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In order better to understand the processes that lead to the generation of magnetic
fields of finite amplitude, we study dynamo action driven by turbulent Boussinesq
convection in a rapidly rotating system. In the limit of infinite Prandtl number
(the ratio of viscous to thermal diffusion) the inertia term drops out of the
momentum equation, which becomes linear in the velocity. This simplification allows
a decomposition of the velocity into a thermal part driven by buoyancy, and a
magnetic part driven by the Lorentz force. While the former velocity defines the
kinematic dynamo problem responsible for the exponential growth of the magnetic
field, the latter encodes the magnetic back reaction that leads to the eventual nonlinear
saturation of the dynamo. We argue that two different types of solution should exist:
weak solutions in which the saturated velocity remains close to the kinematic one,
and strong solutions in which magnetic forces drive the system into a new strongly
magnetised state that is radically different from the kinematic one. Indeed, we
find both types of solutions numerically. Interestingly, we also find that, in our
inertialess system, both types of solutions exist on the same subcritical branch of
solutions bifurcating from the non-magnetic convective state, in contrast with the
more traditional situation for systems with finite inertia in which weak and strong
solutions are thought to exist on different branches. We find that for weak solutions,
the force balance is the same as in the non-magnetic case, with the horizontal size
of the convection varying as the one-third power of the Ekman number (the ratio
of viscous to Coriolis forces), which gives rise to very small cells at small Ekman
numbers (i.e. high rotation rates). In the strong solutions, magnetic forces become
important and the convection develops on much larger horizontal scales. However,
we note that even in the strong cases the solutions never properly satisfy Taylor’s
constraint, and that viscous stresses continue to play a role. Finally, we discuss
the relevance of our findings to the study of planetary dynamos in rapidly rotating
systems such as the Earth.
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1. Introduction
Many astrophysical objects, from galaxies to planets, possess some sort of magnetic

field. Dynamo theory provides an elegant framework to discuss the origin and
morphology of these fields (Parker 1979). In a hydromagnetic dynamo, the inductive
motions of an electrically conducting fluid maintain a magnetic field against Ohmic
dissipation. From a mathematical point of view, it is helpful to distinguish two classes
of dynamo: kinematic and dynamic.

Kinematic dynamo theory addresses the question of which types of velocity can
amplify an initially weak magnetic field. The assumption here is that if the field
is very weak, then it is dynamically unimportant, and the velocity is therefore
independent of the magnetic field. Thus it is meaningful to study the dynamo
problem for a given velocity. Mathematically, this amounts to solving the induction
equation for a prescribed velocity field. Because the induction equation is linear in
the magnetic field, the fundamental properties in kinematic dynamo theory are the
growth rate of the magnetic field and the corresponding eigenfunctions. In a realistic
situation, however, the magnetic field cannot grow forever; the Lorentz force will
eventually become significant, modifying the velocity and saturating the dynamo
growth. This describes the dynamic dynamo problem. Mathematically, this results in
solving the coupled induction and momentum equations self-consistently. The problem
then becomes nonlinear, and the fundamental properties of interest are the amplitude
and geometrical structure of the magnetic field.

Solving the dynamic dynamo problem is a much tougher proposition than its
kinematic counterpart. The kinematic problem is linear and depends on only one
equation with just one parameter, the magnetic Reynolds number Rm, the ratio
of diffusive to advective time scales. The dynamic problem is not just nonlinear,
but requires the solution of an underlying hydrodynamic problem, even before any
magnetic issue is addressed; as such, it requires the specification of possibly many
parameters as well as the external forces acting on the fluid. The kinematic problem
is well understood at low values of Rm (Moffatt 1978); at high Rm some problems
remain, but these are of a technical nature (Childress & Gilbert 1995). By contrast,
the dynamic problem is much less well understood; the landscape of parameter
space is vast and the range of physical systems enormous. The ultimate aim must
be to understand the dynamic problem over this entire landscape. However, given
the difficulty of the problem, it makes sense to seek out starting points for one’s
investigation that, although non-trivial, make one’s life a little easier.

In this paper we address the dynamic dynamo resulting from rotating Boussinesq
convection, one of the simplest non-trivial models of astrophysical dynamo action. In
keeping with the philosophy outlined above, we seek a pathway into the dynamical
problem by which some simplification is achieved; specifically, we do this through
the elimination of the nonlinear inertia term, thus exploring a very different regime
to that in which inertial terms are significant. This could be achieved, for instance,
by considering a very viscous fluid, i.e. restricting attention to low Reynolds number
flows. This, however, would preclude the possibility of the interesting case of turbulent
velocities, i.e. flows at high Reynolds number. A less restrictive prescription is to
consider the case of rapid rotation and infinite Prandtl number (the ratio of kinematic
viscosity to thermal diffusivity); in this case, the inertia terms vanish, but fluctuating
velocities are still permitted, driven by the nonlinearity in the temperature equation.
This is the problem we shall explore in this paper.

The problem of dynamo action in rotating Boussinesq convection at infinite Prandtl
number has received detailed attention only in the pioneering paper of Jones &
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Roberts (2000) (see also Rotvig & Jones 2002). By contrast, there have been
numerous investigations of dynamos driven by rotating Boussinesq convection in
the presence of inertial terms, chiefly motivated by the problem of the generation of
the magnetic field in the Earth and other planets (see, for example, the reviews by
Roberts & Glatzmaier 2000; Jones 2011; Roberts & King 2013). In these models,
even at the highest rotation rates (lowest Ekman numbers) that can be tackled
computationally, the influence of inertia is always significant (King & Buffett 2013),
and thus the dynamics is significantly different to that which we shall explore here.

2. Mathematical formulation
We consider thermally driven convection in a three-dimensional, Cartesian layer of

incompressible (Boussinesq) fluid rotating about the vertical. The fluid layer has depth
d, angular velocity Ω , density ρ, kinematic viscosity ν, thermal diffusivity κ and
magnetic diffusivity η. Following standard practice, we adopt the layer depth d, the
thermal relaxation time d2/κ and the temperature drop across the layer 1T as the
units of length, time and temperature respectively. We scale magnetic field intensities
with (2Ωκµ0ρ)

1/2, where µ0 is the magnetic permeability of the medium. With these
units, and in standard notation, the magnetohydrodynamic (MHD) equations read

σ−1(∂tu+ u · ∇u)+ E−1ez × u=−∇p̃+ E−1J×B+ Ra θez +∇
2u, (2.1)

(∂t − q−1
∇

2)B+ u · ∇B=B · ∇u, (2.2)
(∂t −∇

2)θ + u · ∇θ =w, (2.3)
∇ ·B=∇ · u= 0, (2.4)

where J=∇×B is the current density, θ denotes the temperature fluctuations relative
to a linear background profile and the velocity u = (u, v, w). Four dimensionless
numbers appear explicitly: the Rayleigh number Ra, the Ekman number E, the Prandtl
number σ and the Roberts number q; these are defined by

Ra=
gα1Td3

κν
, E=

ν

2Ωd2
, σ =

ν

κ
, q=

κ

η
, (2.5a−d)

where g is the gravitational acceleration and α is the coefficient of thermal expansion.
The infinite Prandtl number limit of the momentum equation (2.1) results in the

equation
ez × u=−∇p+ J×B+ Rθez + E∇2u, (2.6)

where R is the rotational Rayleigh number defined by

R= Ra E=
gα1Td

2Ωκ
. (2.7)

The new pressure p is given by p= Ep̃; its scaling though is immaterial since for
Boussinesq convection the role of the pressure is simply to keep the flow solenoidal.

