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An adequate semigroup S is called ample if ea = a(ea)∗ and ae = (ae)†a for all a ∈ S
and e ∈ E(S). Inverse semigroups are exactly those ample semigroups that are
regular. After obtaining some characterizations of finite ample semigroups, it is
proved that semigroup algebras of finite ample semigroups have generalized
triangular matrix representations. As applications, the structure of the radicals of
semigroup algebras of finite ample semigroups is obtained. In particular, it is
determined when semigroup algebras of finite ample semigroup are semiprimitive.

1. Introduction

The relations L∗ and R∗ on a semigroup S are generalizations of the familiar Green
relations L and R. Two elements a and b in S are said to be L∗-related if and only if
they are L-related in some oversemigroup of S; the relation R∗ can be defined dually.
A semigroup is abundant if each L∗-class and each R∗-class contains at least one
idempotent, and adequate if it is an abundant semigroup whose set of idempotents
forms a semilattice. In [4], it is pointed out that each L∗-class and each R∗-class of
an adequate semigroup contains precisely one idempotent. For convenience, we use
a† (a∗) to denote the idempotent in the R∗-class (L∗-class) containing a, and write
the set of idempotents of S as E(S). An adequate semigroup S is called ample if
for every a ∈ S and e ∈ E(S), ea = a(ea)∗ and ae = (ae)†a. Ample semigroups
were formerly called type-A semigroups. Inverse semigroups are ample semigroups,
and all regular elements of an ample semigroup form an inverse subsemigroup [4].
It is interesting that any (finite) ample semigroup can be embedded into some
(finite) inverse semigroup (see the proof of [3, proposition 1.2] and [6]). The study
of ample semigroups and their generalizations goes back to the 1960s, and since then
a number of papers on this topic have appeared. The structure of ample semigroups
and related inverse semigroups were investigated by Lawson in [14,16]. Recently, it
has been observed that these classes of semigroups are closely related to topics in
theoretical computing [10].

Inverse semigroup algebras are a class of semigroup algebras that has been widely
investigated. In [18], Munn considered the semiprimitivity of combinatorial inverse
semigroup algebras. He proved that the semigroup algebra of a combinatorial inverse
semigroup over a field is semiprimitive (that is, semisimple in the sense of Jacob-
son). This shows that the free inverse semigroup must be semiprimitive. In [20],
Munn investigated nil ideals in inverse semigroup algebras. It was shown that if S
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is an inverse semigroup and F is a field of characteristic 0 or a prime that is not the
order of an element in a subgroup of S, then F [S] has no non-zero nil ideals. More
results on inverse semigroup algebras were collected in a survey by Munn [19].
For the related results on semigroup algebras, the reader is referred to [12, 21].
Steinberg [22,23] used Möbius functions to study finite inverse semigroup algebras.
We found that Möbius functions are very useful in the study of finite inverse semi-
group algebras. Recently, Guo [7] researched the semigroup algebras of finite locally
inverse semigroups, which include finite inverse semigroups as proper subclass, by
using Möbius functions.

Ample semigroups are generalizations of inverse semigroups. It is natural to probe
ample semigroup algebras. In this paper we shall probe semigroup algebras of finite
ample semigroups. We proceed as follows: after listing some known results, we give
some properties of finite ample semigroups. In § 4, we prove that any semigroup
algebra of finite ample semigroups has generalized triangular matrix representa-
tions. Finally, we consider the structure of Jacobson radicals of semigroup algebras
of finite ample semigroups. In particular, it is proved that if S is a finite ample
semigroup and R is a commutative ring with identity, then R[S] is semiprimitive if
and only if

(i) S is an inverse semigroup and

(ii) for all maximum subgroups G of S, R[G] is semiprimitive.

Throughout this paper we use the notation and terminologies from [2, 5]. For
other definitions, the reader is referred to [11].

2. Preliminaries

In this section we give some results on semigroups and semigroup algebras.

2.1. Primitive semigroups

We shall provide some known results on semigroups, in particular those about
primitive abundant semigroups. These results will be repeatedly used in the follow-
ing.

To begin with, we recall some known facts about L∗ and the dual for R∗.

Lemma 2.1 (Fountain [5]). Let S be a semigroup and a, b ∈ S. Then the following
statements are equivalent:

(i) a L∗ b;

(ii) for all x, y ∈ S1, ax = ay if and only if bx = by.

Corollary 2.2 (Fountain [5]). Let S be a semigroup and a, e2 = e ∈ S. Then the
following statements are equivalent:

(i) a L∗ e;

(ii) ae = a and, for all x, y ∈ S1, ax = ay implies that ex = ey.
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It is well known that L∗ is a right congruence, while R∗ is a left congruence. In
general, L ⊆ L∗ and R ⊆ R∗. But when a and b are regular, a L b if and only if
a L∗ b. Following [5], we define D∗ as the smallest equivalence on S containing L∗

and R∗, and H∗ as the intersection of L∗ and R∗. Note that L∗ and R∗ do not, in
general, commute, so that we may not have D∗ = L∗ ◦ R∗.

The following lemma, which will be used without proof, is due to Fountain [4].

Lemma 2.3. Let S be an adequate semigroup and a, b ∈ S. Then (ab†)† = (ab)†

and (a∗b)∗ = (ab)∗. Moreover, if e ∈ E(S), then ea† = (ea)† and a∗e = (ae)∗.

