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We consider the fourth-order thin film equation,

ut = −∇ · (|u|n∇∆u) + ∆(|u|p−1u), where n > 0, p > 1,

with a stable second-order diffusion term. For the first critical exponent,

p = p0 = n+ 1 +
2

N
for n ∈

(
0,

3

2

)
,

where N � 1 is the space dimension, the Cauchy problem is shown to admit countable

continuous branches of source-type self-similar very singular solutions of the form

u(x, t) = t−
N

4+nN f(y), y = x/t
1

4+nN .

These solutions are inherently oscillatory in nature and will be shown in Part II to be the

limit of appropriate free-boundary problem solutions. For p � p0, the set of very singular

solutions is shown to be finite and to be consisting of a countable family of branches (in the

parameter p) of similarity profiles that originate at a sequence of critical exponents {pl , l � 0}.
At p = pl , these branches appear via a non-linear bifurcation mechanism from a countable

set of similarity solutions of the second kind of the pure thin film equation

ut = −∇ · (|u|n∇∆u) in �N × �+.

Such solutions are detected by the ‘Hermitian spectral theory’, which allows an analytical

n-branching approach. As such, a continuous path as n → 0+ can be constructed from the

eigenfunctions of the linear rescaled operator for n = 0, i.e. for the bi-harmonic equation

ut = −∆2u. Numerics are used, wherever appropriate, to support the analysis.

Key words: Stable thin film equation; Cauchy problem; Global similarity solutions; Asymp-

totic behaviour; Branching; Bifurcations; Hermitian spectral theory
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1 Introduction: the stable thin film equation and main results

1.1 The model and preliminary discussion

We study the large time behaviour of solutions of high-order, quasi-linear degenerate

parabolic equations that are in non-divergent form. More precisely, we construct global in

time, self-similar, very singular solutions (VSS) of the fourth-order quasi-linear parabolic

thin film equation (TFE-4) with a stable homogeneous second-order diffusion term,

ut = −∇ · (|u|n∇∆u) + ∆(|u|p−1u), where n > 0 and p > 1. (1.1)

We treat here the Cauchy problem (CP) for (1.1), by which we mean those solutions that
admit maximal regularity as they vanish at a singularity surface (interface) Γ0[u], which

is the lateral boundary of supp u ⊂ �N × �+. The problem is completed with bounded,

smooth, integrable, compactly supported initial data in �N , namely

u(x, 0) = u0(x) in Γ0[u] ∩ {t = 0}. (1.2)

For clarity, we leave the discussion of closely associated Free-Boundary Problems (FBPs)
until the Part II companion paper, though it should be mentioned that these two problem

classes are inextricably linked.

The present results of Parts I and II complete the analysis of the TFEs performed in

[9,10], where countable sets and continuous branches of blow-up and global similarity solu-

tions were obtained for the limit unstable TFE with the backward diffusion parabolic term

ut = −∇ · (|u|n∇∆u) − ∆(|u|p−1u) (n > 0, p > 1). (1.3)

The main mathematical approaches for (1.3) are similar to those applied in [11] to the
sixth-order limit unstable TFE-6,

ut = ∇ · (|u|n∇∆2u) − ∆(|u|p−1u) (n > 0, p > 1). (1.4)

Surveys and extended lists of related references on the physics and mathematics of such
thin film partial differential equations (PDEs) can be found in [9] and [11]. Regarding

our analysis, we mention the key pioneering papers for high-order non-linear diffusion

theory in the 1990s by Bernis [1], Bernis and Friedman [2] (mainly, FBP theory for

TFEs), and Bernis and McLeod [4], where oscillatory similarity solutions of the CP for

the fourth-order porous medium-like equations (the PMEs-4) were constructed. Also

see Bernis et al. [5], Ferreira and Bernis [13]. Further details can also be found in the

monograph by Wu et al. [28, Ch. 4].

We begin our study in the critical ‘conservative’ case,

p = p0 = n+ 1 +
2

N
, (1.5)

which is easier to analyse technically and reveals specific properties of similarity patterns.
Eventually, we extend our approach to p � p0 (more precisely, for p < p0). It is worth
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noting that (1.1) for n = 0 is the limit stable Cahn–Hilliard equation,

ut = −∆2u+ ∆(|u|p−1u), (1.6)

which occurs in various applications (see references in [12]).

1.2 Main results and layout of the paper

We construct very singular self-similar (or source-type for p = p0) solutions of (1.1) in

certain ranges of the parameters n, p and N. For small enough n > 0, we will often refer

to analogies with the semi-linear Cahn–Hilliard equation (1.6). Typically, we assume that

n ∈
[
0, 3

2

)
and p > n+ 1, (1.7)

but in places we also treat n > 3
2
, for which the CP continues to admit sign changing

solutions that are infinitely oscillatory at the interfaces.

In Section 2 we formulate the similarity setting of the problem. Our conclusions and

further layout of the paper are as follows.

We show that the stable TFE (1.1) admits the following:

(i) In the critical case p = p0, continuous families of global similarity solutions (Section 3).

(ii) As a co-product, we study in Section (4) the countable set of similarity solutions of

the pure TFE (these define special bifurcation values {pl} for the full model (1.1)),

ut = −∇ · (|u|n∇∆u) in �N × �+. (1.8)

The analysis begins with the linear problem for n = 0, i.e. for the bi-harmonic equation,

ut = −∆2u, (1.9)

where a form of the Hermitian spectral theory is developed in Section 4.1 for linear

rescaled operators of the CP.

(iii) For p < p0 (for p > p0 no such VSS exists), the number of similarity solutions (for a

given p value) becomes finite, and there exists a countable family of p-branches1 of

similarity profiles that originate at certain non-linear bifurcation points {pl > 1, l � 0}
(Section 5).

Finally, we claim that similar principles of self-similar asymptotics apply to the sixth-

order stable TFE (see [11] for such models and references),

ut = ∇ · (|u|n∇∆2u) + ∆(|u|p−1u) (1.10)

for n ∈ [0, 5
4
). In this case, the first critical exponent is p0 = n + 1 + 4

N
. The semi-linear

case n = 0 leads to the sixth-order limit unstable Cahn–Hilliard equation,

1 See [12, 16, 18, 21] as a source of a detailed construction of such branches in various problems

for bi-harmonic and thin film PDEs.
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ut = ∆3u+ ∆(|u|p−1u), (1.11)

whose similarity solutions can be studied as in [12].

