mean
magnetic field B is b̂(=B/|B|). The unit vector along the wave vector is κ̂(= k/|k|).
In addition, â and τ̂ are the mutually orthogonal unit vectors to κ̂ , which are defined
by â = −k × B/|k × B| and τ̂ = â × κ̂ . Without losing generality, we have B lie in
the z direction and k vector in the z–x plane (figure 2). In this case, we have the
unit vectors as

b̂= (0, 0, 1), (5.13a)
κ̂ = (sin θ, 0, cos θ), (5.13b)

â= (0, 1, 0), (5.13c)
τ̂ = (cos θ, 0,− sin θ). (5.13d)

Transverse Alfvén mode
The transverse Alfvén mode given by (A 16) has eigenvectors

δu∝ δb∝ â= (0, 1, 0), (5.14a)
δe∝ cos θ τ̂ + sin θ κ̂ = (1, 0, 0) (5.14b)

(Cramer 2001). In the transverse Alfvén mode, velocity and magnetic-field perturbati-
ons are aligned with each other, and are in the direction perpendicular both to the
mean magnetic field B and the wave vector k. Both δu and δb are perpendicular to
the wave vector κ̂ · δu = κ̂ · δb = 0. Since κ̂ · δu = 0, we have no density variation
δρ = 0. The transverse Alfvén mode is purely incompressible.
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The group velocity of the transverse Alfvén mode is written as

vg =
∂ω

∂k
= vA cos θ b̂, (5.15)

where vA is the Alfvén speed defined by (A 14). This implies that the material or mass
is carried with this group velocity along the mean magnetic field B in the case of the
transverse Alfvén mode.

The electric-field perturbation δe is not perpendicular to the wave vector (κ̂ · δe 6= 0),
but is perpendicular to the mean magnetic field (b̂ · δe= 0). The Poynting flux due to
the electric- and magnetic-field perturbations in the transverse Alfvén mode, SA, is
given by

SA =
δe× δb
µ0

∝ (cos θ τ̂ + sin θ κ̂)× â= cos θ κ̂ − sin θ τ̂ = (0, 0, 1)= b̂. (5.16)

This shows that the wave energy is transferred along the mean magnetic field B. This
effect is a purely incompressible effect, so not directly related to the compressional
cross-helicity effects −κBB or −ηBB. However, as will be referred to in § 6, the
solenoidal and dilatational parts of the cross-helicity are coupled with each other.
If the transverse Alfvén waves provide solenoidal but highly aligned velocity and
magnetic-field perturbations, the dilatational cross-helicity may be also generated at
the nonlinear stage of compressible MHD flow, resulting in the compressional or
dilatational cross-helicity effects in the turbulent mass and internal-energy transports.

Magnetoacoustic modes
The fast and slow magnetoacoustic modes given by (A 17) have eigenvectors

δu∝ cos θ(ω2
− c2

Sk2)τ̂ + sin θω2κ̂ = (ω2
− c2

Sk2 cos2 θ, 0, c2
Sk2 cos θ sin θ), (5.17a)

δb∝ τ̂ = (cos θ, 0, − sin θ), (5.17b)
δe∝ â= (0, 1, 0) (5.17c)

(Cramer 2001). Here, cS is the sound speed defined by (A 15). In the magnetoacoustic
modes, there are density perturbations (δρ 6= 0) since ∇ · δu 6= 0.

We see from (5.17a) and (5.17b) that the velocity perturbation δu has both
perpendicular and parallel components to the wave vector κ while the magnetic
perturbation is only in the direction perpendicular to κ̂ because of the solenoidal
nature of δb (∇ · δb = 0). At the same time, there is a magnetic-field perturbation
δb, as well as a velocity perturbation δu, that is parallel to the unperturbed magnetic
field B.

