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SUMMARY

The paper deals with the development of a bounded control
law for Flapping-wing Micro Aerial Vehicles that mimics
a strategy adopted by animal flapping flyers to stabilize
their orientation. The control consists on generating torques
about the body’s principal axes by means of a modulation
of the wing angle amplitudes. It is known that flapping
flyers orient their body without any numerical computation or
estimation of their current attitude. Therefore, the proposed
control law is computed using the direct measurements of
onboard sensors mimicking animal sensitive organs, more
specifically the halteres, legs sensilla, and magnetic sense.
The technological equivalents of these biological sensors
are three rate gyros, a tri-axis accelerometer, and a tri-
axis magnetometer, respectively. Besides, the control signal
is bounded to keep the wing angle amplitudes below the
maximal values. Owing to its simplicity, this control law
is suitable for applications where onboard computational
resources are limited. The stability of the closed-loop system
is proved based on Lyapunov analysis and averaging theory.
The effectiveness of the proposed control law is shown
in simulations. The robustness with respect to external
disturbances is also shown emphasizing the importance and
need of the bounded control.

KEYWORDS: Aerial robotics; Biomimetic robots; Control
of robotic systems; Bounded control; Micro robotics.

1. Introduction

Animal flapping flyers depict several techniques to achieve
flight and maneuvers moving their wings, body, and
legs.'¢ Principally, these techniques get benefit of the wing
morphology, aerodynamic effects, sensory and actuating
systems, flight control, and obstacle avoidance mechanisms.
For example, insects are able to change, very quickly,
their speed and direction of flight, within almost 100 ms
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especially during predatory phases.!® They are also able
to accomplish a transitory lateral or backward flight.
These maneuvers are performed by a displacement of the
abdomen or an asymmetrical evolution of the wings using
an amplitude modulation’:?” or phase modulation,?® and
frequency modulation occurs very rarely.?’

Besides, the flapping flyer is endowed with information,
issued from multiple sensitive organs, about its state,
interaction with the environment as well as local destination
to determine the way to reach it. For insects, one can cite
the ocelli, the compound eyes, and other biological sensors
detailed as follows>* ¢ (and references therein):

e Halteres are gyroscopic biological sensors, present at the
wing bases, that detect the rotational movement of
the body and allow to determine its angular velocity along
the three axes.

e Sensilla are cuticular sense hair detecting chemical or
mechanical stimuli. They are present on the antenna,
wings, and legs. Legs sensilla, for example, allow to
determine the direction of the gravity field with respect
to the insect’s body.

e Magnetic sense allows to determine the direction of the
earth magnetic field with respect to the insect’s body.

Using a fusion of information issued from these organs, the
insect determines its trajectory and adapts its body’s velocity
and orientation to track it. One should emphasize that these
actions are executed by the insect without any instantaneous
numerical knowledge of its position, orientation, or velocity.

Insect’s performance has encouraged the design of
Flapping-wing Micro Aerial Vehicles (FMAVs). The micro
aerial vehicle is a small-size aircraft, having a maximal
dimension of 6 inches,! and intended to perform an
autonomous flight, thanks to an onboard control system,
comprising a set of sensors and dedicated integrated circuits.
Due to their small size and flapping movement, FMAVs fly
in zones characterized by low Reynolds numbers (10>-10%).
They develop, therefore, extra nonstationary aerodynamic

! The definition is given by the DARPA (Defense Advanced
Research Projects Agency).
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forces, which help them reduce the forces generated by the
actuators to accomplish the flight and, consequently, reduce
the energetic consumption. The FMAVs produce low noise.
They are able to accomplish vertical taking-off and landing
as well as stationary flight in hovering mode. However,
their major drawback is still the difficulty of identifying and
implementing the complex mechanisms carried out by insects
to perform maneuvers.'®2° The FMAVs are intended for use
in areas inaccessible for people or that require high accuracy
of intervention.

The present paper deals with the modeling and attitude
stabilization of an FMAV for scenarios necessitating to
maintain a stable orientation in front of a scene in order
to monitor or investigate it. A simple model mimicking the
flapping flight is presented, including the wing’s degrees of
freedom, the sensorimotor system, as well as the developed
aerodynamic forces. The major contribution of this work
is the development of a biomimetically inspired control
strategy aiming to stabilize the orientation of the FMAV.
The inputs of the control law are the direct measurements
of onboard sensors, equivalent to those which an insect
is equipped with, without the need of an explicit attitude
reconstruction (represented by the Euler angles in R3,
quaternion in S* C IR*, or rotation matrix in SO(3)). Hence,
unlike conventional approaches, the computational cost
used for the attitude estimation/reconstruction is avoided.
Note that attitude estimation is frequently carried out by
means of extended Kalman filters or nonlinear observers,
which represent a high computational cost. The control law
takes into consideration the wing angle amplitude bounds,
characterizing the animal species. It has the easiness of a
Proportional Derivative (PD) controller, the derivative term
is obtained by means of the halteres (angular velocity) and
the proportional term by means of legs sensilla and magnetic
sense (direct measurement of attitude error). Moreover,
the control is very simple and therefore is suitable to be
implemented in real time. It is also independent of the FMAV
body’s inertia, modeling or aerodynamic errors, and robust
with respect to external disturbances. Unlike fuzzy logic
controllers or fractional Proportional Integral Derivative
(PID) controllers, the bounds of the control signal are taken
into account explicitly and the stability properties are well
established.