It is worth pointing out that the limit of infinite Prandtl number is a delicate one,
and should not be thought of as being obtained either by letting ν→∞ or κ→0 with
all the other parameters fixed. Indeed, ν and κ appear in R, E and q, all of which
must remain finite. The most glaring manifestation of taking this limit is the removal
of the inertia terms from the momentum equation. This is not a mere simplification
of the system: it has both mathematical and physical consequences. Mathematically,
the momentum equation has become a linear diagnostic equation that defines the
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velocity in terms of the thermal and magnetic variables. Physically, the removal of
the inertia terms has profound implications for the interpretation of the behaviour of
the system. In the absence of buoyancy forces and dissipation, the original system
(with inertia) supports two families of linear waves. For moderate rotation rates
and strong background magnetic field, the two families correspond to rotationally
modified Alfvén waves. On the other hand, if rotation dominates, then one family
consists of modified inertial waves, whereas the other consists of hydromagnetic
inertial waves; for these latter waves, both inertial and magnetic effects come into
play, with the wave frequency given by ω2

≈ω4
A/ω

2
I , where ωA and ωI are the Alfvén

and inertial frequencies respectively. In the new (inertialess) system, with momentum
equation (2.6), the inertial waves acquire an infinite propagation speed. Only the
hydromagnetic inertial waves remain; for these, both ωA and ωI tend to infinity, but
such that ω4

A/ω
2
I is finite.

Thus the equations with infinite Prandtl number describe a rapidly rotating, strongly
magnetised system. It is for this reason that we chose to scale the magnetic field
with (2Ωκµ0ρ)

1/2; had we chosen the conventional scaling of magnetic field with
(µ0ρ)

1/2κ/d then the field can be brought into play as σ →∞ only by a further
scaling with σ 1/2. Although there is no ambiguity in determining u and B from the
inertialess equations, a difficulty arises in comparing |u|2 and |B|2. If we denote the
dimensional quantities by û and B̂ then

|B̂|2/µ0ρ

|û|2
=

2Ωd2

κ

|B|2

|u|2
=
σ

E
|B|2

|u|2
. (2.8)

Thus, in this system, with σ → ∞ and E finite, comparing kinetic and magnetic
energies is meaningless.

This raises an interesting issue about how to interpret magnetic field intensities.
Traditionally, one uses the equivalent Alfvén speed to compare the magnetic energy
with the kinetic energy of the moving fluid; here, however, the Alfvén speed is
formally infinite and so this is of no use. Instead, one way to proceed is to note
that whereas equation (2.1) expresses the conservation of momentum, equation (2.6)
expresses a force balance requirement. With this new system, momentum and energy
are therefore not that well defined; indeed, it is now velocities, not accelerations, that
are related to forces. Interpretation of the meaning of B must therefore be through
comparison with the Coriolis force. That said, and as we shall see, it is still helpful
to use the average values of |u|2 and |B|2 to measure the magnitudes of u and B
relative to themselves, but not to each other.

In the horizontal directions we assume that all fields are periodic with periodicity λ
– the aspect ratio. In the vertical we consider standard illustrative boundary conditions,
namely that the boundaries are perfectly conducting, both thermally and electrically,
impermeable and stress free. Formally these correspond to

θ =w= ∂zu= ∂zv = Bz = ∂zBx = ∂zBy = 0 at z= 0, 1. (2.9)

We solve (2.2)–(2.4) numerically by standard pseudo-spectral methods. Details
concerning the numerical methods can be found in Cattaneo, Emonet & Weiss (2003).
The numerical scheme requires at every time step a knowledge of the velocity u,
which can be computed from (2.6). The details of how this can be performed are
contained in appendix A. The implementation of the momentum equation was checked
against the linear stability results of Roberts & Jones (2000). The numerical resolution
and parameter values for all the simulations presented in this paper are summarised
in table 1.
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E R q λ Nx ×Ny ×Nz

10−3 5× 102 1∗, 2∗, 5, 10 5 256× 256× 97
10−3 103 1∗, 2, 5, 10 5 256× 256× 97
10−3 104 0.5, 1, 2 5 256× 256× 97
10−3 105 0.1 4 1024× 1024× 257
10−4 320–490 10 5 256× 256× 97
10−4 5× 102 1∗, 2∗, 5∗, 10, 20 5 256× 256× 97
10−4 103 5, 10, 15 5 512× 512× 97
10−4 103 5, 10, 15 5 512× 512× 97
10−4 1.077× 103 0 5 512× 512× 257
10−4 104 0.5, 1, 2, 5, 10 2 512× 512× 257
10−4 2× 104 0.25, 0.5, 1, 2 2 512× 512× 257
10−5 2.321× 103 0 2 1024× 1024× 257
10−5 103 10 2 512× 512× 257
10−5 103 10 2 1024× 1024× 257

TABLE 1. Summary of the parameter values and numerical resolution for the simulations.
An asterisk in the q column indicates that the dynamo failed, starting from a weak seed
field.

3. Hydrodynamic convection
Before tackling the dynamo problem, it is useful to present some of the basic

features of rotating non-magnetic convection at infinite Prandtl number that may play
a role in the process of magnetic field generation.

Stability to infinitesimal perturbations that vary as

exp(st+ i(kH · xH))
sin
cos

πz (3.1)

is governed by the dispersion relation

s=
REk2

Hk2

E2k6 +π2
− k2, (3.2)

where kH is the horizontal wavenumber and k2
= k2

H + π2 (cf. Roberts & Jones
2000). Although the standard dispersion relation for rotating Boussinesq convection is
cubic in the growth rate s (see, for example, Chandrasekhar 1961), here the inertial
modes are filtered out, leading to the linear relation (3.2). It follows from (3.2) that
convection sets in as a steady bifurcation when

R= R0 =
E2k6
+π2

Ek2
H

. (3.3)

Since the onset of convection is via a time-independent mode, it follows that the
marginal stability criteria for the inertialess system must be identical to those of the
system with inertia (which includes the ∂tu term and the nonlinear u · ∇u term; see
Chandrasekhar (1961)). In particular, for any Ekman number E, there is a unique value
of the horizontal wavenumber, kH = kcrit

H say, for which R0 takes its minimum value,
Rcrit

0 . As E→ 0

kcrit
H ∼

(
π2

2

)1/6

E−1/3, Rcrit
0 ∼ 3

(
π2

2

)2/3

E−1/3. (3.4a,b)
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FIGURE 1. kcrit
H and Rcrit

0 as functions of E−1 (solid lines), together with the asymptotic
results (3.4) (dotted lines).