Let S be a semigroup and a ∈ S. The L∗-class containing a will be denoted by
L∗

a or L∗
a(S) in case of ambiguity. The corresponding notation will be used for the

classes of the other relations. We now define left (right) ∗-ideal of S to be a left
(right) ideal I of S such that L∗

a ⊆ I (R∗
a ⊆ I) for all a ∈ I. A subset I of S

is a ∗-ideal of S if it is both a left ∗-ideal and a right ∗-ideal. We note that if S
is regular, then every left (right, two-sided) ideal of S is a left (right, two-sided)
∗-ideal. As pointed out in [5], there exists a smallest left (right, two-sided) ∗-ideal
L∗(a) (R∗(a), J∗(a)) containing a. We shall call L∗(a) (R∗(a), J∗(a)) the principal
left ∗-ideal (principal right ∗-ideal, principal ∗-ideal) generated by a. It is clear
that L∗(a) ⊆ J∗(a) and R∗(a) ⊆ J∗(a). In [5], Fountain proved that, for a, b ∈ S,
a L∗(R∗) b if and only if L∗(a) = L∗(b) (R∗(a) = R∗(b)). We define the relation on
S by the rule that a J ∗ b if and only if J∗(a) = J∗(b). In general, L∗,R∗,D∗ ⊆ J ∗.

An idempotent e of S is called primitive if for all f ∈ E(S), f � e implies that
e = f or f = 0 if S has 0. S is called primitive if idempotents of S are all primitive.

A semigroup S with a zero element 0 is called 0-J ∗-simple if the only ∗-ideals of
S are S, {0}, and S2 �= {0}. It is easy to see that S is 0-J ∗-simple if and only if
S2 �= {0}, and {0}, S \ {0} are the only J ∗-classes.

Let I, Λ be non-empty sets and let Y be a non-empty set indexing partitions
P (I) = {Iγ : γ ∈ Y }, P (Λ) = {Λγ ; γ ∈ Y } of I and Λ, respectively. For each
pair (α, β) ∈ Y × Y , let Mαβ be a set such that, for each α, Mαα = Tα is a
monoid, and for α �= β either Mαβ = ∅ or Mαβ is a (Tα, Tβ)-bisystem. We let 0
be a symbol not in any Mαβ . By the (α, β)-block of an I × Λ matrix, we mean
those (i, λ) positions with i ∈ Iα, λ ∈ Λβ . The (α, α)-blocks are called the diagonal
blocks of the matrix. We denote by T the set consisting of the zero I × Λ matrix
together with all I × Λ matrices with a single non-zero entry, where a non-zero
entry in the (α, β)-block is a member of Mαβ . Following the usual convention,
A = (a)iλ will denote the I × Λ matrix with entry a in the (i, λ) position and 0
elsewhere. For any A = (a)iλ, B = (b)jµ ∈ T we define a multiplication ◦ on T by
A ◦ B = APB = (apλjb)iµ, where the sandwich matrix P = (pλi) is a Λ × I matrix
where a non-zero entry in the (α, β)-block of P is a member of Mαβ . It is easy to
check that T is a semigroup, which we denote by M(Mαβ ; I, Λ, Y ; P ) and call a
blocked Rees matrix semigroup. By a primitive abundant (PA) blocked Rees matrix
semigroup we mean one which satisfies the following additional conditions.

(C) If a, a1, a2 ∈ Mαβ , b, b1, b2 ∈ Mβγ , then ab1 = ab2 implies b1 = b2; a1b = a2b
implies a1 = a2.

(U) For each α ∈ Y and each λ ∈ Λα (i ∈ Iα) there is a member i of Iα (λ of Λα)
such that pλi is a unit in Mαα.
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(R) If Mαβ , Mβα are both non-empty where α �= β, then aba �= a for all a ∈ Mαβ ,
b ∈ Mβα.

We observe that condition (C) forces each Tα to be a cancellative monoid and
each Mαβ to be a strongly torsion-free (Tα, Tβ)-bisystem. Condition (R) is imposed
to ensure that a matrix with a non-zero entry in a non-diagonal block cannot be
a regular element of the matrix semigroup. When |Γ | = 1 and G := Mαα is a
group, M(Mαβ ; I, Λ, Γ ; P ) is the usual Rees matrix semigroup over the 0-group
M0

αα [11]. As usual, we denote this kind of PA blocked Rees matrix semigroup by
M0(G; I, Λ; P ).

The following lemma gives the properties of PA blocked Rees matrix semigroups.

Lemma 2.4 (Fountain [5, proposition 2.4]). Let S = M(Mαβ ; I, Λ, Γ ; P ) be a PA
blocked Rees matrix semigroup. Then we have the following.

(i) A non-zero element (a)iλ of S is idempotent if and only if there is an α ∈ Γ
such that (i, λ) ∈ Iα × Γα and a is a unit in Tα with inverse pλi.

(ii) The non-zero elements (a)iλ and (b)jµ of S are R∗-related if and only if i = j.

(iii) The non-zero elements (a)iλ and (b)jµ of S are L∗-related if and only if λ = µ.

(iv) The non-zero idempotents e = (a)iλ, f = (b)jµ of S with (i, λ) ∈ Iα ×
Λα, (j, µ) ∈ Iβ × Λβ are D-related if and only if α = β.

(v) The non-zero element (a)iλ of S is regular if and only if there is an α ∈ Γ
such that (i, λ) ∈ Iα × Λα and a is a unit in Tα.

Lemma 2.5 (Fountain [5, proposition 5.5]). For a semigroup S with a zero element,
the following conditions are equivalent:

(i) S is a primitive adequate semigroup;

(ii) S is isomorphic to M(Mαβ ; I, I, Γ ; P ), a PA blocked Rees matrix I ×I matrix
semigroup, where the sandwich matrix P is diagonal and pii = eα for all
i ∈ Iα, α ∈ Γ .

A semigroup S with a zero element 0 is called a weak Brandt semigroup when
the following conditions are satisfied:

(B1) if a, b, c ∈ S such that ac = bc �= 0, then a = b;

(B2) if a, b, c ∈ S such that ab �= 0 and bc �= 0, then abc �= 0;

(B3) for each a ∈ S there is e ∈ S such that ea = a and f ∈ S such that af = a;

(B4) if e and f are non-zero idempotents of S, there are non-zero idempotents
e1, e2, . . . , en ∈ S with e1 = e, en = f such that, for each i = 1, 2, . . . , n − 1,
one of eiSei+1 and ei+1Sei is non-zero.

