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‘We prove the convergence in certain weighted spaces in momentum space of
eigenfunctions of H =T — AV as the energy goes to an energy threshold. We do this
for three choices of kinetic energy T', namely the non-relativistic Schrodinger
operator, the pseudorelativistc operator v —A + m? — m, and the Dirac operator.

1. Introduction
In this paper we consider a family of Hamiltonians
H=H\=T-\V, (1.1)

where A > 0 is the coupling constant and V > 0 is a bounded and integrable
potential. We will consider different choices of physical kinetic energies T', but, for
the moment, to fix ideas, we set T' = —A, the Laplace operator in three dimensions.
The essential spectrum of H is equal to the interval [0,00) and (for A sufficiently
large) H has negative discrete eigenvalues F; < 0,7 =1,2,.... We shall henceforth
fix an ¢ € N and consider the A-dependence of E(A) := E;(\). Due to monotonicity,
there is a A. € R such that, as A | A, F(A\) 1 0. We call \. a coupling constant
threshold.

Let o = ¢p(\) € L2(R?) be an eigenfunction of H(\) with eigenvalue E = E()).
A detailed study of the behaviour of E as A | A for various choices of T was carried
out in [13-15,18]. Here, we are interested in the behaviour of g as E 10 (that is,
as A} Ac). It is easy to prove (using closedness of the kinetic energy T') that if ¢ g
converges in Ly(R?), then the limit function g is an eigenfunction of H(\.), i.e. a
bound state with zero energy. If there is no Ls-convergence, however, we might
expect some other kind of convergence of the pg. In particular, we are interested in
considering the convergence properties of w(—iV)p g, where w is a suitable function
of the kinetic energy. (For the question of existence of zero-energy eigenstates, see,
for example, [1], and the above-mentioned papers.)
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Such questions, apart from being of independent interest, are important for prob-
lems pertaining to enhanced binding and the Efimov effect (see, for example, [4,24]).
(Other papers on enhanced binding, using zero-energy ‘eigenfunctions’ are [2,3,9];
these, however, do not explicitly use the convergence properties we discuss here.)
We shall not comment further on this here. Our work partly uses the techniques
used in [12,14,15] for the relativistic case (see also [18]). In these papers the authors
investigated the relationship between the analytic properties of the eigenvalues near
the threshold energy and the existence of eigenvalues at the threshold.

Let us introduce the three different choices of kinetic energy, T, which we will
study in this paper. Let m > 0 be the mass of the electron.

Schrodinger case.  The free one-particle non-relativistic kinetic energy is given (in
units when i = 1) by —A/2m. Choosing units such that 2m = 1, the operator is
just the Laplace operator in three dimensions mentioned above:

Ts = —A. (1.2)

Pseudorelativistic case. A naive choice of a free one-particle (pseudo)relativistic
kinetic energy is given (in units when /i = ¢ = 1) by the pseudodifferential operator,

Typrel :=V—A+m2—m (1.3)

(see, for example, [10,25]).

In both of the above cases, assuming that 0 < V € L;(R3) N Lo (R?), the opera-
tors Hg(A) :=Tg — AV and Hyrel(A) 1= Ty re1 — AV are self-adjoint in Lo (R?) with
domains H?(R?) and H!(R?), respectively; their essential spectrum is oess = [0, 00)
and (for sufficiently large \), they have eigenvalues E;(\) < 0, i € N (see [16,20]).

Dirac case. The free one-particle Dirac operator (again, in units when h = ¢ = 1)
is given by

Tp = a- (—iV) +mpB —m, (1.4)
acting on Lo(R3;C*). Here v and 3 are the usual Dirac matrices.

If0 <V € L1 (R? C*)NLo (R?; C?) is a (diagonal) potential, then Hp(\) := Tp —
AV is self-adjoint with domain H!(R3;C%), its essential spectrum is (—oo, —2m] U
[0,00), and it has eigenvalues F;(\) € (—2m,0), i € N (see [23]).

We recall that, for ¢ > 1, the Banach space L, (R3; C*) consists of four-component
vector functions ¢ = (¢1,...,¢4)T with the norm

1/q
ol e = [ 6@t da) (15)

Here || - ||cs is the usual Euclidean norm. Note that, since all norms in C* are
equivalent, this norm and
4

1/q
lellz, ey = (160, oo (1.6)

i=1

are equivalent (for ¢ = 2 they are equal).
In order to relax the notation, we denote by H(\) =T — AV a general Hamilto-
nian, where 7' corresponds to one of the three kinetic energies defined above. We
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will also use the symbol L, for L,(R?) or L,(R?; C*) if there is no risk of confusion;
the corresponding norm will be denoted || - ||;. We denote the space of Schwartz
functions (with values in C or C*) by S, and its dual, the space of tempered distri-
butions, by &’. The (S’,S) pairing is denoted by (-,-). We define by

itp) = Fol(p) = i [ € (e da (1.7)

the Fourier transform of the function g € S(R3). For four-component vector func-
tions g = (g1,...,94)T, g is defined componentwise. For r € [1, 2], the Fourier trans-
form extends to a bounded linear mapping from L, to L,., with 1/r +1/r' = 1.
On the other hand, by duality, the Fourier transform extends to &’. These two
extensions coincide whenever they are both defined.