Models of FMAVs existing in the literature consider
them as rigid bodies subject to external forces and torques
generated by the flapping wings whose amplitude and/or
phase may be modulated”!%!%2%3! phased or even both
of them.”!%2° Few works have treated the problem of
controlling the orientation of flapping aerial vehicles based
on sensor measurements. A proportional derivative output
feedback based on ocelli and halteres measurements has
been proposed®®. Another work has considered a linear
quadratic optimal control based on ocelli, magnetic compass
and halteres measurements'!-!4, Halteres measurements have
also been used to estimate the pitch rate and stabilize
the corresponding angle with a proportional derivative
controller and pole placement’. Rate gyros, accelerometer
and magnetometer sensors, representing respectively the
halteres, legs sensilla and magnetic compass have been
used to estimate the insect’s attitude (rotation matrix),
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Fig. 1. Degrees of freedom of a wing: flapping, lagging (elevation),
and feathering.

used after, along with angular velocity measurement, in a
state feedback control law*. One should emphasize that,
in the aforementioned works, the proposed linear control
laws cannot be sufficiently robust with respect to external
disturbances representing wind, for example. Note also that
building a control law using estimated attitude state is not
a biomimetic approach. In fact, insects have no numerical
instantaneous determined orientation knowledge (angles or
rotation matrix) but only information issued directly from
their biological sensors.®

The paper is organized as follows. In Section 2, the model
of the FMAYV is proposed in agreement with insect models,
including the sensorimotor systems, aerodynamic forces, and
body’s dynamics. A biologically inspired bounded control
law, based directly on the measurements of some embedded
sensors and aiming to stabilize the orientation of the FMAYV,
is presented in Section 3. Simulation results are addressed
in Section 4 as well as some robustness tests. Finally,
conclusions are given in Section 5 and future works are
introduced.

2. Insect Flight Versus Biomimetic Robot Flight

The present section deals with the design and modeling
of an FMAV. Design concerns mainly the choice of the
sensors and actuators to embark on the FMAV. Therefore,
the insect’s sensorimotor system is shortly presented and
correlated to the technological corresponding equipments.
Modeling concerns principally the establishment of a simple
mathematical model allowing to represent the degrees of
freedom of the flapping flight as well as aerodynamic forces
and mechanisms deployed by nature’s flapping flyers to
perform maneuvers. One should note that a beating wing
is in interaction with the surrounding airflow, which creates
aerodynamic forces perpendicular to its surface. These forces
generate the linear and rotational movements of the FMAV’s
body.

2.1. Wing degrees of freedom

The movement of a wing is a combination of several
elementary actions:**° flapping, feathering, lagging, or
elevation besides flexion and torsion (Figs. 1 and 2). Flapping
is an up-and-down movement of the wing represented by a
rotation of the wing about its tangential axis ¢ of a flapping
angle ¢. Feathering is a rotation of the wing about its
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Fig. 2. (Colour online) Coordinate frames: inertial fixed frame
Fl(x!, y7, z/), body attached frame F?(x”, y, z%), and left wing
attached frame 7" (ry, t;, n;).

spanwise axis r of a rotation angle 1. Lagging or elevation
is a forward—backward movement of the wing parallel to
the body, modeled by a rotation about a normal axis r of
a deviation or elevation angle 6. Flexibility of the wing
allows it to resist to turbulence, provides a gentler flight, and
increases the aerodynamic force relative to a same size rigid
wing.!3 Torsion is a twist movement of the wing, providing
an aerodynamic stability.?’

The directions of the wing rotational axes are chosen such
that r is oriented from the wing base to its tip along the
wingspan, ¢ is parallel to the wing chord, oriented from
trailing to leading edge, and n is perpendicular to the wing
plane-oriented, so that the three-sided frame F"(r, ¢, n) is
direct. Note that the frame F* should be indexed, left F}*
and right 7, relative to the left and right wings, respectively.

Maneuvers of animal flapping flyers are performed
primarily by asymmetrical movements of the wings, a
displacement of the abdomen and legs. The movement of
the wings generates aerodynamic forces, which resultant
is perpendicular to the wing surface. Therefore, the
flapping/rotation movements of the wings generate the
vertical/longitudinal movements of the insect, respectively.
A difference in the amplitudes of the left and right
flapping/rotation angles allows to generate a roll/yaw
movements, respectively (Fig. 2). The pitch movement can
be created by controlling the wing’s elevation degree of
freedom, or by changing the center of gravity of the body
tilting it upward or downward. The second solution allows
to reduce the number of embarked actuators and therefore
is adopted in the sequel. Finally, the lateral movement is
generated by coupling the body vertical lift force with the
roll angle, maneuver performed by many birds and insect
species.'®

The wing angles are characterized by their maximal
amplitudes and their wingbeat frequency within their
predefined trajectory. These values are specific to each
species. Generally, flapping-wing flying creatures move their
wings according to a sine function with higher harmonics, the
fundamental frequency is equal to the wingbeat frequency.'®
A wingbeat period is divided into two phases: the downward
phase of the flapping movement or downstroke and, the
upward phase or upstroke.>!® During downstroke, the
flapping flyer orients the dorsal side of the wing to the flow.
It orients the ventral side during the upstroke. The model
proposed in this work considers the wing as a rigid body,
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flapping in the mean stroke plane, defined by taking the
deviation angle 6 to zero. This choice is motivated by the
possibility to control insects using only two wing angles.?*
Flapping and rotation angles, ¢ and v, are assumed to vary
according to saw tooth and pulse functions, respectively, such
that the wing changes its orientation at the end of each half
stroke (Fig. 3). The time variation of the wing angles is given

by Eq. (1):

go(1 — 2 0<t<«kT
¢) = G2 kT <t <T |
V() = Yo sign(kT —¢t) 0<t<T M
6) =0 0<t<T,

where “sign” designates the classical sign function, 7 is the
wingbeat period, « is the ratio of downstroke duration to the
wingbeat period and should verify 0 < k¥ < 0.5 to produce a
positive aerodynamic lift force over a wingbeat period, ¢ and
Yo are, respectively, the amplitudes of flapping and rotation
angles. ¢y and v, considered for left and right wings, will
define the control inputs as will be shown in Section 2.6 . This
choice is motivated by the fact that wingbeats have generally
fixed frequency, except during some maneuver phases. Turns
can be created by asymmetrically changing the left and right
wing angle amplitudes.'-?’

Note that the wingbeat frequency has been taken equal to
100 Hz considering in the following the model of a diptera
insect.!® Note also that the given angle parameterization does
not represent the real movement of the wings, but the desired
trajectory to be achieved by the wing actuators.