It is evident that weak Brandt semigroups are generalizations of Brandt semi-
groups. In precis, a Brandt semigroup is just a weak Brandt semigroup which is reg-
ular. In [4], it is pointed out that a semigroup is a weak Brandt semigroup if and only
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if it is isomorphic to some PA blocked Rees matrix semigroup M(Mαβ ; I, I, Y ; P )
in which

1. the sandwich matrix P is diagonal,

2. for every i ∈ Iα, α ∈ Γ , we have pii = eα (here eα is the identity of Mα) and

3. for each pair (α, β) ∈ Γ × Γ , there is a finite sequence α(1), . . . , α(n) of
members of Γ such that α = α(1), β = α(n) and for each i = 1, 2, . . . , n − 1
at least one of Mα(i),α(i+1), Mα(i+1),α(i) is non-empty.

In fact, S is a weak Brandt semigroup if and only if it is a 0-J ∗-simple primitive
adequate semigroup [5, corollary 5.6].

For our purpose, we need the following known result due to [17].

Lemma 2.6 (Liu and Yao [17, theorem 2.2]). A weak Brandt semigroup S is finite
if and only if S is isomorphic to M(Mαβ ; I, I, Y ; P ), a PA blocked Rees matrix
semigroup in which I is finite, Γ is a finite well-ordered set and, for any α, β ∈ Y ,

(i) Mαα is a finite group,

(ii) |Mαβ | � +∞,

(iii) if Mαβ �= ∅, then α � β,

(iv) the sandwich matrix P is diagonal and pii = eα for all i ∈ Iα, α ∈ Γ .

Assume {Sα : α ∈ A} is a family of semigroups each with a zero element. We
denote all zero elements by the same symbol, ‘0’, and form the set S, which consists
of 0 together with the disjoint union of all Sα \{0}. Clearly, S becomes a semigroup
if we define the product of x and y in S to be their product in Sα if they are from
the same semigroup Sα and to be 0 otherwise. Thus, SαSβ = {0} if α �= β. We call
the semigroup S the 0-direct union of the semigroups Sα with α ∈ A.

Fountain pointed out that a primitive abundant semigroup with a zero element is
a 0-direct union of primitive abundant 0-J ∗-simple semigroups (see the arguments
after theorem 4.4 in [5, p. 19]). This shows that a primitive adequate semigroup with
a zero element is a 0-direct union of 0-J ∗-simple adequate semigroups. Associated
with [5, corollary 5.6], we immediately have the following lemma.

Lemma 2.7. A semigroup is a primitive adequate semigroup if and only if it is the
0-direct union of weak Brandt semigroups.

Based on lemmas 2.5–2.7, the following corollary is immediate.

Corollary 2.8. A semigroup S is a finite primitive adequate semigroup if and
only if S is isomorphic to M(Mαβ ; I, I, Y ; P ), a PA blocked Rees matrix semigroup
in which I is finite, Γ is a finite well-ordered set and, for any α, β ∈ Γ ,

(i) Mαα is a finite group,

(ii) |Mαβ | � +∞,

(iii) if Mαβ �= ∅, then α � β,

(iv) the sandwich matrix P is diagonal and pii = eα for all i ∈ Iα, α ∈ Γ .

https://doi.org/10.1017/S0308210510000715 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000715


376 X. Guo and L. Chen

2.2. Semigroup algebras

Now, we introduce some notation related to semigroup algebras.
Let S be a semigroup. We use R[S] to denote the semigroup algebra of the

semigroup S over R. In general, if I is a subset of S, we shall denote by R[I] the
set of R-linear combinations of elements in I, that is, R[I] is a free R-module with
the I as a basis, so each element of R[I] is a finite summation of the form∑

x∈I

rxx, rx ∈ R.

In particular, if I1 and I2 are subsets of S, then R[I1 ∩ I2] = R[I1] ∩ R[I2]. If
S is a semigroup with a zero element θ, then R[θ] is an ideal of R[S]. We set
R0[S] = R[S]/R[θ] and call it the contracted semigroup algebra of S over R. If
S has no zero, we define R0[S] = R[S]. Clearly, an element a of R0[S] can be
represented by finite linear combinations a =

∑
rss of elements s ∈ S \ {θ}. The

support of a ∈ R0[S], denoted by supp(a), is the set {s ∈ S \ {θ} | rs �= 0}.

3. Finite ample semigroups

In this section we investigate finite ample semigroups.
Let S be an abundant semigroup and a, b ∈ S. Define

a � b ⇐⇒ there exist e, f ∈ E(S) such that a = eb = bf.

Then � is a partial order on S (see [15]).

Lemma 3.1. Let S be an ample semigroup and a, b ∈ S.

(i) a � b if and only if a = ba∗ if and only if a = a†b.

(ii) For any u � ab, there exist x � a and y � b such that u = xy, x ∈ R∗
u and

y ∈ L∗
u.

Proof. (i) We only prove the first part because the proof of the second part is
dual to the first. If a � b, then there exists e ∈ E(S) such that a = eb; hence,
a = b(eb)∗ = ba∗ since S is ample. For the converse, we assume a = ba∗. Then
a = ba∗ = (ba∗)†b, since S is ample. By definition, a � b.

(ii) If u � ab, then, by (i), u = u†(ab) = (ab)u∗ = (u†a)(bu∗). By the first equality,
u = u†a†(ab) = a†u and so, by lemma 2.3, u† = (a†u)† = a†u†. Thus, u†a R∗ u†a† =
u† R∗ u. On the other hand, by (i), u†a � a. Dually, bu∗ � b and bu∗ L∗ u.