Consider, for E ¢ o(T) and ||¢g|l2 = 1, the eigenvalue equation

(T(=1V) = A\V)pp = Evp. (1.8)

An elementary manipulation shows that this equation can be rewritten as

¢p = NI (-iV) - B) V. (1.9)
The latter equation is known (in the physics literature) as the Lipmann—Schwinger
equation.
We recall the following. For FE ¢ o(T) there is a solution ¢g of (1.8) if and only
if for
pe =V"0p, (1.10)
the equation
holds, where
Kp =VY¥T(-iV) - E)"lv1/2 (1.12)

is the Birman—Schwinger operator.

REMARK 1.1. Note that A # 0 under the stated assumptions on V. For the
Schrédinger and pseudorelativistic cases, this follows from [22, theorem 2.3]. For
the Dirac case, see [12, lemma 2.3].

An interesting feature is that, under fairly general assumptions on the poten-
tial V', we have the following. If A, | Ac as n — oo, and if {¢g(x,) nen C Lo is a
sequence of corresponding eigenfunctions of T'—\,, V', then there exists a subsequence
{@E(Ank)}keN and a ug € L such that

IE\,,) — Ho in Ly as k — oo, (1.13)

where pp(y is given by (1.10).

An analogous result holds for the Dirac operator when E(X) | —2m as A 1 A¢, in
which case the limiting function is denoted by p_opy,.

The precise statement of the conditions on V' is in lemma 5.1 (see § 5, where we
also give a proof).
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Throughout this paper ‘E — 0’ (‘E — —2m’) means to take sequences { A, }nen
with A, T Ae (I Ae) for which {pg () }nen has a limit in L.

From (1.13) we can construct what will turn out to be the relevant (generalized)
zero-energy solution. We call this a ‘threshold energy state’.

Let us now state the condition on the weight functions w. We define « = || and
p = |p|, and x< := X[0,1) and X> := X[1,00); With xa the characteristic function of
the set A.

Let wg : R® — C (Schrédinger), wy e : R® — C (pseudorelativistic) and wp :
R3 — Myx4(C) (4 x 4 matrices over C) (Dirac) satisfy

ws(p)x<(p) 3 ws(p)x>(p) 3
— 2 € Ly(R7), > € Lo (R?), (1.14)
wwr61(§Q)X<(p) € Lo(RY), wwrel(z)X>(P) € Loo(R?), (1.15)
|wD(p)|X<(p) c LQ(R3C4) ‘wD(p)|X>(p) cl (R3(C4) (1 16)
p? . p R '

where in the last expression |wp(p)| denotes any norm of the matrix wp(p) (for
instance, its largest eigenvalue, in absolute value). We write in general w(p) for one
of the three functions defined above. Our main result in this paper is the following.

THEOREM 1.2. Let H(A) = T — AV, with T one of the kinetic energy operators
mentioned above, and V € L1 N Ly. Let A\. be a coupling constant threshold, let
An 4 Ac and {pn}nen C Lo such that H(Ap)on = E(An)pn. Let {untnen be the
corresponding Birman—Schwinger eigenfunctions defined by (1.10), and assume that
n = o i Lo as n — oo. Define

po(m) := A /W T (@, y)V'*(y)po(y) dy, (1.17)

where T~ (x,y) = limg_o(T — E) Y (x,y). Finally, let w satisfy the conditions
(1.14)~(1.16). Then
Wy — wPg in La  as n — oco. (1.18)

Furthermore, o satisfies
Hoo=0 inS'. (1.19)

REMARK 1.3.

(i) An analogous theorem holds for the Dirac case when E — —2m. In that case
we define

P_om(T) == Ae /3(T +2m) "Nz, y) V2 (y) p—2m (y) dy. (1.20)
R

This is the limiting object for which (1.18) holds, and which turns out to solve

Hp_9m = (—2m)¢p_gy in S

(ii) Explicit expressions for (T — E)~!(x,y) and its limits, for the three choices
of kinetic energy 7', are given in §2.3.
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(i) Note that not all solutions of Hyy = 0 in the distributional sense have the
form (1.17).

(iv) In contrast to the Laplacian, the pseudorelativistic kinetic energy behaves
like p? for small (momenta) p and like p for large momenta. The conditions
n (1.15) are sufficient to ensure that (see (3.11), below)

N N e

are finite.