If we take the inner product of δu (5.17a) and δb (5.17b) in the magnetoacoustic
modes, we get

δu · δb∝ [cos θ(ω2
− c2

Sk2)τ̂ + sin θω2κ̂] · τ̂ = cos θ(ω2
− c2

Sk2). (5.18)

Since the magnetic perturbation δb has no components in the κ direction (5.17b),
the cross-helicity due to the velocity and magnetic-field perturbations (turbulent
cross-helicity) is generated only by the combination of the velocity and magnetic-field
perturbations transverse to the wave vector k. The sign of the turbulent cross-helicity
depends on the angle θ between the wave propagation k and the mean magnetic
field B. The magnitude of the turbulent cross-helicity is expected to be maximum
when the wave propagation is parallel or antiparallel to B (θ = 0 or π). Also even
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in the case of θ = 0 or π, if the phase velocity is represented by the sound speed:
uφ = cS or equivalently ω2

= c2
Sk2, the velocity perturbation along τ vanishes, then

the velocity perturbation δu and the magnetic-field perturbation δb are orthogonal to
each other. In this case, we have no turbulent cross-helicity. This is the case of the
slow mode: the electromagnetic component completely disappears at θ = 0, π and
the slow mode wave is reduced to a sound wave. On the other hand, if the wave
propagation direction is perpendicular to the unperturbed magnetic field (θ = π/2),
the velocity and magnetic perturbation are orthogonal to each other, then we have no
turbulent cross-helicity. This is the case for the magnetoacoustic wave propagating in
the perpendicular direction to B.

The Poynting flux due to the electric- and magnetic-field perturbations in the
magnetoacoustic modes, SM, is given by

SM =
δe× δb
µ0

∝ â× τ̂ = â× (â× κ̂)=−â2
κ̂ =−κ̂ . (5.19)

This shows that the wave energy is transferred along the wave vector in the direction
opposite to k or κ(≡ k/|k|).

These arguments suggest that the magnetoacoustic modes are, to some extent, the
linearised counterpart of the compressive cross-helicity effect we obtained in §§ 4 and
5.1, since these modes have both compressibility and cross-helicity simultaneously.
At the same time, the transverse Alfvén mode is very important for providing the
turbulent cross-helicity. We should note that the cross-helicity is constituted only
of the solenoidal motion and magnetic field both in the transverse Alfvén and
magnetoacoustic modes as (5.14a), (5.17a), (5.17b) and (5.18) show.

In the linearised MHD wave argument, mass and energy are considered to be
carried in the direction of the mean magnetic field (transverse Alfvén mode) and
in the direction to the wave vector (magnetoacoustic modes). Deviation from the
aligned transport, i.e. a transfer in the direction oblique to B or k, may require
some nonlinear, resistive or kinetic effects. On the other hand, in the arguments
with strongly turbulent or nonlinear MHD processes, the gradient diffusion should be
the effect of primary importance, and deviations from the gradient diffusion in the
turbulent mass and energy transports show up with the strong density-variance effects
in cross-diffusion and the compressional cross-helicity effects in transport along the
mean magnetic field.

Both these effects need compressibility and the aligned components of the velocity
and magnetic-field perturbations. However, there are several differences between
these two effects. For example, as with the physical interpretation given in § 5.1,
the compressive cross-helicity effect requires the inhomogeneity of the magnetic
fluctuations along the mean magnetic field. In the magnetoacoustic modes, such
magnetic fluctuation is not allowed to exist if the wave propagation is along the
unperturbed magnetic field (θ = 0,π) (see (5.17b)).

6. Summary and concluding remarks

Summary
In this work, strongly compressible MHD turbulence was analysed with the aid of

the multiple-scale direct-interaction approximation (multiple-scale DIA), an analytical
closure scheme for inhomogeneous turbulence at very high Reynolds numbers. The
theoretical expressions for the turbulent mass flux 〈ρ ′u′〉 (4.16) and the turbulent
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internal-energy flux 〈q′u′〉 (4.28) are obtained with the analytical expressions of
the transport coefficients (4.17)–(4.20) and (4.29)–(4.31), respectively, in terms of
the Green’s and spectral functions of turbulence. Using the analytical results, a
turbulence model with one-point turbulent quantities and the time scales of turbulence
was proposed as (4.33)–(4.39). In addition to the usual gradient-diffusion model, the
cross-diffusion mediated by the density variance 〈ρ ′2〉 and the transfer along the mean
magnetic field mediated by the compressional cross-helicity effect are obtained, and
suggested to be included in the expression for the turbulent mass and internal-energy
fluxes, 〈ρ ′u′〉 and 〈q′u′〉. These effects can be important in providing deviations from
the gradient-diffusion fluxes. The relationship of the compressional cross-helicity
effect with the magnetoacoustic waves was also argued.