2 Global similarity solutions: general statement and preliminaries

The similarity solutions of (1.1) have the form

uS (x, t) = t−αf(y), y = x/tβ, with α =
1

2p− (n+ 2)
> 0, β =

p− (n+ 1)

2[2p− (n+ 2)]
> 0.

(2.1)

The function f solves a quasi-linear elliptic equation, namely

A+(f) ≡ −∇ · [|f|n∇∆f − ∇(|f|p−1f)] + βy · ∇f + αf = 0. (2.2)

For n > 0, a natural functional setting for the CP includes the condition

f(y) is non-trivial in a bounded domain in �N . (2.3)

In the CP, f(y) can be extended by f(y) ≡ 0 outside the support. It is also noteworthy

for the CP that the elliptic equation (2.2) admits non-compactly supported solutions with

asymptotics as y → ∞ governed by the leading linear first-order operator,

βy · ∇f + αf + · · · = 0 =⇒ f(y) = C|y|−
α
β (1 + o(1)), (2.4)

where C = C( y|y| ) is an arbitrary smooth function on the unit sphere SN−1. Actually, in

order to satisfy the desired condition (2.3), one needs to demand that

C = 0 in (2.4). (2.5)

In the case n = 0, (2.3) is replaced by

f(y), which has exponential decay at infinity (see [12]), (2.6)

meaning that f belongs to a special weighted L2 space. The condition (2.5) is also

necessarily implied.

Under (2.3) (or equivalently (2.6)), integrating (2.1) over �N yields the following mass

time-dependence for p� p0:∫
uS (x, t) dx = t

N(p−p0)

2[2p−(n+1)]

∫
f(y) dy =⇒

∫
f = 0 (p� p0). (2.7)

For p = p0, any mass of f(y) is formally allowed; cf. [10].

For general solutions of the TFE-4 (1.1), the self-similar scaling

u(x, t) = (1 + t)−αθ(y, τ), y = x/(1 + t)β, τ = ln(1 + t), (2.8)

yields the evolution equation with the same operator as in (2.2)

θτ = A+(θ) for τ > 0. (2.9)
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Then a typical asymptotic stabilisation problem occurs as τ → +∞, which, in particular,

requires to know all possible equilibria of A+, this being the main current problem of

concern.

The critical exponent (1.5) follows from conservation of mass; q.v. the same derivation

in [9, Section 3]. In addition, a countable sequence of other critical exponents {pl , l =

0, 1, 2, . . .} is expected to exist. This is confirmed in the semi-linear case n = 0 (for the limit

Cahn–Hilliard equation (1.6)), where [12, Section 5]

pl = 1 +
2

N + l
for any l = 0, 1, 2, . . . . (2.10)

See further comments in [9, Section 2].

3 Local oscillatory ordinary differential equation (ODE) bundles and profiles for p = p0

We study the similarity ODE in the radial setting. Let y � 0 denote the single spatial

variable. The operator of (2.1) is then ordinary differential

A+(f) ≡ − 1

yN−1

[
yN−1|f|n

(
1

yN−1
(yN−1f′)′

)′
− yN−1(|f|p−1f)′

]′
+ βyf′ + αf = 0. (3.1)

We first describe the corresponding oscillatory bundle of asymptotic profiles close to

interface points, which are attributed to the CP. For both n = 0 and n > 0, we then

describe the ‘Hermitian spectral theory’ appropriate to the Cauchy setting in �N .

3.1 Local oscillatory behaviour close to interfaces

The questions on oscillatory behaviour of changing sign have been considered before.

Following [10, Section 7.1], we briefly indicate the oscillatory asymptotic bundle of

similarity profiles f(y) exhibiting maximal regularity at the interface y = y0, so that

on being extended by f = 0 for y > y0 these will give solutions of the CP. These

may be considered as the counterpart of the smooth similarity solutions of the CP for

n = 0 [12, Section 5], i.e. we have a regular limit as n → 0+. It is easy to see that for

n ∈ (0, 3
2
) the ODE (3.2) does not admit non-negative solutions of maximal regularity.

Hence, the ODE (3.2) implies that sufficiently regular solutions f(y) must be oscillatory

near interfaces; cf. proofs in [4]. It is important to prescribe the precise structure of

such oscillatory singularities of the ODE and determine the dimension of the asymptotic

bundle.

For n > 0, we take the thin film ODE (3.1), keeping the main terms for y ≈ y−
0 and

integrating once, to obtain

|f|n
(
f′′ +

(N − 1)

y
f′

)′
− (|f|p−1f)′ = βy0f + (higher order terms). (3.2)

For N = 1, choosing next just two leading terms close to the interface yields (in fact, one

can see that this approximation holds for any dimension N � 1)

|f|nf′′′ = λ0f + · · · , (3.3)
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where λ0 = βy0. Thus, we need to consider the unperturbed ODE

|f|nf′′′ = λ0f (λ0 = βy0 > 0), (3.4)

whose orbits will be exponentially small perturbations near interfaces of those for (3.1).

The ODE (3.4) has the following representation for its solutions [10, Section 7]: as

y → y−
0 ,

f(y) = (y0 − y)µϕ(η) , η = ln(y0 − y), with µ =
3

n
, (3.5)

where the oscillatory component ϕ satisfies the autonomous ODE,

ϕ′′′ + 3(µ− 1)ϕ′′ + (3µ2 − 6µ+ 2)ϕ′ + µ(µ− 1)(µ− 2)ϕ+ λ0|ϕ|−nϕ = 0. (3.6)

One can see that on orbits like (3.5) the neglected term (|f|p−1f)′ in (3.2) is much smaller

than f for all p > 1 + n
3
, and hence also for our range of interest p > 1 + n.

We are interested in the periodic solutions of (3.6) in the form (3.5), these oscillatory

profiles changing sign infinitely often as y → y−
0 , i.e. as η → −∞. Indeed, via (3.5),

periodic functions ϕ∗(η) establish the simplest oscillatory connections with the interface

points keeping the maximal regularity of the envelope:

f(y) ∼ (y0 − y)
3
n for y ≈ y−

0 ,

which represents the true scaling-invariant nature of the ODE (3.4). It can be shown

that (3.6) is a dissipative Dynamical System having a bounded absorbing set. Moreover,

dissipative dynamical systems are known to admit periodic solutions in a more general

setting [25, Section 39], provided these are non-autonomous (so the period is fixed).