Proposition 3.2. Let S be an ample semigroup. Then � is compatible with the
multiplication.

Proof. Let a, b, c ∈ S and a � b. Since S is an ample semigroup, we have a = a†b,
so

ac = a†bc = a†(bc)†bc = (a†bc)†bc = (ac)†bc,

thereby ac � bc; similarly, ca � cb. Thus, � is compatible with the multiplication.
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Proposition 3.3. If S is a finite ample semigroup, then D∗ = J∗.

Proof. Since S is finite, it is clear that there do not exist infinite chains in S with
respect to �. Note that a semigroup is ample if and only if it is an adequate
semigroup which is idempotent-connected. Again, by [9, corollary 3.13], D∗ = J∗.

Define the relations of the set of J ∗-classes of S by

J∗
x � J∗

y ⇐⇒ J∗(x) ⊆ J∗(y).

It can be easily seen that the above relation is a partial order on the set of J ∗-classes.
Let a ∈ S and form the set I∗(a) = {b ∈ J∗(a) : J∗

b < J∗
a}. By routine computation,

I∗(a) is a ∗-ideal of S. We now call the Rees quotient J∗(a)/I∗(a) = J∗
a ∪ {0} of

J∗(a) over I∗(a) the principal ∗-factor of S containing a. By [8, lemma 2.2] and its
proof, it is indeed proved that if S is an abundant semigroup, then every principal
∗-factor of S is a 0-J ∗-simple semigroup which is abundant. Moreover, we can show
the following.

Proposition 3.4. Let S be a finite ample semigroup and a ∈ S. Then J∗(a)/I∗(a)
is a weak Brandt semigroup.

Proof. Let a ∈ S. Then J∗(a)/I∗(a) is 0-J ∗-simple. Note that S is adequate; it is
easy to see that J∗(a)/I∗(a) is adequate.

It remains to verify that each idempotent of J∗(a)/I∗(a) is primitive. For this,
we need only to show that, for all e, f ∈ E(S) such that e J ∗ f , e � f implies that
e = f . This follows from [9, theorem 4.4].

Assume S is a finite ample semigroup. Now we define a multiplication � on
S0 = S ∪ {0} by

x � y =

{
xy if x �= 0, y �= 0 and y, xy ∈ J∗

x ,

0 otherwise,
(3.1)

where xy is the product of x and y in S. Clearly, (S0,�) is a semigroup. We denote
by S� the semigroup (S0,�). For any J∗ ∈ S/J ∗, we define J∗0 = J∗ ∪ {0}. It is
easy to check that (J∗0,�) is a subsemigroup of S�, which is isomorphic to the
principal ∗-factor of S determined by J∗. We will denote the semigroup (J∗0,�)
by J∗�. By the definition of �, it is easy to see that, in the semigroup S�,

(i) J∗
x

� � J∗
x

� ⊆ J∗
x

� for all x ∈ S,

(ii) J∗
x

� � J∗
y

� = 0 for all x, y ∈ S such that x /∈ J∗
y .

We have now proved that the semigroup S� is the 0-direct union of the weak Brandt
semigroups J∗� with J∗ ∈ S/J ∗. By lemma 2.7 and proposition 3.4, we have the
following.

Proposition 3.5. The above semigroup S� is a primitive adequate semigroup.

We shall call the primitive adequate semigroup S� the associate semigroup of S.
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4. Triangular matrix representations

Let R1, R2, . . . , Rn be associative rings (algebras) with identity and let Rij be a
left Ri- right Rj-bimodule for i, j = 1, 2, . . . , n and i < j. We call the formal n × n
matrix ⎛⎜⎜⎜⎝

a1 a12 · · · a1n

0 a2 · · · a2n

...
...

. . .
...

0 0 · · · an

⎞⎟⎟⎟⎠
with ai ∈ Ri, aij ∈ Rij for i, j = 1, 2, . . . , n a generalized upper triangular n × n
matrix. Denote the set of all generalized upper triangular matrices by⎛⎜⎜⎜⎝

R1 R12 · · · R1n

0 R2 · · · R2n

...
...

. . .
...

0 0 · · · Rn

⎞⎟⎟⎟⎠ .

As in [1], a ring (an algebra) A has a generalized triangular matrix representation
if there exists a ring (an algebraic) isomorphism

φ : A →

⎛⎜⎜⎜⎝
R1 R12 · · · R1n

0 R2 · · · R2n

...
...

. . .
...

0 0 · · · Rn

⎞⎟⎟⎟⎠
in which the matrices obey the usual rules for matrix addition and multiplication.

The main aim of this section is to prove that any semigroup algebra of any finite
ample semigroup has a generalized triangular matrix representation.

We need the Möbius inversion theorem [22].

Lemma 4.1. Let (P,�) be a locally finite partially ordered set (i.e. intervals are
finite) in which each principal ideal has a maximum and let G be an Abelian group.
Suppose that f : P → G is a function and define g : P → G by g(x) =

∑
y�x f(y).

Then f(x) =
∑

y�x g(y)µ(x, y), where µ is a Möbius function (a function from P ×
P into R).

Theorem 4.2. Let S be a finite ample semigroup and R a commutative ring. Then
R[S] is isomorphic to R0[S�], where S� is the associate semigroup of S.

