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We prove the convergence in certain weighted spaces in momentum space of
eigenfunctions of H = T − λV as the energy goes to an energy threshold. We do this
for three choices of kinetic energy T , namely the non-relativistic Schrödinger
operator, the pseudorelativistc operator

√
−∆ + m2 − m, and the Dirac operator.

1. Introduction

In this paper we consider a family of Hamiltonians

H ≡ H(λ) = T − λV, (1.1)

where λ > 0 is the coupling constant and V � 0 is a bounded and integrable
potential. We will consider different choices of physical kinetic energies T , but, for
the moment, to fix ideas, we set T = −∆, the Laplace operator in three dimensions.
The essential spectrum of H is equal to the interval [0,∞) and (for λ sufficiently
large) H has negative discrete eigenvalues Ei < 0, i = 1, 2, . . . . We shall henceforth
fix an i ∈ N and consider the λ-dependence of E(λ) := Ei(λ). Due to monotonicity,
there is a λc ∈ R such that, as λ ↓ λc, E(λ) ↑ 0. We call λc a coupling constant
threshold.

Let ϕE = ϕE(λ) ∈ L2(R3) be an eigenfunction of H(λ) with eigenvalue E = E(λ).
A detailed study of the behaviour of E as λ ↓ λc for various choices of T was carried
out in [13–15,18]. Here, we are interested in the behaviour of ϕE as E ↑ 0 (that is,
as λ ↓ λc). It is easy to prove (using closedness of the kinetic energy T ) that if ϕE

converges in L2(R3), then the limit function ϕ0 is an eigenfunction of H(λc), i.e. a
bound state with zero energy. If there is no L2-convergence, however, we might
expect some other kind of convergence of the ϕE . In particular, we are interested in
considering the convergence properties of w(−i∇)ϕE , where w is a suitable function
of the kinetic energy. (For the question of existence of zero-energy eigenstates, see,
for example, [1], and the above-mentioned papers.)
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Such questions, apart from being of independent interest, are important for prob-
lems pertaining to enhanced binding and the Efimov effect (see, for example, [4,24]).
(Other papers on enhanced binding, using zero-energy ‘eigenfunctions’ are [2, 3, 9];
these, however, do not explicitly use the convergence properties we discuss here.)
We shall not comment further on this here. Our work partly uses the techniques
used in [12,14,15] for the relativistic case (see also [18]). In these papers the authors
investigated the relationship between the analytic properties of the eigenvalues near
the threshold energy and the existence of eigenvalues at the threshold.

Let us introduce the three different choices of kinetic energy, T , which we will
study in this paper. Let m > 0 be the mass of the electron.

Schrödinger case. The free one-particle non-relativistic kinetic energy is given (in
units when � = 1) by −∆/2m. Choosing units such that 2m = 1, the operator is
just the Laplace operator in three dimensions mentioned above:

TS := −∆. (1.2)

Pseudorelativistic case. A naive choice of a free one-particle (pseudo)relativistic
kinetic energy is given (in units when � = c = 1) by the pseudodifferential operator,

Tψ rel :=
√

−∆ + m2 − m (1.3)

(see, for example, [10, 25]).
In both of the above cases, assuming that 0 � V ∈ L1(R3) ∩ L∞(R3), the opera-

tors HS(λ) := TS − λV and Hψ rel(λ) := Tψ rel − λV are self-adjoint in L2(R3) with
domains H2(R3) and H1(R3), respectively; their essential spectrum is σess = [0,∞)
and (for sufficiently large λ), they have eigenvalues Ei(λ) < 0, i ∈ N (see [16,20]).

Dirac case. The free one-particle Dirac operator (again, in units when � = c = 1)
is given by

TD := α · (−i∇) + mβ − m, (1.4)

acting on L2(R3; C4). Here α and β are the usual Dirac matrices.
If 0 � V ∈ L1(R3; C4)∩L∞(R3; C4) is a (diagonal) potential, then HD(λ) := TD−

λV is self-adjoint with domain H1(R3; C4), its essential spectrum is (−∞,−2m] ∪
[0,∞), and it has eigenvalues Ei(λ) ∈ (−2m, 0), i ∈ N (see [23]).

We recall that, for q � 1, the Banach space Lq(R3; C4) consists of four-component
vector functions φ = (φ1, . . . , φ4)T with the norm

‖φ‖Lq(R3;C4) :=
( ∫

R3
‖φ(x)‖q

C4 dx

)1/q

. (1.5)

Here ‖ · ‖C4 is the usual Euclidean norm. Note that, since all norms in C
4 are

equivalent, this norm and

|||φ|||Lq(R3;C4) :=
( 4∑

i=1

‖φi‖q
Lq(R3)

)1/q

(1.6)

are equivalent (for q = 2 they are equal).
In order to relax the notation, we denote by H(λ) = T − λV a general Hamilto-

nian, where T corresponds to one of the three kinetic energies defined above. We
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will also use the symbol Lq for Lq(R3) or Lq(R3; C4) if there is no risk of confusion;
the corresponding norm will be denoted ‖ · ‖q. We denote the space of Schwartz
functions (with values in C or C

4) by S, and its dual, the space of tempered distri-
butions, by S ′. The (S ′,S) pairing is denoted by 〈·, ·〉. We define by

ĝ(p) := [Fg](p) :=
1

(2π)3/2

∫
R3

e−ip·xg(x) dx (1.7)

the Fourier transform of the function g ∈ S(R3). For four-component vector func-
tions g = (g1, . . . , g4)T, ĝ is defined componentwise. For r ∈ [1, 2], the Fourier trans-
form extends to a bounded linear mapping from Lr to Lr′ , with 1/r + 1/r′ = 1.
On the other hand, by duality, the Fourier transform extends to S ′. These two
extensions coincide whenever they are both defined.

