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SUMMARY
This paper discusses the modeling and control of a robotic
manipulator with a new deburring tool, which integrates
two pneumatic actuators to take advantage of a double
cutting action. A coordination control method is developed
by decomposing the robotic deburring system into two
subsystems; the arm and the deburring tool. A decentralized
control approach is pursued, in which suitable controllers
were designed for the two subsystems in the coordination
scheme. In simulation, three different tool configurations
are considered: rigid, single pneumatic and integrated
pneumatic tools. A comparative study is performed to
investigate the deburring performance of the deburring arm
with the different tools. Simulation results show that the
developed robotic deburring system significantly improves
the accuracy of the deburring operation.

KEYWORDS: Deburring system; Different tools; Double
cutting action.

I. INTRODUCTION
A machining manipulator is subject to mechanical interaction
with the object being processed. The robot performs the
task in constrained work space. In constrained tasks, one
is concerned with not only the position of the robot
end-point, but also the contact forces, which are desired
to be accommodated rather than resisted. Therefore, the
interaction force needs to be considered in designing and
controlling deburring tools.

Many researchers have proposed automated systems for
grinding dies, deburring casting, removing weld beans,
etc.1,2 Usually, a deburring tool is mounted on a NC
machining center or a robot manipulator. Several control
laws have been developed for simultaneous control of both
motion and force3–5 of robotic manipulators. Despite the
diversity of approaches, it is possible to classify most of
the control methods into two major approaches: impedance
control6–8 and hybrid position/force control.9–12 However,
these methods require an accurate model of force interaction
between the manipulator and the environment and are
difficult to implement on typical industrial manipulators that
are designed for position control.

An active feedback control scheme was developed in order
to supply compliance for robotic deburring as a means to
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accommodate the interaction force due to contact motion.
Kuntze13,14 suggested an active control scheme, in which the
actuators are commanded to increase torques in the opposite
direction of the deflections. Paul15applied an active isolator
to a chipping robot, where the isolator attached to the arm tip
reduces the vibration seen by the robot. Sharon and Hardt16

developed a multi-axis local actuator, which compensates for
positioning errors at the end point, in a limited range.

Asada and West17–20 developed passive tool support
mechanisms, which couple the arm tip to the workpiece
surface and bear large vibratory loads. These mechanisms
allow the robot to compensate for the excessive deflection
when the robot contacts the workpiece. These methods
reduce dynamic deflection in a certain frequency range.
However, it is difficult for these control schemes, which are
employed for a robot with a passive tool, to perform well over
a wide frequency band because they must drive the entire,
massive robot arm. In addition, unknown compliance from a
passive tool makes it difficult to control the deburring robot.

In this paper, a robotic deburring method is developed
based on an integrated pneumatic actuation system (IPAS),
which considers the interaction among the tool, the
manipulator, and the workpiece and couples the tool
dynamics and a control design that explicitly considers
deburring process information. First, a mathematical model
of a single pneumatic actuator is developed. Then, a new
active tool is developed based on two pneumatic actuators,
which utilizes double cutting action – initial cut followed
by fine cut. Then, a coordination based control method is
developed for the robotic deburring system based on the
active pneumatic deburring tool, which utilizes coordination
of two cutters. Simulation results show that the developed
system significantly reduces the chattering of the deburring
robot and improves the accuracy of the deburring operation.

II. MODELING OF THE DEBURRING ROBOT
In this section, a dynamic model of a robotic arm with the new
deburring tool or IPAS is developed as a robotic deburring
system. The load dynamics of a single pneumatic actuator
is described and utilized for developing a dynamic model of
the IPAS, which integrates two pneumatic cylinders. Then,
the equations of motion of the deburring robot are derived.

II.1. Single pneumatic actuator
The single pneumatic tool is illustrated in Figure 1, where
i = 1, 2, Gi is the entering mass flow, Pi is the chamber
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Fig. 1. Pneumatic tool.

pressure, Vi is the volume of the chamber, X, Ẋand Ẍ are the
position, velocity and acceleration of the piston, respectively,
Ai , M , and X0 are the area, the mass, the initial position of the
piston, respectively, Fe and Fr are the external and friction
forces, respectively.

The chamber pressure and the kinetic variables are related
by the equilibrium equation21–23

Gi = ρi

dVi

dt
+ Vi

dρi

dt
(i = 1, 2) (1)

where Gi is the entering mass flow, ρi the air density and Vi

the volume of the Chamber i. The air is assumed to be ideal
gas, which can be written as

ρi = ρij

(
Pi

Pij

)1/n

= Pij

RTij

(
Pi

Pij

)1/n

(2)

where the subscript j denotes the initial conditions, R the
air constant, P the air pressure in the cylinder, and T the
absolute air temperature. According to the displacement of
the piston rod, the volume of the chambers is written as

Vi = Ai(X0 ± X) (3)

where the subscripts 0 indicates the initial position of piston
M , respectively, and Ai denotes the area of the piston. By
combining Eqs. (2) and (3) and their time derivative in

Eq. (1), the following expression is obtained:

Gi = Ai(X0 ± X)
1

nRTij

(
Pi

Pij

)1/n−1
dPi

dt

± Pij

RTij

(
Pi

Pij

)1/n

Ai

dx

dt
. (4)

Eq. (4) can be rewritten as

dPi

dt
= nRTij

Ai(X0 ± X)(P/Pij )1/n−1
Gi ∓ nPi

(X0 ± X)

dx

dt
. (5)

The load dynamics can be written for the system as following:

A1P1 − A2P2 − Kf Ẋ = MẌ + Fe (6)

where Ẋ and Ẍ represent the velocity and acceleration of
the piston, respectively, Kf and Fe are the viscous friction
coefficient and the external force exerted on the piston,9,11

respectively, and M denotes the mass of each piston.