Proof. For convenience, we introduce the semigroup S̄. Set S̄ = {x̄ | x ∈ S} ∪ {0}.
Define a multiplication on S̄ as follows:

x̄ 	 ȳ = x � y, (4.1)

where we identify 0̄ with 0. It is easy to see that S̄ is isomorphic to S�. Hence,
the contracted semigroup algebra R0[S̄] is isomorphic to the contracted semigroup
algebra R0[S�]. For J∗ ∈ S/J ∗, we define

J∗ = {x̄ | x ∈ J∗} ∪ {0}.
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It is easy to check that (J∗, 	) is a subsemigroup of S̄ isomorphic to the semigroup
J∗�. So for any J∗, K∗ ∈ S/J ∗, we have

J∗ 	 K∗ ⊆ J∗ if J∗ = K∗,

J∗ 	 K∗ = 0 if J∗ �= K∗.

}
(4.2)

Consider the mapping ψ : R[S] → R0[S̄] given on the basis by ψ(s) =
∑

t�s t̄ and
the mapping ·̄ : S → S̄ given by ·̄(s) = s̄. Clearly, ψ and ·̄ are well defined. Of course,
ψ and ·̄ may be regarded as the mapping of the ordered set (S, �) into the additive
group of R0[S̄]. Now, by applying the Möbius inversion theorem (lemma 4.1) to the
mappings ψ and ·̄, we have

s̄ =
∑
t�s

ψ(t)µ(s, t) = ψ

( ∑
t�s

tµ(s, t)
)

, (4.3)

where µ is the Möbius function for (S, �). Hence, ψ is surjective.
In the following we will prove that ψ is injective. For any α0 =

∑
x∈S p0

xx ∈ R[S],
we denote by supp(α0) the set {x ∈ S | p0

x �= 0} and by M(α0) the set of maxi-
mal elements in the set supp(α0) with respect to the partial order �. We define
inductively

αn = αn−1 −
∑

x∈M(αn−1)

pn−1
x x, where αn =

∑
x∈supp(αn)

pn
xx.

Let
βn =

∑
x∈supp(βn)

qn
xx with n = 0, 1, 2, . . . .

If ψ(αn) = ψ(βn), then, by the definition of ψ,∑
x∈M(αn)

pn
x x̄ + Γαn

= ψ(αn) = ψ(βn) =
∑

y∈M(βn)

qn
y ȳ + Γβn

,

where

Γαn
=

∑
x∈M(αn)

∑
y∈S,y<x

pn
y ȳ and Γβn

=
∑

x∈M(βn)

∑
y∈S,y<x

qn
y ȳ,

and hence ∑
x∈M(αn)

pn
x x̄ =

∑
x∈M(βn)

qn
x x̄;

thus, M(αn) = M(βn) and pn
x = qn

x for any x ∈ M(αn), which implies the following.

Fact 1. If ψ(αn) = ψ(βn), then M(αn) = M(βn) and by the definition of ψ,
ψ(αn+1) = ψ(βn+1).

By the definition of ψ, the following facts are immediate.

Fact 2. αn = βn if and only if M(αn) = M(βn) and αn+1 = βn+1.

Fact 3. If ψ(αn) = ψ(βn) and M(αn) = supp(αn), M(βn) = supp(βn), then
αn = βn.
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Note that |supp(α0)| < +∞ and supp(αn+1) ⊆ supp(αn). We thus have a small-
est integer k such that M(αk) = supp(αk). Clearly, αk+1 = 0. This means that
k is the smallest integer t such that αt+1 = 0. Similarly, there exists the smallest
integer l such that βl+1 = 0 and M(βl) = supp(βl). Now, assume ψ(α0) = ψ(β0).
By using fact 1 repeatedly, we obtain

ψ(α1) = ψ(β1), ψ(α2) = ψ(β2), . . . , ψ(αk+1) = ψ(βk+1). (4.4)

But ψ(αk+1) = 0, we have ψ(βk+1) = 0 and, by the definition of ψ, βk+1 = 0.
Thus, k +1 � l +1 by the minimality of l, and so k � l. Similarly, l � k. Therefore,
k = l. Since ψ(αk) = ψ(βk), by fact 3, we have αk = βk since M(αk) = supp(αk),
M(βl) = supp(βl). Again by the hypothesis ψ(α0) = ψ(β0) and by fact 1, M(α0) =
M(β0) and, by (4.4),

M(α1) = M(β1), M(α2) = M(β2), . . . , M(αk) = M(βk).

By fact 2, M(αk−1) = M(βk−1) and αk = βk imply αk−1 = βk−1; moreover, by
using fact 2 repeatedly, αk−2 = βk−2, . . . , α1 = β1 and α0 = β0. We have now
proved that ψ is injective.

Finally, for any s, t ∈ S, by (4.2), we have

s̄ 	 t̄ =

{
st if s, t ∈ J∗

st,

0 otherwise,
(4.5)

and, by (4.2) and lemma 3.1(ii),

ψ(s) 	 ψ(t) =
( ∑

x�s

x̄

)
	

( ∑
y�t

ȳ

)
=

∑
x∈J∗

st,
x�s

∑
y∈J∗

st,
y�t

x̄ 	 ȳ

=
∑

x∈J∗
st,

x�s

∑
y∈J∗

st,
y�t

xy.

Moreover, by (4.5) and lemma 3.1(ii), we have

ψ(st) =
∑
u�st

ū =
∑

x∈J∗
st,

x�s

∑
y∈J∗

st,
y�t

xy =
( ∑

x�s

x̄

)
	

( ∑
y�t

ȳ

)
= ψ(s) 	 ψ(t).

Thus, ψ is a homomorphism of R[S] into R0[S̄]. Consequently, ψ is an isomorphism
of R[S] onto R0[S̄].

By theorem 4.2, we have the following.

Corollary 4.3. Any semigroup algebra of a finite ample semigroup has an iden-
tity.
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Proof. Let S be a finite ample semigroup and let R be a commutative ring with
identity. Then by theorem 4.2, R[S] is isomorphic to R0[S�]. By corollary 2.8, S� is
isomorphic to some PA blocked Rees matrix semigroup M(Mαβ ; I, I, Y ; P ), where
each P is a diagonal matrix, each of whose non-zero elements is the identity of
Mαα. It is easy to check that ∑

e∈E(M)

e =
∑
α∈Y

∑
i∈Iα

(eα)ii

is the identity of the contracted semigroup algebra of M(Mαβ ; I, I, Y ; P ), where eα

is the identity of Mαα. This shows that R0[S�] has an identity, whereby R[S] has
an identity.

