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Non-convex Optimization via Strongly
Convex Majorization-minimization

AzitaMayeli

Abstract. In this paper,we introduce a class of nonsmooth nonconvex optimization problems, andwe
propose to use a local iterativeminimization-majorization (MM) algorithm toûnd an optimal solution
for the optimization problem. he cost functions in our optimization problems are an extension of
convex functions with MC separable penalty, which were previously introduced by Ivan Selesnick.
hese functions are not convex; therefore, convex optimization methods cannot be applied here to
prove the existence of optimal minimum point for these functions. For our purpose, we use convex
analysis tools to ûrst construct a class of convex majorizers, which approximate the value of non-
convex cost function locally, then use the MM algorithm to prove the existence of local minimum.
he convergence of the algorithm is guaranteed when the iterative points x(k) are obtained in a ball
centred at x(k−1) with small radius. We prove that the algorithm converges to a stationary point (local
minimum) of cost function when the surregators are strongly convex.

1 Introduction

Consider the following optimization problem

min
x∈C

F(x),(1.1)

where C is a closed convex subset of RN and F ∶ RN → R is a real valued objective
or cost function. In general, F is continuous but not convex nor smooth. Most opti-
mization problems rely heavily on convexity condition of the function F, and the lack
of convexity for F usually makes it an NP hard problem to ûnd a global minimum
point for the optimization problem (1.1). In particular, the convexity condition is use-
ful in some practical problems such as in image reconstruction and sparse recovery
[20,21]. In the absence of the convexity condition,majorization-minimization (MM)
algorithm has been proved to be a useful tool in ûnding local minimization vectors or
signals. his algorithm is an iterative algorithm, and it converts a diõcult optimiza-
tion problem into a simple one, as we will demonstrate in some of these cases in this
paper.
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he goal of this paper is to solve the following class of problems using an iterative
algorithm: for given y ∈ RM ,

(1.2) argmin
x∈RN

F(x),

where F(x) =
1
2
∥y − Ax∥22 + λ(∥x∥1 − fα(x)),∀x ∈ RN .

Here, fα is theMoreau envelope of a convex function as deûned in (2.2), and α >
0, λ > 0 are constants and predetermined. he matrix A ∈ RM×N is a low rank wide
matrix (e.g., a ûnite frame orwavelet). In our setting, the penalty term is a non-convex
function and is given by

ψλ(x) = λ(∥x∥1 − fα(x)).(1.3)

he optimization problem (1.2) is a nonconvex nonsmooth optimization problem
subject to the penalty function ψλ . he cost function F given by (1.2) is in general
nonconvex nonsmooth. However, the convexity can hold under some conditions de-
pending on the choice ofA, λ, and α. Note that themain idea of using such nonconvex
penalty functions is to promote the sparsity of the solutions in (1.2). A non-convex
penalty can induce a nonconvex cost function, thus unnecessary suboptimal local
minimizers for the cost function. hemain goal of this paper is twofold. First, we in-
troduce a class of functions that majorize the cost function locally. hen we use these
majorizers (surrogaters) in an MM algorithm to solve the optimization problem (1.2)
and prove that the iteration points convergence to the stationary point of the objective
function under some suõcient condition. Before we explain the main contributions
of the current work in details, let us ûrst recall some known and special cases of (1.2).

Special cases When λ = 0, the problem is alternately referred to as a minimizer
of the residual sum of squared errors (RSS). he solution for minimization can be
obtained by the least squaremethod. In this case, theminimization is a continuously
diòerentiable, unconstrained, convex optimization problem. For a solution of this
case, see e.g., ([13]). When fα is a constant function (e.g. when α = 0), the problem
turns into the classical ℓ1 regularizer case. his case, among the cases with convex
regularizer (orpenalty), ismore eòective in inducing sparse solutions for (1.1) and (1.2)
([4]). However, the ℓ1 regularizer underestimates the high amplitude components of
the solution. he problem with an ℓ1 penalty is known as the Least Absolute Selection
and Shrinkage Operator (LASSO) ([23]) and Basis Pursuit Denoising ([7]). Several
methods have been introduced in [7, 23] for optimizing the problem. When f (x) =
∥x∥1, theMoreau envelope fα is thewell-knownHuber function. heHuber function
and its general form as regulizers of sparse recovery problems have been treated in
[19], and it has been proved that with these regularizers, using proximal algorithms,
problem (1.2) has an optimal solution (global minimum) provided that F is convex.
In this case, the penalty term (1.3) is calledMC penalty.