Figure 1 plots kcrit
H and Rcrit

0 as functions of E, together with the asymptotic
results (3.4). Clearly, for E . 10−3, the system is in the rapidly rotating asymptotic
regime.

As R is increased above Rcrit
0 , the convection becomes nonlinear and time dependent,

with associated changes in the planform. Figure 2 shows density plots of the
temperature in vertical planes and horizontal planes near the surface, for three
increasing values of R at E= 10−4, for which Rcrit

0 ≈ 187. Near onset, the convection
assumes a columnar structure with horizontal scale controlled by kcrit

H (figure 2a,d,
with R= 500). Within each column, the fluid spins one way at the top and the other
way at the bottom. As R is increased, the convective pattern becomes asymmetric.
Near the upper boundaries, the cold downflowing fluid forms a network surrounding
the hot isolated upflows. Typically, the upflow centres develop a shallow cold return
flow in which the fluid spins in the opposite direction to the hot fluid surrounding
it (figure 2b,e, with R= 103). Because of the up–down symmetry of the Boussinesq
equations, the reverse is true in the vicinity of the lower boundary. At yet higher
values of R, the convective cells are sheared out, leading to a network of thin
downflows, winding itself round the upflows (figure 2c, f, with R= 104). Although the
plots in figure 2 are for the specific value of E= 10−4, we have found the behaviour
described to be generic, provided that the Ekman number is sufficiently small.

For convection in rotating systems, we expect a correlation between flows and
circulation. This manifests itself in a lack of reflectional symmetry, which can be
measured by the kinetic helicity H=〈u ·∇×u〉, where 〈·〉 denotes an average over the
fluid volume. In the Boussinesq approximation, the helicity density is antisymmetric
with respect to the midplane of the layer, and so it is the distribution of helicity
density in each half-layer that is of importance. Figure 3 shows the relative helicity,
defined by

h(z)=
〈u · ∇× u〉H

〈u2〉
1/2
H 〈(∇× u)2〉1/2H

, (3.5)

where 〈·〉H denotes an average over horizontal planes, for the three cases of figure 2.
It can be seen that even for the case with the most vigorous convection, the influence
of rotation is still strong.
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(a) (b) (c)

(d) (e) ( f )

FIGURE 2. (Colour online) Density plots of temperature fluctuations, in which light (dark)
tones correspond to hot (cold) fluid: (a–c) show the xy-plane near the upper surface (z=
0.95); (d–f ) show the xz-plane at the midpoint value of y (i.e. y = λ/2). In all cases,
E= 10−4; (a,d) R= 500, (b,e) R= 103, (c, f ) R= 104. For (a,d,b,e), the aspect ratio λ= 5;
for (c, f ), λ= 2.

0 0.2 0.4 0.6 0.8 1.0

 0.5

 0

 –0.5

 –1.0

1.0

z

h(
z)

FIGURE 3. Snapshots of relative helicity h(z) versus z for the three cases of figure 2:
E = 10−4; R = 500 (solid line); R = 103 (dashed line); R = 104 (dot-dashed line). Exact
antisymmetry about the mid-plane (z= 0.5) would be recovered by time averaging.

In general, as R increases at fixed E, the rotational constraint is weakened and hence
the characteristic horizontal scale of the convection increases. Nevertheless, since the
inertial term is absent, the characteristic scale of the convection still decreases as
E−1/3 even in the nonlinear regime, as can be seen from simple considerations of
force balance in the vorticity equation. This is illustrated by figure 4, which shows
the horizontal power spectra of the velocity for three convective flows at different
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FIGURE 4. Horizontal power spectra of the kinetic energy for three cases of nonlinear
convection with the same degree of supercriticality. Solid line: E = 10−3, R = 500;
dashed line: E = 10−4, R = 1077; dot-dashed line: E = 10−5, R = 2321. In all cases, the
wavenumber refers to the case of λ = 5. The spectra were computed over the interior
regions of the simulations (0.1< z< 0.9) and time averaged. The location of the spectral
peaks is consistent with a scaling in which the characteristic convective length scale
decreases as E1/3.

values of E with R chosen so that they all have the same degree of supercriticality.
For fixed E, the efficiency of the convection increases with R. This is illustrated in
figure 5, which shows the horizontally averaged temperature as a function of depth,
for the same parameter values as figure 2. At the highest value of R, the convection
is so efficient that the layer is isothermal except in very thin boundary layers.

4. Dynamo action
In order to study the influence of the rotational constraint on convectively driven

dynamos, we have investigated three different values of E (10−3, 10−4, 10−5); for each
of these we have considered a range of values of R, from a few times supercritical
up to vigorous convection. In each case, the convection is evolved from small
random perturbations of the basic state, to an eventual stationary state; these purely
hydrodynamic convective states are what we shall refer to as the kinematic flows. For
each such flow, we introduce a small magnetic perturbation, at t = 0, which is then
evolved for a range of values of q, effectively increasing Rm by increasing q. Each
simulation is evolved either until the field decays or until it grows and saturates, with
the convection attaining a new, magnetised, stationary state. In table 1 we indicate
which of the hydrodynamic flows are able to maintain dynamo action.

It is natural to ask under what conditions dynamo action can take place. It is not
surprising to find that dynamo action is possible once the convection is sufficiently
vigorous and the magnetic Reynolds number is large enough. A more challenging
question is to ask what determines the saturation amplitude of the magnetic field
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FIGURE 5. Horizontally averaged temperature profiles for the three cases of figure 2:
E= 10−4; R= 500 (solid line); R= 103 (dashed line); R= 104 (dot-dashed line).

and what are the mechanisms that govern the saturation process. In general, this is
a very difficult question, not just to answer, but even to formulate precisely. Here,
because of the absence of inertia in the momentum equation, we can definitely provide
a precise formulation of the problem of dynamo saturation, and are also able, to
some degree, to provide an answer. The crucial property of the formulation of the
convection problem here is that the momentum equation is linear in the velocity. This
allows us to decompose the velocity into the sum of two components, which we
choose to have meaningful physical interpretations. Thus we write the total velocity
u as

u= uT + uM, (4.1)

where uT and uM satisfy, respectively, the equations

ez × uT =−∇pT + Rθez + E∇2uT, (4.2)
ez × uM =−∇pM + J×B+ E∇2uM, (4.3)

with ∇ · uT =∇ · uM = 0 and p= pT + pM.
The component uT is driven by Coriolis and buoyancy forces, whereas the

component uM is driven by Coriolis and magnetic forces. The velocity uT exists
even in the absence of magnetic fields, and defines the kinematic problem; uM, on
the other hand, exists only by virtue of the presence of the magnetic field. One can
think of uM as the means by which the system reacts to the presence of the magnetic
field, leading eventually to the saturation of magnetic field growth. If the buoyancy
force were to be prescribed, then uT would always be independent of the magnetic
field. As things are, in the saturated regime, the temperature distribution depends on
both uT and uM, via (2.3), and hence uT does not remain as the kinematic velocity.