According to (3.5), the regularity at y = y0 increases as n → 0+ forming, at n = 0,

analytic solutions. In [11, Section 6], we present a discussion related to the theory of

periodic solutions for higher order ODEs. Unlike the fifth-order case in [11, Section 4], the

ODE (3.6) is of third order and can be reduced to a first-order ODE (see [10, Section 7.1]).

Therefore the existence of a periodic solution is not principally difficult, while uniqueness

(and stability) are more difficult to show. We expect, and this is confirmed by numerics [10],

that this limit cycle is ‘almost’ globally stable (note that all the orbits of (3.6) are uniformly

bounded, so a stable attractor should be available, though sometimes zero may have a

stable manifold, which was not observed for this case; however, we have no proof) and is

unique.

As n increases, this periodic solution ϕ∗(s) is destroyed in a heteroclinic bifurcation at

the point [10, Section 7.2]

nh = 1.758665 . . .

(
and nh ∈

(
3

2
, n+

)
, where n+ =

9

3 +
√

3
= 1.9019238 . . . , [19]

)
,

(3.7)

with a standard scenario of homoclinic/heteroclinic bifurcation (see [26, Ch. 4]). A

rigorous justification of such non-local bifurcations is an open problem.

Thus, for n larger than 3
2
, not all the solutions are oscillatory near the interfaces.

For n ∈ ( 3
2
, 3), there exists a one-parametric bundle of positive solutions with constant
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equilibria ϕ(η) ≡ ±ϕ0 given by

ϕ0 =

[
− βy0

µ(µ− 1)(µ− 2)

] 1
n

. (3.8)

For matching purposes though, this is not enough and the whole two-dimensional (2D)

asymptotic bundle (3.5) of oscillatory solutions has to be taken into account.

For the CP then, this oscillatory behaviour is expected to remain generic for all n ∈ (0, nh)

(and similar to the linear case n = 0 with interface at y0 = ∞; see [10]). Explicitly, the 2D

bundle of asymptotic oscillatory orbits near the interface has the behaviour

f(y) = (y0 − y)
3
n ϕ∗(ln(y0 − y) + s0) + · · · as y → y−

0 , (3.9)

where y0 > 0 and s0 ∈ � are parameters.

Another important question is the passage to the limit n → 0+ that shows convergence

to solutions of the semi-linear Cahn–Hilliard equation. This is explained in detail in [10,

Section 7.6]. Various oscillatory sign change issues for non-linear degenerate higher order

PDEs of different types are addressed in [20, Ch. 3–5].

3.2 Continuous branches of similarity profiles for p = p0

Again, without loss of generality, we treat the case N = 1, where the ODE is simpler and

takes the form

|f|nf′′′ − 1

n+ 4
yf − (|f|nf3)′ = 0. (3.10)

The origin of the existence of continuous branches (parameterised by, e.g. mass) is the

fact that the ODE (3.10) is of third order. Thus, the single symmetry condition

f′(0) = 0 (f(0)� 0) (3.11)

is posed at the origin, while the shooting bundle from the singularity point y = y0 is two

dimensional according to (3.9). This leaves one free parameter. Solution existence by a

shooting approach is standard, so we refer to [10, 12, 21] as a guide to such equations.

The numerical results below were mainly obtained using Matlab’s two-point boundary

value problem collocation solver bvp4c (with default parameter values RelTol = 10−3,

AbsTol = 10−6). The standard regularisation

|f|n �→ (δ2 + f2)
n
2 (3.12)

was used with typically δ taken as 10−6 (although values as low as 10−10 were used to

obtain the complicated and refined zero structure of solutions shown in Figure 4).

In Figure 1, we present similarity profiles for n = N = 1 and p = p0 = n+ 3 = 4, which

are parameterised by values at the origin f(0).

For comparison, in Figure 2(a), we present similar profiles for the semi-linear case

n = 0, i.e. for the limit Cahn–Hilliard equation (1.6), where p = p0 = 3. Figure 2(b) shows

a clear difference of the ‘tail’ behaviour for n = 1 (non-linear oscillations (3.9)) and n = 0

(a linearised behaviour).
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2.5

3

y

f(y)

The Cauchy problem: N = 1,  p = p0 = n + 3, n = 1; parameterisation by f(0)

Figure 1. Similarity profiles for the CP as solutions of (3.10) and (3.11) for N = n = 1,

p = n+ 3 = 4.

In Figure 3, we show how the similarity profiles at p = p0 = n + 3 are deformed with

n starting from the semi-linear case n = 0. It is seen that the profiles get narrower as n

increases and also less oscillatory near their interfaces. In Figure 4, we show their enlarged

oscillatory behaviour close to the interfaces. We note that the case n = 1.75 is close to

the heteroclinic value (3.7) for which the CP profile must still change sign (whilst the

corresponding FBP one does not [10]). For subsequent n after the heteroclinic value, the

similarity profiles are assumed to be finitely oscillatory, i.e. can have a finite number of

sign changes near the interface (or none at all; see further comments in [10, Section 9.4]).

This finite oscillation phenomenon is challenging numerically. Our numerics show that

for n = 1.75, the CP profile still changes sign near the interface (see Figure 4).

In Figure 3, we also include the case of a single negative value n = − 1
2
, which gives

a standard source-type profile but, of course, without a finite interface, where f(y) is

oscillatory as y → +∞. The structure of these oscillations at infinity is different from the

already known ones for n non-negative, and is not studied here.

4 Countable family of source-type profiles via an n-branching approach

For later convenience, we postpone our study of the original PDE (1.1) and digress to

the pure unperturbed TFE. In general, construction of various oscillatory source-type

solutions of the CP for pure TFE (1.8) is a non-linear problem, which is more difficult

than that for the corresponding FBP.
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(a) f(y) for n = 0

10 15 20 25
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

y

f(y)

n = 0, p = 3

n = 1, p = 4

(b) Zero structure enlarged

The Cauchy problem: N = 1,  p = p0 = 3, n = 0; parameterisation by f(0)

The Cauchy problem: comparison of zero sets, N = 1, n = 1 and n = 0 

Figure 2. Similarity profiles for the CP satisfying (3.10) and (3.11) for N = 1, n = 0 p = 3;

(a) profiles, and (b) zero structure.

