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SUMMARY
This paper presents a path planning algorithm for autonomous navigation of non-holonomic mobile
robots in complex environments. The irregular contour of obstacles is represented by segments.
The goal of the robot is to move towards a known target while avoiding obstacles. The velocity
constraints, robot kinematic model and non-holonomic constraint are considered in the problem. The
optimal path planning problem is formulated as a constrained receding horizon planning problem
and the trajectory is obtained by solving an optimal control problem with constraints. Local minima
are avoided by choosing intermediate objectives based on the real-time environment.
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1. Introduction
Autonomous navigation is an important issue in robotics research. This problem is of theoretically
interesting properties, and is of practical importance. Navigation is a task that an autonomous robot
must do correctly in order to move safely from one location to another without getting lost or colliding
with other objects.1 Three general problems are involved in navigation: localization, path planning
and trajectory tracking. In these problems, path planning is quite important since it enables the
selection and identification of a suitable path for robots to traverse in the environment.

When the environment is completely known before the robot moves, a collision-free trajectory
with the lowest cost from the starting point to the target can be obtained by global path planning
algorithms; the cost can be defined as the travelled distance, the expended energy, time exposed to
danger et al. In such cases, complete information of the environment is obtained in static environment,
and collision-free paths are selected and planned off-line. Different types of approaches have been
proposed, such as cell decomposition,2, 3 visibility graph,4–6 retraction,7 heuristic-based algorithms,8, 9

genetic algorithms,10, 11 projection12 et al. A well-known algorithm of global heuristics search is A∗,13

which can find the shortest collision-free path through a fully mapped environment by using a priority
queue. D∗ search14 is an extension of A∗ algorithm, and has been used in many applications.15 It can
modify the planned path dynamically if unknown obstacles are encountered. When a robot has only
partial knowledge about the environment before it starts, the robot has to plan the path locally with
the information captured by the sensor equipped on the robot.16 The Bug1 and Bug2 algorithms17 are
among the earliest and the simplest sensor-based path planning algorithms, and the algorithms are
based on the boundary following method. Another famous algorithm is the artificial potential field
approach (APF) proposed in Khatib.18 One of the main drawbacks of APF is local minima when the
composition of all forces on the robot equals to zero. Some extended algorithms based on APF have
been proposed.19, 20

When considering the path planning problem for unicycle-like mobile robots, the physical
limitations and kinematic constraints have to be taken into account. Due to these constraints, the
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Fig. 1. Description of the environment.

above-mentioned algorithms cannot be applied to these types of mobile robots, since these constraints
might render many unfeasible spatial paths. Some algorithms have been proposed for these types of
robots,21–23 and the algorithm proposed in Defoort et al.24 describes the path planning problem as a
nonlinear optimization problem with constraints that guarantees the navigation of robot in unknown
environments. However, they either compute the path not in an optimal way, or simply represent
the obstacles as circles, and there are at least two drawbacks for these algorithms: firstly only the
circular obstacles are taken into account, and secondly local minima cannot be avoided when robots
get close to complex obstacles. Therefore, this algorithm is not suitable for complex environments
with different shapes of obstacles. An extended algorithm is proposed in Kokosy et al.,25 based on
the Tangent Bug algorithm,26 to treat this problem by following obstacle boundary, which however
involves unnecessary detours along obstacle boundaries and leads to non-optimal trajectories.

In this paper, the irregular contours of obstacles are represented by segments. The path planning
problem for unicycle-like mobile robots is described as an optimal control problem by involving all
physical constraints. Local minima are avoided by choosing intermediate objectives based on the
real-time environment.

The outline of this paper is as follows. The problem statement and the optimal control problem are
described in Section 2. Section 3 gives the main results. Simulation results are detailed in Section 4.

2. Path Planning: An Optimal Control Point of View

2.1. Problem statement
In general cases, the environment may be complex, and normally obstacles cannot be described as
circles as assumed in Defoort et al.24 (see Fig. 1 for example). Moreover, due to the distance limitation
of sensors equipped on robots, only a portion of an obstacle can be captured so that the robot may
not know the exact shape of obstacles. In this case, obstacles can neither be described as circles nor
as complete polygons.