It is not unreasonable to conceive of a situation in which the temperature
distribution is not strongly contaminated by uM. In this scenario, buoyancy drives
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the convection, the convection generates a magnetic field by dynamo action, and the
magnetic field drives a velocity uM, which slightly modifies u so as to saturate the
dynamo growth. Here, u and uT are similar, with the magnetic field having a weak
effect on the velocity – we categorise such solutions as weak field solutions. That said,
one can envisage a different scenario in which, when saturation occurs, a substantial
fraction of the total velocity is driven magnetically. In this case, magnetic forces do
not contribute just to the saturation of the dynamo, but to its actual driving. Here, the
velocity in the saturated state is completely unrelated to that of the kinematic state;
indeed, the kinematic state may not even act as a dynamo. In this case, the magnetic
field has a strong effect on the velocity – we thus classify such solutions as strong
field solutions. The justification for the consideration of strong field solutions is that
at small E the convection is strongly rotationally constrained. There are circumstances
in which the presence of the magnetic field can alleviate this constraint, and possibly
lead to more vigorous convection, which, in turn, can support stronger fields. This
is well known in the related, but simpler, problem of rotating convection, in which
the presence of an imposed magnetic field reduces considerably the critical Rayleigh
number for the onset of convection (Chandrasekhar 1961; Eltayeb & Roberts 1970;
Eltayeb 1972). The dynamo problem is more complicated, in that the magnetic field is
self-generated; nonetheless, it is not unreasonable to expect that a similar mechanism
may be operating here. That being the case, one would expect strong field solutions
to be favoured for small values of E and moderate values of R. As we shall see
presently, these considerations are borne out by the results.

4.1. Weak field solutions
As an illustrative example of a weak field solution, we consider the case of
E = 10−4, R = 104, q = 1, whose convective pattern in the kinematic regime is
shown in figure 2(c). Figure 6 shows the evolution of 〈u2

〉 and 〈B2
〉, following the

introduction of a small seed field. There follows an exponential growth in 〈B2
〉,

accompanied by a decrease in 〈u2
〉, followed by a nonlinear saturation in which the

system settles to a stationary state.
Figure 7 shows snapshots of the vertical velocity near the top of the domain,

for the kinematic and dynamic regimes. It can be seen that whereas the overall
structure of the convective patterns remains roughly the same, the characteristic scale
of the convection increases slightly in the dynamic regime. This increase in scale
is a manifestation of the magnetic field relaxing the rotational constraint; as R is
increased, rendering the convection more supercritical, the increase in the convective
scale in the saturated regime diminishes. This is confirmed by figure 8, which shows
the velocity spectra for the two regimes; except for a slight shift towards smaller
wavenumbers, the two spectra are quite similar.

The magnetic field structure can be gauged from figure 9, which shows the
vertical component of the electric current near the top of the layer, and the vertical
component of the magnetic field in the middle of the layer. The current has a
filamentary structure, with the filaments outlining the downflows of the convective
patterns. The vertical magnetic field is concentrated in sheets, by and large, with a
characteristic scale comparable with that of the convective flow. As can be seen from
figure 6, the flow and field evolve on essentially the same time scale.

One of the key ideas of mean field electrodynamics is that the generation of
large-scale (mean) magnetic fields, on scales much larger than that of the underlying
flow, is associated with a lack of reflectional symmetry in the flow. Although, from
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FIGURE 6. Time traces of 〈u2
〉 and 〈B2

〉 for the weak field dynamo with E = 10−4,
R= 104, q= 1. The amplitude of 〈B2

〉 has been multiplied by 105 in order that the two
can be represented clearly on one plot.

(a) (b)

FIGURE 7. (Colour online) Density plots of vertical velocity close to the upper boundary
(z= 0.95), for (a) the kinematic and (b) the dynamic regime, for E= 10−4, R= 104, q= 1;
light (dark) tones correspond to upward (downward) moving fluid. The plots are scaled
independently.

inspection of figure 9, no large-scale structure in the field is immediately apparent,
it is nonetheless natural to look more closely into this issue, given that the flow is
undeniably helical. Given our geometry and boundary conditions, we can look for
the presence of a mean field that is horizontal, but whose strength and orientation
may vary with height z (cf. Childress & Soward 1972). Figure 10(a) shows the time
average of 〈BH〉H , where BH is the horizontal magnetic field and 〈·〉H denotes an
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FIGURE 8. Horizontal power spectra of the kinetic energy for the kinematic regime (solid
line) and dynamic regime (dashed line) for the weak field dynamo: E = 10−4, R = 104,
q= 1, λ= 2. The spectra were computed over the interior regions (0.1< z< 0.9) of the
simulations and time averaged.

(a) (b)

FIGURE 9. (Colour online) Density plots of (a) the vertical current near the upper
boundary (z= 0.95) and (b) the vertical magnetic field at the midplane.

average over the horizontal plane. Figure 10(b) shows the quantity

Γ (z)=
|〈BH〉H|

2

〈|BH|
2〉H
, (4.4)

at several instances, approximately one turnover time apart, and as a time average. It
can be seen that Γ is a measure of the strength of the large-scale field relative to the
total strength (Cattaneo & Hughes 2006). Three things should be noted: Γ is very
small, it has no apparent organisation in z and its temporal coherence is no longer
than a turnover time. These points taken together suggest that BH is nothing more than
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FIGURE 10. (Colour online) (a) Snapshot of the mean horizontal field as a function of
depth for the weak field dynamo. (b) Snapshots of Γ (z) versus z at three times (the
dashed, dotted and dot-dashed lines), together with the time average of Γ (z) calculated
over ten snapshots (solid line). The plot in (a) corresponds to the case shown as a
dot-dashed line.

the horizontal projection of a random field; we find no evidence of any large-scale
organisation of the magnetic field.