(v) Examples of weight functions are ws(p) = p**, wyra(p) = (v/p? + m? —m)*
and wp(p) = |a-p+ mpB —m|*, all for s € (3,2]. Thus, in general we have
that w(p) = |T(p)|*, s € (3, 2], satisfy conditions (1.14)-(1.16).

(vi) In the Schrodinger case, convergence of Vg and Agg is known (see, for
example, [24]). The methods there rely on the local properties of the operators
V and A. The original goal of our work was to prove this convergence for
non-local as well as matrix-valued kinetic energies. The insight of the present
paper is that studying the problem in momentum-space allows one to prove
the convergence not only of Vog and Apg for all of these kinetic energies,
but also of more general functions of V applied to ¢g.

REMARK 1.4. It is important to note that our convergence statements are inde-
pendent of whether or not there is an eigenvalue at the threshold when A — A..
Conditions for the limit function @g (or ¢_s,,) to be in Ly are well known and we
list them here for completeness (we thank A. Jensen for commenting on this to us).

(i) The Schrédinger [11,14] and pseudorelativistic [18] case: ¢ € L2(R?) if and
only if [os V(2)go(x) dx = 0.

(ii) The Dlrac case [13]: ¢o € Lo(R3) if and only if Jgs V() Bypo(x) de = 0 (or
Jrs V() B-@_om(x)de = 0 for ¢_sy,). Here, By = (1 +3).

In the case when g ¢ Lo, ¢o is called a zero-resonance or a half-bound state
(see, for example, [11]). (In the physics literature this is sometimes called a ‘virtual
level’ or ‘virtual state’; these appear in the context of scattering theory; see, for
example, [5,17,19] and references therein.)

2. Preliminaries

2.1. Additional tools for the Dirac operator

We define
To(p) == FIpF ' =a-p+mpB —m. (2.1)

To study the Dirac case, we introduce the Foldy—Wouthuysen transformation [6,23]
Upw : L2(R3; C*) — Ly(R?;C*), which has the property that

UFWTDUFTVlV =06V -A+m2—m. (2.2)
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In momentum space, UFW := FUpwF ! is given by the matrix-valued multiplica-
tion operator

Urw(p) = a4 (p) + B - %af(p), (2.3)

where

as(p) = \/; <1i \/pﬁimg (2.4)

Noting that

-1

Urw (p) =M@ﬂth@7 (2.5)

we see that Upw(p) is an orthogonal matrix for every p € R3. Therefore, by the
definition (1.5) we have the following lemma.

LEMMA 2.1. For q > 1, the mapping Upy : Ly(R3;C*) — Ly(R3; C*) with ﬁpw(p)
given in (2.3) is an isometry.

Also note that, from (2.1) and (2.2), it follows that

Urw (P)To () Upwy () = FUpwInUpw F ' = BV/P2 +m2 —m,  (2.6)

and so, by the spectral theorem (for matrices),
Urw (P)(To(p) — E) ™ Upy (p)
= (BVP?+m?—m—E)"!
(VP2 +m? —m — E) sy 022
(—/P2+m2—m — E)1[2X2>

B (VT = B 4 B (/T - m— B)
Behip(p) + B-hg(p), (2.7)

where (4 := (1 4+ 3). Equation (2.7) makes manifest the fact that the problems
E — 0 and E — —2m are symmetric.

In order to perform L4-estimates in the Dirac case we need the following lemma,
which is a Holder inequality for matrix-valued functions.

O2x2

LEMMA 2.2. Let A: R — My, 4(C), g: R® — C*. Then, for 1/qg=1/r+1/s,

149l L, ms:c4) < [Amax (AL, @) ll9ll 2. w3504 (2.8)

where Amax(A)(x) := [|A(x)||g(cs) is the largest eigenvalue (in absolute value) of
the matriz A(x).

Proof. Let G(x) = [[A(z)g()|c+, A(®) = [[A(@)|5(c#) and g(z) = [lg(x) [cs- Then

G(x) < A(z)g(x) for all z € R3, (2.9)

https://doi.org/10.1017/50308210506000606 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210506000606

On the convergence of eigenfunctions to threshold energy states 175

and so this inequality, (1.5) and Holder’s inequality imply that

1/q
gl o = [ I4@xtal i)

= [1Gll, &)
< gl @s) < AL, @38l L, w3
= [[Amax (AL, @) 19l L, ®3:c4)- (2.10)

2.2. Preliminaries of the proof

For E ¢ o(T) we define fr := V'/?ug (see also (1.10)) and if (1.13) holds, we
set fo:= VY2 and f_om := V/2u_g,,, respectively. We rewrite the Lipmann—
Schwinger equation (1.9) as

op = NT(-iV) — E) " fg. (2.11)
The following properties of fgr and its Fourier transform, fE, will be important.