As a result, the goal of this paper is to represent obstacles in a more accurate way, and to propose
an efficient path planning algorithm that guarantees the safe navigation of a robot from a known
initial position to a desired target in unknown environments while satisfying the physical constraints
of the robot.

2.2. Mobile robot modeling
This paper considers a unicycle-type mobile robot whose kinematic model can be described as

⎧⎨
⎩

ẋ = υ cos θ

ẏ = υ sin θ

θ̇ = ω

, (1)
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Fig. 2. Unicycle-type mobile robot.

where υ and ω are the linear and angular velocities respectively, θ is the orientation of the robot
body with respect to x-axis, U = [ υ, ω ]T is the control input and q = [x, y, θ]T is the system state
(see Fig. 2).

Without loss of generality, let us make the following assumptions:
Assumption 1: There is a pure rolling situation (i.e. no slipping and sliding phenomenon) for robots,

thus non-holonomic constraint of a robot can be described as:

[ − sin θ cos θ 0 ] q̇ = 0.

Assumption 2: This paper considers a unicycle mobile robot that allows turning in-place.
Assumption 3: The robot has only local view, thus only the closest obstacle in one direction can

be detected.
It can be shown that x and y are flat outputs (see Fliess et al.27 for the definition) for the robot

system (1). Indeed, θ , υ and ω can be expressed by x, y and their first- and second-order derivatives
as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ = arctan ẏ

ẋ

υ =
√

ẋ2 + ẏ2

ω = ÿẋ − ẍẏ

ẋ2 + ẏ2

. (2)

Thus, one needs only to optimize x and y to obtain the optimal values of θ , υ and ω, where x and y are
parameterized trajectories as stated in Defoort et al.,24 and the optimal trajectories can be obtained by
optimizing the parameters of parameterized trajectories, which is described in the following section.

2.3. Optimal control problem
2.3.1. Nonlinear optimization problem formulation. As mentioned before, the path planning problem
for mobile robots with physical constraints can be formulated as an optimal control problem. Generally
speaking, it is to find the optimal control U = [v, ω] for system (1) and to minimize the following
cost function:

J =
∫ tf

t0

F (U (t), q(t), t) dt, (3)

where t0 and tf are the initial time and the final time respectively, U = [v, ω] and q = [x, y, θ]. F is
a function of U and q that defines the cost function to be minimized. F can be chosen in advance,
and can take several different forms. For example, when F = 1, i.e. to minimize the time tf − t0, it
implies that the robot reaches the target as fast as possible. In this paper, the cost function is chosen
as the following one to guarantee the robot moving towards the objective:

F = ((x(t) − xf )2 + (y(t) − yf )2), (4)

where (xf , yf ) is the desired final position.
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Fig. 3. Planning and update horizons.

Moreover, the expected optimal control and the resulting states should satisfy the following
constraints:

C1 : The constraint on optimal control and state, i.e. the optimal control U and the states q should
satisfy the kinematic model (1) for t ∈ [ t0, tf ].

C2 : The constraint on initial and final conditions, i.e.

q(t0) = q(0), q(tf ) = qfinal.

C3 : The constraint on boundedness of control, i.e.

| υ | ≤ υmax and | ω | ≤ ωmax.

C4 : The constraint on collision avoidance, i.e.

d(O, R) ≥ r,

where d(O, R) is the distance between the robot and any obstacle, and r is the given distance
that guarantees the obstacle avoidance criterion.

2.3.2. Receding horizon planner. When the map is large, or is partially known, it is impossible to
solve the above optimal control problem to obtain the whole optimal trajectory. In order to avoid this
problem, the receding horizon planner28 can be used to compute only a part of the trajectory from the
current position to the final one over a time interval [τk, τk + Tc], where Tc is the update period, and
0 < Tc < Tp, where Tp is the trajectory planning horizon.

As shown in Fig. 3, the robot only computes a trajectory of horizon Tp and updates at each step
τk = τinitial + kTc.