4.1 The linear case n = 0: basics of Hermitian spectral theory

For n = 0, i.e. for the bi-harmonic equation (1.9), the first profile exists, is unique (up to

mass scaling) and is just the rescaled kernel F(y) of the fundamental solution of (1.9):
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The Cauchy problem: N = 1, p = n + 3, n = 1.75, 1.5, 1, 0.5, 0, −0.5
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n = 0.5n = 1.5

n = 1.75

n = 0 n = −0.5

Figure 3. Similarity profiles for the CP as solutions of (3.10) and (3.11) for N = 1, p = n+ 3 = 4

and various n ∈ [− 1
2
, 1 3

4
]; parameterisation is f(0) = 1.
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The Cauchy problem: N = 1, p = n + 3, n  = 1.75, 1.5, 1, 0.5, 0, −0.5; enlarged

n = 1

n = 0.5

n = 1.5

n = 1.75

n = 0

Figure 4. Enlarged zero structure of VSS profiles from Figure 3; for p = 1.75, f(y) still changes

sign.
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b(x, t) = t−
N
4 F(y), y = x/t

1
4 , where

BF ≡ −∆2F + 1
4
y · ∇F +

N

4
F = 0 in �N,

∫
F = 1;

(4.1)

see [9, Section 4]. Moreover, there exists a countable set of eigenfunctions {ψγ, l = |γ| � 0}
of the corresponding rescaled non-self-adjoint operator B with the discrete spectrum [8]

σ(B) =

{
− l

4
, l = 0, 1, 2, . . .

}
. (4.2)

The eigenfunctions are derivatives of the rescaled kernel F ,

ψγ(y) =
(−1)|γ|

√
γ!

DγF(y) for any multi-index γ. (4.3)

In addition, the adjoint operator has the same spectrum:

B∗ = −∆2 − 1

4
y · ∇ with σ(B∗) = σ(B) =

{
− l

4
, l = 0, 1, 2, . . .

}
, (4.4)

and a complete set of eigenfunctions {ψ∗
γ (y)}, which are generalised Hermite polynomials.

More details on such Hermitian spectral theory of the operator pair {B,B∗} is in [8, 15].

4.2 n-branching of similarity solutions

We apply the n-branching approach from the linear case n = 0 in order to explain the

existence of a countable set of similarity solutions of the TFE (1.8). We will follow

classic branching theory in the case of non-analytic non-linearities of finite regularity

(see [27, Section 27] and [25, Ch. 8]).

We look for solutions of (1.8) with small n > 0 in the standard form

uγ(x, t) = t−αf(y), y = x/tβ, where β =
1 − αn

4
, (4.5)

where the multi-index γ is used for numbering (in a manner similar to that for the linear

eigenfunctions (4.3) and which is explained below). Then f = fγ(y) solves the elliptic

equation

An(f) ≡ −∇ · (|f|n∇∆f) + βy · ∇f + αf = 0 in �N. (4.6)

Note that, in general, for l = |γ| � 1, we have to assume that

∫
f(y) dy = 0 (4.7)

so that the solutions (4.5) satisfy the mass conservation condition

∫
uγ(x, t) dx ≡ 0 (|γ| � 1). (4.8)
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For l = 0, where α = βN and β = 1
4+nN

, the assumption (4.7) is not necessary, since the

PDE (4.6) is fully divergent and admits integration over �N .

For small n > 0 in (4.6), we have

β =
1

4
− α

4
n, (4.9)

and we use the following expansion:

|f|n = 1 + n ln |f| + o(n). (4.10)

Here, (4.10) should be understood in the weak sense, which is necessary for use in the

equivalent integral equation (see below).

Substituting expansions (4.9) and (4.10) (still completely formal) into (4.6) yields

An(f) ≡ Bf +
(
α− N

4

)
f + nL(f) + o(n) = 0, (4.11)

with the perturbation operator

L(f) = −∇ ·
(

ln |f|∇∆f

)
− α

4
y · ∇f. (4.12)

We next describe the behaviour of solutions for small n > 0 and apply the classical

Lyapunov–Schmidt method [25, Ch. 8] to (4.11). In this linearised setting, we naturally

arrive at the functional framework that is suitable for the linear operator B, i.e. it is

L2
ρ(�

N), with the domain H4
ρ(�

N) etc., and a similar setting for the adjoint operator B∗

(see above and further details in [8]).

Therefore, for n = 0, we have to study the branching of a non-linear eigenfunction from

the linear one, where f is a certain non-trivial finite linear combination of eigenfunctions

from a given eigenspace with fixed λγ = − |γ|
4

≡ − l
4
, i.e.

f = φl =
∑
|γ|=l

Cγψγ (� 0). (4.13)

Thus, we study branching from the eigenfunctions (4.13), where the weak expansion (4.10)

is the key. Obviously, for f ≈ φl(y), it can be violated in a small neighbourhood of

the nodal (zero) set of φl(y) so that its structure and overall measure is of practical

interest. Fortunately, according to (4.3), these eigenfunctions are simply derivatives (4.3)

of the analytic radially symmetric rescaled kernel F(|y|) of the fundamental solution

(4.1). Therefore, at possible bifurcation points, the nodal set of such f in (4.13) is well

understood, has zero measure and consists of a countable set of isolated sufficiently smooth

hypersurfaces that can concentrate as y → ∞, where

φl(y) → 0 as y → ∞ uniformly and exponentially fast. (4.14)

This allows us, returning to the key limit (4.10), to state the following result. For a
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function f given by (4.13), in the sense of distributions (see [10, Section 8.2]),

1

n
(|f|n − 1) ⇀ ln |f| as n → 0+. (4.15)

According to (4.15), analysing the integral equation for f, we can use the fact that for

any function φ ∈ L1(�N) (and/or φ ∈ C0(�N)), as n → 0+,

∫
�N

(|f(y)|n − 1)φ(y) dy = n

[∫
�N

ln |f(y)|φ(y) dy + o(1)

]
. (4.16)

It follows from (4.11) that branching is possible under the following non-trivial kernel

assumption: for n = 0,

α− N

4
= −λl =

l

4
=⇒ αl(0) =

N + l

4
, l � 0. (4.17)

This gives the countable sequence of critical exponents {αl(n), βl(n)} (to be determined) of

the similarity patterns (4.5) of the TFE for small n > 0.