LEMMA 2.3. IfV € LiN Lo, then fg € L1 N La. Moreover, fg — fo in Ly for any
q € [1,2]. Consequently, also fr — fo in L, for any r € [2,00].

REMARK 2.4. An analogous result holds when E — —2m, with fy replaced by

f—2m~

Proof. By lemma 5.1, below, we have that ug — o in Ly as £ — 0 for our choice
of the potential V. Using the fact that V/2 € Ly N Lo, we have, for E < 0, that
fE € L1 N Loy, since

el <IVY20elpelz, el IVl (2.12)

In particular, for r € [1,2] and ¢ = 2r/(2 — r), we have that
£ = folle < IV 2llglliee = polls = 0 as E =0, (213)

i.e. || fE— foll- = O for any r € [1,2]. Finally, using the Hausdorff-Young inequality
(see, for example, [16, theorem 5.7]) we get the desired result. In the Dirac case,
the Holder inequalities used in (2.12) and (2.13) should be understood in the sense
explained in lemma 2.2. O

2.3. The kernels of (T — E)~! and the eigenfunctions
in coordinate space

In order to have explicit expressions for (2.11) in coordinates we need to recall
the kernels in @-space of the operators (T'— E)~! for E ¢ o(T).

For the Schriodinger case we have the well-known expression (see, for example,
[20])

(Ts - B)\(z,y) = ;TGXP(‘@LT —v) (2.14)
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For the pseudorelativistic case the kernel can be found in [18]; for completeness we
also derive it in §4.1. For vp = \/|m2 — (E + m)?2|, we have

Tyrs ) (o) = E MRl ) | m Kimle —y)

Ar|e — y| 21 |e—y
K . —vpl-
b ooy [ Kl D) esp(rel-D]
272 [ 4| - |
(2.15)
where K7 is a modified Bessel function of the second kind.
In the Dirac case the kernel is computed in [23]; it is given by
(T —E)_l(w y) _ eXp(_VElx _y|)
D ) Ar
(mﬁ—i—m-l—E ivgor - (m;y) i (x —By)) (2.16)
lz -y lz -yl [z -y

with vg as before (vg = /m? — (E +m)? since E € (—2m,0)).
Thus, for E ¢ o(T), in coordinate space we write in general (see (2.11))

pola) = A [ (T=B)7(@.9) fo(v) . 2.17)

where as usual T is one of our choices of kinetic energy.
In order to make the connection to the threshold energy states we have the
following lemma.

LEMMA 2.5. For E ¢ o(T) let o be given pointwise by (2.17) with one of the
choices of kernels of (T —E)~t given in (2.14)-(2.16), and let pq be given by (1.17).

Then, as E — 0, we have that pg — @o in S’. Moreover, Vor — Vo in §'.
Case by case, pq is given explicitly by the following.

For the Schrédinger case:

@o(x) Ai/ —i—duwdy (2.18)

ar Je o=y
For the pseudorelativistic case:

m m Ki(m|x —yl|)
— A _m o m BimE =Y
R R

o m Ki(m[-]) 1
s | D @ ) i) dy. (219
For the Dirac case:
A 2mfBy ia- (x—1y)
pole) = 45 [ (20 o ) ay. (2:20)

REMARK 2.6. In the case E — —2m the limit function ¢_s,, is given by

_ A —2mf_  ia-(x—y)
oomte) =32 [ (R2gr + o ot @21
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Proof. By lemma 4.2, below, the functions ¢g in (2.18)—(2.20) are well defined in
Ly + Lo C 8’ since fy € L1 N Ly. The statement on the convergence follows from
lemma 4.3, below, using lemma 2.3. In the pseudorelativistic case, the conditions
of lemmas 4.2 and 4.3 are satisfied by lemma 4.4. O

2.4. The eigenfunctions in momentum space

Since g € Lo for E ¢ o(T), the expressions in momentum space for g in (2.11)
are straightforward to derive. In general they are given by

[Ferl(p) = ¢£(P) = M(T(p) — E) " f&(p), (2.22)

where T'(p) can be

Ts(p) =p*, Tyra(P)=Vp2+m2—m or Tp(p)=a-p+mp—m, (2.23)

for the Schrodinger, pseudorelativistic and Dirac case, respectively. In general, the
functions ¢ are not in Ls.

LEMMA 2.7. For E ¢ o(T) let g be given pointwise by (2.22) with T(p) one of
the choices given in (2.23). Then, as E — 0, we have that pr — P := A\.T(p) "' fo
in S'. Case by case, ¢g is given explicitly as follows.

For the Schréadinger case:

~ )\c r
Go(p) = Z;fo(zo)- (2.24)
For the pseudorelativistic case:
~ )\c P
¢o(p) = ———=——Jo(p). (2.25)

S —m
For the Dirac case:
o(p) = Al p+mf —m)~" fo(p). (2.26)
REMARK 2.8.