The optimal control problem with constraints over a receding horizon can be numerically solved
by using the flatness property of the system,27 the parameterized trajectory and constrained feasible
sequential quadratic optimization (CFSQP)29 algorithm, as proposed in Lawrence and Tits30 (for
details see ref. [24]). Then the open loop control U = [υ, ω]T is deduced by using Eq. (2).

3. Path Planning Algorithm with Intermediate Objectives

3.1. Representation of obstacles
In real situations, as stated in the problem statement, obstacles can neither be described as circles nor
as complete polygons.
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Fig. 4. Approximation of obstacles with complex shape.

Since a robot can only see a portion of an obstacle contour, as shown in Fig. 4, the visible portion of
the ith obstacle contour can be approximated by a succession of segments S

j

i , where j = 1, 2, . . . , q,
and q is the number of segments on an obstacle. Each segment is represented by its two end points p

j

i

and p
j+1
i , and each point has their coordinates (x

p
j

i
, y

p
j

i
) and (x

p
j+1
i

, y
p

j+1
i

) respectively. The functions

of the segments can be obtained by applying image-processing algorithms,31 which is beyond the
scope of this paper. Thus, this paper assumes that irregular obstacles are represented by a serial of
segments.

Remark 1. If the distance between two obstacles dobs < 2r , where r is the given distance that
guarantees the obstacle avoidance criterion, then the two obstacles are considered as one, since the
robot cannot pass through the space between the two obstacles.

3.2. Distance between robot and segments
Since obstacles are represented by segments, the obstacle avoidance constraint C4 in the optimal
control problem (3) becomes the distance constraint between the robot and the segments.

Denote O(xo, yo) as the robot position, and p
j

i (xj

i , y
j

i ), p
j+1
i (xj+1

i , y
j+1
i ) as the two end points of

segment S
j

i . Then one can define distances between these points as follows:

d(O, p
j

i ) =
√

(xo − x
j

i )2 + (yo − y
j

i )2,

d(O, p
j+1
i ) =

√
(xo − x

j+1
i )2 + (yo − y

j+1
i )2,

d(pj

i , p
j+1
i ) =

√
(xj

i − x
j+1
i )2 + (yj

i − y
j+1
i )2.

Thus, the distance between the robot and the segment S
j

i , noted as d(O, S
j

i ), can be calculated
according to the relative position of the robot and the segment. There are three possible cases (see
O0, O1, O2 in Fig. 5):

Case 1. d(O, p
j+1
i )2 > d(O, p

j

i )2 + d(pj

i , p
j+1
i )2. In this case the robot locates in the left region

R0 of S
j

i . It is easy to see that d(O, S
j

i ) = d(O, p
j

i ), which is the red dotted line in R0.

Case 2. d(O, p
j

i )2 > d(O, p
j+1
i )2 + d(pj

i , p
j+1
i )2. In this case the robot locates in the right region

R2 of S
j

i . It is obvious that d(O, S
j

i ) = d(O, p
j+1
i ), which is the red dotted line in R2.
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Sj
i pj+1

i (xj+1
i , yj+1

i )pj
i (x

j
i , y

j
i )
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O1

O2

R0
R2

R1

Fig. 5. The three cases for distance calculation.
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i

d(O,G) = min((x(t) − xf )2 + (y(t) − yf )2)

Objective
G(xf , yf )

Robot
O(x, y)

r

p1
i

p2
i

p3
i

p4
i

Fig. 6. Local minima.

Case 3. If not in case 1 and 2, the robot is in region R1. The distance between the robot and the
segment d(O, S

j

i ) can be obtained by simply using Heron’s formula. A straightforward computation
yields:

d(O, S
j

i ) = 2

√
L(L − d(O,p

j

i ))(L − d(O,p
j+1
i ))(L − d(pj

i , p
j+1
i ))

d(pj

i , p
j+1
i )

,

where L = d(O,p
j

i )+d(O,p
j+1
i )+d(pj

i ,p
j+1
i )

2 . See the red dotted line in R1.