Remark 1. The wing angle parameterization adopted in
the present work is not unique. Other parameterizations can
be used as well. The only condition is that they allow the
generation of an aerodynamic body lift force that, averaged
over a wingbeat period, should be positive and able to balance
the FMAV’s weight. The control strategy and control law
proposed in the following remain always applicable.

Other non-symmetric wing-parameterizations have been
proposed in the literature as the modulation of all three
angles.” However, embarking many actuators is weight
costly. Therefore, strategies have been oriented to decrease
their number to two besides a bobweight actuator in the
body.?® Then, the bobweight has been removed and the
wings parametrization adapted to use only one actuator
per wing.? This configuration necessitates the development
of complex control laws to stabilize the translational and
rotational movement of the FMAV. Other strategies have used
one principal and two secondary actuators to accomplish an
asymmetric control of the wing angle amplitudes.'® Another
work has considered one active and one passive degrees of
freedom allowing to control four wing angles, the aim is to
ensure the vertical flight, the orientation, notably the roll and
yaw angles, is passively regulated.®
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Fig. 3. (Colour online) Shape of the wing angle evolution through an illustrative example: the flapping (top) and rotation (bottom) wing
angles, the reference angles in dashed red line, and the real angles (delivered by the actuators) in continuous blue line.

2.2. Actuation

The periodic wingbeats are accomplished by the muscles,
present at the wing bases or in the thorax and, vibrating
with a fixed frequency. This movement can be identified as
a vibration at the undamped natural frequency. Therefore,
piezoelectric actuators are the most suitable for this
application. The reverse effect of piezoelectricity, consisting
on applying voltage and retrieving mechanical movement,
is of interest. The alternative voltage is delivered by an
electronic converter designed specifically for piezoelectric
actuators. These actuators behave as reactive loads®?!
introducing some nonlinearities (hysteresis, creep) that can
be avoided using a local control.?® The controller inputs are
the reference angles defined in Eq. (1). The local controller—
actuator closed loop is regulated to behave as a first-order
filter having fast dynamics, so that the influence of the
actuator on the global system dynamics is despised (Fig. 3):

A=A, —M(A—A)— (A —A), )

where A is the amplitude of the flapping or rotation angles
at the actuator’s output and A, is the reference amplitude
at the actuator’s input. A; and A, are computed using pole
placement such that the time constant of the local closed-loop
isequaltor =0.1ms: A} = % and A, = flz

Remark 2. Note that the piezoelectric actuators available
on the market have very fast dynamics with a time response
reaching the microsecond range (PZT, piezoceramic
actuators, for example). The conservative hypothesis
considered for T = 0.1 ms is, therefore, absolutely realistic
even when the actuator is coupled to the wing. Note that if
the time response of the wing—actuator system is less than
0.1 ms, it will be more advantageous for the transparency of
the actuator and its influence on the FMAV’s movement.
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2.3. Sensory system

In attitude stabilization theory, the FMAV’s body should
reach a desired orientation and maintain it, which means
that, at stationary hovering flight, the body axes should
be aligned to some reference axes with a null angular
velocity. Within insect biosensors, the halteres, legs sensilla,
and magnetic sense contribute to control the body’s
orientation. These sensitive organs have some technological
equivalents, respectively, the rate gyros, accelerometers, and
magnetometers.

Define a fixed frame in the space F/(x/, y/,z/) and a
mobile frame attached to the FMAV’s body at its center of
gravity F2(x?, y?, z) (indexes, f and b, stand for fixed and
body, respectively) (Fig. 2). Define also a rotation matrix
Re SOB)={R eR>*: RTR = I, det R = 1} allowing
the transformation from the fixed frame F/ to the body
frame 7.

2.3.1. Rate gyros. Threerate gyros are mounted orthogonally
on the FMAV’s body such that their axes coincide with
the body’s axes. The sensors deliver the angular velocity
measurements about the body’s axes. The measured angular
velocity, wg, is given by:

3)

we = o+ &g,

where w € R is the angular velocity of the body and &; € R3
is a white Gaussian noise of the rate gyros.

2.3.2. Magnetometer. A tri-axis magnetometer is mounted
on the FMAV such that its axes coincide with the body’s axes.
The sensor gives the measurement of the fixed magnetic field
in F’:

sy = Rs,(; +&u, (€Y}
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where s/ € R is the magnetic field in the fixed frame F/, R
is the rotation matrix from the fixed frame F/ to the body’s
frame F?, and &, € R? is a vector of Gaussian white noise.
Note that the magnetic field in the fixed frame is considered
constant and equal to s AZ = [%, 0, —‘/7§]T in the geographic
zone where the simulations are performed.

2.3.3. Accelerometer. A tri-axis accelerometer is mounted
on the FMAV such that its axes coincide with the body’s
axes. The sensor measures the FMAV’s acceleration in F?.
It is given by:

sp=Rs] +&a

where sf{ = (a — ge3) withe3 =[0,0,1]", geRand a €
R3 are, respectively, the gravity and body’s acceleration
vectors expressed in the fixed frame F/. R € R*3 is the
rotation matrix from the fixed frame 7/ to the body frame
FP. &4 € R? is a Gaussian white noise. Considering that the
FMAYV moves at low accelerations such that ||a| < || g|| and
normalizing, the accelerometer measurement is given by:

sp=Rg,+é&a )

with g, = s /{ = [0, 0, —1]7, the normalized gravity vector.

Remark 3. The FMAV experiments acceleration along
the body-fixed direction z” for the taking-off, landing,
and translational horizontal movements. Because, in the
present work, only the attitude stabilization is considered, the
assumption ||a|| < ||g]| holds and the tri-axis accelerometer
can be used as a reference vector sensor. The gravity vector
is the reference vector and the acceleration is considered
as a disturbance. If the translational movement has to
be considered, a compensation of the vertical acceleration
should be envisaged.