(i) In the case when E' — —2m, the limit function @_o,, is given by
$oom(P) = Ae(a-p+mB+m) " fom(p). (2.27)

(ii) The limit function denoted by @ is in fact the Fourier transform of the
function g defined in lemma 2.5. This is proved in the next section (see (3.4)).

The proof of lemma 2.7 is given in §4.

3. Proof of theorem 1.2

Now we are ready to prove theorem 1.2.
Let ¢ € S. Then (1.8) implies that

(T(=iV)pr, ¢) = MVeE, ¢) = E(vr, ¢). (3.1)
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Here (-,-) is the (S8, S)-pairing. Firstly, note that T(—iV)¢ € S. Secondly, due to
lemma 2.5, we have o5 — @9 and Vg — Vg in 8" as E — 0. Therefore, taking
the limit in (3.1), we get

<T(—iv><p0, ¢> - )\C<V@07 ¢> =0, (32)

which proves that g satisfies H(\:)po = 0 in §’. This argument holds for all three
choices of T'.
Consider the fact that

(Fop, ¢) = (¢r, Fo). (3.3)

The function Fyg satisfies (2.22) and, by lemma 2.7, converges in &’ to the function
o defined in (2.24)—(2.26). On the other hand, by lemma 2.5, the right-hand side
of (3.3) converges to (pq, F¢) as E — 0. Therefore, taking the limit £ — 0 in (3.3)
we get

¢o=Fpo=po inS'. (3.4)
It remains to prove that, for w satisfying the conditions (1.14)—(1.16), we have
wPgE — wPg in Ly as E — 0. (3.5)

This is now carried out in detail. We start by working with the general expressions.
The specific cases are left to the end. The main object of interest is the difference
wp — wgo. This we rewrite using (2.22) and its counterpart for £ = 0 (now
@0 = @o = T(p)~ " fo from (2.24)-(2.26)). We have

lw(¢r — ¢o)llz = lwANT(P) — E) ™' fr — AT (p) " fo)ll2
< JwNT(p) — E)~' = AT(p) 1) foll2
+ AJw(T(p) — E) " (fe — fo)ll2-

Since A — A\. as F — 0, it is sufficient to prove that
lo((T(p) = E)™ = T(p) ") foll2 =0 as E—0 (3.6)
and
lw(T(p) — B) " (f& — fo)| = 0 as E — 0. (3.7)
The term in (3.7) can be estimated by
lw(T(p) — E)"'(f& — fo)ll2 < llwx<(T(®) = B) " l2|lf& — foll
+ x> (T(P) = E) ool /2 = foll2- (3.8)
Owing to lemma 2.3, it is sufficient to show that the first factors in the two terms

on the right-hand side of (3.8) stay finite as £ — 0. Then (3.7) follows.
Now we prove the convergence statement case by case.
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Schrédinger case.  'We have that (for E < 0)
(Ts(p)—E) ' =(@*-E) ' <p 2 (3.9)

Therefore the first two factors on the right-hand side of (3.8) are finite by the
condition (1.14). This proves (3.7).

To prove (3.6) we use Lebesgue’s theorem of dominated convergence, with the
function 2|w(p)|fo|/p* as a dominant (see (3.9)); this is in Ly since we can again
split it into large and small p as in (3.8) and use the condition (1.14). Hence, we
have proved (3.5) for the Schrodinger case.

Pseudorelativistic case. We here use the fact that, for £ < 0,

1 1
Tyrel(p) — E) 1 = < ) 3.10
(Fora®) = B) ! = e € (310)
Additionally, there exist constants ¢; and ¢y such that
1 x<(p) 1 x> (p)
- <ec and ——— <c .
p2+m2—mx<<p) L2 p2+m2—mx>(p) “p

(3.11)

The finiteness of the first two factors on the right-hand side of (3.8) follows from
(3.10) by using the estimates (3.11) and the condition (1.15). This proves (3.7).
As before, to prove (3.6) we use Lebesgue’s theorem of dominated convergence,

with 2|w(p)||fol/(v/p? + m? — m) as dominant.