Consider, for E �∈ σ(T ) and ‖ϕE‖2 = 1, the eigenvalue equation

(T (−i∇) − λV )ϕE = EϕE . (1.8)

An elementary manipulation shows that this equation can be rewritten as

ϕE = λ(T (−i∇) − E)−1V ϕE . (1.9)

The latter equation is known (in the physics literature) as the Lipmann–Schwinger
equation.

We recall the following. For E �∈ σ(T ) there is a solution ϕE of (1.8) if and only
if for

µE := V 1/2ϕE , (1.10)

the equation
KEµE = λ−1µE (1.11)

holds, where
KE = V 1/2(T (−i∇) − E)−1V 1/2 (1.12)

is the Birman–Schwinger operator.

Remark 1.1. Note that λc �= 0 under the stated assumptions on V . For the
Schrödinger and pseudorelativistic cases, this follows from [22, theorem 2.3]. For
the Dirac case, see [12, lemma 2.3].

An interesting feature is that, under fairly general assumptions on the poten-
tial V , we have the following. If λn ↓ λc as n → ∞, and if {ϕE(λn)}n∈N ⊂ L2 is a
sequence of corresponding eigenfunctions of T−λnV , then there exists a subsequence
{ϕE(λnk

)}k∈N and a µ0 ∈ L2 such that

µE(λnk
) → µ0 in L2 as k → ∞, (1.13)

where µE(λ) is given by (1.10).
An analogous result holds for the Dirac operator when E(λ) ↓ −2m as λ ↑ λc, in

which case the limiting function is denoted by µ−2m.
The precise statement of the conditions on V is in lemma 5.1 (see § 5, where we

also give a proof).
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Throughout this paper ‘E → 0’ (‘E → −2m’) means to take sequences {λn}n∈N

with λn ↑ λc (↓ λc) for which {µE(λn)}n∈N has a limit in L2.
From (1.13) we can construct what will turn out to be the relevant (generalized)

zero-energy solution. We call this a ‘threshold energy state’.
Let us now state the condition on the weight functions w. We define x = |x| and

p = |p|, and χ< := χ[0,1) and χ> := χ[1,∞), with χA the characteristic function of
the set A.

Let wS : R
3 → C (Schrödinger), wψ rel : R

3 → C (pseudorelativistic) and wD :
R

3 → M4×4(C) (4 × 4 matrices over C) (Dirac) satisfy

wS(p)χ<(p)
p2 ∈ L2(R3),

wS(p)χ>(p)
p2 ∈ L∞(R3), (1.14)

wψ rel(p)χ<(p)
p2 ∈ L2(R3),

wψ rel(p)χ>(p)
p

∈ L∞(R3), (1.15)

|wD(p)|χ<(p)
p2 ∈ L2(R3; C4),

|wD(p)|χ>(p)
p

∈ L∞(R3; C4), (1.16)

where in the last expression |wD(p)| denotes any norm of the matrix wD(p) (for
instance, its largest eigenvalue, in absolute value). We write in general w(p) for one
of the three functions defined above. Our main result in this paper is the following.

Theorem 1.2. Let H(λ) = T − λV , with T one of the kinetic energy operators
mentioned above, and V ∈ L1 ∩ L∞. Let λc be a coupling constant threshold, let
λn ↓ λc and {ϕn}n∈N ⊂ L2 such that H(λn)ϕn = E(λn)ϕn. Let {µn}n∈N be the
corresponding Birman–Schwinger eigenfunctions defined by (1.10), and assume that
µn → µ0 in L2 as n → ∞. Define

ϕ0(x) := λc

∫
R3

T−1(x,y)V 1/2(y)µ0(y) dy, (1.17)

where T−1(x,y) := limE→0(T − E)−1(x,y). Finally, let w satisfy the conditions
(1.14)–(1.16). Then

wϕ̂n → wϕ̂0 in L2 as n → ∞. (1.18)

Furthermore, ϕ0 satisfies
Hϕ0 = 0 in S ′. (1.19)

Remark 1.3.

(i) An analogous theorem holds for the Dirac case when E → −2m. In that case
we define

ϕ−2m(x) := λc

∫
R3

(T + 2m)−1(x,y)V 1/2(y)µ−2m(y) dy. (1.20)

This is the limiting object for which (1.18) holds, and which turns out to solve
Hϕ−2m = (−2m)ϕ−2m in S ′.

(ii) Explicit expressions for (T − E)−1(x,y) and its limits, for the three choices
of kinetic energy T , are given in § 2.3.
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(iii) Note that not all solutions of Hϕ0 = 0 in the distributional sense have the
form (1.17).

(iv) In contrast to the Laplacian, the pseudorelativistic kinetic energy behaves
like p2 for small (momenta) p and like p for large momenta. The conditions
in (1.15) are sufficient to ensure that (see (3.11), below)∥∥∥∥ w(p)χ<(p)√

p2 + m2 − m

∥∥∥∥
2

and
∥∥∥∥ w(p)χ>(p)√

p2 + m2 − m

∥∥∥∥
∞

are finite.

(v) Examples of weight functions are wS(p) = p2s, wψ rel(p) = (
√

p2 + m2 − m)s

and wD(p) = |α · p + mβ − m|s, all for s ∈ ( 1
2 , 2]. Thus, in general we have

that w(p) = |T (p)|s, s ∈ ( 1
2 , 2], satisfy conditions (1.14)–(1.16).