Summary, the distance between the robot and the segment S
j

i is determined by the following
equation:

d(O, S
j

i ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d(O, p
j

i ), case 1

d(O, p
j+1
i ), case 2

2

√
L(L − d(O, p

j

i ))(L − d(O, p
j+1
i ))(L − d(pj

i , p
j+1
i ))

d(pj

i , p
j+1
i )

, case 3

. (5)

However, it will be explained in the next section that this algorithm of using segments to represent
obstacles suffers from local minima problems.

3.3. Local minima
It is worth noting that using of segments to represent obstacle contours inevitably involves local
minima problems. This phenomenon happens when a robot arrives a point where the distance between
the robot and the objective is minimum under the constraint of obstacle avoidance.

As shown in Fig. 6, S1
i , S2

i and S3
i are segment obstacles, the robot gets to the local minima point

O(x, y) and r is the obstacle avoidance criterion. The robot needs to go to left or right to avoid these
obstacles; however, no matter the robot moves to left side or right side of point O(x, y), the value
of the cost function ((x(t) − xf )2 + (y(t) − yf )2) in the optimization problem (3) will increase, thus
the robot will stop at this point.
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Fig. 7. Complex environment.

3.4. Avoidance of local minima by choosing intermediate objectives
This local minima problem cannot be avoided by the above-stated optimal path planning algorithm.
However, one can note that local minima problems might occur when the connection between the
current robot position and the objective crosses with the segment (see in Fig. 6 the segment GO crosses
S2

i ). As a result, one can introduce some intermediate objectives for the robot if these intermediate
objectives can guide the robot to escape local minima and achieve the final objective.

Generally, the selection of intermediate objectives is according to the information detected by the
sensor equipped on the robot. Once the intermediate objectives are chosen, optimal path planning
algorithm can then be used to calculate optimal trajectory between the current position of the robot
and the intermediate objectives without local minima.

For example, in Fig. 6, one can choose intermediate objectives {p1
i , p

2
i , G} instead of the final

objective {G}, navigating the robot to reach p1
i , then p2

i and finally G. Then the optimal sub-
trajectories, O → p1

i , p1
i → p2

i and p2
i → G, can be calculated by solving the optimal control

problem stated in Section 2. It can be seen that if the robot follows this path, then there will be no
local minima phenomena.

3.5. Path planning algorithm with intermediate objectives
The “following the obstacle boundary mode” proposed in ref. [25] can guarantee the avoidance of
obstacles without local minima, but the robot needs to unnecessarily detour along with the contour of
obstacles. For example, in Fig. 7 the robot needs to follow contours {p4

i , p
3
i , p

2
i , p

1
i } or {p5

i , p
6
i , p

7
i } to

avoid the concave obstacle. The proposed algorithm in this paper takes into account only the disjoint
endpoints (the head p1

i and the tail p7
i ) of a serial of joint segments which is used to represent the

detected partial obstacle.
The procedure of the proposed algorithm with intermediate objectives is illustrated in Fig. 7. At

the first time, the robot detects via sensors a serial of joint segments: {p1
i , . . . , p

7
i } around its local

environment. Since the dotted part {p8
i , . . . , p

14
i } is invisible for this moment, the robot assumes that

there is no obstacle in the invisible part, thus it thinks that the obstacle is only {p1
i , . . . , p

7
i }. Then

the robot chooses a temporary set of intermediate objectives in order to avoid local minima, noted as
IO−List = {p7

i , p
6
i , p

5
i , G}. The robot gets the head of IO−List , i.e. p7

i , then it generates an optimal
sub-trajectory O → p7

i by solving optimal control problem defined in Section 2. When the robot
arrives in the region Rs , i.e. the region where the robot can always see the second element in IO−List ,
p6

i in this scenario, we remove the reached point p7
i into a close list, noted as CloseList ← p7

i . The
robot again scans its surroundings and detects new obstacles represented by {p7

i , p
14
i }. Since the

head point p7
i belongs to the CloseList , which means that the robot has already reached this point,

thus the intermediate objectives should be deduced from the tail point p14
i , and the temporary list

of intermediate objectives is updated as: IO−List = {p14
i , G}. Finally, the robot can reach G by

following this list.