By [9, Lemma 4.1], the kernel of the linearised operator

E0 = ker (B − λlI) = Span {ψβ, |β| = l}

is finite-dimensional. Hence, denoting by E1 the complementary (orthogonal to E0) in-

variant sub-space, we set

f = φl + V1, where φl ∈ E0 and V1 =
∑
|γ|>l

cγψγ ∈ E1. (4.18)

According to the known spectral properties of operator B, we define P0 and P1, P0+P1 = I ,

to be projections onto E0 and E1, respectively. We also introduce a perturbation of the

parameter α by setting

αl(n) = αl(0) + δ, with δ = δ(n). (4.19)

This perturbation δ is obtained from the orthogonality condition by substituting into

(4.11) and multiplying by ψ∗
γ . This gives

δ(n) = cln+ o(n), (4.20)

where cl is obtained from the system

〈L(φl), ψ
∗
γ 〉 = cl , |γ| = l. (4.21)

Since, according to (4.18), φl is given by (4.13), (4.21) is an algebraic system for unknowns

{Cγ} and cl . It can be solved, for instance, in radial geometries and in some other cases,

including those where the dimension of the kernel is odd; even dimensions are known to

need additional treatment (see more details in [17, App. A]). However, the total number

of solutions of the non-variational system (4.21) remains unclear.
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Finally, setting

V1 = nY + o(n), (4.22)

we obtain, passing to the limit n → 0+, the following equation for Y :

BY = −clφl + L(φl). (4.23)

By Fredholm’s theory, in view of the orthogonality, it admits a unique solution Y ∈ E1.

In general, the above analysis shows that up to solvability of the non-linear algebraic

systems the TFE admits a countable set of different source-type similarity solutions (4.5)

at least for small n > 0, where the parameters αl(n) are given by

αl(n) =
N + l

4
+ cln+ o(n) as n → 0+; l = 0, 1, 2, . . . . (4.24)

At n = 0, these solutions originate from suitable eigenfunctions of the linear operator in

(4.1). The global extensions of these n-branches of similarity solutions for larger n > 0

represent a difficult open problem and are treated numerically later on.

4.3 Non-linear eigenfunctions of TFE in one dimension

We consider the CP for the 1D TFE with continuous, compactly supported initial data,

ut = −(|u|nuxxx)x in � × �+, u(x, 0) = u0(x) ∈ C0(�). (4.25)

Then, for N = 1, the non-linear eigenvalue problem for the elliptic equation (4.6) is

formulated as follows:

−(|f|nf′′′)′ +
1 − αn

4
yf′ + αf = 0 in �, f(y) � 0, f ∈ C0(�). (4.26)

The problem (4.26) is naturally connected with self-similarity of second kind. Here, the

admitted values of the parameters {αl(n), l � 0} (non-linear eigenvalues) are obtained

not by pure dimensional analysis, but via solvability of this non-linear ODE in a given

functional class C0(�) of compactly supported functions satisfying the condition of

maximal regularity. The term similarity of the second type was introduced by Zel’dovich

in 1956 [29].

Note that for n = 0, we pose (4.26) in L2
ρ(�), where we replace the last condition by

f ∈ L2
ρ(�).

This is then a standard linear eigenvalue problem for a non-self-adjoint operator with the

point spectrum (4.2) and a complete-closed set of eigenfunctions {ψβ} given in (4.3), [8].

The first non-linear eigenvalue–eigenfunction pair {F0, α0} of (4.26) has been proved to

exist for n ∈ (0, 1] (see [10, Section 9]). In this case, the first eigenvalue is

α0(n) =
N

4 + nN

∣∣∣∣
N=1

=
1

4 + n
. (4.27)
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Figure 5. The first eigenfunction of (4.26) and (4.27) for n = 0, 0.5 and 1.

In view of the highly oscillatory nature of the profiles near interfaces, even identifying

numerically the position of interfaces is not an easy problem. Therefore, we begin with

Figure 5, where the first even non-linear eigenfunction is presented for n = 0, 1
2

and 1.

A careful study of their zero structure in the log-scale in Figure 5(b) allows us to find

an approximate and rather rough interface location, according to expansion (3.5), which

https://doi.org/10.1017/S0956792511000039 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792511000039


232 J. D. Evans and V. A. Galaktionov

yields

ln |f(y)| =
3

n
ln(y0 − y) + ln |ϕ(ln(y0 − y)| + · · · (4.28)

For n = 0, the expansion is exponential (cf. (5.12) in Part II) and entirely different, which

is seen in Figure 5(b); recall that the regularisation, such as (3.12), eventually enters the

expansion for |f| very small.

In what follows, we use the parameterisation:

Fl(0) = 1, l = 0, 2, 4, . . . ; F ′
l (0) = 1, l = 1, 3, . . . (4.29)

We then obtain, respectively,

α1 = 0.2534 . . . , α2 = 0.320 . . . (n = 1). (4.30)

In addition, numerics show that α3 ≈ 0.38 for n = 1.

The results of an accurate numerical study of the first four non-linear eigenfunctions

for N = 1 and various n ∈ [0, 2] are presented in Figure 6. Further, eigenfunctions are very

difficult to obtain numerically, to say nothing about an analytical proof of their existence.

The first n-branch, according to (4.27), has the explicit form

α0(n) = 1
4+n

, n ∈ [0, 3).

Other n-branches cannot be obtained explicitly. According to the n-branching approach,

all these branches originate at the eigenvalues of the linear problem (4.2), i.e.

αl(0) = −λl+1 =
l + 1

4
for l = 0, 1, 2, . . . , (4.31)

and moreover, after scaling, we may assume that at n = 0 the similarity profiles Fl(y)

coincide with the eigenfunctions (4.3), and hence by continuity mimic their geometric

shapes for n > 0.

Figure 7 shows the actual numerical construction of the first four n-branches, and even

these involve technical difficulties. Note that at the critical heteroclinic bifurcation value

(3.7), the similarity profiles Fl(y) are supposed to lose their oscillatory behaviour at the

interface and become ‘finite oscillatory’ (a finite number of isolated zeros near interfaces)

for n > nh (or even non-oscillatory at all) (see [10, Section 7.2]).

The analytical difficulties for the eigenvalue problem (4.26) already begin with l = 1,

i.e. with the dipole profile F1(y). This study has a well-developed history (see [3, 6, 7] and

references therein), but still there are no definite results of existence and uniqueness of F1

in the CP (nor the FBP) setting.