Corollary 4.4. Let S be a finite ample semigroup and R a commutative ring with
identity. Then R[S] is isomorphic to

⊕
J∗∈S/J ∗ R0[J∗�].

Proof. By the arguments before proposition 3.5, S� is the 0-direct union of the
weak Brandt semigroups J∗� with J∗ ∈ S/J ∗. This shows easily that

R0[S�] =
⊕

J∗∈S/J ∗

R0[J∗�],

which completes the proof.

We now arrive at the main theorem of this section.

Theorem 4.5. Any semigroup algebra of a finite ample semigroup has a generalized
triangular matrix representation.

Proof. By theorem 4.2, we need only to prove that any contracted semigroup alge-
bra of a finite primitive adequate semigroup has a generalized triangular matrix
representation. To this end, we let S be a finite primitive adequate semigroup and
R be a commutative ring with identity. By corollary 2.8, we can assume that S is
a PA blocked Rees matrix semigroup M(Mαβ ; I, I, Γ ; P ) in which I is finite, Γ is
a finite well-ordered set and, for any α, β ∈ Γ ,

(i) Mαα is a finite group,

(ii) |Mαβ | � +∞,

(iii) if Mαβ �= ∅, then α � β,

(iv) the sandwich matrix P is diagonal and pii = eα for all i ∈ Iα, α ∈ Γ .

Since I and Γ are both finite, without loss of generality we suppose that Γ =
{1, 2, . . . , s},

I1 = {1, 2, . . . , n1},

I2 = {n1 + 1, . . . , n1 + n2},

...

Is =
{ s−1∑

i=1

nsi + 1, . . . ,

s∑
i=1

ni

}
.
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Hence,

I =
{

1, 2, . . . ,

s∑
i=1

ni

}
.

Obviously, with respect to the matrix addition and the matrix scalar multipli-
cation, the set Mninj (R[Mij ]) of ni × nj matrices over R[Mij ] is an R-algebra.
Note that MiiMij , MijMjj ⊆ Mij for i, j ∈ Γ . Thus, we observe that R[Mij ] is
a left R[Mii]- right R[Mjj ]-bimodule. From these, it is not difficult to check that
Mninj

(R[Mij ]) is a left Mn(R[Mii])- right Mnj (R[Mjj ])-bimodule under matrix
multiplication.

For (a)ij ∈ S, there exist k, l ∈ Γ such that a ∈ Mkl and

nk−1∑
α=1

nα < i �
nk∑

α=1

nα and
nl−1∑
α=1

nα < j �
nl∑

α=1

nα.

By (4.2), we have k � l; if J∗ �= K∗, Mkl = ∅, contrary to a ∈ Mkl. Set

ϕ((a)ij) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 · · · A1k · · · A1l · · · A1s

...
. . .

...
...

...
. . .

...
Ak1 · · · Akk · · · Akl · · · Aks

...
. . .

...
. . .

...
. . .

...
Al1 · · · Alk · · · All · · · Als

...
. . .

...
. . .

...
. . .

...
As1 · · · Ask · · · Asl · · · Ass

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where Apq is an np × nq zero matrix over R[Mpq] for p �= k, q �= l and Akl is the
nk × nl matrix over R[Mkl] in which the(

i −
nk−1∑
α=1

nα, j −
nk−1∑
α=1

nα

)
position is a and all other positions are 0. Obviously, φ : (a)ij �→ ϕ((a)ij) is a
mapping of S into⎛⎜⎜⎜⎝

Mn1(R[M11]) Mn1n2(R[M12]) · · · Mn1ns
(R[M1s])

0 Mn2(R[M22]) · · · Mn2mn(R[M2s])
...

...
. . .

...
0 0 · · · Mns(R[Mss])

⎞⎟⎟⎟⎠ .

We now extend the mapping ϕ R-linearly to the R-algebra⎛⎜⎜⎜⎝
Mn1(R[M11]) Mn1n2(R[M12]) · · · Mn1ns(R[M1s])

0 Mn2(R[M22]) · · · Mn2mn
(R[M2s])

...
...

. . .
...

0 0 · · · Mns(R[Mss])

⎞⎟⎟⎟⎠ .
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By routine computing, we can prove that ϕ is an algebraic isomorphism. The proof
is finished.

Now, we re-prove the following known result.

Theorem 4.6. Let S be a finite inverse semigroup and R be a commutative ring.
Then R[S] is isomorphic to the direct sum of full matrix algebras over the group
algebras of the maximum subgroups of S.

Proof. Assume S is a finite inverse semigroup. Then, in S, L = L∗ and R = R∗.
Note that D is the smallest equivalence containing L and R, and that D∗ is the
smallest equivalence containing L∗ and R∗. Then, in S, D = D∗. Keeping the above
notation, J∗� is a regular semigroup. This shows that the associate semigroup S�

is a regular semigroup. Thus, S� is a regular primitive adequate semigroup. By
corollary 2.8, we assume S� = M(Mαβ , I, I, Γ ; P ) with Γ = {1, 2, . . . , s} and in
which Mαα is a finite group, and P is diagonal with pii = eα for α ∈ Γ , i ∈ Iα.
Now, since S� is regular, by lemma 2.4(v), we have Mαβ = ∅ for α �= β. By the
proof of theorem 4.5, R[S] is isomorphic to the algebra⎛⎜⎜⎜⎝

Mn1(R[M11]) 0 · · · 0
0 Mn2(R[M22]) · · · 0
...