Main contribution he ûrst contribution of this paper is to construct a class of con-
vex functions that majorize (surrogate) the cost function F (1.2) locally. We obtain
these functions by constructing local minimizers for the penalty term ψλ . he local
majorizers are tangent to the cost function only at one point and each has a global
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minimum. he existence of a global minimum for themajorizers is obtained by con-
vexity ofmajorizers, which we also study here.

he second contribution of this paper is to use the MM algorithm to ûnd a se-
quence of iteration points that converges to the local minimum of the cost function
(1.2). In this algorithm, each iteration point x(k) is obtained by local minimization of
surregator function FM( ⋅ , x(k−1)) in some small neighbourhood of x(k−1). We prove
that the sequence {x(k)}k has an accumulation point and is a stationary point for the
cost function F in (1.2), provided that themajorizers are a-strongly convex.

Outline he paper is organized as follows. A�er introducing some notations and
preliminaries in Section 2, in Section 3we introduce a class ofminimizer functions for
the penalty term (1.3) to obtainmajorizers for the cost function F (1.2). In this section,
we also study suõcient conditions for the majorizers to be convex. hese results are
collected in Lemma 3.1 andheorem 3.2, respectively. In Section 4,we propose to use
the iterativeMM algorithm to obtain a stationary point (local minimum) of F. hese
results are collected in Proposition 4.1,heorem 4.4, and Corollary 4.5.

1.1 Related Work

he current paper proposes the use of majorization-minimization (MM) algorithm
to solve the class of nonconvex nonsmooth optimization problems of type (1.2). he
MM approach has been used, for example, in [10, 14, 16] for solving some nonconvex
optimization problems diòerent from those we consider here. here are other types
of methods that have been proved eòective in solving nonconvex problems, e.g., it-
eratively reweighted least squares (IRLS) method ([9]) and iteratively reweighted ℓ1
(IRL1) ([5]). For a list of other methods including gradient descent method to ûnd
local minimum of a function, we refer the reader to [16] and the reference therein.

Our approach to solving a non-convex optimization problem involves the mini-
mization of a cost function deûned in terms of the penalty function ψλ (1.3) with the
regularization parameter λ. he minimization of a cost function deûned in terms of
the ℓ1 norm, λ∥ ∥1, can be obtained via convex optimization techniques. his has been
considered in a sequence of works, e.g., [3,8,22]. Indeed, since its early application in
geophysics, the ℓ1 norm and sparsityhave become important tools in signal processing
[1]. he most well-known nonconvex regularizer is the ℓp pseudo-norm (0 ≤ p < 1)
[24, 26]. For example, when p = 1

2 , an iterative technique, called the iterative half

thresholding algorithm, is used to obtain a local minimizer of the ℓ 1
2
regularizer.

An analogy to so� thresholding for the ℓ1-penalty is the non-convex log-
thresholding λ∑i log(δ + ∣x i ∣), and the proximal splitting step of the algorithm has
a closed form solution ([17]). heir technique is based on a direct link of reweighted
ℓ1-penalties (IRL1) to the concave log-regularizer for sparsity. he minimization of
an objective function with the penalty term as the diòerence of ℓ1 and ℓ2 norms,
λ(∥ ⋅ ∥1−∥ ⋅ ∥2), and as a non-convex and Lipschitz continuousmetric for solving con-
strained and unconstrained compressed sensing problems, has been studied in [25].
he solution of the optimization problem with this penalty has been obtained via the
diòerence of convex algorithm (DCA). Other regularizers have also been advocated
in [6, 11, 12].
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Figure 1: heMM algorithm procedure. he nodes “● ● ●” on the horizontal line represent the
iteration points x(k−1), x(k), and x(k+1).

