
The intriguing mechanics of a tractrix of cards
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1.  Introduction
Figure 1 shows the photograph of a tractrix made of cards. This is a

simple yet captivating way to make a tractrix — an arrangement that has
recently appeared in some engaging pedagogical resources and literature
[1, 2]. When closely spaced cards lean like this, one after another, over a
horizontal plane, the contour created is a tractrix — a curve of significance
in mathematics, since its revolution around its asymptote produces a
pseudosphere: a curved surface with constant negative Gaussian curvature
[3, 4]. 

FIGURE 1: A tractrix made of identical cards

One of several fascinating things about the tractrix of cards, which, for
the sake of brevity we will just call the tractrix in the rest of the paper, is
that a single pulse can travel through the arrangement [1, 2] in either
horizontal direction along the tractrix, turning the cards over in the process.
This resembles how a pulse propagates through a line of dominoes to tumble
them over. However, in the case of the tractrix, the propagating pulse simply
carries the cusp of the tractrix with it, while the size and the shape of the
contour around the cusp remains a similar tractrix at all times. This got me
thinking about the mechanics of the system, the mechanics not only when a
pulse is propagating through it, but also when the structure is simply sitting
idle. As I delved into the question, layers of subtlety and wonder started to
unfold. 

First, let us define our system of interest in an unambiguous manner. All
the cards are identical uniform, solid, thin (implying zero thickness),
frictionless, rectangular plates. For each card, its bottom edge cannot slide
over the horizontal plane (so each card is effectively hinged smoothly at the
bottom edge). The spacing between any two consecutive bottom edges is the
same distance , which is small compared to the length  of each card
(Figure 2). The smaller the ratio , the closer the envelope is to a tractrix.
The properties that we will derive in this paper pertains to the limiting case
of  and the resulting perfect tractrix.
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FIGURE 2: Side view of the details of the arrangement of cards in the system

FIGURE 3: Side view of a tractrix formed with a large number of cards, generated by
a computer program

We denote the angle a card makes with the vertically downward
direction by , measured in the anticlockwise sense as shown in Figure 4, and
the horizontal coordinate of the hinged bottom end of the card by .

θ
x

In Figure 4, the card  makes an angle , so that the card   to its
right makes an angle .  will be small since .

A1B1 θ A2B2
(θ + �θ) �θ λ << l

Now  is a perpendicular dropped on . Hence angle  is also
. Hence
B1N A2B2 NB1B2

(θ + �θ)
NB1 = B1B2 cos (θ + �θ) ≈ B1B2 cos θ. (1)

At the same time, . However, making use of
  and , we write

NB1 = A2B1 sin (�θ)
sin (�θ) ≈ �θ A2B1 ≈ A1B1

NB1 ≈ A1B1 (�θ) . (2)
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Now using the facts , and , from (1) and (2) we
can write

A1B1 = l B1B2 = λ = �x

l (�θ) ≈ (�x) cos θ. (3)
At this point, we approximate (3) in the form of a differential equation:

l
dθ
dx

= cos θ (4)

or

l
dθ

cos θ
= dx. (5)

�

θ
A2

l

l

�θ

λcos(θ + �θ)
N θ + �θ

A1

B1 B2

FIGURE 4: Two consecutive cards in contact, making an angle of  between them�θ

At some given instant of time, if the position of the erect card, i.e. the
one with , is , then integrating (5) we obtain, after some
algebraic simplification,

θ = 0 x = x0

cos θ = sech (x − x0

l ) ,

which gives the relation between  and  at that instant. θ x
For the full tractrix extending to infinity in both directions,  ranges

from  to  as  ranges from  to . During the propagation of a
pulse, every card in the system still has a unique fixed value of , while at a
given instant of time, a unique value of  as well.