Remark 2. Although the optimization method can be applied to any kind of mobile robots to drive the
robot from one point to another, however the approach described in this paper might not be applicable
for a general non-holonomic robot (such as car-like mobile robot) if the approaching direction to the
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Robot O(x(t), y(t))

Target G(xf , yf )

Pi+2

Pi

Pi+1

S1
i

S2
i

S3
i

S4
i

p1
i

p2
i

p3
i

p4
i

p5
i

Fig. 8. Intermediate objectives generation.

intermediate point is not considered. The reason is that after achieving the intermediate point, some
kinds of robots will not have enough space to turn (due to the non-holonomic constraint) in order to
achieve next trajectory. However, the unicycle model considered in this paper has not such a problem
since it allows turning in-place.

From the above description, the proposed algorithm contains the following three aspects:

1. Select intermediate objectives from local information to generate a temporary list IO−List .
2. Be sure that the robot can reach another region (for example, Rs in Fig. 7).
3. Judge when the robot arrived at this region.

Before explaining these three aspects, let us give some notations to be used in the sequel. Define
P = {Pi} for 1 ≤ i ≤ N to be all sets of the obstacle boundaries detected by the equipped sensors,
where N is the number of detected obstacle boundaries. Note Pi = {pj

i } for 1 ≤ j ≤ Ni as the set of
joint points to represent the ith obstacle boundary, where Ni is the number of points. Each segment Sj

i

is defined by its endpoints S
j

i = (pj

i , p
j+1
i ). Let IO−List = {pk, G} for 1 ≤ k ≤ m save the selected

intermediate objectives. Denote dis(pkpk+1) for 1 ≤ k ≤ m − 1 the function to calculate the distance
between points pk and pk+1, and note

dis({O} ∪ IO−List) = dis(Op1) +
m−1∑
k=1

dis(pkpk+1) + dis(pmG)

as the function to compute the complete path cost from the robot’s current position O to the final
target G by following IO−List .

For the reached intermediate points which have been already treated, we remove them from
IO−List and save them on a CloseList to avoid unnecessary returns. Thus, for an endpoint belonging
to CloseList , the path cost from this path is set to be +∞. List−H and List−T are defined to save
two possible lists of intermediate objectives from the head and tail of IO−List , being initialized as
List−H = List−T = {G}.
3.5.1. The intermediate objectives selection. Whenever the robot detects several obstacles around its
surroundings, it always chooses the one with which the begin–final segment OG has an intersection.
If OG has no intersection with all obstacles, then the robot can see the target G directly and thus the
optimal path is the straight line OG. Otherwise, OG can have only one intersection with all obstacles,
since it can detect only visible part of obstacles. For example, in Fig. 8, OG intersects with Pi , and
the possible optimal trajectory might be from p1

i or p5
i , but it is absolutely not possible from obstacle

Pi+1 or Pi+2 since these paths from Pi+1 or Pi+2 are obviously large than the ones from Pi .
After determining the exact obstacle (in Fig. 8, it is Pi since segment p2

i p
3
i in Pi = {p1

i , . . . , p
5
i }

intersects with OG), we search intermediate objectives from both sides of OG. Take the right
region of OG, for example, one has the segment p3

i p
4
i , and check whether the segment Gp4

i has an
intersection with Pi . If not, it means the robot can see the final objective G after passing over the
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Segment Obstacle

Objective
G(xf , yf )

Robot
O(x, y)

p3
i

p4
i

p2
i

p1
i

V1

V2

V3Rs

A
C

p̄1
i

r

Fig. 9. Intermediate objectives selection.

point p4
i , thus the point p3

i does not need to be added on List−T . If segment Gp4
i has an intersection

with Pi , which implies that the robot is not able to see G after passing over p4
i , then the robot needs

to go to point p3
i in order to see G, and p3

i should be added to List−T . Iteratively searching next
segment ( p4

i p
5
i in Fig. 8) until the end of the segment of Pi , one obtains

List−T = {p5
i , p

4
i , G}.