We can obtain some insight into the mechanism of field saturation by exploiting
the velocity decomposition (4.1). Figure 11 shows the vertical components of u, uT

and uM near the upper boundary, at the same time as for the plots in figure 9. The
most striking feature is the remarkable similarity between w and wT . Taken at face
value, one might expect uM to be miniscule. However, that is not entirely correct; for
instance, at this particular time, 〈u2

M〉/〈u2
T〉 ≈ 0.3. It is though difficult to detect the

features of uM that are ultimately responsible for the dynamo saturation. For instance,
the two marked boxes in figure 11 outline features in uM. In the black box, the
component of wT is stronger than that in the full velocity w; the effect of the Lorentz
force is thus to slow down the vertical velocity. By contrast, in the green box, the
opposite is true, with the total velocity being stronger then the thermally driven flow;
the effect of the Lorentz force is thus to speed up the velocity. The conclusion is that
the changes required in the velocity to saturate the dynamo are tremendously subtle.

A better approach comes by noting that from the induction equation, magnetic
field is generated by field line stretching (the B · ∇u term); hence it is velocity
gradients, not the velocity per se, that are of interest. This motivates looking at the
vorticity field. Figure 12 shows the vertical vorticity corresponding to u, uT and
uM at the same time and location as in figure 9. Unlike their velocity counterparts,
the difference between ω and ωT is now more striking; indeed, ωT looks like a
blurred version of ω. The difference ωm therefore consists mainly of these missing
sharp vorticity features. The mechanism of saturation therefore clearly requires
highly localised changes in the velocity gradients. Unlike for the magnetically driven
velocity, changes in the magnetically driven vorticity are reflected in the overall
vorticity. Nevertheless, the action of the magnetic torques is not simply to remove
or decrease regions of high vorticity, but, somewhat counterintuitively, instead acts
to sharpen the vorticity distribution of the thermally driven component. It is easy to
verify that the sharpening of the vorticity field is a magnetic phenomenon by noting
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(a) (b)

(c)

FIGURE 11. (Colour online) Density plots, scaled consistently, of the vertical components
of (a) the full velocity, (b) the thermal velocity and (c) the magnetic velocity. The time
and location (z= 0.95) are identical to those of the plot of the vertical component of the
current in figure 9.

that the vorticity distribution for the kinematic velocity (figure 12d) exhibits the same
degree of smoothness as the thermally driven velocity in the saturated regime.

4.2. Strong field solutions
As an illustrative example of a strong field solution, we first consider the case of
E = 10−4, R = 500, q = 20, whose convective pattern in the kinematic regime is
shown in figure 2(a). Figure 13 shows the evolution of 〈u2

〉 and 〈B2
〉, following the

introduction of a weak seed magnetic field. As in the weak field case, the magnetic
energy grows exponentially and then saturates. However, the effect of this field growth
on the kinetic energy is radically different. Following the saturation of the field, the
time scale of variation of the kinetic energy changes dramatically; it is clear that
a much shorter time scale has been introduced. We note also that the growth and
saturation of the magnetic field actually causes an abrupt increase in the kinetic energy.
This second feature is found in most, but not all, of our simulations of strong field
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(a) (b)

(d) (c)

FIGURE 12. (Colour online) Density plots of the vertical components of (a) the full
vorticity, (b) the thermal vorticity and (c) the magnetic vorticity, corresponding to the
velocities shown in figure 11. For comparison, a representative plot of the vertical
component of the vorticity in the kinematic regime is shown in (d). Plots (a), (b) and
(c) are scaled consistently; plot (d) is scaled independently.

solutions; the marked change in temporal variations is, however, common to all such
solutions.

Figure 14 shows snapshots of the vertical velocity near the top of the domain, for
the kinematic and dynamic regimes. Whereas for the weak field solutions, except for
a slight change in scale, the nature of the convection is the same, here not only the
scale, but the very organisation of the convection has been changed. These changes
are made apparent by inspection of the velocity spectra in the two regimes, as shown
in figure 15. In the kinematic regime, there is a sharp peak at the convective scale,
with steep fall-offs to both larger and smaller scales. By contrast, in the dynamical
regime, there is a flattening in the spectrum, with more energy at both smaller and
larger scales than in the original convective flow.

The structure of the magnetic field in the middle of the layer and that of the vertical
current near the top of the domain are shown in figure 16. The thing to note is its
remarkable similarity to the corresponding image for the weak field, shown in figure 9.
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FIGURE 13. Time traces of 〈u2
〉 and 〈B2

〉 for the strong field dynamo with E = 10−4,
R= 500, q= 20. The amplitude of 〈B2

〉 has been multiplied by 5× 103 in order that the
two can be represented clearly on one plot.

(a) (b)

FIGURE 14. (Colour online) Density plots of vertical velocity close to the upper boundary
(z=0.95), for (a) the kinematic and (b) the dynamic regime, for E=10−4, R=500, q=20;
light (dark) tones correspond to upward (downward) moving fluid. The plots are scaled
independently.

Even though one is a strong field solution and the other a weak field solution, from
a magnetic point of view they look the same. We shall return to this point in the
following subsection. We note here that in order to make the comparison easier, we
are showing only a part of the horizontal plane for the strong field solution with the
same aspect ratio (λ= 2) as the weak field solution of figure 9.

Figure 17 shows the velocity decomposition (4.1), analogous to figure 11 for
the weak field solution. As seen in the velocity spectra, this figure gives a visual
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FIGURE 15. Horizontal power spectra of the kinetic energy for the kinematic regime
(solid line) and dynamic regime (dashed line) for the strong field dynamo: E = 10−4,
R= 500, q= 20, λ= 5. The spectra were computed over the interior regions (0.1< z< 0.9)
of the simulations and time averaged.

(a) (b)

FIGURE 16. (Colour online) Density plots of (a) the vertical current near the upper
boundary (z = 0.95) and (b) the vertical magnetic field at the midplane for the strong
field case of E = 10−4, R= 500, q= 20. Note that in order to make a comparison with
figure 9, only a 2 × 2 section of the domain is shown; the simulation has aspect ratio
λ= 5.

confirmation that in the strong field solutions the kinematic and saturated velocities
are dramatically different. Any prominent feature in u can be seen to originate either
from uT or uM. Therefore, whereas in the weak field case, u and uT are nearly equal,
here uT and uM both contribute significantly to the full velocity. In fact, for smaller
values of E, it is possible to find strong field solutions in which the contribution to
the full velocity from uM becomes the dominant one. This is illustrated in figure 18,
which shows the velocity decomposition for a strong field solution with E = 10−5,
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(a) (b) (c)

FIGURE 17. (Colour online) Density plots, scaled consistently, of the vertical components
of (a) the full velocity, (b) the thermal velocity and (c) the magnetic velocity for the
strong field case of E = 10−4, R = 500, q = 20. The time and location (z = 0.95) are
identical to those of the plot of the vertical component of the current in figure 16.

(a) (b) (c)

FIGURE 18. (Colour online) Density plots at z= 0.95, scaled consistently, of the vertical
components of (a) the full velocity, (b) the thermal velocity and (c) the magnetic velocity
for the ‘super strong’ field case of E= 10−5, R= 103, q= 10.