2.4. Aerodynamics

The flapping movement of the wings within a surrounding
steady airflow generates quasi-steady aerodynamic forces:
a lift force, perpendicular to the wing, enhancing the flight
and a drag force, parallel and opposing to the airflow.!® Drag
forces generated by the wings are neglected in the present
work considering that the wings are made of materials having
a sufficiently small friction coefficient and that the drag is
generated only by the body.'® In addition to the quasi-steady
aerodynamic forces, the flapping flyer is subject to unsteady
aerodynamic forces generated by the rotation of the wing
about its radial axis r. This rotation creates vortices, adding
airflow to the following wingbeats, and creating additional
forces. These forces allow the flapping-wing animal to ensure
maneuvers such as quick variations of velocity or flight
direction and instantaneous turns. All forces are considered
applied at the wing’s center of pressure, located at /, equal to
65% of the wing length L from the wing base (I, = 0.65 L)
and at /; equal to 25% of the chord length Cj, from the leading
edge (I, = 0.25C};,).>° The center of pressure is considered
belonging to the radial axis r, given in the wing frame F"
by p¥ = [L,,0,0]".
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2.4.1. Quasi-steady aerodynamic force. The quasi-steady
force is generated by the pressure of the airflow exerted on
the wing surface. This force is perpendicular to the wing and
is applied at the wing’s center of pressure. It is oriented to
the opposite direction of the wing’s velocity. The magnitude
of this force is given by:

1
qu :_EprSwvw|Uw| (6)

where p is the air density, S,, is the wing surface and v" is the
wing velocity. Cy, is the aerodynamic coefficient of the wing.
Cy = C( + Cy) during downstroke and C,, = C(1 — Cy)
during upstroke, with C ~ 3.5 is the force coefficient derived
empirically’®>* and C; is a coefficient chosen, so that the
aerodynamic force is 20% greater during downstroke relative
to upstroke. This dissymmetry emphasizes the fact that the
convex dorsal side of the wing is oriented to the flow during
the downstroke, while the concave ventral side of the wing
is opposed to the flow during upstroke. The wing camber
alteration is due to the stroke reversal of the air circulation
around the wing, reducing the effective area of the wing.'¢
Therefore, the downstroke force is presumably higher than
the upstroke one.

2.4.2. Rotational force. The rotation of the wing about
its radial axis deviates the surrounding airflow. The wing
reacts to this phenomenon by creating additional rotational

circulation® and consequently a rotational force modeled
by:3!
3 ;
= erQ - w 7
f = mp h(4 ch>” v )

where v is the first derivative of the rotation angle.

2.4.3. Added mass force. The added mass phenomenon is
created by the acceleration of the additional fluid mass
surrounding the wing when it accelerates and rotates. It can
be modeled by:*!

T 5

where ¢ is the second derivative of the flapping angle.

In addition to these forces, the wing is subject to other
phenomena like the wake capture, delayed stall, Wagner
effect, etc. that have a minor contribution to the total wing
lift force and are difficult to model.>*

The aerodynamic force generated by a wing is applied at
its center of pressure, has the direction of the normal vector
of the wing n. Its expression in the wing’s frame F* is given
by:

fwzqu+fr+fm' (9)

The total aerodynamic force f? € R3, generated by the left
and right wings, expressed in the body frame F? is given by:

fP=R} [P +RLE (10)
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with R;” . are the rotation matrices from the left or right wing
frames to the body frame.

The aerodynamic torque expressed in the body frame is
given by:

' =p) x fl+plx f) (11)

with pllf . 1s the position of the left or right wing aerodynamic

center in the body frame computed by p;’, .= Rllf ,pv. Itis
considered, in the present work, that the aerodynamic and
pressure centers coincide.

The left and right wing velocities, expressed in the body
frame, are computed by deriving the wing center of pressure

positions vlb .= pf’ .. Their projections in the wing frames are

. . . _ L,r b
obtained by a simple rotation v}, = R, v/ ,.

2.5. Body’s dynamics

The body can be considered as a whole entity and is modeled
as a rigid body, to which are attached two wings. The wing
inertia is neglected in the present work because their mass is
less than 5% of the body’s mass.?> The effect of the wings’
inertia due to the high flapping frequency is considered
beyond the scope of this paper. Therefore, the FMAV is
modeled as a rigid body subject to aerodynamic forces and
torques that generate its movement. It is subject also to
viscous and gravitational forces.

The rotational kinematics and dynamics of the FMAV are
given by Eqgs. (12) and (13). The translational dynamics are
not presented here for sake of simplicity. The aerodynamic
lift force balances the gravity effect in order to stabilize the
FMAV in hovering mode. For more details, readers can refer
to previous works.??

R = Rw*, (12)
o =J"'" - o). (13)

w € R3 is the angular velocity with respect to the mobile
frame F”. > € R3 is the aerodynamic torque vector defined
in F?. J € R¥3 is the inertia matrix of the body relative
to F’. R is the rotation matrix from the fixed frame F/
to the mobile frame F*. w* is the skew symmetric matrix
associated to the vector @ and related to the cross product
(x) such that w*a = o x a, witha € R3.

2.6. Control strategy

Aerodynamic forces are function of the wing angles,
their derivatives, and some geometric and aerodynamic
parameters. Controlling the orientation of the FMAV
amounts from controlling the amplitude or the frequency
of the wing angles. Considering that the nature’s flapping
flyers use generally a fixed characteristic frequency except
during instantaneous maneuvers execution,'®?’ the wing
angle amplitude control is considered.