By applying the same procedure for the left region of OG, one gets

List−H = {p1
i , p

2
i , G}.

Finally, the temporary list of intermediate objectives is then determined by the path cost of these two
lists, i.e. if

dis(O, List−T ) > dis(O, List−H )

then IO−List = List−H , otherwise IO−List = List−T .
The routine to generate the list of intermediate objectives is given in Algorithm 1.

3.5.2. Reach switching region. In order to clearly explain the algorithm, let us consider the following
simple segment obstacle depicted in Fig. 9, and suppose that one has obtained the following list of
intermediate objectives:

IO−List = {p1
i , p

2
i , G}.

Thus, the robot is guided to reach the first element in IO−List , i.e. p1
i , then p2

i and finally G. Then
one can solve the optimal problem with constraints C1 − C4 by minimizing the cost function with
respect to current intermediate objective, i.e.

min
∫

Tp

∥∥O − p1
i

∥∥2
dt, s.t. C1 − C4. (6)

The solution of this optimal problem yields optimal parameterized trajectories x and y, then one can
get optimal control (v, ω) according to (2).

However, choosing directly p1
i as a final target in (6) again results in local minima. For example,

as shown in Fig. 9, where r is the collision-free distance, point A is on the boundary satisfying the
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obstacle avoidance criterion. In this situation, the robot may stop at point A, since it has already
minimized the cost function (6) under the constraints C1 − C4. Finally, the robot cannot pass over
the segment p1

i p
2
i to see the second intermediate objective p2

i .
In order to make sure that the robot can always pass over the endpoint of the obstacle, let us

give the following notations. Denote V1 as the top region of line p1
i p

2
i (the region where the second

intermediate objective p2
i is visible), and V2 as the left region of line Op1

i (the region where robot
can reach freely). Define V3 as the collision constraint region:

V3 = {(x, y) : (x − xi)
2 + (y − yi)

2 ≤ r2, ∀(xi, yi) ∈ p1
i p

2
i }.

Then define the switching region Rs as follows:

Rs = (V1 ∩ V2) ∩ V 3,

where V 3 is the complement of V3.
As the switching region is defined, one can see that the optimal path for the robot is to go directly

into the switching region, as a result one can choose p̄1
i ∈ Rs and replace p1

i by p̄1
i in (6) to ensure

that the robot goes into the switching region and avoids detours around the endpoint of the obstacles.
Finally, this optimal problem can be solved without local minima, since the robot can always pass
over the segment p1

i p
2
i to see the second intermediate objective p2

i .
In this paper, the modified intermediate objective p̄1

i is determined as follows (see Fig. 9): Firstly
find out the point C at a distance of r to the point p1

i on the extension of segment from the endpoint
p2

i to the endpoint p1
i , and then select p̄1

i at a distance of r to the point C on the extension of segment
from the robot to the point C.

It is worth noting that the connection between the modified intermediate point p̄1
i and the robot

position may cross with another obstacle. If the line between p̄1
i and the robot crosses with another

obstacle, the intermediate objective should be selected from the obstacle that crosses with the line,
and add the new intermediate objective to IO List and generate new modified intermediate objective
p̄1

i from new IO List (see lines 10–16 in Algorithm 4).
The routine to select intermediate objectives is given in Algorithm 2.

3.5.3. Judge the switching time. Suppose that one has IO−List = {p1
i , p

2
i , . . . , G} and the associated

switching region Rs . Since the robot re-initializes and solves the optimal problem after every Tc, one
can use the position of robot at t = 0 and t = Tc (named as (x(0), y(0)) and x(Tc), y(Tc)) to judge
whether it enters Rs . For this, note the function f (x, y) = 0 representing the first segment p1

i p
2
i in

IO−List . If

f (x(0), y(0))f (x(Tc), y(Tc)) < 0,

one can judge that the robot has already entered the region Rs , which implies that the robot has passed
over p1

i and now can see p2
i . Then we move p1

i from IO−List to CloseList .
The routine to judge the switching time is given in Algorithm 3.