...
. . .

...
0 0 · · · Mns(R[Mss])

⎞⎟⎟⎟⎠ .

But the latter is isomorphic to the direct sum of Mni(R[Mii]) with i = 1, 2, . . . , s.
It remains to verify that each Mii is isomorphic to some maximum subgroup of

S. But S and S� have the same maximum subgroups. Note that any maximum
subgroup of S� is an H-class of S� containing an idempotent. Thus, we observe that
any maximum subgroup of S� is indeed an H∗-class of S� containing an identity,
since S� is regular, giving H∗ = H in S�. By parts (ii) and (iii) of lemma 2.4, S�

has exactly H∗-classes containing an idempotent:

Hii = {(m)ii : m ∈ Mαα}, i ∈ Iα, α ∈ Γ,

where i can run over I. It is not difficult to see that Hii is isomorphic to Mαα.
Consequently, Mαα is isomorphic to some maximum subgroup of S, as required.

5. Radicals

In this section we consider the (Jacobson) radicals of semigroup algebras of finite
ample semigroups.

Let S be an ample semigroup and a, b ∈ S. We say a covers b (in notation, b ≺ a)
if b < a and there is no x ∈ S such that b < x < a.

For convenience, we always assume that S is a finite ample semigroup and R is a
commutative ring with identity. Denote by S� the associate semigroup of S. If no
other assumptions hold, we always suppose that S� is isomorphic to the PA blocked
Rees matrix semigroup PA = M(Mαβ ; I, I, Γ ; P ). For convenience, we identify S�

with PA. Let us return to the proof of theorem 4.2 and define, using the notation
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therein,
â = a −

∑
b≺a

b.

Since S is finite, â is well defined. For x =
∑

s∈S rss ∈ R[S], we define x̂ =
∑

s∈S rsŝ.
And, we shall define X̂ = {x̂ : x ∈ X} for X ⊆ R[S]. It is not difficult to see that
the mapping θ : R[S̄] → R[S], defined as the linear span of the mapping s̄ �→ ŝ, is
the reverse mapping ψ. By the proof of corollary 4.3, we have that

∑
e∈E(S) ē is the

identity of R[S̄]. Hence, ∑
e∈E(S)

ê = θ

( ∑
e∈E(S)

ē

)
is the identity of R[S].

Proposition 5.1. Let S be a finite ample semigroup and let R be a commutative
ring with identity. Then

∑
e∈E(S) ê is the identity of R[S].

Lemma 5.2. Let T := M(Mαβ , I, I, Γ ; P ) be a finite PA blocked Rees matrix semi-
group and let R be a commutative ring with identity. If Γ = {1, 2, . . . , s},

I1 = {1, 2, . . . , n1},

I2 = {n1 + 1, . . . , n1 + n2},

...

Is =
{ s−1∑

i=1

nsi + 1, . . . ,

s∑
i=1

ni

}
and, for any α, β ∈ Γ ,

(i) Mαα is a finite group,

(ii) |Mαβ | � +∞,

(iii) if Mαβ �= ∅, then α � β and

(iv) the sandwich matrix P is diagonal and pii = eα for all i ∈ Iα, α ∈ Γ ,

then the radical of the generalized triangular matrix algebra⎛⎜⎜⎜⎜⎝
Mn1(R[M11]) Mn1n2(R[M12]) · · · Mn1ns

(R[M1s])
0 Mn2(R[M22]) · · · Mn2ns(R[M2s])
...

...
. . .

...
0 0 · · · Mns(R[Mss])

⎞⎟⎟⎟⎟⎠
is ⎛⎜⎜⎜⎜⎝

Mn1(R[M11]) Mn1n2(R[M12]) · · · Mn1ns(R[M1s])

0 Mn2(R[M22]) · · · Mn2ns
(R[M2s])

...
...

. . .
...

0 0 · · · Mns
(R[Mss])

⎞⎟⎟⎟⎟⎠ ,

where Mni(R[Mii]) is the radical of Mni(R[Mii]).
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Proof. Denote by E the identity of R[T ]. Let

X =

⎛⎜⎜⎜⎝
x1 x12 · · · x1s

0 x2 · · · x2s

...
...

. . .
...

0 0 · · · xs

⎞⎟⎟⎟⎠ .

Obviously, if X is left invertible, then x1, x2, . . . , xs are all left invertible. Conversely,
assume x1, x2, . . . , xs are all left invertible. Then the matrix

X1 :=

⎛⎜⎜⎜⎝
x1 0 · · · 0
0 x2 · · · 0
...

...
. . .

...
0 0 · · · xs

⎞⎟⎟⎟⎠
is left invertible. If X2 is a left inverse element of X1, then X2X = E − Y , where
Y is of the form ⎛⎜⎜⎜⎝

0 y12 · · · y1s

0 0 · · · y2s

...
...

. . .
...

0 0 · · · 0

⎞⎟⎟⎟⎠ .

Note that Y s = 0. Thus, (
E +

s−1∑
k=1

Y k

)
X2X = E

and X is left invertible. We have now proved that X is left invertible if and only if
x1, x2, . . . , xs are all left invertible. By this and [13, lemma 4.1, p. 53], the rest of
the proof is a routine computation.

Lemma 5.3. If T is the inverse subsemigroup of S consisting of all regular elements
of S, then

(i) R[T ] is isomorphic to⎛⎜⎜⎜⎝
Mn1(R[M11]) 0 · · · 0

0 Mn2(R[M22]) · · · 0
...

...
. . .

...
0 0 · · · Mns(R[Mss])

⎞⎟⎟⎟⎠ .