R = 103, q = 10. It is striking that here u and uM are virtually identical, the very
opposite of the weak field case. The reason for this is that strong field solutions
require both a strong rotational constraint and also sufficiently vigorous convection
in order to generate a magnetic field that can break that constraint. As E becomes
smaller, we anticipate therefore that the magnetically-driven component of the velocity
will become more and more dominant.

4.3. Hysteresis and solution branches
In the previous subsections we have identified two types of solutions: weak and strong.
Two issues naturally arise. One is the relation between these two types of solution
as parameters are varied. The other, given the fact that the strong field solutions are
clearly of finite amplitude, is whether these solutions exhibit hysteretical behaviour.
We shall address these points by considering how the nature of the solutions changes
for a fixed value of E (E= 10−4) as R is varied; physically this corresponds to fixing
the rotation rate and varying the intensity of the convective driving.

As a starting point, we know that at R = 500 there is a strong field solution. By
changing R in small steps, and keeping q fixed at q = 10, we are able to examine
how the strong field solution changes as R is both increased and decreased. The
results are summarised in figure 19, which plots the root mean square value of the
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FIGURE 19. Time-averaged values of 〈B2
〉

1/2 versus R, with E= 10−4, q= 10. The
dynamo fails for R . 330; the zero field solution is unstable for R & 420.

magnetic field strength versus R; each asterisk corresponds to an actual simulation
that used a neighbouring simulation as initial condition. Solutions of finite amplitude
can be traced back until R ≈ 330; for smaller values of R the field decays to zero
and no dynamo solutions can be found. Furthermore, we have investigated the onset
of dynamo action from infinitesimal magnetic field perturbations; for this value of
q, we find instability for R & 420. Taken together, these results suggest a bifurcation
diagram of the form sketched in figure 20(a). For R<R0 there is no dynamo solution;
for R0 < R< R3, dynamo solutions can be found only if the amplitude of the initial
perturbation is sufficiently large; and for R > R3 all initial conditions are unstable
to dynamo action. We anticipate that the trivial solution is connected to the stable
finite amplitude branch via a subcritical branch of unstable solutions. This picture
should be contrasted with another possible bifurcation diagram often discussed in the
dynamo literature (see Roberts 1978; Fautrelle & Childress 1982; Roberts & Soward
1992; St-Pierre 1994), in which there is a supercritical branch of stable solutions
that intersects the unstable subcritical branch, as sketched in figure 20(b). In this
case, there is a range of R (R1 < R< R2) in which there exist two non-trivial stable
solutions. This leads naturally to the classification of solutions in terms of weak and
strong field branches. In our system, interpreted as in figure 20(a), there is only one
non-trivial stable branch. The distinction we make between weak and strong field
solutions is in terms of how the saturated velocity relates to the kinematic velocity.
Recently, the scenario described in figure 20(b) has been verified by the numerical
investigation by Dormy (2016) of dynamo action in a rapidly rotating spherical
shell with finite inertia. This leads us to conjecture that the absence of the stable
supercritical branch in our system is related to the absence of inertia. That being the
case, it is reasonable to expect that the extent of the supercritical weak branch, or,
equivalently, the distance between R1 and R2, decreases with decreasing E.

Given that in our system there appears to be only one branch of non-trivial solutions
up to moderate values of R, it is natural to ask what is the relation between our strong
and weak field solutions. In particular, is there a gradual transformation from one to
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(a) (b)

FIGURE 20. Sketches of the amplitude of the magnetic field versus R; stable (unstable)
solutions are denoted by solid (dashed) lines. In (a), infinitesimal magnetic fields are stable
for R<R3. All stable dynamo solutions lie on the strong field branch, at finite amplitude,
and these can persist down to R=R0. In (b), a strong field branch again exist for R>R0.
Now though, infinitesimal magnetic fields are stable only for R<R1; for R1<R<R2 there
is also a stable weak field branch.

the other as R is increased? The evidence suggests that this is indeed the case. As
R increases, the velocity changes gradually between the strong field and weak field
solutions. However, as noted already, the magnetic field remains essentially unchanged.
Thus, in some sense, the system produces only one type of dynamo, namely that
in which the influence of rotation is minimised. At high values of R, the influence
of rotation is small, and so this is achieved by a slight increase in spatial scale in
the velocity and where u≈ uT . By contrast, at smaller values of R, the influence of
rotation is strong; dynamo action succeeds by a dramatic increase in spatial scale in
the velocity, driven almost totally by the magnetic component uM.

In order to gain more physical insight into the nature of this system it is instructive
to consider the simpler problem of rotating convection in the presence of an imposed
magnetic field. It is well known that the effect of rotation is always to stabilise the
system, in the sense that the critical value of the Rayleigh number for the onset of
convection increases with increasing rotation. The same is true for a magnetic field, in
the absence of rotation. However, as noted originally by Chandrasekhar (1961), in the
presence of rotation a magnetic field can actually be destabilising, in the sense that the
critical value of Ra decreases with increasing field strength, up to some point. Similar
results apply to rotating convection in the nonlinear regime; for a fixed value of Ra
the convective efficiency can increase with imposed field strength, again, up to some
point (Stellmach & Hansen 2004). These considerations motivate us to conceive of a
gedankenexperiment in which, for fixed rotation, and for each Rayleigh number, the
strength of the imposed magnetic field is tuned such that the convection is as efficient
as possible, as measured by the Nusselt number, say. If one were then to plot these
maximised Nusselt numbers as a function of Ra, we would envisage a plot reminiscent
of figure 19, with a monotonic increase of Nusselt number with Ra. There will be a
value of Ra below which convection is impossible, no matter what the strength of the
magnetic field; above that, there will be a range of Ra for which convection will be
possible only if a magnetic field is present; and above that, there will be a range of
Ra for which convection would have occurred anyway, but for which the efficiency is
enhanced by the magnetic field. Eventually, of course, at very high Ra, the magnetic
field will cease to have a beneficial effect. The important thing to note is that at
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moderate values of Ra, the effect of the optimal magnetic field is always to make the
system more supercritical. In our dynamo model, the effect is the same except that
the magnetic field is not externally imposed, but is self-determined. Thus the dynamo
seems to operate by removing as much of the rotational constraint as possible; at high
R there is little constraint to remove, whereas at low values of R the constraint to be
removed is significant.

The computations leading to figure 19 are all performed at the fixed value of q= 10.
However, the weak and strong field solutions exhibited in §§ 4.1 and 4.2 have different
values of q (q= 1 and q= 20 respectively). These choices were motivated chiefly by
numerical considerations, since dynamos driven by very vigorous convection and with
high values of q becomes prohibitively expensive. Hence it is natural to decrease the
value of q as R increases. However, such variations will not influence the fundamental
nature of the solutions; for example, if we had run the case of § 4.1, but with q= 20,
the solution would still be a weak field solution, but with magnetic boundary layers
that would be extremely expensive to compute.