(vi) In the Schrödinger case, convergence of ∇ϕE and ∆ϕE is known (see, for
example, [24]). The methods there rely on the local properties of the operators
∇ and ∆. The original goal of our work was to prove this convergence for
non-local as well as matrix-valued kinetic energies. The insight of the present
paper is that studying the problem in momentum-space allows one to prove
the convergence not only of ∇ϕE and ∆ϕE for all of these kinetic energies,
but also of more general functions of ∇ applied to ϕE .

Remark 1.4. It is important to note that our convergence statements are inde-
pendent of whether or not there is an eigenvalue at the threshold when λ → λc.
Conditions for the limit function ϕ0 (or ϕ−2m) to be in L2 are well known and we
list them here for completeness (we thank A. Jensen for commenting on this to us).

(i) The Schrödinger [11, 14] and pseudorelativistic [18] case: ϕ0 ∈ L2(R3) if and
only if

∫
R3 V (x)ϕ0(x) dx = 0.

(ii) The Dirac case [13]: ϕ0 ∈ L2(R3) if and only if
∫

R3 V (x)β+ϕ0(x) dx = 0 (or∫
R3 V (x)β−ϕ−2m(x) dx = 0 for ϕ−2m). Here, β± := 1

2 (1 ± β).

In the case when ϕ0 /∈ L2, ϕ0 is called a zero-resonance or a half-bound state
(see, for example, [11]). (In the physics literature this is sometimes called a ‘virtual
level’ or ‘virtual state’; these appear in the context of scattering theory; see, for
example, [5, 17,19] and references therein.)

2. Preliminaries

2.1. Additional tools for the Dirac operator

We define
TD(p) := FTDF−1 = α · p + mβ − m. (2.1)

To study the Dirac case, we introduce the Foldy–Wouthuysen transformation [6,23]
UFW : L2(R3; C4) → L2(R3; C4), which has the property that

UFWTDU−1
FW = β

√
−∆ + m2 − m. (2.2)
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In momentum space, ÛFW := FUFWF−1 is given by the matrix-valued multiplica-
tion operator

ÛFW(p) := a+(p) + βα · p

p
a−(p), (2.3)

where

a±(p) =

√
1
2

(
1 ± m√

p2 + m2

)
. (2.4)

Noting that

ÛFW(p)−1 = a+(p) − βα · p

p
a−(p), (2.5)

we see that ÛFW(p) is an orthogonal matrix for every p ∈ R
3. Therefore, by the

definition (1.5) we have the following lemma.

Lemma 2.1. For q � 1, the mapping ÛFW : Lq(R3; C4) → Lq(R3; C4) with ÛFW(p)
given in (2.3) is an isometry.

Also note that, from (2.1) and (2.2), it follows that

ÛFW(p)TD(p)Û−1
FW(p) = FUFWTDU−1

FWF−1 = β
√

p2 + m2 − m, (2.6)

and so, by the spectral theorem (for matrices),

ÛFW(p)(TD(p) − E)−1Û−1
FW(p)

= (β
√

p2 + m2 − m − E)−1

=

(
(
√

p2 + m2 − m − E)−1I2×2 02×2

02×2 (−
√

p2 + m2 − m − E)−1I2×2

)

= β+(
√

p2 + m2 − m − E)−1 + β−(−
√

p2 + m2 − m − E)−1

≡ β+h+
E(p) + β−h−

E(p), (2.7)

where β± := 1
2 (1 ± β). Equation (2.7) makes manifest the fact that the problems

E → 0 and E → −2m are symmetric.
In order to perform Lq-estimates in the Dirac case we need the following lemma,

which is a Hölder inequality for matrix-valued functions.

Lemma 2.2. Let A : R
3 → M4×4(C), g : R

3 → C
4. Then, for 1/q = 1/r + 1/s,

‖Ag‖Lq(R3;C4) � ‖λmax(A)‖Lr(R3)‖g‖Ls(R3;C4), (2.8)

where λmax(A)(x) := ‖A(x)‖B(C4) is the largest eigenvalue (in absolute value) of
the matrix A(x).

Proof. Let G(x) = ‖A(x)g(x)‖C4 , A(x) = ‖A(x)‖B(C4) and g(x) = ‖g(x)‖C4 . Then

G(x) � A(x)g(x) for all x ∈ R
3, (2.9)
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and so this inequality, (1.5) and Hölder’s inequality imply that

‖Ag‖Lq(R3;C4) =
( ∫

R3
‖A(x)g(x)‖q

C4 dx

)1/q

= ‖G‖Lq(R3)

� ‖Ag‖Lq(R3) � ‖A‖Lr(R3)‖g‖Ls(R3)

= ‖λmax(A)‖Lr(R3)‖g‖Ls(R3;C4). (2.10)

2.2. Preliminaries of the proof

For E /∈ σ(T ) we define fE := V 1/2µE (see also (1.10)) and if (1.13) holds, we
set f0 := V 1/2µ0 and f−2m := V 1/2µ−2m, respectively. We rewrite the Lipmann–
Schwinger equation (1.9) as

ϕE = λ(T (−i∇) − E)−1fE . (2.11)

The following properties of fE and its Fourier transform, f̂E , will be important.

Lemma 2.3. If V ∈ L1 ∩L∞, then fE ∈ L1 ∩L2. Moreover, fE → f0 in Lq for any
q ∈ [1, 2]. Consequently, also f̂E → f̂0 in Lr for any r ∈ [2,∞].

Remark 2.4. An analogous result holds when E → −2m, with f0 replaced by
f−2m.