θ
−π / 2 π / 2 x −∞ +∞

x
θ

Now the contact force  between any two consecutive cards is a ‘normal
force’, since the cards are frictionless. To start with, one interesting question
to ask is how the magnitude of the contact force varies with the location, i.e.
how  varies as a function of , even when the tractrix is static.

f

f θ
While it is possible to obtain the answer by considering a quasistatic

evolution of the tractrix, we will save this question for later. In due course
the answer will be borne out as part of the analysis of the dynamic scenario
when a pulse propagates through the tractrix. 
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2.  The gravitational potential energy of the tractrix
The height of the centre of mass of a single card at angular position ,

measured from the horizontal plane, is given by . Hence, if the
mass of the card is , then the gravitational potential energy of that card is
equal to , taking the horizontal plane as the zero level for
measuring gravitational potential energy.

θ
(l / 2) cos θ

m
mg (l / 2) cos θ

Now since the number of cards within the interval  and  is
given by , the potential energy contribution from the cards located
within that interval is given by

x (x + dx)
(dx / λ)

dp = (mg 
l
2) cos θ (dx / λ) . (6)

However, using (4), we can write (6) as

dp = (mg 
l2

2 ) (dθ / λ) , (7)

which is the potential energy contribution from the cards spanning the
angular interval between  and .θ (θ + dθ)

From (8), we write for the potential energy contribution from the
angular range between  and  to beθ1 θ2

p =
mgl2

2λ ∫
 θ2

θ1

dθ. (8)

At this point we define

σ =
m
λ

(9)

which is effectively the linear mass density of the system when all the cards
happen to be down on the horizontal plane. 

Performing the simple integration in (8), and then using (9), we obtain
the crisp expression

p =
σgl2

2
(θ2 − θ1) , (10)

which is the expression for the gravitational potential energy for the segment
of the tractrix with cards spanning the angular range .θ1 ≤ θ ≤ θ2

For the full tractrix, the total gravitational potential energy becomes

pfull =
πσgl2

2
. (11)

3.  Propagation of a pulse and kinetic energy of the tractrix
When a pulse propagates through the tractrix, all the cards are in a state

of rotation (albeit at different angular speeds) in such a way that the
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envelope remains a similar tractrix of the same shape and size at all times,
while the position of the cusp containing the erect card  keeps
drifting with the pulse. If our system of cards happens to be truncated at one
or both ends, its envelope simply becomes a different segment of the same
tractrix shape at different times in the course of the propagation of a pulse.

(θ = 0)

Since the spatial separation of the fixed bottom edges of the cards is
uniform, at any given point in time the rate of propagation of the pulse can
be characterised by a single quantity, namely the linear speed of propagation
given by

V =
dx
dt

, (12)

where  is the horizontal displacement of, say, the cusp of the tractrix
during a time interval .

dx
dt

At this point, combining (4) and (12), for the angular velocity of an
individual card, we obtain

dθ
dt

=
V
l

(cos θ) . (13)

Now, since the rotation axis for every card is its hinged bottom edge,
the kinetic energy of a single rotating card will be given by ,
which, making use of (13), can be written as .

1
6ml2 (dθ / dt)2

1
6mV2 cos2 θ

Once again, since the number of cards within the interval  and
 is given by , the kinetic energy contribution from the cards

located within that interval is given by

x
(x + dx) dx / λ

dk =
1
6

mV2 cos2 θ (dx / λ) ,

which, using (4), can be written as

dk =
1
6

mV2 cos θ (dθ / λ) .

Hence the kinetic energy contribution from the cards within the angular
range between  and  will beθ1 θ2

k =
1
6λ

mlV2 ∫
 θ2

θ1

cos θ dθ,

Evaluating the above integral, and using (9), we obtain

k =
1
6

σlV2 (sin θ2 − sin θ1) , (14)

while the total kinetic energy for the full tractrix becomes

kfull =
1
3

σlV2. (15)
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4. Propagation of a pulse through the full tractrix and distribution of the
contact force
The normal force pair at every contact point between any two

consecutive pair of cards does zero net work and thus dissipates no energy,
and the hinge forces at the bottom edges do zero work as well. Therefore, if
the work done by gravity is incorporated in the gravitational potential
energy term, then the net mechanical energy, namely the sum of the kinetic
energy and the gravitational potential energy of the full tractrix will be
conserved. However, since the net potential energy stays the same value
given by (11) irrespective of the instantaneous position of the cusp of the
tractrix, the net kinetic energy given by (15) in itself will remain a constant,
implying that a pulse can propagate forever with a constant speed  through
the infinite system. Furthermore, that constant speed  can have any
arbitrary value.