On the other hand, the wingbeat frequency adopted in the
present work is relatively high (100 Hz). Aerodynamic forces
and torques, which are generated at the wingbeat frequency,
affect the body’s movement only by their average values,
computed over a wingbeat period. This is proved based on
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the averaging theory,3v22’41

in FMAVs control.®

Denote by u = (¢'(¢), ¢" (1), ¥'(t), ¥"(¢)) the flapping
and rotation angles for left and right wings, v =
(P, 5, Wi, ) the amplitudes of these angles in Eq. (1),
then u = v f5(¢). Denote also by x = (R, w) the FMAV’s
rotational state, the model given by Eqgs. (12) and (13) can be
written in a compact form as:

which is a strategy usually used

x = filx, u). (14)

Let ¥ = (R, @) denote the averaged state over a wingbeat
period T'. The compact form of the FMAV’s model, averaged
over a wingbeat period, is given by:

X = fi(x, v). (15)

Averaging theory shows that an exponential stable
equilibrium state for the averaged dynamics of a high-
frequency oscillating system (¥ = x.) is also a stable
equilibrium state for the oscillating (time variant) system,
there exists kK > 0 such that ||x(#) ® X(¢)|| < kT for all
t € [0, 00), with ® designates a comparison operator and
T the wingbeat period, which is small in the present case.

As mentioned previously, the FMAV is controlled
indirectly by means of the wing angle amplitudes v that
will be computed using a feedback A(-) of direct sensors
measurements w and s, k € {1, ..., n} with n the number of
onboard reference sensors

v = h(w, s). (16)

Using the inverse reasoning, the control strategy is defined
as follows. On the one hand, based on the desired and
current orientations, measured by onboard sensors, a control
torque is computed. This control is actually equal to the
average torque T over a wingbeat period, T = U(w, si). On
the other hand, based on the expression of the aerodynamic
torque, a relation between the mean torque 7 and the wing
angle amplitudes is determined. Recall that the flapping and
rotation angle amplitudes (¢, ¥y) are the control inputs.
Therefore, T = A(¢o, ¥o). The inverse relation can be used
to compute the wing angle amplitudes that should be
applied at the beginning of a wingbeat period, function
of the control torque, (¢g, Vo) = A~(T) = A~ ' U(w, s1)).
Therefore, h(-) = A~ (U(")).

Two actuators are used for each wing to generate the
flapping and rotation angles, creating then the roll and
yaw movements of the FMAV. The pitch movement is
generated by moving a small mass inside the body using
the ElectroWetting On Dielectric (EWOD) technology.’? A
similar strategy using a bobweight actuator inside the FMAV
has also been adopted.?®

Remark 4. Analyzing only the rotational movement of
the FMAV, the system can be considered as fully actuated.
However, when studying the translational movement, the
system will become underactuated and a coupling of the
rotational and translational dynamics should be performed
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to execute a three-dimensional movement. Hence, arises the
importance of the attitude control.

Computing the averaged roll and yaw torques, function
of the flapping and rotation angle amplitudes, one has the
explicit form of the trigonometric function A(-):

7 = Bl @5 cos v — ¢ cos v

(17)
7 = al,[ ¢ sin v — of sinvi

with

2 14H(1-26)C;
T2 «(1—k)
2

_ 1-2k+Cy 2
'3 — T2 k(1-k) CS l

a = pCS,l2,

Each species is characterized by maximum flapping and
rotation angles. In a practical point of view, this represents
also a technological constraint because the actuators inputs
should be bounded to avoid their saturation. Therefore,

0 < ¢o < ¢o,,,
0= Vo < Yo (1o
The roll and yaw torques are therefore bounded. Note also
that the movement of the mass inside the body is limited
by the body length, the mass and velocity used within the
EWOQOD technology, therefore, the pitch control is bounded
too. Resuming, T € [—Tmax, Tmaxl-

3. Biologically Inspired Attitude Stabilization

The attitude stabilization problem consists in reaching a
desired orientation and maintaining it all over the time. The
error between the desired orientation defined by R; and the
current orientation defined by R is denoted by R, = RRdT.
Therefore, the attitude stability condition is expressed as:

o —0
Re — 1 3

with I3 as the three-dimensional identity matrix. The angular
velocity can be directly accessed based on the measurements
of the rate gyros. However, no measurement of the rotation
matrix can be obtained without using estimation strategies.
Therefore, a biologically inspired technique is used in this
work. It consists on defining the attitude error by means of
the FMAV’s onboard sensors, which are equivalent to the
animal flapping flyers’ sensitive organs as it was described
earlier. It is actually equal to the error between the onboard
sensor measurements and the desired measurements without
any computation of the body’s orientation. Let s,’j and s,f ,
k € {1, ..., n}denote the measurement of the onboard sensor
k in the body frame F* and fixed frame F/, respectively, with
n the total number of the embarked reference sensors. The
projections of the unit vector s; in the body and fixed frames
are linked through the rotation matrix R such as s/ = Rs,{ .
Note that s? is called vector observation and s,{ reference
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vector. The attitude error y is defined as:

n

1
y = - Z (Rskf) Rdsk

k=1

Zsk X Rdsk (19)

Reaching the desired attitude is expressed by a rotation
matrix R equal to the desired one R;, i.e., relative to
the accessible information y = 0. Reversely, y = 0 means
that sf and Rds,{ are collinear in Eq. (19). Since s; is a
unit vector, then s? = :I:Rdskf . Two cases can be identified:

@) s,f = Rds,{ , 1.e., the vectors observation has the same
orientation of the desired reference vectors direction in F?,
which defines the final goal to reach, and (ii) s,f = —Rys;,,
i.e., the vectors observation has the opposite direction of the
desired reference vectors direction in F?. Therefore, they are
defined by a rotation of 180° (; rad) with respect to a plane,
axis, or point. The symmetry surface depends actually on the
number of reference sensors or more precisely on the number
of noncollinear reference vectors n such thatk € {1, ..., n}.
Three cases are analyzed:

(a) n = 1. If only one vector observation is afforded, it is
linked to the reference vector by means of the rotation

matrix R as s? = Rslf providing a two-dimensional

constraint and unveiling any rotation about the axes

s{’ or slf , in the body and fixed frames, respectively.

Therefore, at least two different sensor measurements
should be provided instantaneously to have complete
information about the attitude error,®> n > 2. The case
n = 1 is, therefore, excluded.