Proof. By lemma 5.1, below, we have that µE → µ0 in L2 as E → 0 for our choice
of the potential V . Using the fact that V 1/2 ∈ L2 ∩ L∞, we have, for E � 0, that
fE ∈ L1 ∩ L2, since

‖fE‖1 � ‖V 1/2‖2‖µE‖2, ‖fE‖2 � ‖V 1/2‖∞‖µE‖2. (2.12)

In particular, for r ∈ [1, 2] and q = 2r/(2 − r), we have that

‖fE − f0‖r � ‖V 1/2‖q‖µE − µ0‖2 → 0 as E → 0, (2.13)

i.e. ‖fE −f0‖r → 0 for any r ∈ [1, 2]. Finally, using the Hausdorff–Young inequality
(see, for example, [16, theorem 5.7]) we get the desired result. In the Dirac case,
the Hölder inequalities used in (2.12) and (2.13) should be understood in the sense
explained in lemma 2.2.

2.3. The kernels of (T − E)−1 and the eigenfunctions
in coordinate space

In order to have explicit expressions for (2.11) in coordinates we need to recall
the kernels in x-space of the operators (T − E)−1 for E /∈ σ(T ).

For the Schrödinger case we have the well-known expression (see, for example,
[20])

(TS − E)−1(x,y) =
1
4π

exp(−
√

|E||x − y|)
|x − y| . (2.14)
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For the pseudorelativistic case the kernel can be found in [18]; for completeness we
also derive it in § 4.1. For νE =

√
|m2 − (E + m)2|, we have

(Tψ rel − E)−1(x,y) =
(E + m) exp(−νE |x − y|)

4π|x − y| +
m

2π2

K1(m|x − y|)
|x − y|

+ (m2 − ν2
E)

[
m

2π2

K1(m| · |)
| · | ∗ exp(−νE | · |)

4π| · |

]
(x − y),

(2.15)

where K1 is a modified Bessel function of the second kind.
In the Dirac case the kernel is computed in [23]; it is given by

(TD − E)−1(x,y) =
exp(−νE |x − y|)

4π

×
(

mβ + m + E

|x − y| +
iνEα · (x − y)

|x − y|2 +
iα · (x − y)

|x − y|3

)
(2.16)

with νE as before (νE =
√

m2 − (E + m)2 since E ∈ (−2m, 0)).
Thus, for E /∈ σ(T ), in coordinate space we write in general (see (2.11))

ϕE(x) = λ

∫
R3

(T − E)−1(x,y)fE(y) dy, (2.17)

where as usual T is one of our choices of kinetic energy.
In order to make the connection to the threshold energy states we have the

following lemma.

Lemma 2.5. For E /∈ σ(T ) let ϕE be given pointwise by (2.17) with one of the
choices of kernels of (T −E)−1 given in (2.14)–(2.16), and let ϕ0 be given by (1.17).

Then, as E → 0, we have that ϕE → ϕ0 in S ′. Moreover, V ϕE → V ϕ0 in S ′.
Case by case, ϕ0 is given explicitly by the following.

For the Schrödinger case:

ϕ0(x) =
λc

4π

∫
R3

1
|x − y|f0(y) dy. (2.18)

For the pseudorelativistic case:

ϕ0(x) = λc

∫
R3

{
m

4π|x − y| +
m

2π2

K1(m|x − y|)
|x − y|

+ m2
[

m

2π2

K1(m| · |)
| · | ∗ 1

4π| · |

]
(x − y)

}
f0(y) dy. (2.19)

For the Dirac case:

ϕ0(x) =
λc

4π

∫
R3

(
2mβ+

|x − y| +
iα · (x − y)

|x − y|3

)
f0(y) dy. (2.20)

Remark 2.6. In the case E → −2m the limit function ϕ−2m is given by

ϕ−2m(x) =
λc

4π

∫
R3

(
−2mβ−
|x − y| +

iα · (x − y)
|x − y|3

)
f−2m(y) dy. (2.21)
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Proof. By lemma 4.2, below, the functions ϕ0 in (2.18)–(2.20) are well defined in
L1 + L∞ ⊂ S ′ since f0 ∈ L1 ∩ L2. The statement on the convergence follows from
lemma 4.3, below, using lemma 2.3. In the pseudorelativistic case, the conditions
of lemmas 4.2 and 4.3 are satisfied by lemma 4.4.

2.4. The eigenfunctions in momentum space

Since ϕE ∈ L2 for E /∈ σ(T ), the expressions in momentum space for ϕE in (2.11)
are straightforward to derive. In general they are given by

[FϕE ](p) = ϕ̂E(p) = λ(T (p) − E)−1f̂E(p), (2.22)

where T (p) can be

TS(p) = p2, Tψ rel(p) =
√

p2 + m2 − m or TD(p) = α · p + mβ − m, (2.23)

for the Schrödinger, pseudorelativistic and Dirac case, respectively. In general, the
functions ϕ0 are not in L2.

Lemma 2.7. For E /∈ σ(T ) let ϕ̂E be given pointwise by (2.22) with T (p) one of
the choices given in (2.23). Then, as E → 0, we have that ϕ̂E → ϕ̃0 := λcT (p)−1f̂0
in S ′. Case by case, ϕ̃0 is given explicitly as follows.

For the Schrödinger case:

ϕ̃0(p) =
λc

p2 f̂0(p). (2.24)

For the pseudorelativistic case:

ϕ̃0(p) =
λc√

p2 + m2 − m
f̂0(p). (2.25)

For the Dirac case:

ϕ̃0(p) = λc(α · p + mβ − m)−1f̂0(p). (2.26)

Remark 2.8.

(i) In the case when E → −2m, the limit function ϕ̃−2m is given by

ϕ̃−2m(p) = λc(α · p + mβ + m)−1f̂−2m(p). (2.27)

(ii) The limit function denoted by ϕ̃0 is in fact the Fourier transform of the
function ϕ0 defined in lemma 2.5. This is proved in the next section (see (3.4)).