We end this section with the following:

Conjecture 4.1 (i) For any n ∈ (0, nh), the non-linear eigenvalue problem (4.26) admits a

countable set of sufficiently smooth solutions of maximal regularity2

Φ = {Fl(y), l = 0, 1, 2, . . .}, (4.32)

2 More details on this are given in [10].
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Figure 6. Illustrative numerical solutions for the first four non-linear eigenfunctions Fl(y), l =

0, 1, 2, 3, shown for selected n in 1D N = 1. The corresponding behaviour of the eigenvalues is

shown in Figure 7. The regularisation (3.12) with δ = 10−2 was used in the numerical shooting

scheme, where the even numbered profiles satisfy Fl(0) = 1, F ′
l (0) = F ′′′

l (0) = 0, whilst the odd

numbered profiles have F ′
l (0) = 1, Fl(0) = F ′′

l (0) = 0.

where the non-linear eigenvalues {αl} form a strictly increasing sequence and

αl → 1
n

as l → ∞. (4.33)

(ii) The eigenfunction subset (4.32) is evolutionarily complete in C0(�) for the TFE (4.25),

i.e. for any u0 � 0, there exists a finite l � 0 and a constant b = b(u0)� 0 such that

u(x, t) = t−αl
[
bFl(x/t

βl |b|n/4) + o(1)
]

as t → ∞. (4.34)

We expect that an analogous countable set of radially symmetric similarity solutions

exists for the TFE (1.8) in any dimension N � 2, though numerical calculations become

much more difficult than for N = 1. Moreover, the branching approach in Section

4.2 shows that there are many other non-radial similarity solutions that have a more

complicated geometry, but which for small n > 0 mimic the eigenfunctions (4.3).
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Figure 7. The actual n-branches of the first four non-linear eigenvalues αl(n), l = 0, 1, 2, 3,

constructed numerically.

The evolution completeness of non-linear eigenfunctions is known rigorously for the

PME

ut = (|u|nu)xx (n > 0) (4.35)

in a bounded interval [14]; also see [17] for results in �N for initial data u0 ∈ C0(�N)

and on an n-branching technique. The existence of a countable set of radial similarity

solutions of the PME (4.35) in �N × �+ was proved by Hulshof [23].

5 On non-linear p-bifurcations

5.1 Semi-linear Cahn–Hilliard (CH) equation: Countable set of critical exponents

In order to explain the essence of the non-linear bifurcation analysis, we first digress to

the stable CH equation (1.6), for which the analysis is much simpler (cf. [12, 21]).

Namely, studying the behaviour as t → +∞, we perform the standard scaling

u(x, t) = (1 + t)− 1
2(p−1) v(y, τ), y = x/(1 + t)

1
4 , τ = ln(1 + t), (5.1)

where v(y, τ) solves the following rescaled equation:

vτ = −∆2v + 1
4
y · ∇v + 1

2(p−1)
v + ∆(|v|p−1v) ≡ Bv + c0v + ∆(|v|p−1v). (5.2)

It then follows from (4.2) that a centre manifold behaviour is formally possible in critical
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cases (2.10) only:

c0 =
1

2(p− 1)
− N

4
=
l

4
=⇒ p = pl = 1 +

2

N + l
(l � 0). (5.3)

Checking the necessary condition of such a centre manifold behaviour and looking, say,

for a solution restricted to the centre eigenspace,

v(y, τ) = aγ(τ)ψγ(y) + w, w⊥ψγ, supy |w(y, τ)| = o(aγ(τ)) as τ → ∞, (5.4)

and substituting into (5.2) yields on multiplication by ψ∗
γ (see [8] for details),

ȧγ(τ) = µγ|aγ|p−1aγ + · · · , where µγ = 〈∆|ψγ|p−1ψγ, ψ
∗
γ 〉 ≡ 〈|ψγ|p−1ψγ,∆ψ

∗
γ 〉. (5.5)

Since ψ∗
γ (y) is a γ-degree polynomial [8], we then conclude that the necessary condition

of existence of such a centre sub-space behaviour is as follows:

µγ � 0 at least, for |γ| � 2. (5.6)

Note that in the limit p → 1 the following holds:

µγ = 1 by bi-orthonormality of eigenfunctions (5.7)

so that (5.6) is true for l � 1 through continuity of the integral relative to the

parameter p.

Eventually, the centre sub-space behaviour (5.5) generates the following asymptotic

patterns for the CH equation (1.6):

uγ(x, t) ∼ Cγ(t ln
2 t)− N+l

4 ψγ

(
y

t1/4

)
+ · · · as t → ∞ (l = |γ| � 2), (5.8)

where constants Cγ are independent of initial data u0. Of course, according to (4.3), all

such centre sub-space patterns (5.8) have zero mass, which is a necessary condition to

create an extra logarithmically decaying factor therein.

5.2 Local bifurcations from pl

We now return to the VSS of TFE with the stable PME term (1.1) and perform a

formal non-linear version of a p-bifurcation (branching) analysis for n > 0. As usual,

according to the classic branching theory [25, 27], a justification (if any) is performed for

the equivalent quasi-linear integral equation with compact operators. For simplicity, we

present computations for the differential setting.

Thus, we consider the elliptic PDE (2.2). The critical exponents {pl} are then determined

from the equality (q.v. (5.3))

α ≡ 1

2pl(n) − (n+ 2)
= αl(n) =⇒ pl(n) =

n+ 2

2
+

1

2αl(n)
(l � 0). (5.9)

In particular, for the semi-linear case n = 0, we have αl(0) = N+l
4

from (4.17) so that (5.9)

leads to (5.3), i.e. to the known sequence of critical exponents (2.10).
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We next use an expansion relative to the small parameter ε = p0 − p, i.e. as ε → 0,

α =
1

2pl − (n+ 2) − 2ε
= αl + 2α2

l ε+ · · · ,

β =
1 − nαl

4
+ clε+ · · · , cl =

1 − nαl

4

[
n+ 2 +

1

αl
− 2

1 − nαl

]
.

Substituting these expansions and the last one in (4.9) into (2.2) and performing the same

standard linearisation yields

An(f) + ∆(|f|pl f) + ε[−∆(|f|pl f ln |f|) + L1F] + O(ε2) = 0, (5.10)

where

L1 = cly · ∇ + 2α2
l I

is a linear operator and An is the non-linear rescaled operator (4.6) of the pure TFE

with the parameter α = αl(n) (an eigenvalue), for which there exists the corresponding

similarity profile Fl(y) (the non-linear eigenfunction).