Concluding remarks
As the model expressions for the turbulence transport coefficients (4.33)–(4.39)

show, the spatio-temporal evolutions of the density variance 〈ρ ′2〉 and the turbulent
cross-helicity 〈u′ · b′〉 are of crucial importance for the evaluation of effects other
than the gradient diffusion, namely, the cross-diffusion and transport along the mean
magnetic field. As for the evolution equation of 〈ρ ′2〉, this was already discussed in
Paper 1 (Yokoi 2018) in the context of the turbulent electromotive force in strongly
compressible MHD turbulence (e.g. § 5 of Paper 1). Here, we note the evolution of
the turbulent cross-helicity.

The conservative property of the global cross-helicity integral
∫

V u · b dV has been
argued for a long time (Woltjer 1958). This invariance nature yields a topological
interpretation of the cross-helicity. The global integral of the cross-helicity is a
measure of the linkage of the vortex lines with the magnetic-field lines (Moffatt
1978). However, as compared with the arguments for the magnetic helicity and also
for the kinetic helicity, the counterparts for the cross-helicity have been limited.

It is well known that the presence of the turbulent cross-helicity 〈u′ · b′〉 is closely
related to the asymmetry of the Alfvén wave propagation between the directions
parallel and antiparallel to the large-scale magnetic field (Yokoi 2013). Actually,
this asymmetry of the Alfvén wave propagation is the main source of the very high
amplitudes of the turbulent cross-helicity in solar-wind turbulence (Tu & Marsch 1995;
Bruno & Carbone 2016). At the same time, there are several other sources of turbulent
cross-helicity in inhomogeneous MHD turbulence. Inhomogeneities of the mean-field
structures such as the mean magnetic-field strain and the large-scale vortical motion
coupled with the turbulent correlations (the Reynolds stress, the turbulent Maxwell
stress, the turbulent electromotive force, etc.) provide the production mechanisms of
the turbulent cross-helicity other than the asymmetry of the Alfvén wave propagation
(Yokoi 2011; Yokoi & Hoshino 2011). In this sense, the turbulent cross-helicity
represents broader contents than just an asymmetry of the Alfvén wave propagation.

In the compressible MHD turbulence case, we have additional production
mechanisms intrinsic to the compressibility. The evolution equation of the local
density of the turbulent cross-helicity 〈u′ · b′〉 in the compressible MHD case is
written as (Yokoi 2013)

D
Dt

〈
u′ · b′

〉
= −

1
2

〈
u′au′b −

1
µ0ρ

b′ab′b
〉(

∂Bb

∂xa
+
∂Ba

∂xb

)
− 〈u′ × b′〉 ·Ω

− (γs − 1)
1
ρ
〈ρ ′b′〉 · ∇Q− (γs − 1)

1
ρ
〈q′b′〉 · ∇ρ −

1
ρ
〈ρ ′b′〉 ·

DU
Dt

−〈u′ · b′〉∇ ·U+B · ∇
〈

1
2

u′2
〉
− εW + TW +R.T., (6.1)
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where R.T. denotes the residual terms, and εW and TW are respectively the dissipation
and transport rates of the turbulent cross-helicity, whose detailed expressions are
suppressed here. We see from (6.1) how and under what conditions the turbulent
cross-helicity and its compressive part can be generated. For instance, the asymmetry
between the parallel and antiparallel propagations of the Alfvén waves along the mean
magnetic field B is related to the second term of the final line, or the B · ∇〈u′2〉/2
term in (6.1). Inhomogeneity along the mean magnetic field in general provides a
source of non-zero or finite turbulent cross-helicity. Another important point is that
(6.1) has genuine compressible production terms. The ∇Q-, ∇ρ-, and DU/Dt-related
terms on the second line in (6.1) are such compressibility-originated terms. These
terms, as well as the ∇ · U or mean dilatation term, give the possibility to generate
turbulent cross-helicity even in the absence of the mean magnetic field B. In this
sense, as compared with the solenoidal MHD turbulence, strongly compressible MHD
turbulence provides us with interesting situations where the cross-helicity plays an
important role in turbulent transport.