V
V

f
θ0

FIGURE 5: Applying the work-energy theorem to a part of the tractrix shown with a
darker shade

At this point, we intend to find the distribution of the normal contact
force between consecutive cards along the tractrix during the propagation of
a pulse. For that purpose, we focus our attention on the part of the infinite
tractrix which extends from an arbitrarily chosen card all the way to infinity
towards the right, shown with darker shading in Figure 5. We refer to this
system as . We denote the angle of the card at the left boundary of  by

. Without losing generality, let us take a situation where a pulse travels
towards, say, the left, through the infinite tractrix with a constant speed .
Consequently, all cards will be rotating anticlockwise. 

�0 �0
θ0

V

For the gravitational potential energy and kinetic energy of , it
follows from (10) and (14) respectively that

�0

p0 =
σgl2

2 (π
2

− θ0) , (16)

and

k0 =
1
6

σlV2 (1 − sin θ0) . (17)

Now, for the system , once again the hinge forces exerted at the
bottom edges of the cards still do no work. The internal normal force pairs at
all contact points between consecutive cards do net work of zero as well. On
the other hand, the work done by gravity is incorporated in the gravitational
potential energy term given by (16). However, as shown in Figure 5, there is

�0
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an external force  on the card at the left boundary of , exerted by the card
immediately to its left. This ‘normal force’ acts in a direction normal to the
card, thus making an angle of  with the horizontal, as shown. Furthermore,
since the contact point is the top edge of the card, that is where the force is
exerted as well. What is important to realise is that this force  does non-
zero external work on .

f �0

θ0

f
�0

Now, during a time interval , if the corresponding change in  is ,
then the displacement of the top edge of the card is given by  in the
direction opposite to , since the card rotates anticlockwise about its bottom
edge. Hence the work done by  is given by

dt θ0 dθ0
l dθ0

f
f

dW = −f l dθ0. (18)
At this point we recall the work-energy theorem, namely the property that
the change in the total mechanical energy of a physical system equals the net
external work done, provided there are no internal dissipative forces.

Applying this to our system , we can write�0

dW = dp0 + dk0.
Hence, using (16), (17) and (18), we obtain

−f l dθ0 = −
σgl2

2
dθ0 −

1
6

σlV2 cos θ0 dθ0,

which, upon simplification, yields

f =
σgl
2

+
1
6

σV2 cos θ0.

Since the boundary of our system  was arbitrarily chosen, there is no
reason why the above expression will not apply to any point in the whole
tractrix at any instant of time. Moreover, it is not difficult to justify that the
expression holds no matter if the pulse is travelling left or right.  

�0

Hence we write the final mathematical relation depicting how the
magnitude of the normal contact force varies with position along the tractrix
as

f =
σgl
2

+
1
6

σV2 cos θ. (19)

At this point we are finally ready to derive the dependence of the force
for a static tractrix. All we need to do for that purpose is to put  in
(19), which gives us

V = 0

f static =
σgl
2

.

This simple expression actually bears out an intriguing, and perhaps
somewhat surprising, fact. It tells us that for the infinite tractrix, when
sitting idle, the magnitude of the contact force between any two consecutive
cards has the same value everywhere, given by , no matter the position
(and thereby the angular tilt) of the card!

1
2σgl
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5.  The half-tractrix: free fall
Finally, we consider the dynamics of the tractrix truncated at one end.

We take the card at the free end, referred to here as the terminal card, to be
initially erect (so that initially the system looks like a full tractrix cut in half
at the centre), as shown in Figure 6, and release the structure from rest. It is
not hard to predict that all the cards will start rotating, speeding up due to
gravity in the anticlockwise sense. We are interested in the dynamics of the
whole structure falling, as part of which we can also find the speed with
which of the top edge of the terminal card will strike the horizontal plane.