2 Preliminaries and Notation

For any vector x ∈ RN , the ℓ1 and ℓ2 norms of x are deûned by ∥x∥1 = ∑i ∣x i ∣ and
∥x∥22 = ∑i ∣x i ∣2, respectively. We denote amatrix of dimension M × N by A ∈ RM×N .
We say it is positive semindeûnite, denoted by A ≥ 0, if for all x ∈ RN , ⟨Ax , x⟩ ≥ 0.
Here, ⟨ ⋅ , ⋅ ⟩ denotes the inner product of two vectors. Positive deûniteness is also
equivalent to saying that all eigenvalues of A are non-negative. We say two functions
f and h are tangent at the point w when f and h both have directional derivatives at
w and for any direction d ∈ RN with small ∥d∥2, ∇ f (w; d) = ∇h(w; d).

Local majorizers and minimizers Given a ûxed point w ∈ RN , a function g( ⋅ ,w) ∶
RN → R is called a local majorizer of function f ∶ RN → R at w if the following
conditions hold:

f (x) ≤ g(x ,w) ∀x ∈ RN ;
f (x) = g(x ,w) if and only if x = w .

From the point of view of geometry, a majorizer means that the surface obtained
by themap x ↦ g(x ,w) lies above the surface generated by x ↦ f (x), and these two
surfaces are touching (have a tangent point) only at x = w.

We say a function g( ⋅ ,w) ∶ RN → Rminorizes the function f atw when−g( ⋅ ,w) ∶
RN → R majorizes − f at w.

The Iterative MM algorithm In theMM algorithm,we choose themajorizer gk−1 ∶=
g( ⋅ , x(k−1)) tangent to the objective function at x(k−1) and minimize it on a convex
set D to obtain the next iteration point x(k). hat is, x(k) ∶= argmin

x∈D g(x , x(k−1)),
provided that x(k) exists. hen we deûne gk ∶= g( ⋅ , x(k)) (see Figure 1).
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When theminimization points x(k) exist, the followingdescending propertyholds:

f (x(k)) ≤ gk−1(x(k)) = g(x(k) , x(k−1)) ≤ gk−1(x(k−1))(2.1)

= g(x(k−1) , x(k−1)) = f (x(k−1)).
One of the signiûcant properties of theMM algorithm is its stability due to the de-

scending property of the objective function f (2.1). If an objective function is strictly
convex, then the MM algorithm will converge to the unique optimal point (global
minimum), assuming that it exists. In the absence of convexity, all stationary points
are isolated; then the MM algorithm will converge to one of them. For a complete
philosophy of theMM algorithm, we refer the reader to [14, 15] for example.

Moreau envelope For a function f̃ ∶ RN → R and α > 0, theMoreau envelope of f̃
is denoted by fα and is deûned by inûmal convolution:

fα(x) ∶= ( f̃ ◻
α

2
∥ ⋅ ∥22)(x) = inf

v∈RN
{ f̃ (v) +

α

2
∥v − x∥22}, ∀x ∈ RN .(2.2)

he function fα is convex when f̃ is convex and it is the inûmal convolution of the
function f̃ and the map x ↦ α

2 ∥x∥
2
2. For example, when f̃ (x) = ∥x∥1, the Moreau

envelope fα ∶ RN → R∪{∞} is awell-known (generalized) Hubber function. For the
deûnition of inûmal convolution and its other properties see, e.g., [2].

Let y ∈ RM be an observed vector data and let A ∈ RM×N be a matrix, which is
usually a wide low rank matrix. he following result for the cost function F (1.2) with
penalty term ψλ(x) = λ(∥x∥1 − fα(x)) is a mild improvement of [19, heorem 1].
In [19], ψλ is the MC penalty and the Moreau envelope fα is the generalized Huber
function.

heorem 2.1 he function F is (strictly) convex if

A
T
A− λαI ≥ 0 (convexity condition).(2.3)

For strictly convex functions, the inequality ⪰ is replaced by ≻ 0. Here, I is the identity

matrix, and λ and α are constants.

his theorem can be proved using a similar technique to that used to prove
[19, heorem 1]. Note that the condition (2.3) ensures the uniqueness of the mini-
mizer of the cost function F.

he suõcient convexity condition (2.3) indicates that all eigenvalues ofmatrixATA

must be at least λα. In the absence of convexity, the function F is the sum of one
concave function and one convex function, and it can havemany local minimums. In
this case, one needs an approach to prove the existence of a global minimumor global
optimum point for F. his paper proposes the use of the MM algorithm technique
for this purpose when F is nonconvex.