3.6. Algorithm description
Given the temporary list of intermediate objectives IO−List , which enables to define the switching
region Rs and calculate the modified intermediate objective p̄1

i , one can solve optimal problem over
Tp to get an optimal trajectory, which yields the optimal controls v and ω for robot over [0, Tp]. Then
one applies those optimal controls only for an interval [0, Tc]. When t = Tc, one iterates the same
procedure as before, i.e., scans the surroundings to get obstacles P, generates the list of intermediate
objectives IO−List , calculates the modified intermediate objective p̄1

i and solves the optimal problem
over Tp and implements the optimal controls for [0, Tc]. The algorithm stops when the robot reaches
the final target G. The routine is detailed in Algorithm 4.
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Fig. 10. Scenario 1: Simple environment.

4. Simulation Results
In order to show the feasibility and efficiency of the proposed algorithm, three simulations for different
scenarios are made, and comparisons with visibility graph with expanded obstacles are made in the
latter two simulations. The simulation settings are as follows: the range of robot sensors is 3 m; the
maximum speed of robot is 1.0 m/s, the maximum acceleration is 1.0 m/s2, the maximum angular
velocity is 1.0 rad/s and the maximum angular acceleration is 1.0 rad/s2. The planning horizon
interval Tp is 2 s, and the update period Tc is 0.2 s.

For the simple scenario, depicted in Fig. 10, black polygons represent obstacles, containing a
concave obstacle and a triangle obstacle. In this scenario, there exists a broad zone of local minima.
The robot starts from the initial point (6, 4.5) to the target (18, 18). The red crosses in the figure are
the intermediate objectives chosen by the proposed algorithm, the red trajectories are the predicted
ones planned by the receding horizon planner, and the blue trajectories are the real trajectories. It can
be seen that the proposed algorithm generates a safe and optimal path of intermediate objectives and
avoids local minima successfully.

Two more complex scenarios are shown in Figs. 11 and 12, arrows in the figures indicate the
orientation of the robot, and the red crosses in the figure are the intermediate objectives chosen by
the proposed algorithm. Comparisons with visibility graph with expanded obstacles are made, the
blue trajectories are generated by the above-proposed path planning algorithm and the pink ones are
generated by visibility graph.

One can see that in Fig. 11 several local minima exist, the robot starts from (7, 2) to (10, 20) and
avoids all local minima by choosing intermediate objectives and reaches the target successfully by
using only local sensor information. In Fig. 12, where there is a long winding corridor, the robot
starts from (7, 2) to (25, 10). It can be seen that the robot manages to walk through the long corridor
and reach the target successfully while avoiding local minima and all obstacles.

Comparisons with visibility graph are made. Normally, visibility graph is used in global planning
when the map is completely known; in order to use visibility graph in local planning with unknown
map, the algorithm needs to generate expanded polygon for each obstacle in the local map and search
for the shortest path among all the obstacles, then iterate until the robot reaches the target. Instead,
in our proposed algorithm the robot searches for the shortest path only in some obstacles (normally
one or two) in each iteration, which reduces computational complexity compared with the visibility
graph approach.

As we can see in the Figs. 11, 12 and Table I, there are no big differences between the trajectories
generated by two different methods, however it costs less time by using the method proposed in this
paper.
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Fig. 11. Scenario 2: Complex environment.
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Fig. 12. Scenario 3: Environment with corridor.

Table I. Comparison of simulation results.

Method Running time (s) Time-saving Trajectory length (m)

Scenario 2 Our method 3.02 19.2% 22.2
Visibility graph 3.74 22.1

Scenario 3 Our method 3.21 20.1% 30.2
Visibility graph 4.02 29.8

Two implementations made in real robot and real environment are in the attached video, and
also can be found in the following link: http://www.youtube.com/watch?v=EjNaESTXTR8ROBOT
VIDEO
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5. Conclusions
This paper presents a path planning algorithm for the navigation of non-holonomic mobile robots in
unknown complex environments. The new algorithm takes into account irregular obstacles which are
impossible to be approximated by circles. In order to avoid local minima problems, an algorithm of
choosing intermediate objectives is proposed. The robot can reach the target and avoid obstacles by
choosing appropriate intermediate objectives. Efficiency of the proposed algorithm is shown thereafter
via different simulations and implementations in a wifibot, the simplicity of the algorithm is shown
via the comparisons with visibility graph.
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Appendix