Dirac case. We prove the case when E — 0 and comment on the case E — —2m at
the end. Here the general strategy is the same as in the two cases considered above,
i.e. we use (3.8) to prove (3.7), and Lebesgue’s theorem with the dominant given
by the zero-energy expression to prove (3.6). The Holder estimate in (3.8) should
be understood in the sense of lemma 2.2. In order to work with diagonal matrices,
we use the Foldy-Wouthuysen transformation Upyw defined in (2.3). Using (2.7) we
have (with @ = UpwwUpy)

lwx<(To®) = B) "2 < |lox<Brhp®)lle + |ox<B-hp®)ll2, (3.12)
where we used lemma 2.1 and the fact that x~ and Urw (p) commute. Analogously,
we get

[wxs(To (@) = E) o < [l0xsB1hE D)oo + [[0x5B-hp(p)|oo- (3.13)

The terms with h;g (p) are completely analogous to the pseudorelativistic case (see
(2.7) and (3.10), (3.11)), except for the fact that the conditions needed for conver-
gence are

< 00,
2

1 1
Wx<Br—| = |08+ x<—
H b Hn e

2 (3.14)

- 1 - 1
HwX>ﬁ+pH =H||wﬁ+||5(c4)><>pH < 0.

o0 o0
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The terms with h;;(p) are not critical; in fact, for 0 > E > —m we have

1 1
hz(p)| = < , 3.15
()| = e < s (3.15)
which implies the estimates
1 1

hz < — d |h5 < -, 3.16
|h i (p)l m and  [hp(p)| P ( )

and therefore gives us the following conditions for convergence:

[ox<B-l2 = ll@B-[lBcsyx<ll2 < o0,

. 1 _ 1 (3.17)

e N e

Plle p

o0

Since B+ are projections and Upw(p) is an orthogonal matrix, (3.14) and (3.17)
are fulfilled by (1.16).
In the case when £ — —2m, we have the following estimates for —2m < F < —m:

1 1

h < —— and A} < —F/—,

i.e. in this case the terms with hy are those analogous to the pseudorelativistic
case, and the terms with hf are non-critical. The conditions (3.14) and (3.17) are
the same with the substitution 8+ — B=.

(3.18)

REMARK 3.1. Note that (3.14) and (3.17) are slightly more general than (1.16),
but that (1.16) covers both E — 0 and E — —2m.

4. Useful lemmas

In this section we prove some technical lemmas; these are not optimal and can
easily be further generalized, but they are sufficient for our purposes.

The following lemma is a special case of the Hardy—-Littlewood—Sobolev inequality
in three dimensions [16, theorem 4.3].
LEMMA 4.1. Lete € (0,1), v €[1,2], g € L14-(R®) and f € Ly(R®), ¢ = (2— 37—
1/(1+¢))~ L.

Then

1
\ / / f(w)g(y)dmdy'<cwnf|LQ(R3>||9||LHE<R3>. (41)
R3 JR3 lx —y|”

LEMMA 4.2. Lete € (0,3), v € [1,2], and g € L1 (R%) N L14.(R®), and define

(Ig)(@) = / 1wy (4.2)

e —yp?

Then Ig € (R, and |Pglls, ) < Cv K)llgly, .0 Jor any compact
K C R3. Furthermore, ["g = I] g+ I g with I/ g € L1(R3), 1] g € Lo (R3).
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Proof. Firstly, multiply (4.2) by the characteristic function yx and integrate in .
The first statement, and the estimate, follow from Fubini’s theorem and lemma 4.1.
Secondly, for R > 0, split the integral:

1 1
I”gw:/ 79ydy+/ ——g(y)dy
T'a)(=) Br(z) 1T — Y| W) R\ Br(z) 1T — Y| W)

= (Il g)(x) + (I3 9)(x). (4.3)

For the first term in (4.3) use [7, lemma 7.12], which says that, for ¢ € [1, 00] and
0<1/p—1/qg<1—~/3, I] maps L,(R?) continuously into L,(R3) with

HI?qu < C%p,q”ng-

Use this with p = ¢ = 1. Then I g € L;(R3).
For the second term in (4.3),

1 1
I’y g T~ d < o~ 9
Bow) < [ gl < gl
so I7g € Loo(R?). -

LEMMA 4.3. Let € € (0,4), v € [1,2], and let G,,,G : R* — R3, n € N, satisfy

Gn(x) = G(x) as n — oco. Assume there exist ¢, ca € Ry such that

C
G, ()| < @ and |G(z)| < —=. (4.4)

Let {gn}nen C L14c(R3) satisfy g, — g in L11c(R3) as n — oo. Define the func-
tions

(TYgn) (@) = / Gl — y)gn(y) dy

R3

and
T)@)i= [ G-yt dy.

Then VT g, — VT7g in S'(R3) for all V € Lo (R?). In particular, T g, — T7g
in S'(R3).

Proof. Tt follows from lemma 4.2 and (4.4) that
VT, gn, VT7g € L1(R?) + Loo (R?) C S'(R?).