The proof of lemma 2.7 is given in § 4.

3. Proof of theorem 1.2

Now we are ready to prove theorem 1.2.
Let φ ∈ S. Then (1.8) implies that

〈T (−i∇)ϕE , φ〉 − λ〈V ϕE , φ〉 = E〈ϕE , φ〉. (3.1)
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Here 〈·, ·〉 is the (S ′,S)-pairing. Firstly, note that T (−i∇)φ ∈ S. Secondly, due to
lemma 2.5, we have ϕE → ϕ0 and V ϕE → V ϕ0 in S ′ as E → 0. Therefore, taking
the limit in (3.1), we get

〈T (−i∇)ϕ0, φ〉 − λc〈V ϕ0, φ〉 = 0, (3.2)

which proves that ϕ0 satisfies H(λc)ϕ0 = 0 in S ′. This argument holds for all three
choices of T .

Consider the fact that

〈FϕE , φ〉 := 〈ϕE ,Fφ〉. (3.3)

The function FϕE satisfies (2.22) and, by lemma 2.7, converges in S ′ to the function
ϕ̃0 defined in (2.24)–(2.26). On the other hand, by lemma 2.5, the right-hand side
of (3.3) converges to 〈ϕ0,Fφ〉 as E → 0. Therefore, taking the limit E → 0 in (3.3)
we get

ϕ̂0 = Fϕ0 = ϕ̃0 in S ′. (3.4)

It remains to prove that, for w satisfying the conditions (1.14)–(1.16), we have

wϕ̂E → wϕ̂0 in L2 as E → 0. (3.5)

This is now carried out in detail. We start by working with the general expressions.
The specific cases are left to the end. The main object of interest is the difference
wϕ̂E − wϕ̂0. This we rewrite using (2.22) and its counterpart for E = 0 (now
ϕ̂0 = ϕ̃0 = T (p)−1f̂0 from (2.24)–(2.26)). We have

‖w(ϕ̂E − ϕ̂0)‖2 = ‖w(λ(T (p) − E)−1f̂E − λcT (p)−1f̂0)‖2

� ‖w(λ(T (p) − E)−1 − λcT (p)−1)f̂0‖2

+ λ‖w(T (p) − E)−1(f̂E − f̂0)‖2.

Since λ → λc as E → 0, it is sufficient to prove that

‖w((T (p) − E)−1 − T (p)−1)f̂0‖2 → 0 as E → 0 (3.6)

and

‖w(T (p) − E)−1(f̂E − f̂0)‖2 → 0 as E → 0. (3.7)

The term in (3.7) can be estimated by

‖w(T (p) − E)−1(f̂E − f̂0)‖2 � ‖wχ<(T (p) − E)−1‖2‖f̂E − f̂0‖∞

+ ‖wχ>(T (p) − E)−1‖∞‖f̂E − f̂0‖2. (3.8)

Owing to lemma 2.3, it is sufficient to show that the first factors in the two terms
on the right-hand side of (3.8) stay finite as E → 0. Then (3.7) follows.

Now we prove the convergence statement case by case.
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Schrödinger case. We have that (for E � 0)

(TS(p) − E)−1 = (p2 − E)−1 � p−2. (3.9)

Therefore the first two factors on the right-hand side of (3.8) are finite by the
condition (1.14). This proves (3.7).

To prove (3.6) we use Lebesgue’s theorem of dominated convergence, with the
function 2|w(p)|f̂0|/p2 as a dominant (see (3.9)); this is in L2 since we can again
split it into large and small p as in (3.8) and use the condition (1.14). Hence, we
have proved (3.5) for the Schrödinger case.

Pseudorelativistic case. We here use the fact that, for E < 0,

(Tψ rel(p) − E)−1 =
1√

p2 + m2 − m − E
� 1√

p2 + m2 − m
. (3.10)

Additionally, there exist constants c1 and c2 such that

1√
p2 + m2 − m

χ<(p) � c1
χ<(p)

p2 and
1√

p2 + m2 − m
χ>(p) � c2

χ>(p)
p

.

(3.11)
The finiteness of the first two factors on the right-hand side of (3.8) follows from
(3.10) by using the estimates (3.11) and the condition (1.15). This proves (3.7).

As before, to prove (3.6) we use Lebesgue’s theorem of dominated convergence,
with 2|w(p)||f̂0|/(

√
p2 + m2 − m) as dominant.

Dirac case. We prove the case when E → 0 and comment on the case E → −2m at
the end. Here the general strategy is the same as in the two cases considered above,
i.e. we use (3.8) to prove (3.7), and Lebesgue’s theorem with the dominant given
by the zero-energy expression to prove (3.6). The Hölder estimate in (3.8) should
be understood in the sense of lemma 2.2. In order to work with diagonal matrices,
we use the Foldy–Wouthuysen transformation ÛFW defined in (2.3). Using (2.7) we
have (with w̃ = ÛFWwÛ−1

FW)

‖wχ<(TD(p) − E)−1‖2 � ‖w̃χ<β+h+
E(p)‖2 + ‖w̃χ<β−h−

E(p)‖2, (3.12)

where we used lemma 2.1 and the fact that χ< and ÛFW(p) commute. Analogously,
we get

‖wχ>(TD(p) − E)−1‖∞ � ‖w̃χ>β+h+
E(p)‖∞ + ‖w̃χ>β−h−

E(p)‖∞. (3.13)

The terms with h+
E(p) are completely analogous to the pseudorelativistic case (see

(2.7) and (3.10), (3.11)), except for the fact that the conditions needed for conver-
gence are ∥∥∥∥w̃χ<β+