5. Force balance considerations
Having identified two different mechanisms of saturation, leading to weak and

strong solutions, it is important to determine the nature of the force balance in each
case. There are four dynamical ingredients: buoyancy, the Coriolis force, viscous
stresses and magnetic forces. Following common practice, we shall refer to these by
A (for Archimedean), C, V and M. For purely hydrodynamic convection, the balance
is between buoyancy, Coriolis and viscous forces (VAC); simple considerations of
vorticity production lead to the estimate that the critical scale of convection ` scales
as `∼E−1/3. When the dynamo operates, there are more possibilities: the key question
is whether the resulting force balance remains as VAC, or whether the magnetic field
is important, in which case the balance can be either MAC or VMAC. In general, it
is not straightforward to classify the solution in terms of these categories. However,
here, because we are dealing with an inertialess system, we can make progress by
again exploiting the decomposition (4.1).

By definition, our weak field solutions are ones for which the kinematic and
dynamic velocities are similar. As such, since the hydrodynamic balance is VAC,
then so must be the balance in the MHD regime. We have already argued in § 4 that
the magnetic field enters only in a very subtle way in order to saturate the dynamo
growth. The more complicated issue is to determine what happens in the case of
the strong field solutions. Clearly magnetic forces enter the picture in a significant
manner. We have already noted that for small E the magnetic velocity uM is almost
identical to the full velocity, and the latter has a characteristic horizontal scale that is
much larger than that in the corresponding hydrodynamic regime. Inspection of (4.3)
suggests that to a first approximation, magnetic forces almost balance the Coriolis
force, so that the rotational constraints are greatly reduced. However, it is rather
difficult to have convection without some buoyancy and so (4.2) must come into play.
Indeed it does, but with larger effective values of R and E for the given rotation rate,
leading to solutions similar to the weak field cases obtained at much lower rotation
rates. One could therefore argue that the strong field solutions could be classified as
MC–VAC; in other words, the strong field solutions organise themselves to resemble
weak field solutions by doing whatever it takes to reduce the influence of the Coriolis
force.

We have made progress through the introduction of the velocities uT and uM,
necessitating the solution of an auxiliary equation, either (4.2) or (4.3). More typically,
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the approach is to solve the governing MHD equations (2.1)–(2.4), and, for those
cases in which there is reason to believe that inertia is negligible, to address the issue
of force balance by the application of what is known as Taylor’s constraint (Taylor
1963). If inertia can be neglected, then the momentum equation reduces to (2.6).
Taking the z-component of the curl of (2.6) then gives

∂w
∂z
= (∇× (J×B)) · ez + E(∇2ω) · ez, (5.1)

where the vorticity ω=∇ × u. On integrating from z= 0 to z= 1, the Coriolis term
(i.e. the left-hand side) vanishes as a result of the impermeable boundary; this leads
to the exact result ∫ 1

0
(∇× (J×B)) · ez dz=−E

∫ 1

0
(∇2ω) · ez dz. (5.2)

In the limit of vanishing E, assuming that the vorticity remains sufficiently regular, the
integral on the right-hand side vanishes. This gives Taylor’s constraint in the form∫ 1

0
(∇× (J×B)) · ez dz= 0, (5.3)

which has to be satisfied pointwise for each value of x and y (Jones & Roberts 2000).
A dynamo system that generates a solution with strong magnetic field, no inertia and
negligible viscous stresses (i.e. MAC balance) must satisfy the constraint (5.3). Thus
it can be used to test whether a solution with these properties has been found. It is
important to realise that the vanishing of the integral is due to cancellation and not
simply to vanishing of the integrand. This is typically addressed by normalising the
integral through consideration of the ‘Taylorisation’ function

T (x, y)=

∫ 1

0
(∇× (J×B)) · ez dz∫ 1

0
|(∇× (J×B)) · ez| dz

. (5.4)

Note, given the exact result (5.2), one might consider the alternative normalisation
defined by

T̂ =

∫ 1

0
∇

2ωz dz∫ 1

0
|∇

2ωz| dz
. (5.5)

If |T (x, y)|�1 for all values of x and y then the solution should have the properties
listed above. In our case, we know that the solutions are not affected by inertia and
that the magnetic field plays a significant role in our strong field solutions. We could
thus use (5.4) as a measure of the importance of viscous stresses in determining the
solution. Figure 21 shows the results of calculating T (x, y), at two different times, for
the strong field solution with E= 10−5, R= 103, q= 10, for which u, uT and uM are
shown in figure 18. Clearly T (x, y) fluctuates very rapidly on small scales and attains
O(1) values over much of the domain. What therefore should one make of this?
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(a) (b)

FIGURE 21. (Colour online) Density plots of the Taylorisation function T (x, y) for the
case of E= 10−5, R= 103, q= 10, λ= 2. The panels correspond to two different times.

Taken at face value, this result suggests that our strong field solution is not in
MAC balance, and hence that viscous stresses must play a role; a similar conclusion
was reached by Jones & Roberts (2000). Indeed, this is not inconsistent with our
idea that the strong field solution is MC–VAC. Having said that, it is perhaps useful
to introduce a cautionary note. The calculation of T or T̂ is tricky and prone to the
introduction of high frequency errors. The evaluation of T involves a product and two
derivatives; the former introduces aliasing errors and the latter amplifies numerical
errors. Alternatively, the evaluation of T̂ does not involve a product, but does
introduce a further derivative of the primitive variable u. To give a measure of the
problems involved, we note that the three derivatives acting on the highest frequencies
give rise to an amplification factor of O(107) for the run shown in figure 18. Bearing
this in mind, it natural to ask if the fine structure and rapid oscillations present
in figure 21 might not simply be a numerical artefact. Partly to address this issue
we have increased the resolution of the solution to 1024 × 1024 × 257 prior to the
calculation of T (x, y). This was achieved by interpolating the solution to a finer
grid and integrating the evolution equations for 106 steps at the higher resolution.
The results have remained largely the same, which leads us to conclude that the
lack of Taylorisation as evidenced in figure 21 is physical and not a numerical
artefact. However, for simulations that are only marginally resolved, the possibility
of numerical contamination should be taken into consideration before drawing any
conclusion.