(b) n =2. The symmetry surface is limited to an axis n
perpendicular to the plane containing the two vectors

Rds,{ , k€ {1 2}, at the vectors intersection. Therefore,

s,{ = Rdsk =R Rdsk with Ry as the rotation matrix

defining the symmetry, i.e., the rotation matrix about
the axis n of 180°. In the specific case where Rds,{
belong to one of the basis planes (e1 ,ez) (el, f),

or (e2 , e ), then the rotation is performed, respectively,

with respect to the axes e{ , eg , and e{ . These special

cases chiefly facilitate the problem and therefore, a
choice of the reference sensors should be done this
way. This technique is adopted in the present paper. The
matrix R; is given by:

R, € {diag(—1, 1, 1), diag(1, —1, 1), diag(1, 1, —1)}.

(20)

(c) n>3. s,f = —Rds,{ = SRdskf where S is the reflexion
matrix defined by diag(—1, —1, —1). Note that § is not
a rotation matrix because det S = —1 and Tr S = —3.
No rotation matrix can therefore be identified and the

configuration s” = —Rds,'(f cannot be reached.

Resuming, the set of couples (w, R) for which the attitude
stability is reached, (w = 0, y = 0), is given by:

E={w,R)eTSOB): w=0, R="PRy} 21)
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— @

Fig. 4. The block diagram of the FMAV’s attitude control based on sensors measurements.

with

P = {diag(1, 1, 1), diag(—1, 1, 1), diag(1, —1, 1),

diag(1, 1, —1)}. (22)

The block diagram of the closed-loop attitude control is
given in Fig. 4, where the different blocks have been defined
previously. In the following, the control torques will be
addressed. The control forces are set such that they balance

the gravity and ensure no movement along the three axes of
the fixed frame F/.

3.1. Bounded attitude control

A bounded control torque computed using the direct
measurements of onboard sensors is proposed. This control
takes into consideration the saturation of the actuators and
is simple to implement. First, the asymptotical stability of
the rigid body is shown, then the proof is extended to show
the stability of the FMAV. It is assumed that there exist at
least two non-collinear vector observations embarked on the
FMAV such that n > 2.

Proposition 1. Consider the FMAV s rotational dynamics
described by Eqgs. (12) and (13). The attitude error y between
the current and desired body’s orientations is defined by Eq.
(19) with n > 2. The FMAV body’s angular velocity o =
[w1, w3, w3]" is measured by three rate gyros. Define the
bounded control ¥ = [T}, T2, 73] by:

_ AD; _ .
T; = —saty;, ,0_ + A7), jef{l,2,3} (23)
J

with @, y are, respectively, the averaged angular velocity
and attitude error computed over a wingbeat period T,
N; is the bound of the control torque component 7;,
saty,(-) is a classical saturation function, A is a positive real
parameter such that0 < A < min(N;/2)and p;, j € {1, 2, 3}
are positive scaling parameters. The control torque in Eq.
(23) stabilizes the FMAYV at (w, R) = (0, R;) with a domain
of attraction equal to 7SO(3) \ {(0, Ry R;)}, Ry is given in
Eq. (20).

Proof. Lets first prove the stability of a rigid body whose
state vector is the averaged state vector of an FMAV. The
dynamics of the rigid body are then given by Eqgs. (12) and
(13) where the angular velocity is denoted by @, the rotation
matrix by R, the control torque by 7, and the attitude error by
7. Note that the derivative of an averaged vector observation
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57 is linked to the vector by means of

b b o~ ~  <b
Sk—SkXCl)——(,()XSk.

(24
Note also that the reference vectors are well known and fixed
vectors; the average, over a wingbeat period, is equal to the
vector.

Consider first the following definite positive Lyapunov
function:

1 5. _
V= Ea) Jo, (25)
where J is the inertia matrix of the body. V is trivially positive
definite and radially unbounded. The derivative of Eq. (25)
along the trajectories of the closed-loop system is given by:

V=a"lo=a"(—o*Jo)+d 't =o't
—_——
=0

3
= E a)jrj.
Jj=1

(26)
One gets from 7; in Egs. (23) and (26) that

Ao
iy ).
p;

Let ®={®:|®| <p+e} for some ¢ >0 and p =
[p1, p2, p317. Outside @, ie., |@;| > pj + &, using the
unitary condition |y;| < 1, it follows that |)»%{' + Ayl > )»f

; J : J

3
V=-— E szath
j=1

and that A% + Ay; and @; have the same sign. Therefore,

3

==Y 5

j=1 "7

3 —
. ADj
V =-— Zd)jsatN/. <—] +)»)7J>
j=1 NP

3

)\’ .
_ZM<_3)‘8<0‘

= P

Consequently, @ enters in ®. During this time, 3; cannot
diverge since it is structurally unitary and therefore bounded.
Once in @, one has:

' + Ay,

Ag
<21+ —.
Pj j

pj
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Taking e sufficiently small and using the assumption that
2A < Nj, then:

A
"“’ <N,

Consequently, saty, operates in a linear region, and the
control torque becomes:

A _
7 =—(®; +0;7)) . 27
J

In @, consider the Lyapunov function W defined by:

w I‘TJ‘+
=—-w Jo
2

%2”: [1 = (Rs{)(Ras{)]: (28)

k=1

where W is a continuous and positive definite function on
TSO(3) because W > 0 and W(0, Rd) = 0. Since § sk Rsk
and s,‘f is constant, the derivative of Eq. (28) is given by:

n
W=a"Jd— g > (5P Rasy). (29)
k=1

By means of Egs. (19) and (24) and the fact that
o (—=@*J@®) = 0, Eq. (29) becomes:

||
Sl
Hl

Zw 5p % Rdsk)

o't + 10"y

|
,Mw

3
(@;%; + A7) = »_ W;. (30)
j=1

1

J

Analyzing Wj for j € {1, 2, 3}, one gets from 7; in Egs. (27)
and (30) that:

. A
Wj = —d)j (,0_ +)\,)/j> +)\,d)j)7j
J

A
and
[OF

3 3
W= W= Z— (1)

j=1

~. N

The derivative of the Lyapunov function W is negative
semidefinite. Recall that TSO(3) is compact. Therefore, for
any initial condition (@(0), R(0)) € TSO(3), the set:

Q= {(®, R) € TSOQB) : W(&@, R) < W(®(0), R(0))}

is a compact, positively invariant set of the closed-loop. From
LaSalle Invariance Principle, it follows that all solutions
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that start in €2 converge to the largest invariant subset
of Q belonging to Q. W(®, R) = 0 implies @ = 0, then,
substituting this last identity into the closed-loop system in
Egs. (12), (13), and (23), one has

Q={@ R eTSOB): =0,y =0}

with 7 defined in Eq. (19) over the averaged measurements.
Then, the largest invariant subset of € is given by £ in Egs.
(21) and (22).