(ii) s ∈ S \ T if and only if

ψ(s) ∈

⎛⎜⎜⎜⎜⎜⎜⎝
0 Mn1n2(R[M12]) · · · Mn1ns−1(R[M1,s−1]) Mn1ns

(R[M1s])
0 0 · · · Mn2ns−1(R[M2,s−1]) Mn2ns

(R[M2s])
...

...
. . .

...
...

0 0 · · · 0 Mns−1ns(R[Ms−1,s])
0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where ψ has the same meaning as in the proof of theorem 4.2.
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Proof. By lemma 2.4(v), for (a)iλ ∈ PA, we have that (a)iλ is regular if and only if
there exists p ∈ Γ such that i, λ ∈ Ip and if and only if

ϕ((a)iλ) ∈

⎛⎜⎜⎜⎝
Mn1(R[M11]) 0 · · · 0

0 Mn2(R[M22]) · · · 0
...

...
. . .

...
0 0 · · · Mns

(R[Mss])

⎞⎟⎟⎟⎠ ,

where ϕ has the same meaning as in the proof of theorem 4.5. On the other hand,
by the definition of S�, for any s ∈ S, s is regular in S if and only if s is regular in
S�; that is, s̄ is regular in S̄. This proves the lemma.

We now arrive at the main result of this section.

Theorem 5.4. Let S be a finite ample semigroup. Denote by T the inverse sub-
semigroup of regular elements of S. Then the radical of R[S] is a sum of the radical
of R[T ] and R[S \ T ]̂.
Proof. Assume s ∈ S \ T . Then by lemmas 5.2 and 5.3(ii), ψ(s) belongs to the
radial of R0[S�], thereby ŝ is contained in the radical of R[S]. Thus, ̂R[S \ T ] is
contained in the radical of R[S]. On the other hand, by lemma 5.3(i), we see that
R[T ] is isomorphic to⎛⎜⎜⎜⎝

Mn1(R[M11]) 0 · · · 0
0 Mn2(R[M22]) · · · 0
...

...
. . .

...
0 0 · · · Mns(R[Mss])

⎞⎟⎟⎟⎠ .

Note that the radical of⎛⎜⎜⎜⎝
Mn1(R[M11]) 0 · · · 0

0 Mn2(R[M22]) · · · 0
...

...
. . .

...
0 0 · · · Mns(R[Mss])

⎞⎟⎟⎟⎠
is ⎛⎜⎜⎜⎝

Mn1(R[M11]) 0 · · · 0
0 Mn2(R[M22]) · · · 0
...

...
. . .

...
0 0 · · · Mns(R[Mss])

⎞⎟⎟⎟⎠ .

Therefore, the image of the radical of R[T ] under ψ is⎛⎜⎜⎜⎝
Mn1(R[M11]) 0 · · · 0

0 Mn2(R[M22]) · · · 0
...

...
. . .

...
0 0 · · · Mns(R[Mss])

⎞⎟⎟⎟⎠ .

https://doi.org/10.1017/S0308210510000715 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000715


Semigroup algebras of finite ample semigroups 387

Again by lemma 5.2, we obtain that the radical of R[S] is a sum of the radical of
R[T ] and ̂R[S \ T ].

As an application of theorem 5.4, we have the following.

Theorem 5.5. Let S be a finite ample semigroup. Then R[S] is semiprimitive if
and only if the following two conditions hold:

(i) S is an inverse semigroup;

(ii) for every maximum subgroup G of S, R[G] is semiprimitive.

Proof. By theorem 4.6, we need only to prove the direct part. To the end, assume
that R[S] is semiprimitive. If T is the inverse subsemigroup of S consisting of the
regular elements of S, then, by theorem 5.4, ̂R[S \ T ] = {0} so that S \ T = ∅. It
follows that S = T . In other words, S is an inverse semigroup. By the arguments
before theorem 4.6,

R[S] ∼=
s⊕

i=1

Mn−i(R[Mii])

if S� = M(Mαβ , I, I, Γ ; P ). But S is finite; each Mii is a finite subgroup of S. In
fact, Mii is a maximum subgroup of S. By hypothesis, the fact that

R[S] ∼=
s⊕

i=1

Mni
(R[Mii])

implies that Mni(R[Mii]) is semiprimitive for i = 1, . . . , s. This shows that R[Mii]
is semiprimitive.

The following theorem provides the description of the radicals of finite inverse
semigroup algebras.

Theorem 5.6. Let S be a finite inverse semigroup. Denote by X the set of maxi-
mum subgroups of S. Then the radical of R[S] is the sum of ideals of R[S] generated
by ̂J(R[G]) with G ∈ X, where J(R[G]) is the radical of R[G].

Proof. By theorem 4.6, R[S] is isomorphic to the direct sum D of Mni(R[Mii])
with i = 1, 2, . . . , s. It is well known that the radical of Mni(R[Mii]) is equal to
Mni(J(R[Mii])). Since (eii)k1(a)11(eii)1l = (a)kl, we easily see that Mni

(J(R[Mii]))
is the ideal of Mni(R[Mii]) generated by⎛⎜⎜⎜⎝

J(R[Mii]) 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞⎟⎟⎟⎠ .

Set Gi = {(x)11 : x ∈ Mii}. Then Gi is a maximum subgroup of S. Note that⎛⎜⎜⎜⎝
J(R[Mii]) 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞⎟⎟⎟⎠ = J(R[Gi]).
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Thus, the radical of D is the direct sum of ideals of D (D = ψ(R[S])) generated
by J(R[Gi]) with i = 1, 2, . . . , s. That is, the radical of D is

∑s
i=1 DJ(R[Gi])D.

Therefore, the radical of R[S] is

θ

( s∑
i=1

DJ(R[Gi])D
)( s∑

i=1

R[S] ̂J(R[Gi])R[S]
)

.

By Theorems 5.4 and 5.6, we can give a more precise description of semigroup
algebras of finite ample semigroups and omit the detail.
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