Algorithm 1 The Intermediate Objectives List Generation Function
1: Function IO−Generation (G(xf , yf ),O(x(t), y(t)), P)
2: for each Pi do
3: if ∃p

j

i , p
j+1
i ∈ Pi s.t. p

j

i p
j+1
i

⋂
OG 
= ∅ then

4: select Pi , break
5: end if
6: end for
7: List−T = List−H = {G}
8: for k=j+1: 1:m-1 do � m is the number of points on Pi

9: if Gp
j+2
i

⋂
Pi 
= ∅ then

10: List−T = {pj+1
i }⋃

List−T
11: end if
12: end for
13: List−T = {pm

i }⋃
List−T

14: for k=j:-1:2 do
15: if Gp

j−1
i

⋂
Pi 
= ∅ then

16: List−H = {pj

i }
⋃

List−H
17: end if
18: end for
19: List−H = {p1

i }
⋃

List−H
20: if pm

i ∈ CloseList then
21: dist(List−T ) = +∞
22: end if
23: if p1

i ∈ CloseList then
24: dist(List−H ) = +∞
25: end if
26: if dist({O}⋃

List−T ) ≤ dist({O}⋃
List−H ) then

27: Return List−T
28: else
29: Return List−H
30: end if
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Algorithm 2 Selection of the Intermediate Objective
1: Function IO−Selection (O(x(t), y(t)), IO−List)
2: Get the first segment p1

i p
2
i from IO−List

3: Get the function f (x, y) = 0 for this segment;
4: Compute point C s.t. f (xc, yc) = 0, dis(Cp1

i ) = r dis(Cp2
i ) = r + dis(p1

i p
2
i );

5: Determine the function g(x, y) = 0 for the segment OC;
6: Select p̄1

i s.t. g(xp̄1
i
, yp̄1

i
) = 0, dis(Cp̄1

i ) = r dis(Op̄1
i ) = r + dis(OC);

7: Return p̄1
i

Algorithm 3 Switching Time
1: Function Switch ((x(0), y(0)), (x(Tc), y(Tc)), IO−List)
2: Get the first segment p1

i p
2
i from IO−List

3: Get the function f (x, y) = 0 for this segment;
4: if f (x(0), y(0)) × f (x(Tc), y(Tc)) < 0 then
5: Remove the 1st element p1

i from IO−List

6: Add p1
i into CloseList

7: end if

Algorithm 4 Path Planning
1: Function PathP lanning(G(xf , yf ), Ini. conditions)
2: t = 0
3: while (x(0) − xf )2 + (y(0) − yf )2 ≥ ε do
4: Get P from sensor
5: IO−List = IO−Generation((G(xf , yf ),O(x(0), y(0)), P)
6: if IO−List = {G} then � Can see G
7: [x,y] = Optimisation(G) over Tp

8: else
9: Get p̄1

i = IO−Selection(IO−List) � Opt. with the 1st intermediate objective
10: for each Pi do � Check p̄1

i can be seen or not
11: if ∃p

j

i , p
j+1
i ∈ Pi s.t. p

j

i p
j+1
i

⋂
p̄1

i O 
= ∅ then
12: add−List = IO−Generation(p̄1

i , O(x(0), y(0)), P)
13: IO−List = add−List ∪ IO−List
14: Get p̄1

i = IO−Selection(IO−List)
15: end if
16: end for
17: [x,y] = Optimisation(p̄1

i ) over Tp

18: end if
19: for t ∈ [0, Tc] do
20: Get (υ, ω) from (2) based on x and y
21: Apply (υ, ω) to the robot
22: end for
23: Switch((x(0), y(0), (x(Tc), y(Tc), IO−List)
24: Reset t = 0
25: end while
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