Therefore, £ defines the set of equilibrium points for which
the Lyapunov function W in Eq. (28) represents a minimum
(W =0) and a local maximum (W = 2A) corresponding,
respectively, to the rotation matrices R = R; and R = R, Ry
with R; given in Eq. (20). If the system is at one of these
points at fy = 0, it will remain there for all # > #. The control
law acts then to ensure the convergence of the closed-loop
solutions, whose initial conditions do not verify (@, R) =
(0, RyR,), to the stable equilibrium point given by (@, R) =
(0, Ry;) and corresponding to W = W =0.

Therefore, the rigid body is asymptotically stable with a
domain of attraction equal to TSO(3) \ {(0, R;R;)}.

Once the asymptotic stability of the rigid body proven,
the stability of the FMAV subject to the control torque in
Eq. (23) and computed over the averaged dynamics of the
system (@, R) will be presented. For that, the averaging
theory recalled in Section 2.6 is used. It states that for a
high-frequency oscillating system, the averaged and time
varying dynamics are very close and therefore, a stable
equilibrium of the averaged dynamics is also a stable
equilibrium of the time-varying dynamics: || — @|| < kT
and ||[RRT| < kT for k1, >0 and T is the wingbeat
period. In other words, the state vector (w, R) of the FMAYV,
subject to the control torque in Eq. (23), converges to the
equilibrium point (0, R;) with a domain of attraction equal to
TSO(3)\ {(0, RyRy)). O

4. Simulations and Robustness Tests

Two strategies have been adopted in the literature to test
the control laws developed for animal flapping flyers. The
first is based on models of the flapping flight including
aerodynamics, body and wing dynamics.!%!%2%3! Note that
well-developed models of flapping flight do not exist because
the aerodynamics at low Reynolds numbers have not been yet
perfectly identified.'® The second strategy consists on testing
the control in real time on a prototype'®*° where simple
models are proposed and identified. One should emphasize
that at microscopic scale, only the vertical movement has
been performed on a flapping flyer prototype’® where the
pitch movement is avoided by attaching the FMAV using
some wires, the laser sensor measuring the vertical altitude
is external as well as the power system. Vertical movement
control of a 101 mg FMAV has been also presented.!” Note
that very challenging mass and size of FMAVs can be reached
nowadays with the progress of microelectronics. The onboard
electronic circuit developed within the OVMI/EVA project
weighs 100 mg and is composed of a microprocessor, inertial
and optic flow sensors. Piezoelectric actuators can reach
10 mg and are used within FMAVs.* Other low size and
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Fig. 5. (Colour online) Yaw torque versus roll torque, defining the
saturation set 2z, 7, approximated to an ellipse E,, then to a set £2,..

weight microelectronic devices exist on the market for such
applications. The power supply remains very difficult to
embark.

In the present work, the first strategy is adopted. For
simulations, the physical data of a dipteran insect are used.'¢
The mass is of 200 mg and the wingbeat frequency of 100 Hz.
The maximum amplitudes for flapping and rotation angles
are taken to ¢, =60° and vy, =90°, respectively.
The wingspan and wings surface are assumed, respectively,
to 2L =3cm and 2 S, = 1.14cm?, allowing to generate
a vertical ascendant movement using admissible flapping
angles amplitudes.

Based on the defined numerical values, the admissible set
for control torques €2z, 7, can be determined in Eq. (17) and
plotted (Fig. 5).

Qz 7 is approximated to the largest ellipse E, that fits
inside 27, z, (Fig. 5) for computation simplification reasons.
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Fig. 7. (Colour online) The reference sensor measurements:
accelerometer (left) and magnetometer (right). The measurement
along the roll axis is plotted with dot-dashed blue line, the pitch
axis with dashed red line, and yaw axis with continuous black line.

The control torques 7; and 73 respect then an ellipsoidal
admissible set defined by

(71 B10[7 BT < 1, (32)
where Q is a diagonal definite positive matrix defining the
ellipse’s semi-axes denoted by a, and b,. Practically, if 7| >
a, in Eq. (23), T; could be saturated to a,, and 73 will be
equal to zero. A privilege is given to the roll control in order
to bring the FMAV to the horizontal plane. To avoid having
a null yaw control torque and to give preference to the roll
movement, 70% of a, is attributed to Ny, T3 will be calculated
by Eq. (32) defining then a set 2, (Fig. 5).