For ¢ € S(R?) C L,(R3), ¢ > 1, we have, using Fubini’s theorem, that
V(Tg0 ~ T79),6) = [ 6(@)V(@)(Gnle - ) - Gla - y)lg(y) do dy
R

+ [ 6@l @)Gula ~9)(on — )(y) de dy

=L (n) + Ix(n).
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We will use Lebesgue’s theorem of dominated convergence for I;(n). Lemma 4.1
shows that the inequality

1+ c2
Gz —y) -G —y)| < —
-y
provides a dominant, so that I;(n) — 0 as n — oo, since G, () — G(x) as n — 0.
For Iy(n), the first inequality in (4.4) and lemma 4.1 give that I3(n) — 0 as
n — 0o, since g, — g in L14.(R3) by assumption. O

4.1. The pseudorelativistic kernel

Although (2.15) is given in [18] we want to sketch its proof. Let us start by noting
that (see [16, 7.11 (11)])

1 m2 [e’s) t
— €T, = — 7[( mt2+ T — 2 1/2 dt
(m)( V= 9m |, pijeogpletmt+le—yl))
_om? [ Ko(s)
o2

ds

mlz—y| S

K _
_m Ki(m|z y|)’ (4.5)
27 o —y
where in the latter step we used the fact that Ks(z)/z = —(K;(z)/x)" and that
Ki(s)/s = 0 as s — oo (see [8, (8.486.15)] and (4.9) below). On the other hand,

with vg = /m? — (E 4+ m)? and E < 0, we have the operator identity
1  E+m " 1
V-A¥m2-m—-E -A+vi V-A+m?
1 1
2

+(m? —v3) (4.6)

vV—=A+m? —A—FV%.

The expression in (2.15) follows by computing the kernel of each summand of (4.6)
separately, using (2.14) and (4.5).

Next we have the following convergence statement for the third summand in
equation (2.15).

LEMMA 4.4. For vg = \/m2 — (E+m)2, E <0, and z € R®, we have
Ki(m)| - |- Ki(m|-]) 1
[ 1(|m|| ), o | 2 D} () - {l(mﬂ D, II] () asE—0. (47
Moreover, there exists a constant c; > 0 such that
bl opCrel D g Bkl Lgyc 2 )
- |- - |- ||
Proof. The following properties of the Bessel function K (see [8, (8.446), (8.451.6)])
will be useful: there exist constants ¢ and p such that

Ki(z) < ce

VT

for x > p; (4.9)
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moreover, for x > 0,

1
Ki(x) < = (4.10)
Then, by Newton’s theorem (see, for example, [16]),
P T P R T I
RS |z -yl Yl w [T —yl |yl

1 K

<L [ Kdmly)) o, (4.11)
|z| Jps ly|

The last integral is finite by (4.9) and (4.10); this proves (4.8). The convergence
in (4.7) follows from Lebesgue’s monotone convergence theorem. O

4.2. Proof of lemma 2.7
Let p € S C Ly, ¢ = 1. Then

(Fow — 30), &) = / (T(p) — B)" fo(p) - T(p) " fo(p)] - 6(p) dp

R3

+ [ (@)= ) (fe - fo)p) - o(p) dp
R3
= I,(E) + I(E).

(In the Dirac case, the dot denotes the scalar product in C*.)

We first consider the Schrodinger and the pseudorelativistic cases.

Note that, in both cases, there exist positive constants c., ¢ such that, for all
p € R? and E < 0 (for the pseudorelativistic case, use (3.11)),

(T(p) — E) é(p)| < ;—§X<<p>¢<p> + e x2(p)d(P).

By Holder’s inequality, this implies that

1L(E)| < C|lfe = follso (ngf

+ ||¢||1).
1

The last factor is finite since ¢ € S(R?) C Ly (R?), and by lemma 2.3 the first one
goes to zero as E goes to zero, so Is(E) — 0, F — 0.

For Iy, we use Lebesgue’s theorem of dominated convergence. By arguments
similar to that above, the function c(x</p? + x> )¢ is a dominant (for some ¢ > 0)
and therefore also I; (F) — 0, E — 0.

For the Dirac case,

L(E)| < /RS I(T(@P) — E)" = T(p) " Ises I fo®)lc:[¢(p) et dp.
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Using the fact that Upw (p) is an orthogonal matrix for all p € R3, and (2.7), for
—m < E <0 we have that

(T (p) — E) s
_ H((\/p?er?mE)lIng O2x2 )
B 022 (—vpP*+m?2—m—E) Iy B(C)
 (VPTRE —m— Bt < (T —m) (412)

By an argument as above (in the pseudorelativistic case), Lebesgue’s theorem on
dominated convergence gives that I1(E) — 0, E — 0 also in this case. Also by
arguments as above, (4.12) and the fact that (by lemma 2.3) fz — fo in Lo gives
that also Ir(E) — 0,E — 0.