6. Concluding remarks

We have considered dynamo action in thermally driven convection under the
influence of rotation but with no inertia. Our primary motivation for considering
an inertialess system is that it allows a useful decomposition of the velocity into
thermal and magnetic components, which can be used to gain valuable insights
into the processes that lead to dynamo saturation. We have identified two types
of dynamo solution, weak and strong, based on how close the saturated velocity
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remains to the kinematic one. For the weak field solutions, the saturated velocity
remains close to the kinematic velocity, with just a slight increase in scale and a
slight decrease in convective efficiency. The velocity u in the saturated regime bears
a remarkable similarity to the thermal velocity uT ; the role of uM is to introduce very
subtle changes, sufficient to halt the dynamo growth. By contrast, for the strong field
solutions, the saturated velocity bears no resemblance to the kinematic flow. There is
a marked increase in scale and the convective efficiency increases substantially (the
heat flux increases by 50 % for the case shown in figure 14). As E decreases, the
velocity u becomes closer to the magnetic component uM.

Remarkably, the magnetic field for the weak and strong field solutions look very
similar. In other words, although the method by which dynamo action is achieved is
very different, the final product is essentially the same. This has led us to speculate
that weak and strong field solutions lie on the same dynamo branch. This is a finite
amplitude branch of solutions, presumably connected to the non-dynamo solution
by an unstable, subcritical branch, as sketched in figure 20(a). We have found no
evidence for a finite amplitude, supercritical branch of solutions. This should be
contrasted with the traditional picture in which both branches coexist, as shown in
figure 20(b). We conjecture therefore that the nature of the bifurcation diagram is
related to the importance of inertia. In the absence of rotation, for which inertia is
important, we believe that only the lower branch exists; by contrast, in our system,
when rotation is dominant and inertia is negligible, there is no lower branch of
solutions. It is only in cases in which rotation is important but inertia still plays
a role that the upper and lower branches can coexist. This would go some way
towards explaining why it has been difficult to find the upper branch of solutions by
simulating the full system and reducing the effect of inertia simply by reducing E (see,
for example, Soderlund, King & Aurnou 2012; King & Buffett 2013). The problem
is that, in the full system, E probably has to be extremely small before the upper
branch manifests itself. This can, to some extent, be circumvented by considering
the case of high Prandtl number; in the current study, Pr is formally infinite, inertia
drops out of the equation, and the upper branch comes shining through. It is however
of interest to note that in the plane layer dynamo simulations of Stellmach & Hansen
(2004), a transition to large-scale convection occurs at low Ekman number. Indeed,
the horizontal convection scale increases until it is comparable with the size of
the domain, which for computational reasons was constrained to be fairly small.
Possibly because of this restriction, the large-scale convective flow is not capable
of maintaining the strong field indefinitely; the field decays and the flow reverts to
being small scale. Field amplification can then restart, leading eventually to another
transition to large-scale convection. Thus the amplitude of the generated magnetic
field fluctuates strongly in time.

It is important to make the distinction between weak and strong field branches and
what we refer to as weak and strong field solutions. It is slightly ironic that our weak
and strong field solutions lie on the one branch that is traditionally called the strong
field branch. Our nomenclature addresses the issue of the force balance that leads to
dynamo saturation rather than the branch on which the solutions lie. As such, we
found that our weak solutions may be characterised as VAC, and our strong field
solution as MC–VAC, in which the principal role of the magnetic field is to remove
rotational constraints.

The fact that both our weak and strong solutions have viscous stresses playing a
role raises the interesting question of what happens to these inertialess solutions as E
is decreased to yet smaller values. This is not only of intrinsic mathematical interest,
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but is pertinent to the application of some of these ideas to planetary dynamos, which
are believed to operate at very small values of E (see, for example, Dormy 2016;
Hughes & Cattaneo 2016). This might be usefully addressed through consideration
of how the bifurcation diagram in figure 20(a) might change as E is decreased.
We recall that the solutions in R0 < R < R3 are definitely strong, whereas those
with R � R3 are weak. As E is decreased, the value of R3, denoting the onset of
dynamo action from infinitesimal perturbations, will increase. This implies that by
decreasing E, a weak field solution would be transformed into a strong field solution.
A more fundamental issue is to address what happens to R0 as E is decreased.
Here there are two physically interesting possibilities. One is that the location of R0
remains unchanged. This would imply that the range of values of R for which strong
field solutions exist continues to increase, and that any finite amplitude strong field
solution cannot be stabilised by increasing the rotation. Presumably, this would be
the case if the solutions were in MAC balance; the value of E is irrelevant and the
solution continues to operate for arbitrarily small values of E. The other possibility
is that R0 increases as E decreases, but at a rate no faster than that of R3. Then the
domain of existence of strong field solutions increases, but any strong field solution
will ultimately be stabilised at sufficiently high rotation. It would be of tremendous
interest to distinguish between these possibilities. However, we admit that this would
be computationally extremely challenging. To give an idea of the scale of the problem,
decreasing E from 10−4 to 10−5 in our simulations led to over an order of magnitude
increase in computational requirements.
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Appendix A
Here we provide the formulation for the solution of the velocity u from the

diagnostic equation (2.6) together with the solenoidal constraint on the velocity. To
simplify notation, let us write (2.6) as

ez × u=−∇p+R+ E∇2u, (A 1)

where R= J×B+ Rθez. Taking the divergence of (A 1), using ∇ · u= 0, gives

∇ · (ez × u)=−∇2p+ iQ, (A 2)

where iQ = ∇ · R. In terms of the components of the velocity u = (u, v, w), this
becomes

−
∂v

∂x
+
∂u
∂y
=−∇

2p+ iQ. (A 3)
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The aim is to solve (A 3) for p and then to substitute for p into (A 1) in order to
solve for u and v.

As discussed in § 2, for computational purposes the variables are represented
spectrally in all three directions. Thus we may write, for example,

u(x, y, z, t)=
∑

kx,ky,kz

û(kx, ky, kz, t) exp(i(kxx+ kyy+ kzz)), (A 4)

where the kz summation is chosen to respect the boundary conditions at z=±1. It is
therefore convenient to solve for the individual Fourier components. On dropping the
hats, equation (A 3) can be written as

p=
i(−kxv + kyu−Q)

k2
, (A 5)

where k2
= k2

x + k2
y + k2

z . On substitution into (A 1), the x- and y-components lead to
two linear equations for u and v, which may be solved to give

u=
−Q(Ekxk2

+ ky)+ (Ek4
+ kxky)Rx + (k2

y + k2
z )Ry

k2
z + E2k6

, (A 6)

v =
−Q(Ekyk2

− kx)− (k2
x + k2

z )Rx + (Ek4
− kxky)Ry

k2
z + E2k6

, (A 7)

where we have written R = (Rx, Ry, Rz). (As required, equations (A 6) and (A 7) are
symmetric under the transformation u→−v, v→ u, kx→−ky, ky→ kx, Rx→−Ry,
Ry→ Rx.) Finally, we use ∇ · u= 0 to solve for w, giving

w=
EQk2(k2

x + k2
y)− (Ekxk4

− kyk2
z )Rx − (Ekyk4

+ kxk2
z )Ry

kz(k2
z + E2k6)

. (A 8)
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