We now make use of the invariant scaling of the operator An by setting

f(y) = bF(y/b
n
4 ) (b > 0), (5.11)

where b = b(ε) > 0 is a small parameter satisfying

b(ε) → 0 as ε → 0, (5.12)

which is to be determined. Substituting (5.11) into (5.10) and omitting all higher order

terms (including the one with the logarithmic multiplier ln |b(ε)|) yields

An(F) + bpl−
n
2 ∆(|F |plF) + εL1F = 0. (5.13)

Finally, we perform linearisation about the non-linear eigenfunction Fl(y) by setting

F = Fl + Y .

This yields the following linear non-homogeneous problem:

A′
n(Fl)Y + bpl−

n
2 ∆(|Fl |plFl) + εL1Fl = 0, (5.14)

where the derivative is given by

A′
n(F)Y = −∇ ·

[
|F |n

(
n

F
(∇∆F)Y + ∇∆Y

)]
+ βly · ∇Y + αlY .

The remaining analysis depends on assumed ‘sufficiently good’ spectral properties of

the linearised operator A′
n(Fl). It is noted that this is a difficult singular elliptic operator

with non-constant coefficients. Moreover, linearisation is performed about the a priori

unknown non-linear eigenfunction Fl . Therefore, we have to assume the best spectral

properties in order just to proceed with the more difficult idea of non-linear bifurcations.
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Here, we mainly follow the lines of a similar analysis performed for the FBP case

in [19, Section 2], where the operator A′
n(Fl) for n = 1 turns out to possess a (Friedrichs’)

self-adjoint extension with compact resolvent and discrete spectrum. However, it was

proved in [19, Appendix A] that such a self-adjoint extension does not exist for the

oscillatory F(y). As such, we use the more general theory of non-self-adjoint operators,

with Riesz bi-orthogonal bases etc. (see, e.g. [22]). A proper functional setting of this

operator is more straightforward for N = 1 (and in the radial setting), where, using the

behaviour of F(y) → 0 as y → 1, it is possible to check whether the resolvent is compact

in a suitable weighted L2 space. In general, this is a difficult problem (see below).

In order to proceed, we assume that a proper functional setting is available for An, and

so we deal with operators having solutions with ‘minimal’ singularities at the boundary

of the support Sl , where the operator is degenerate and singular. Namely, we assume that

A′
n(Fl) has a discrete spectrum with a complete, closed set of eigenfunctions denoted again

by {ψγ} and finite-dimensional kernel. We also assume that we are able to determine the

spectrum, eigenfunctions {ψ∗
γ} and the kernel of the adjoint operator (A′

n(Fl))
∗, which is

defined in a natural way using the topology of the dual space L2 and having the same

point spectrum (the latter is true for compact operators in a suitable space [24, Ch. 4]).

Further, we assume that there exists the orthogonal sub-space Span{ψγ, |γ| > l} of

eigenfunctions of A′
n(Fl). We look for solutions of (5.14) in the form

Y = φl + w,

where φl belongs to the kernel and hence is analogously given by (4.13), whilst w belongs

to the orthogonal complement of the kernel. In doing so, we need to transform (5.14) into

an equivalent integral equation with compact operators, but for convenience, we continue

our computations using the differential version (see additional details in [21, Section 3]).

Thus, multiplying (5.14) by ψ∗
γ with any |γ| = l in L2 and, if necessary, integrating by

parts the differential term y ·∇Fl in L1Fl , we obtain the following orthogonality condition

of solvability (Lyapunov–Schmidt’s branching equation [27, Section 27]):

bpl−
n
2 〈∆(|Fl |pl−1Fl), ψ

∗
γ 〉 = −ε〈L2Fl, ψ

∗
γ 〉 for all |γ| = l. (5.15)

These are algebraic equations for the expansion coefficients {Cγ} in (4.13) and the para-

meter b = b(ε). Similar to (5.5), one needs to check whether the constants are non-

zero,

〈∆(|Fl |pl−1Fl), ψ
∗
γ 〉 � 0 and 〈L2Fl, ψ

∗
γ 〉 � 0, (5.16)

which is not a simple problem and can lead to restrictions for such a behaviour. The

analysis is much simpler if the kernel is one dimensional, which always happens in the

radial geometry where we deal with ordinary differential operators. Then (5.15) is a single

and easily solved algebraic equation, for which the ‘transversality’ problem (5.16) also

occurs.

Under the conditions (5.16), the parameter b(ε) in (5.11) for p ≈ p0 is given by

b(ε) ∼ [γl(pl − p)]
2αl

1+2αl . (5.17)
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The direction of each pl-branch and whether the bifurcation is sub- or super-critical

depends on the sign on the coefficient γl that follows from (5.15). This can be checked

numerically only, but, in general, we expect that most of these non-linear bifurcations are

sub-critical,3 so the pl-branches exist for p < pl (at least, locally; see [16] for nonmonotone

‘closed-loop’ p-branches for TFE with absorption).

For n = 0, a rigorous justification of this bifurcation analysis can be found in [21,

Section 6], where a countable number of p-branches was shown to originate at bifur-

cation points (2.10) and was detected on the basis of known spectral properties of the

corresponding linear operator in (4.1) (see details in [8]). For n > 0, as we have seen,

the justification needs spectral properties of the linearised operator A′
n(Fl), as well as the

corresponding adjoint (A′
n(Fl))

∗, which is difficult for non-radial, non-linear eigenfunctions

Fl and is an open problem. In particular, it would be important to know that the bi-

orthonormal eigenfunction subset {ψγ} of the operator A′
n(Fl) is complete and closed in

a weighted L2-space or in some specially defined closed sub-space (for n = 0, such results

are available [8]). We expect that for n ≈ 0, there exist critical exponents for TFE with

absorption that are close to those in (2.10) at n = 0. This can be checked by standard

branching-type calculus (see [17, Appendix A]), where non-linear eigenfunctions of the

rescaled PME in �N were studied by a branching approach.