1
p2

∥∥∥∥
2

=
∥∥∥∥‖w̃β+‖B(C4)χ<

1
p2

∥∥∥∥
2

< ∞,

∥∥∥∥w̃χ>β+
1
p

∥∥∥∥
∞

=
∥∥∥∥‖w̃β+‖B(C4)χ>

1
p

∥∥∥∥
∞

< ∞.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14)
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The terms with h−
E(p) are not critical; in fact, for 0 � E � −m we have

|h−
E(p)| =

1√
p2 + m2 + m + E

� 1√
p2 + m2

, (3.15)

which implies the estimates

|h−
E(p)| � 1

m
and |h−

E(p)| � 1
p
, (3.16)

and therefore gives us the following conditions for convergence:

‖w̃χ<β−‖2 = ‖‖w̃β−‖B(C4)χ<‖2 < ∞,∥∥∥∥w̃χ>β−
1
p

∥∥∥∥
∞

=
∥∥∥∥‖w̃β−‖B(C4)χ>

1
p

∥∥∥∥
∞

< ∞.

⎫⎪⎬
⎪⎭ (3.17)

Since β± are projections and ÛFW(p) is an orthogonal matrix, (3.14) and (3.17)
are fulfilled by (1.16).

In the case when E → −2m, we have the following estimates for −2m � E � −m:

|h−
E(p)| � 1√

p2 + m2 − m
and h+

E(p) � 1√
p2 + m2

, (3.18)

i.e. in this case the terms with h−
E are those analogous to the pseudorelativistic

case, and the terms with h+
E are non-critical. The conditions (3.14) and (3.17) are

the same with the substitution β± �→ β∓.

Remark 3.1. Note that (3.14) and (3.17) are slightly more general than (1.16),
but that (1.16) covers both E → 0 and E → −2m.

4. Useful lemmas

In this section we prove some technical lemmas; these are not optimal and can
easily be further generalized, but they are sufficient for our purposes.

The following lemma is a special case of the Hardy–Littlewood–Sobolev inequality
in three dimensions [16, theorem 4.3].

Lemma 4.1. Let ε ∈ (0, 1
2 ), γ ∈ [1, 2], g ∈ L1+ε(R3) and f ∈ Lq(R3), q = (2− 1

3γ −
1/(1 + ε))−1.

Then ∣∣∣∣
∫

R3

∫
R3

f(x)
1

|x − y|γ g(y) dx dy

∣∣∣∣ � Cγ‖f‖Lq(R3)‖g‖L1+ε(R3). (4.1)

Lemma 4.2. Let ε ∈ (0, 1
2 ), γ ∈ [1, 2], and g ∈ L1(R3) ∩ L1+ε(R3), and define

(Iγg)(x) :=
∫

R3

1
|x − y|γ g(y) dy. (4.2)

Then Iγg ∈ Lloc
1 (R3), and ‖Iγg‖L1(K) � C(γ, K)‖g‖L1+ε(R3) for any compact

K ⊂ R
3. Furthermore, Iγg = Iγ

1 g + Iγ
2 g with Iγ

1 g ∈ L1(R3), Iγ
2 g ∈ L∞(R3).
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Proof. Firstly, multiply (4.2) by the characteristic function χK and integrate in x.
The first statement, and the estimate, follow from Fubini’s theorem and lemma 4.1.

Secondly, for R > 0, split the integral:

(Iγg)(x) =
∫

BR(x)

1
|x − y|γ g(y) dy +

∫
R3\BR(x)

1
|x − y|γ g(y) dy

= (Iγ
1 g)(x) + (Iγ

2 g)(x). (4.3)

For the first term in (4.3) use [7, lemma 7.12], which says that, for q ∈ [1,∞] and
0 � 1/p − 1/q < 1 − γ/3, Iγ

1 maps Lp(R3) continuously into Lq(R3) with

‖Iγ
1 g‖q � Cγ,p,q‖g‖p.

Use this with p = q = 1. Then Iγ
1 g ∈ L1(R3).

For the second term in (4.3),

|(Iγ
2 g)(x)| �

∫
R3\BR(x)

1
Rγ

|g(y)| dy � 1
Rγ

‖g‖1,

so Iγ
2 g ∈ L∞(R3).

Lemma 4.3. Let ε ∈ (0, 1
2 ), γ ∈ [1, 2], and let Gn, G : R

3 → R
3, n ∈ N, satisfy

Gn(x) → G(x) as n → ∞. Assume there exist c1, c2 ∈ R+ such that

|Gn(x)| � c1

|x|γ and |G(x)| � c2

|x|γ . (4.4)

Let {gn}n∈N ⊂ L1+ε(R3) satisfy gn → g in L1+ε(R3) as n → ∞. Define the func-
tions

(T γ
n gn)(x) :=

∫
R3

Gn(x − y)gn(y) dy

and

(T γg)(x) :=
∫

R3
G(x − y)g(y) dy.

Then V T γ
n gn → V T γg in S ′(R3) for all V ∈ L∞(R3). In particular, T γ

n gn → T γg
in S ′(R3).

Proof. It follows from lemma 4.2 and (4.4) that

V T γ
n gn, V T γg ∈ L1(R3) + L∞(R3) ⊂ S ′(R3).