To reach our goal and prove the existence of a local minimizer for nonconvex ob-
jective (or cost) function F (1.2), we ûrst construct local minimizers for the Moreau
envelope fα and then use them to obtain local majorizers for F. Our technique
follows.
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Figure 2: In this example, we put α = 1 and λ = 2, and fα is the Huber function. he penalty
function ψλ is deûned as in (1.3).

Let γm > 0 be a constant to be determined later. For any w ∈ RN , let

f
m
α (x ,w) ∶= fα(x) − γm∥x −w∥22 .(2.4)

We deûne FM( ⋅ ,w) by replacing fα by f mα (x ,w) in the deûnition of the function F
(1.2) as follows:

F
M(x ,w) ∶=

1
2
∥y − Ax∥22 + λ(∥x∥1 − f mα (x ,w)).(2.5)

It is obvious that FM( ⋅ ,w) majorizes F; i.e., for all x ∈ RN , FM(x ,w) ≥ F(x). In
heorem 3.2, we prove that the surface generated by the function FM( ⋅ ,w) is lying
about the surface generated by the function F and they touch only at one point, x = w.
For an illustration of an inûmal convolution fα , a penalizer ψλ , and their minorizer
andmajorizer functions, respectively, see Figure 2.

Remark 2.2 In the same fashion, one can deûne minorizers Fm(x ,w) for F. For
this, let γM > 0 and deûne f Mα (x ,w) ∶= fα(x)+ γM∥x −w∥22. hen f Mα (x ,w) ≥ fα(x)
for all x. Deûne

F
m(x ,w) ∶=

1
2
∥y − Ax∥22 + λ(∥x∥1 − f Mα (x ,w)).

With similar proof techniques for majorizers in the rest of this paper, one can obtain
local minorizers for the cost function F with tangential point at w. Minorizers are a
useful tool in ûnding local maximums of an optimization problem.

3 Construction of a Local Majorizer for Cost Function

Our ûrst result in this section proves the existence of local minorizers for theMoreau
envelope function fα , followed by the construction of majorizers for the cost func-
tion F.
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Lemma 3.1 (Minorizer of fα) Fix w ∈ Rn and deûne f mα ( ⋅ ,w) as in (2.4). hen

f mα ( ⋅ ,w) is aminorizer for fα , and for any direction d ∈ RN with ∥d∥2 small, we have

∇ fα(w; d) = ∇ f mα (w; d ,w).(3.1)

Proof he proof of the local miniorizers for fα is obtained directly from the deûni-
tion of f m( ⋅ ,w). To prove (3.1), let d ∈ RN with ∥d∥2 small. hen

∇ f mα (w; d ,w)

= lim inf
θ→0+

f mα (w + θd ,w) − f mα (w ,w)
θ

= lim inf
θ→0+

f mα (w + θd ,w) − fα(w)
θ

( f mα (w ,w) = fα(w))

= lim inf
θ→0+

( fα(w + θd) − γm∥θd∥22) − fα(w)
θ

(by the deûnition of f mα )

= lim inf
θ→0+

( fα(w + θd) − fα(w)) − γm∥θd∥22
θ

= lim inf
θ→0+

( fα(w + θd) − fα(w))
θ

− lim inf
θ→0+

γmθ∥d∥22

= lim inf
θ→0+

( fα(w + θd) − fα(w))
θ

= ∇ fα(w; d).
his completes the proof of the theorem. ∎

Our next result illustrates that the local minorizers of theMoreau envelope func-
tion fα induce local majorizers for F.

heorem 3.2 he function FM( ⋅ ,w) (2.5) is local majorizer for the cost function F

at w, and we have the following.