The control torque in Eq. (23) is applied to the FMAV to
be validated in simulation. Three sensors are embarked on
the FMAYV to mimic a part of the sensory system of an insect
(halteres, legs sensilla, and magnetic sense): three rate gyros,
a tri-axis accelerometer, and a tri-axis magnetometer whose
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Fig. 6. (Colour online) The attitude (left), angular velocity (middle) of the FMAV going from initial roll, pitch, and yaw angles
(—40°, —25°,50°) and null angular velocity, and the control torques (right) applied to the FMAV.
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Fig. 8. (Colour online) The envelops of the left and right wing
angles.

models are given by Egs. (3)—(5), respectively. The sensors
measurements are not perfect, additive white Gaussian noise
is considered having a standard deviation of 0 = 107> rad/s
for the rate gyros, o4 = 10~*m/s? for the accelerometer,
and oy = 0.01 mGauss for the magnetometer. Because of
the low inertia of the FMAYV, the developed control torque
has also very small values of almost 107> Nm (Fig. 5).
Since the control law is computed through a feedback
of direct sensor measurements, the sensors should have a
remarkable precision in order to guarantee a reasonable
signal-to-noise ratio. Note that sensors with suitable
precision or sensibility have already been developed.®
Even if the averaging of the angular velocity and attitude
error reduces the noise influence, it cannot be totally
eliminated. The tuning parameters considered in simulations
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are given by (Ni, Ny, N3) = (0.7a,, 107, & /a2 — 7})
with  (a,, b,) = (1.859 x 107>, 5.843 x410*5), A=5x
107, (p1, p2, p3) = (212 15 5, %)

The evolution of the roll, pitch, and yaw angles as well
as the angular velocities measured by the rate gyros and
the control torques are plotted in Fig. 6. Note that the body’s
angles are not used in the control torque, they are plotted only
to show the convergence of the FMAV’s orientation. The
initial orientation is (—40°, —25°,50°) for the roll, pitch,
and yaw angles, respectively. The initial angular velocity is
null. The sensor measurements are presented in Fig. 7 and
the wing angle amplitude envelops in Fig. 8. The stability is
reached in a sufficiently fast time that makes the control
law suitable for real-time implementation on an FMAV.
Moreover, it presents comparable values to those observed
in true insects.'® The rate gyros noise is detectable in Fig. 6.
The accelerometer’s noise is more detectable than that of
the magnetometer. Their measurements converge to s /{ =
[0,0, =117 and s/, = [1, 0, —*2] at the equilibrium. Recall
that the FMAV is stabilized in hovering mode. Therefore,
the flapping angles converge to the value that generates an
aerodynamic lift balancing its weight. The rotation angles
converge to zero, so that no translational movement is
generated.

The robustness of the control law is tested with respect
to external disturbances. These disturbances simulate wind
or rain drops affecting the FMAV and creating a body
torque of (1.2 x 107°,2 x 1073, 1.2 x 107°) N m, applied
at t = 1.5s during 10 wingbeat periods. Noting that a rain
drop weighs about 5 x 107% N and the FMAV body’s inertia
is of 1078 kgm?, the disturbance applied has a great effect
on the body’s movement. It will destabilize the FMAV all
over the disturbance taking it far away from the equilibrium.
The control law acts later on to bring the FMAV back
to the stability. The evolution of the roll, pitch, and yaw

x 10 x 10
oo 200 x5 2
~~ | ] T H e e e o= o= = = o
= o0 i g
— ~— ~— u
S - o Fe--d---
A 200 3 5 -2
1 2 3 0 2 3 0 1 2 3
— —~  x10' x 107
80 100 @A 2
s, o0 R
~— [}
= 0 = 0 Z, 0
Q ~ ~—
5 S S i
A _100 3 =
0 1 2 3 0 2 3 0 1 2 3
4 _4
— x 10 x 10
“ab 200 w1 2
) —~ =
= &0 R -
T 0 = o | e se—
< - )
s &
>4-200 3 4 -2
1 2 3 0 2 3 0 1 2 3
Time (s) Time (s) Time (s)

Fig. 9. (Colour online) Robustness with respect to external disturbances: the attitude (left), angular velocity (middle), and the control

torques (right) applied to the FMAV.
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Fig. 10. (Colour online) Robustness with respect to external disturbances: the attitude (left), angular velocity (middle), and the control

torques (right) applied to the FMAV zoomed to the disturbance.
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Fig. 11. (Colour online) Robustness with respect to external
disturbances: the reference sensor measurements: accelerometer
(left) and magnetometer (right). The measurement along the roll
axis is plotted with dot-dashed blue line, the pitch axis with dashed
red line, and yaw axis with continuous black line.

angles, angular velocities, and control torques is plotted in
Fig. 9, zoomed to the disturbance zone in Fig. 10. Note
that the bound of the yaw torque depends on the value
of the roll torque as explained previously. The reference
sensor measurements are given in Fig. 11 and the wing angle
amplitudes in Fig. 12. Notice that the flapping angle of the
left wing is bounded during the disturbance at ¢, = 60°
avoiding the saturation of the actuator and emphasizing the
development of a bounded control law. One should also note
that an insect subject to such a high disturbance will lose all
control of its position and orientation and regain it only when
the disturbance is over.

5. Conclusions and Future Works
Even if the gap between the flapping-wing animal flight and
its technological reproduction is still very large, the robotic
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Fig. 12. (Colour online) Robustness with respect to external
disturbances: the envelops of the left and right wing angles. The
bounds of the flapping angles are plotted with red-dashed lines.

and control communities are exerting big effort to develop
FMAVs that mimic the nature’s flight the most accurately
possible.

The main contribution of this work is the development
of a control law stabilizing the FMAV’s attitude. It is
based directly on the measurements of some embedded
sensors without the need of computing the orientation.
This strategy reproduces the insects technique of stabilizing
their orientation, based on their halteres, legs sensilla and
magnetic sense. The control torque is bounded, allowing
to take into account the amplitude bounds of the flapping
wings in order to avoid the saturation of the actuators
and ensure the stability of the body. Note that it allows
different saturation bounds along the three axes. It is also not
restricted to symmetric bodies and independent of the inertia
matrix. Moreover, it is simple to compute and is adaptable
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for real-time implementation. As shown in simulations, the
control law is robust with respect to external disturbances.
The boundedness of the control torque helps preserving the
piezoelectric actuators not saturated and guarantees then their
linear behavior even in hard conditions.

Future works will consider the development of bounded

control force aiming to control the FMAV’s trajectory based
on sensor’s measurements. In fact, insects can determine
the Sun direction using their ocelli. Moreover, the light
polarization direction can be determined using the compound
eyes. Based on polarized light compasses, for example, one
can determine the direction of flight and couple it with the
attitude control in order to ensure a movement in the three-
dimensional space.
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