For φ ∈ S(R3) ⊂ Lq(R3), q > 1, we have, using Fubini’s theorem, that

〈V (T γ
n gn − T γg), φ〉 =

∫
R6

φ(x)V (x)[Gn(x − y) − G(x − y)]g(y) dx dy

+
∫

R6
φ(x)V (x)Gn(x − y)(gn − g)(y) dx dy

≡ I1(n) + I2(n).
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We will use Lebesgue’s theorem of dominated convergence for I1(n). Lemma 4.1
shows that the inequality

|Gn(x − y) − G(x − y)| � c1 + c2

|x − y|γ

provides a dominant, so that I1(n) → 0 as n → ∞, since Gn(x) → G(x) as n → ∞.
For I2(n), the first inequality in (4.4) and lemma 4.1 give that I2(n) → 0 as

n → ∞, since gn → g in L1+ε(R3) by assumption.

4.1. The pseudorelativistic kernel

Although (2.15) is given in [18] we want to sketch its proof. Let us start by noting
that (see [16, 7.11 (11)])(

1√
−∆ + m2

)
(x,y) =

m2

2π2

∫ ∞

0

t

t2 + |x − y|2 K2(m(t2 + |x − y|2)1/2) dt

=
m2

2π2

∫ ∞

m|x−y|

K2(s)
s

ds

=
m

2π2

K1(m|x − y|)
|x − y| , (4.5)

where in the latter step we used the fact that K2(x)/x = −(K1(x)/x)′ and that
K1(s)/s → 0 as s → ∞ (see [8, (8.486.15)] and (4.9) below). On the other hand,
with νE =

√
m2 − (E + m)2 and E < 0, we have the operator identity

1√
−∆ + m2 − m − E

=
E + m

−∆ + ν2
E

+
1√

−∆ + m2

+ (m2 − ν2
E)

1√
−∆ + m2

1
−∆ + ν2

E

. (4.6)

The expression in (2.15) follows by computing the kernel of each summand of (4.6)
separately, using (2.14) and (4.5).

Next we have the following convergence statement for the third summand in
equation (2.15).

Lemma 4.4. For νE =
√

m2 − (E + m)2, E < 0, and x ∈ R
3, we have[

K1(m| · |)
| · | ∗ exp(−νE | · |)

| · |

]
(x) →

[
K1(m| · |)

| · | ∗ 1
| · |

]
(x) as E → 0. (4.7)

Moreover, there exists a constant c1 > 0 such that[
K1(m| · |)

| · | ∗ exp(−νE | · |)
| · |

]
(x) �

[
K1(m| · |)

| · | ∗ 1
| · |

]
(x) � c1

|x| . (4.8)

Proof. The following properties of the Bessel function K1 (see [8, (8.446), (8.451.6)])
will be useful: there exist constants c and ρ such that

K1(x) � c
e−x

√
x

for x > ρ; (4.9)
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moreover, for x > 0,

K1(x) � 1
x

. (4.10)

Then, by Newton’s theorem (see, for example, [16]),∫
R3

exp(−νE |x − y|)
|x − y|

K1(m|y|)
|y| dy �

∫
R3

1
|x − y|

K1(m|y|)
|y| dy

� 1
|x|

∫
R3

K1(m|y|)
|y| dy. (4.11)

The last integral is finite by (4.9) and (4.10); this proves (4.8). The convergence
in (4.7) follows from Lebesgue’s monotone convergence theorem.

4.2. Proof of lemma 2.7

Let φ ∈ S ⊂ Lq, q � 1. Then

〈(FϕE − ϕ̃0), φ〉 =
∫

R3
[(T (p) − E)−1f̂E(p) − T (p)−1f̂0(p)] · φ(p) dp

=
∫

R3
((T (p) − E)−1 − T (p)−1)f̂0(p) · φ(p) dp

+
∫

R3
(T (p) − E)−1(f̂E − f̂0)(p) · φ(p) dp

≡ I1(E) + I2(E).

(In the Dirac case, the dot denotes the scalar product in C
4.)

We first consider the Schrödinger and the pseudorelativistic cases.
Note that, in both cases, there exist positive constants c<, c> such that, for all

p ∈ R
3 and E � 0 (for the pseudorelativistic case, use (3.11)),

|(T (p) − E)−1φ(p)| � c<

p2 χ<(p)φ(p) + c>χ2(p)φ(p).

By Hölder’s inequality, this implies that

|I2(E)| � C‖f̂E − f̂0‖∞

(∥∥∥∥χ<φ

p2

∥∥∥∥
1

+ ‖φ‖1

)
.

The last factor is finite since φ ∈ S(R3) ⊂ L1(R3), and by lemma 2.3 the first one
goes to zero as E goes to zero, so I2(E) → 0, E → 0.

For I1, we use Lebesgue’s theorem of dominated convergence. By arguments
similar to that above, the function c(χ</p2 + χ>)φ is a dominant (for some c > 0)
and therefore also I1(E) → 0, E → 0.

For the Dirac case,

|I1(E)| �
∫

R3
‖(T (p) − E)−1 − T (p)−1‖B(C4)‖f̂0(p)‖C4‖φ(p)‖C4 dp.
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Using the fact that ÛFW(p) is an orthogonal matrix for all p ∈ R
3, and (2.7), for

−m � E � 0 we have that

‖(T (p) − E)−1‖B(C4)

=

∥∥∥∥∥
(

(
√

p2 + m2 − m − E)−1I2×2 02×2

02×2 (−
√

p2 + m2 − m − E)−1I2×2

)∥∥∥∥∥
B(C4)

= (
√

p2 + m2 − m − E)−1 � (
√

p2 + m2 − m)−1. (4.12)

By an argument as above (in the pseudorelativistic case), Lebesgue’s theorem on
dominated convergence gives that I1(E) → 0, E → 0 also in this case. Also by
arguments as above, (4.12) and the fact that (by lemma 2.3) f̂E → f̂0 in L∞ gives
that also I2(E) → 0, E → 0.