FIGURE 6. The half-tractrix

It is worthwhile to define a natural speed for the system:

V∗ = gl,
so that we have a benchmark for comparison. For example, a single card,
aligned horizontally, when released from rest from a height , strikes the
horizontal plane with a speed of .

l
2V∗ ≈ 1.41V∗

In this section, let us denote the angle of the terminal card by . Since
the structure is released from rest with the terminal card erect, we have

 and  at the initial instant, where, once again,  is the
physical speed of pulse propagation. 

θ0

V = 0 θ0 = 0 V

Now, in this situation, there is no external work done on the system and
the net mechanical energy will be conserved. Using the expressions (16) and
(17) for the potential and kinetic energies respectively, we can write

σgl2

2 (π
2

− θ0) +
1
6

σlV2 (1 − sin θ0) =
σgl2

2
π
2

,

where the left-hand side represents the net mechanical energy at some later
instant, while the right-hand side represents the net mechanical energy at the
initial instant when . θ0 = 0

Simplifying, we obtain

V = 3gl
θ0

1 − sin θ0
. (20)
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At this point, combining (13) and (20), we derive:

dθ0

dt
=

3g
l

θ0

1 − sin θ0
cos θ0. (21)

The above relation is an informative one, capturing how the angular speed
of the terminal card varies with its angular position during the fall.

We leave it to the reader as a little challenge on the side to prove that

lim
θ0 → π/2

cos θ0

1 − sin θ0
= 2. (22)

Using (22) in (21), we obtain

lim
θ0 → π/2

(dθ0

dt ) =
3πg

l
. (23)

Now let us remember that the speed of the top edge of the card is given
by , since the bottom edge is the effective rotation axis.
Combining this fact with (33), we obtain for the speed of the top edge of the
card just before it strikes the horizontal plane:

l (dθ0 / dt)

Vstrike = 3πgl ≈ 3.07V∗. (24)
Out of curiosity, we can compare the above with the terminal speed of

the free end of a single card if it was falling on its own, purely under gravity
but still rotating about its bottom edge. That speed happens to be

. The speed given in (24) is greater, as expected.3gl ≈ 1.73V∗

6.  The half-tractrix: escape speed
One way to release the half-tractrix so that it does not fall down is to

give the top edge of the terminal card an initial velocity in the opposite
direction (which would be to the right in Figures 6 and 7), so that a pulse
starts propagating away from the free end deeper into the system. However,
not just any initial velocity would work. To ensure that the pulse never stops
to turn round and return to the free end, the initial velocity must have a
certain minimum magnitude, which we call the escape speed.

escape speed

starting with a half tractrix

pulse velocity

converting to a full tractrix

FIGURE 7: A half-tractrix turning into a full-tractrix
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One simple but beautiful realisation about the process is that when the
initial speed is equal to the escape speed or greater, as the pulse carries the
vertex of the tractrix indefinitely deeper into the system, the structure
approaches a full tractrix, having started from only a half-tractrix. This
evolution is depicted in Figure 7. Apparently, we end up with two copies of
what we started with. This is yet another humble manifestation of the magic
of infinities. 

However, when the initial speed is exactly equal to the escape speed, the
later speed of the pulse approaches zero as it travels indefinitely deeper.
Once again, applying the principle of conservation of mechanical energy to
this system, we write, using (16) and (17),

σgl2

2
π
2

+
1
6

σlV2
escape =

σgl2

2
π, (25)

where the left-hand side represents the net mechanical energy of the half-
tractrix at the start, while the right-hand side represents the net mechanical
energy in the limit when the pulse speed has died off to zero and the
structure has become a full tractrix.

Simplifying (25), we obtain

Vescape =
3πgl

2
≈ 2.17V∗,

which is the minimum speed required to be imparted to the top of the
terminal card so that the structure never falls, and retains one erect card
somewhere within it at all later times! 
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