(i) ∇F(w; d) = ∇Fm(w; d ,w) for all d with ∥d∥2 suõciently small.

(ii) FM( ⋅ ,w) is convex if

A
T
A+ λ(2γm − α)I ≥ 0.(3.2)

he convexity is strict if ATA+ λ(2γm − α)I > 0.

Proof By Proposition 3.1, it is immediate that the function FM( ⋅ ,w) is a local ma-
jorizer for F. Item (i) also holds by the equality in (3.1). To prove item (ii), we will
adapt an approach used to prove [19,heorem 1].

Notice that the discrepancy with respect to the data in the surregator function
FM( ⋅ ,w) can be written as

F
M(x ,w) = x

T( 1
2
A

T
A+ λ(γm − α

2
)I)x + λ∥x∥1 +max

v∈RN
g(v , x ,w).(3.3)

Notice the function Q(x) ∶= maxv∈RN g(v , x ,w) is not aõne, although for any
ûxed point (v ,w), the map x → g(v , x ,w) is aõne (i.e., linear). However, the con-
vexity ofQ can be obtained as a result of [2, Proposition 8.14], sinceQ is the pointwise
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maximumof convex functions. herefore by (3.3), FM( ⋅ ,w) is convex when the qua-
dratic part is convex. his means that thematrix ATA+ λ(2γm − α)I is positive def-
inite, and completes the proof of (ii). hemajorizer function is strictly convex when
the inequality is strict. ∎

4 The MM Algorithm and Stationary Points

In this section, we prove the existence of a sequence of iteration points that are
obtained by minimizing surregator functions at each iteration step. Under strongly
convexity conditions for the surregatorswe show that the iteration points have a con-
vergent subsequence and the limit point is a stationary point of F. Consequently, by
the descending property (2.1), this stationary point will be a local minimum for F.

To prove the existence of a sequence with convergent point a local minimum, we
proceed as follows. First, we need to introduce the notation for a ball. For є > 0 and
u ∈ RN , we denote by Bє(u) the ball of radius є with respect to the ℓ2 norm with
center u. hat is, the set of all points x ∈ RN with ℓ2 norm distance from the center u
less than є.

Proposition 4.1 Let α > 0 and є > 0. hen the sequence obtained by the following

iterative algorithm converges.

Set γm such that the convexity condition (3.2) holds;
Initialize x(0) ∈ RN ;

for k = 0, . . . , do
x(k+1) = argmin

x∈B ε
2k
(x(k)) F

M(x , x(k));

end
where k is the iteration counter.

Proof To prove the proposition, we ûrst claim that the sequence {x(k)}k has a con-
vergent subsequence, e.g., {x(kn)}n . hen we show that the subsequence is {x(k)}k .

Boundedness:he iteration points x(k) satisfy

∥x(k+1) − x
(k)∥2 ≤

ε

2k
, ∀k ≥ 0.

his immediately implies that the sequence is bounded. herefore, by he Bolzano–
Weierstrass heorem, the {x(k)}k has a convergent subsequence with accumulation
point x∗. In what follows, we prove that the sequence {x(k)}k converges to x∗.

Convergence: Assume {x(kn)}n is a subsequence of {x(k)}k such that x(kn) → x∗ as
kn →∞. Fix k and let kn > k. An easy calculation shows that

∥x(k) − x
∗∥ ≤ ∥x(kn) − x

∗∥ +O( є

2kn
) as k Ð→∞.

his implies that x∗ is the accumulation point for {x(k)}k and we are done. ∎
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Notice that the limit point cannot be a stationary or a local minimumpoint. How-
ever, this can be obtained under some suõcient assumptions on themajorizers. First
we have a lemma.

Lemma 4.2 Let a > 0 and w ∈ RN . he local majorizer FM( ⋅ ,w) is a-strongly

convex provided that ATA+ λ(γm − α)I ≥ 2aI.