Note that a similar argument works for the Dirac case when F — —2m; in this
case, for —2m < E < —m,

I(T(p) — B) sy

_ (VP2 +m2—m— E) 'y, O2x2
022 (=vVP* +m? =m = E) " axa ) || 5 ey

= (VPP +m2+m+E)7 < (VPR +m?—m) 7 (4.13)

5. Convergence of Birman—Schwinger operators and eigenfunctions

We denote the compact operators by S.,. For r > 1, we denote by S, the r’th
Schatten-class of compact operators (which is a norm-closed two-sided ideal in Sy)
and || - ||s,. its norm.

LEMMA 5.1. Let € > 0 and assume that V' > 0 satisfies

V €Lyt e(R*)NLzjn_o(R?) and E <0 (Schrédinger case), (5.1)
V€ Ly (R*) N L3/ o(R?) and E <0 (pseudorelativistic case), (5.2)
V€ Ly, (R C* N L3 _.(R%C*) and E € (—2m,0) (Dirac case).  (5.3)
Let Ac be a coupling constant threshold, and let My, E,, ¢p, satisfy (T —MV)pg, =
E.og,, e, ll2 =1, \n L Ae as E, 10 (or A\, T A when E,, | —2m in the Dirac

case). Finally, let
Kg = VY(T(-iv) — E)~tv1/? (5.4)

be the Birman—Schwinger operator and ug, = V1/2<pEn be the Birman—Schwinger
eigenfunctions associated with ¢g,, .
Then

(i) Kg, is a compact operator,

(i1) the norm-limit Ko :=lim, o Kp, exists (and, in the Dirac case, K_op, :=
lim,, oo K5, exists),

(iii) Ko (and in the Dirac case, K_o.,) is compact,
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(iv) there exists a subsequence {u, tren and po € Lo such that ug, — o as
k — oo and Kouo = (1/A¢)po-

Proof. In the Schrodinger and pseudorelativistic cases, it is enough to show that
VY2(T(~iV) — E,)~/? is compact (since S is compact if and only if $*S is com-
pact). For this, we will use the fact that operators of the form f(x)g(—iV) belong
to S, if f,g € L., r € [2,00), and that furthermore

1 (2)g(=iV)lls, < 2m) 7| £l llgll- (5:5)

(see [21, theorem X1.20]). Note that, for E' < 0, the function (p? — E)~'/2 belongs
to Lz, -(R3), and (y/p? + m2 —m — E)~'/2 belongs to L, -(R?). By (5.5) and the
assumptions (5.1) and (5.2) on the potential V, this implies that the Birman—
Schwinger operator Kp, is compact in both cases.

To show the statement on convergence, write

S, = V'/(T(=iV) = E,) /2
= V2F " T(p) — Ea) Vx<(p)F + VV2F YT (p) — En) /X~ (p)F
= n,< + Sn,>' (56)

Again using (5.5), the assumptions (5.1) and (5.2) on the potential, and Lebesgue’s
theorem on dominated convergence, {5, <}nen is a Cauchy sequence in the S,-
norm for r € [2,3) (in both cases), and {Sy > tnen in the S,-norm for r € (3,00)
in the Schrodinger case, and for r € (6,00) in the pseudorelativistic case. There-
fore, both sequences are Cauchy sequences in the operator norm. Since the set of
compact operators is norm-closed, lim, o S, > exist, and are compact operators.
Therefore, Kq := lim,_, o, Kg, exists and is compact, in both the Schrédinger and
the pseudorelativistic cases.

The proof in the Dirac case is essentially the same, only slightly more involved
due to the fact that Tp — E is not positive. Note that, using the Foldy—Wouthuysen
transformation Upw, we have (see (2.7))

VYT — B)'WWY2 = vI2Uu b FH (B2 + m2 —m — E) T FUpw VY2
=58, — 88,
with

g, — ((\/p2+m2—m—E)_1/212x2 0252
L=

02x2 02x2

)fwwwﬂ, (5.7)

S - 02x2 022
- O2x2 (VP2 +m2+m+ E) 121,

As before, it suffices to prove that S, and S_ are compact. Note that Upw is
bounded, and that both of the functions

(VPP +m2—m—E)"Y2 and (Vp>+m2+m+ E)"1/2

belong to Lgye (since E € (—2m,0)), and so the same argument as above implies
that S} and S_ are compact. It follows that Kg, is compact also in the Dirac case.
The convergence follows by similar arguments as above.

)fmwwﬂ. (5.8)
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It remains to prove (iv). Note that ||ug, |2 < C since V € Ly and |¢g, |2 =
1. Since K| is compact, there exists a subsequence {ﬂEnk tren such that ¢ :=
limy o0 Kopp,, exists. Using (ii) we get that |Kg, pr, —¢l2 — 0ask — oo.

Since 1
Kg, pg, = )\—uEn and A\, > Ac asn — oo,
n
it follows that po := limy_o0 pp,, exists, and satisfies Kopo = (1/Ae)po- O
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