Note that a similar argument works for the Dirac case when E → −2m; in this
case, for −2m � E � −m,

‖(T (p) − E)−1‖B(C4)

=

∥∥∥∥∥
(

(
√

p2 + m2 − m − E)−1I2×2 02×2

02×2 (−
√

p2 + m2 − m − E)−1I2×2

)∥∥∥∥∥
B(C4)

= (
√

p2 + m2 + m + E)−1 � (
√

p2 + m2 − m)−1. (4.13)

5. Convergence of Birman–Schwinger operators and eigenfunctions

We denote the compact operators by S∞. For r � 1, we denote by Sr the r′th
Schatten-class of compact operators (which is a norm-closed two-sided ideal in S∞)
and ‖ · ‖Sr its norm.

Lemma 5.1. Let ε > 0 and assume that V � 0 satisfies

V ∈ L3/2+ε(R3) ∩ L3/2−ε(R3) and E < 0 (Schrödinger case), (5.1)

V ∈ L3+ε(R3) ∩ L3/2−ε(R3) and E < 0 (pseudorelativistic case), (5.2)

V ∈ L3+ε(R3; C4) ∩ L3−ε(R3; C4) and E ∈ (−2m, 0) (Dirac case). (5.3)

Let λc be a coupling constant threshold, and let λn, En, ϕEn satisfy (T −λnV )ϕEn
=

EnϕEn
, ‖ϕEn

‖2 = 1, λn ↓ λc as En ↑ 0 (or λn ↑ λc when En ↓ −2m in the Dirac
case). Finally, let

KE = V 1/2(T (−i∇) − E)−1V 1/2 (5.4)

be the Birman–Schwinger operator and µEn = V 1/2ϕEn be the Birman–Schwinger
eigenfunctions associated with ϕEn

.
Then

(i) KEn is a compact operator,

(ii) the norm-limit K0 := limn→∞ KEn exists (and, in the Dirac case, K−2m :=
limn→∞ KEn exists),

(iii) K0 (and in the Dirac case, K−2m) is compact,
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(iv) there exists a subsequence {µEnk
}k∈N and µ0 ∈ L2 such that µEnk

→ µ0 as
k → ∞ and K0µ0 = (1/λc)µ0.

Proof. In the Schrödinger and pseudorelativistic cases, it is enough to show that
V 1/2(T (−i∇) − En)−1/2 is compact (since S is compact if and only if S∗S is com-
pact). For this, we will use the fact that operators of the form f(x)g(−i∇) belong
to Sr if f, g ∈ Lr, r ∈ [2,∞), and that furthermore

‖f(x)g(−i∇)‖Sr � (2π)−3/r‖f‖r‖g‖r (5.5)

(see [21, theorem XI.20]). Note that, for E < 0, the function (p2 − E)−1/2 belongs
to L3+ε(R3), and (

√
p2 + m2 − m − E)−1/2 belongs to L6+ε(R3). By (5.5) and the

assumptions (5.1) and (5.2) on the potential V , this implies that the Birman–
Schwinger operator KEn is compact in both cases.

To show the statement on convergence, write

SEn := V 1/2(T (−i∇) − En)−1/2

= V 1/2F−1(T (p) − En)−1/2χ<(p)F + V 1/2F−1(T (p) − En)−1/2χ>(p)F
≡ Sn,< + Sn,>. (5.6)

Again using (5.5), the assumptions (5.1) and (5.2) on the potential, and Lebesgue’s
theorem on dominated convergence, {Sn,<}n∈N is a Cauchy sequence in the Sr-
norm for r ∈ [2, 3) (in both cases), and {Sn,>}n∈N in the Sr-norm for r ∈ (3,∞)
in the Schrödinger case, and for r ∈ (6,∞) in the pseudorelativistic case. There-
fore, both sequences are Cauchy sequences in the operator norm. Since the set of
compact operators is norm-closed, limn→∞ Sn,≷ exist, and are compact operators.
Therefore, K0 := limn→∞ KEn

exists and is compact, in both the Schrödinger and
the pseudorelativistic cases.

The proof in the Dirac case is essentially the same, only slightly more involved
due to the fact that TD −E is not positive. Note that, using the Foldy–Wouthuysen
transformation UFW, we have (see (2.7))

V 1/2(TD − E)−1V 1/2 = V 1/2U−1
FWF−1(β

√
p2 + m2 − m − E)−1FUFWV 1/2

= S∗
+S+ − S∗

−S−,

with

S+ =

(
(
√

p2 + m2 − m − E)−1/2I2×2 02×2

02×2 02×2

)
FUFWV 1/2, (5.7)

S− =

(
02×2 02×2

02×2 (
√

p2 + m2 + m + E)−1/2I2×2

)
FUFWV 1/2. (5.8)

As before, it suffices to prove that S+ and S− are compact. Note that UFW is
bounded, and that both of the functions

(
√

p2 + m2 − m − E)−1/2 and (
√

p2 + m2 + m + E)−1/2

belong to L6+ε (since E ∈ (−2m, 0)), and so the same argument as above implies
that S+ and S− are compact. It follows that KEn is compact also in the Dirac case.
The convergence follows by similar arguments as above.
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It remains to prove (iv). Note that ‖µEn‖2 � C since V ∈ L∞ and ‖ϕEn‖2 =
1. Since K0 is compact, there exists a subsequence {µEnk

}k∈N such that ψ :=
limk→∞ K0µEnk

exists. Using (ii) we get that ‖KEnk
µEnk

− ψ‖2 → 0 as k → ∞.
Since

KEn
µEn

=
1
λn

µEn
and λn → λc as n → ∞,

it follows that µ0 := limk→∞ µEnk
exists, and satisfies K0µ0 = (1/λc)µ0.
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