Proof Recall the discrepancy of data given in (3.3):

F
M(x ,w) = x

T( 1
2
A

T
A+ λ(γm − α

2
)I)x + λ∥x∥1 +max

v∈RN
g(v , x ,w).

his representation implies that FM

k
is a-strongly convex when

1
2
A

T
A+ λ(γm − α

2
)I ≥ al ,(4.1)

and we are done. ∎

Strong convexity is one of themost important tools in optimization and in partic-
ular it guarantees linear convergence rate ofmany gradient descent based algorithms.
Here, we recall a result.

Lemma 4.3 ([18, Lemma B.5]) Let f be an a-strongly convex on a convex domain

D. Let x∗ be theminimizer of f on D. hen

a∥x − x
∗∥22 ≤ f (x) − f (x∗) ∀x ∈D.

As an outcome of the lemma, we prove that the limit point x∗ in heorem 4.1 is a
stationary point for F, thus a local minimizer by the descending property.

heorem 4.4 Assume the that a-strong convexity condition (4.1) holds, and {x(k)}
converges to x∗. hen x∗ is a stationary point for F, and we have ∇F(x∗; d) ≥ 0.

Proof By the assumption, for all x ∈ RN ,wehave f mα (x , x(k))→ fα(x)−γm∥x−x∗∥22
as k → ∞. hus, FM

k
(x) → F(x) + λγm∥x − x∗∥22, k → ∞. From the other side, by

applying Lemma 4.3 to FM

k
and using its majorization property, we have

a∥x − x
(k+1)∥22 ≤ FM(x , x(k)) − FM(x(k+1) , x(k))

≤ FM(x , x(k)) − F(x(k+1)) ∀x ∈ RN .

So

a∥x − x
(k+1)∥22 ≤ FM(x , x(k)) − F(x(k+1)) ∀x ∈ RN .
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By the continuity of F, letting k →∞ in the preceding inequality, we obtain

a∥x − x
∗∥22 ≤ F(x) + λγm∥x − x

∗∥22 − F(x∗),
or equivalently,

F(x) − F(x∗) ≥ (a − λγm)∥x − x
∗∥22 .(4.2)

Let d ∈ RN be a direction with ∥d∥2 ≤ є and θ > 0. By (4.2),

F(x∗ + θd) − F(x∗) ≥ (a − λγm)θ2∥d∥22 .
his implies that

∇F(x∗; d) = lim inf
θ→0+

F(x∗ + θd) − F(x∗)
θ

≥ (a − λγm)∥d∥22(lim inf
θ→0+

θ) = 0,

and we are done. ∎

he following result is a summary of the results that we presented in this and the
previous sections.

Corollary 4.5 (Convergence) Assume that the local majorizers {FM( ⋅ , x(k))}k of

F are a-strongly convex. he sequence of iteration points {x(k)} converges and the limit

point is a local minimizer of F.

Proof By heorem 4.4, ∇F(x∗; d) ≥ 0; thus, x∗ is an stationary point. By the de-
scending property (2.1), the stationary point is a local minimum. ∎

We conclude this section by illustrating some examples. First, we give some nota-
tion. For a given matrix A, we denote by Σ(A) the set of all singular values ofmatrix
A.

Example 4.6 (Tight frame) Assume that the rows of matrix A form a tight frame
with frame constant C. hen ATA = CI and Σ(A) ∶= {C}. (When C = 1, the rows of
matrix A form a normalized tight frame, also known as Parseval frame.) Let α and λ

be such that α > Cλ−1. hen the suõcient convexity condition (2.3) fails for F, and
the function F can have no local (thus global) minimum.

In the following example we present a positive lower bound for γm for which the
convexity condition (3.2) holds for themajorizers.

Example 4.7 Assume that the convexity condition (2.3) fails. hus, for some σ ∈
Σ(A)wemust have α > σ

λ
. his implies that for the smallest singular value σ0,we also

have α > σ0
λ
. Deûne c ∶= λα−σ0

2λ . he constant c is positive, and with a straightforward
computation, one can show that all pairs (γm , a) satisfy

γm ≥ a
λ
+ c.

he a-strong convexity condition holds for the surregators FM . he convexity is strict
when the inequality is strict.
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