6 Towards global extensions of p-branches

6.1 Examples of various profiles

Recall that, for p� p0 in the ODE (3.1), we still have a 2D bundle at the singular interface

point (3.9), but now, for even profiles, we also need to satisfy two symmetry boundary

conditions at the origin:

f′(0) = f′′′(0) = 0. (6.1)

Therefore, unlike the third-order problem (3.10) and (3.11) in the critical case p = p0, we

cannot expect continuous sets of solutions. Actually, as was shown in [10–12,21], in these

non-critical cases, there occurs a countable set of p-branches of similarity profiles that

originate at the standard (for n = 0) or non-linear bifurcation points {pl} as explained in

Section 5. The global behaviour of such p-branches can be complicated and we do not

intend to study such delicate open questions on their properties in any detail, restricting

ourselves to examples only.

In Figure 8, we present some VSS profiles f(y) for N = 1 in two cases: n = 1 and

p = 3 < p0 = 4 in Figure 8(a) and n = 1
2
, p = 2 in Figure 8(b). In Figure 8(b), we

also show the first dipole profile f1(y) that, instead of (6.1), satisfies the anti-symmetry

conditions at the origin,

f(0) = f′′(0) = 0 =⇒ f(−y) ≡ −f(y). (6.2)

Note an important feature of such compactly supported profiles that is seen in the

3 Cf. [21], where a bi-harmonic equation with absorption was studied, as well as [16] for the

TFE with absorption; the present diffusion operator is also negative in a natural sense. For positive

(source-type) operators, bifurcations are super-critical [12, 18].
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Figure 8. Examples of VSS profile for the CP satisfying (3.1) and (6.1) for N = 1; (a) n = 1,

p = 3, and (b) n = 1
2
, p = 2.

figures: by (2.7), their mass must be zero. This necessary condition affects the VSS similarity

profiles so that it gets difficult to distinguish in Figure 8 their Sturmian-like properties on

the numbers of dominant extrema and transversal zeros (if these apply at all). Note that

the orthogonality property in (2.7) is perfectly valid for the eigenfunctions (4.3) for n = 0

(see (4.8)), which made it possible to develop the above branching theory.

6.2 p-bifurcation branches: numerics

The semi-linear case, n = 0, although simpler, correctly describes the expected general

behaviour of the p-branches, at least for sufficiently small n > 0 (bearing in mind that

a continuous ‘homotopic’ deformation as n → 0 is observed in a number of papers

mentioned above). Thus, Figure 9 illustrates this sub-critical case for even symmetry

conditions (6.1) at the origin. The branches are seen to remain distinct, which contrasts

markedly with the supercritical case [10, 12], where the branches are increasing with p,

so that the p2 and higher branches ‘intersect’ the vertical p0 branch, {p = 3} at points

(profiles) f with the zero mass as in (2.7).

In Figure 9(a), we observe a strong, almost vertical, growth of these p-branches that

bifurcate, respectively, at

p2 = 1 + 2
1+2

= 5
3
, p4 = 1 + 2

1+4
= 7

5
, p6 = 1 + 2

1+6
= 9

7
. (6.3)

This is not surprising, since the ODE (3.1) for N = 1 and n = 0 assumes, as p → 1−,

balancing the terms

· · · + (|f|p−1f)′′ + · · · +
1

2(p− 1)
f = 0 =⇒ f = C f̂, where C(p) ∼ (p− 1)− 1

p−1 (6.4)

(the scaled function f̂(y) is then supposed to be uniformly bounded, probably up to

slower growing factors). Therefore, by (6.4) f(y) has super-exponential growth as p → 1+.

Since the bifurcation values in (6.3) are already sufficiently close to 1 and the bifurcations
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Figure 9. (Colour online) The bifurcation p-diagram and associated plots for the CP case, when

N = 1, n = 0: (a) shows the p-bifurcation branches emanating from the critical exponents p = pl =

1 + 2
1+l

on the p-axis. The first four (even) branches l = 0, 2, 4, 6 are plotted; (b) illustrates the

monotonicity of the mass of solutions in the critical case p = p0 = 3; whilst (c) shows selected

profiles on the four branches in (a) that have ||f||∞ = 1.

are sub-critical, these explain such a strong growth of all the p-bifurcation branches in

Figure 9(a).

In the non-linear case n > 0, such a convincing justification of the general p-diagram

is not available. Indeed, as we have shown in the previous section, in the simplest case

l = 0, i.e. p = p0, the bifurcation of this vertical (in p) branch occurs from a non-linear

eigenfunction, which is the scaled source-type profile of the non-linear thin film operator.

Other non-linear eigenfunctions of the thin film operator are still unknown, possibly
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excluding the second dipole-like eigenfunction. We expect that the discrete nature of the

p-bifurcation branches discovered in [12] for n = 0 remains valid for small n > 0, where

the non-linear branching points cannot be calculated explicitly as in (2.10) and follows

from a complicated non-linear eigenvalue problem for the thin film operator.

7 Discussion

In this paper we have presented the main ideas with regard to describing a class of

similarity solutions for the CP of the fourth-order TFE with a stable parabolic term (1.1).

We define the CP as that of admitting solutions of maximal regularity.

The local asymptotic properties near an interface were described in Section 3 for the

quasi-linear range n ∈ (0, nh), where nh is the point of a heteroclinic bifurcation for a

related non-linear ODE. In this range of n, the rescaled ODE exhibits a unique stable

periodic motion describing generic changing sign properties of more general solutions. As

we shall see in Part II, these asymptotics contrast markedly with the more standard and

reasonably well-known behaviours (since the 1990s) for FBPs.

Also, in Section 3 we studied for the CP the critical case

p = p0 = n+ 1 +
2

N
,

where we detected continuous branches of similarity profiles. In Section 4, the n-branching

theory was developed for the similarity solutions of the 1D pure TFE

ut = −(|u|nuxxx)x.

Specifically, the branching of non-linear similarity profiles from eigenfunctions of the

linear rescaled operator at n = 0. This allowed us in Section 5 to reveal a countable

sequence of critical exponents {pl} of the original stable TFE (1.1) and to describe

similarity solutions for p� p0.

As some of the conclusions remain formal, we have posed several open problems for

future research.

In Part II we turn our attention to the FBP setting, where the CP will emerge

as a suitable limit of FBP problems. We mention that this limit property affords an

alternative definition of solutions of the CP, which complements the existing ones of

maximal regularity at interfaces or via a smooth analytic ‘homotopy’ deformation to the

bi-harmonic equation (1.9).
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