Validation of the present theoretical results and the turbulence model based on them
can be numerically performed. An extension of Kolmogorov flow with an imposed
uniform magnetic field in the inhomogeneous direction (Yokoi & Balarac 2011) to a
compressible case is one possible set-up for the numerical validation. Another more
artificial set-up may be an MHD counterpart of the global flow generation (Yokoi &
Brandenburg 2016). In the latter case, the turbulent cross-helicity is externally injected
by forcing, and the coupling of this turbulent cross-helicity with an externally imposed
uniform magnetic field should be examined in the context of the turbulent mass and
internal-energy fluxes. As referred to in § 1, the amount of compressible turbulence
forcing is expected to be a key parameter determining the star formation rate in
molecular clouds. These numerical experiments in the context of the present effects
are left for future interesting works.
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Appendix A. Dispersive relation of magnetohydrodynamic waves

Following standard textbooks (Cross 1988; Cramer 2001; Gurnett & Bhattacharjee
2017), we present a way to derive the dispersion relation of the magnetohydrodynamic
waves.

We consider small disturbances for the field quantities as ρ=ρ+ρ ′, u=U+u′=u′,
b=B+ b′, p=P+ p′. Assuming that the disturbances are small, we linearise the ideal
magnetohydrodynamic equations for the perturbations. If the unperturbed system is
uniform and static, we introduce the Fourier representation of the perturbed quantities
as

f ′(x; t)= f̂ (k;ω) exp [i(k · x−ωt)]. (A 1)
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With (A 1), the differential operators are transformed as ∇ → ik and ∂/∂t → −iω.
Then, the equations of the perturbations are written as

−iωρ̂ ′ + iρ k · û′ = 0, (A 2)

−iωρ û′ =
i
µ0
(k× b̂

′

)×B−ik p̂′, (A 3)

−iωb̂
′

= ik× (û′ ×B), (A 4)

ik · b̂
′

= 0, (A 5)
p̂′ = c2

Sρ̂
′, (A 6)

where cS is the speed of sound defined by c2
S = ∂ p̂/∂ρ̂ = γsP/ρ. At this point we

drop the hat from f̂ ′ for the perturbed quantities in the wavenumber space, and write
simply f ′.

Eliminating p′ from (A 6) with (A 2), we have equation of u′ as

ω2u′ =
1
µ0ρ
{k× [k× (u′ ×B)]} ×B+ c2

Sk(k · u′). (A 7)

Here, we have used (A 4) for eliminating b′.
Without losing generality, we can put the unperturbed magnetic field B and the

wave vector k as

B= (0, 0, B0), (A 8)
k= (k sin θ, 0, k cos θ). (A 9)

We also introduce the phase velocity uφ(=
√
ω2/k2) and the Alfvén speed vA(=√

B2/
√
µ0ρ). From the induction equation (A 4) or equivalentlyb′x

b′y
b′z

=
−(B/uφ) cos θ 0 0

0 −(B/uφ) cos θ 0
(B/uφ) sin θ 0 0

u′x
u′y
u′z

 . (A 10)

This shows that the perturbed velocity u′ along the unperturbed magnetic field B, u′z,
does not contribute to the magnetic-field perturbation b′ at all.

From the momentum equation (A 7), we haveu2
φ − c2

S sin2 θ − v2
A 0 −c2

S sin θ cos θ
0 u2

φ − v
2
A cos2 θ 0

−c2
S sin θ cos θ 0 u2

φ − c2
S cos2 θ

u′x
u′y
u′z

= 0. (A 11)

Note that there is no coupling between the equation involving u′y and the equations
involving u′x and u′z.

This equation has non-trivial solutions for u′ only if the determinant of the matrix
is zero. This gives the dispersion relation:

(u2
φ − v

2
A cos2 θ)[u4

φ − (v
2
A + c2

S)u
2
φ + v

2
Ac2

S cos2 θ ] = 0, (A 12)

where θ is the angle between the unperturbed magnetic field B and the wave vector
k (k= |k|) (Cross 1988; Cramer 2001; Gurnett & Bhattacharjee 2017). Here uφ is the
phase velocity, vA is the Alfvén speed and cS is the speed of sound defined by

u2
φ =ω

2/k2, (A 13)
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v2
A =B2/(µ0ρ), (A 14)
c2

S = γsp/ρ, (A 15)

respectively.
The dispersion relation (A 12) has three roots. One is the transverse or shear Alfvén

mode given by
u2
φ = v

2
A cos2 θ. (A 16)

The remaining other two are the fast and slow magnetoacoustic modes given by

u2
φ =

1
2(v

2
A + c2

S)±
1
2 [(v

2
A − c2

S)
2
+ 4v2

Ac2
S cos2 θ ]1/2, (A 17)

where the plus and minus signs in the double signs correspond to the fast and slow
modes, respectively.
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