II.2. Integrated pneumatic actuation system (IPAS)
Figure 2 shows the integrated cylinder, which is comprised
of three chambers and actuated by a single valve connected
to Chamber 3. Note that the IPAS is a single input system
with two pistons. The pistons are not directly connected
to the inner pistons, M3 and M4, which create a unique
configuration of three chambers connected in series. This
configuration allows the chambers adjacent to the active
chamber to act as vibration isolators. This feature enables
the IPAS to damp out the chatter caused by external loads
and air compressibility. Therefore, double cutting action and
chattering reduction can be achieved simultaneously.

According to the variable volumes of the chambers, the
changing dynamic relationship can be represented by the
following equation:10

G3 = ρ3
dV3

dt
+ V3

dρ3

dt
(7)

where G3 is the entering air flow, ρ3 the air density and V3

the volume of Chamber 3. It is assumed that the condition of
the air is ideal as following:

ρ3 = ρ3j

(
P3

P3j

)1/n

= P3j

RT3j

(
P3

P3j

)1/n

(8)

where the subscript j indicates the initial conditions and n is
the air transformation ratio. Now, V3 is derived as

V3 = A3(L − X4 − X3) (9)

where A3 denotes the area of Piston 3, and Xi (i = 4, 3) is
the position of Piston i. L denotes the length of Chamber
3 as shown in Figure 3. By combining Eqs. (8) and (9) and
their time derivatives in Eq. (7), the following expression is
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Fig. 2. Integrated double cylinder system.

be obtained:

G3 = A3(L − X4 − X3)
1

nRT3i

(
P3

P3i

)1/n−1
dP3

dt

+ P3i

RT3i

(
P3

P3i

)1/n

A3
dx

dt
. (10)

Then, the pressure gradient is be written as

dP3

dt
= nRT3i

A3(L − X4 − X3)(P3/P3i)1/n−1
G3

− nP3

(L − X4 − X3)

dx

dt
. (11)

Now, the load dynamics of the integrated system is
considered as following:

−K(X1 − X3) − C(Ẋ1 − Ẋ3) + M1Ẍ1 + Fe1 − Ff 1 = 0
(12)

and

−K(X2 − X4) − C(Ẋ2 − Ẋ4) + M2Ẍ2 + Fe2 − Ff 2 = 0
(13)

where Ẋi and Ẍi represent the velocity and the acceleration of
each piston. Ff i denotes the viscous friction force of the pis-
ton rod (i = 1, 2, 3, 4), Fei is the external force (i = 1, 2), and
Pi and Ai denote the air pressure and the area of the piston,
respectively. Then the dynamic equations are written as

K(X1 − X3) + C(Ẋ1 − Ẋ3) + M3Ẍ3 = P3A3 − Ff 3 (14)

and

K(X1 − X4) + C(Ẋ1 − Ẋ4) + M4Ẍ4 = P3A3 − Ff 4 (15)

where K and C are stiffness and damping coefficients of the
system, respectively.

II.3. Robotic deburring system
Figure 3 illustrates a three-link rigid robot with the pneumatic
deburring tool described earlier. Using the well-known
Lagrangian equations, the following equations of motion of
the deburring robot were obtained:

m̄(q)q̈ + c̄(q, q̇)q̇ + ḡ(q) = τ (16)

where q, q̇, q̈ are the joint angle, the joint angular velocity,
and the joint angular acceleration, respectively, m̄(q) is the
3 × 3 symmetric positive-definite inertia matrix, c̄(q, q̇)q̇ is

Fig. 3. Deburring robot with pneumatic tool.
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Fig. 4. Block diagram for coordinated control for robotic deburring.

the 3 × 1 vector of Coriolis and centrifugal torques, ḡ(q)
is the 3 × 1 gravitational torques, and τ is the 3 × 1 vector
of the joint torques.

The mass of the links and pneumatic cylinder are
considered as if they were rigidly attached. The relationship
between the joint and the tip velocities can be written as

ẋ = J (q)q̇ (17)

where J (q) is the geometric Jacobian of the manipulator. By
differentiating Eq. (17), the Cartesian acceleration term can
be found as

ẍ = J (q)q̈ + J̇ q̇. (18)

Now, Eq. (16) is rewritten as

q̈ = m−1(q)(τ − c̄(q, q̇) − ḡ(q)) (19)

from Eq. (18) and suppressing arguments for brevity, the
following equation is obtained

ẍ = Jm
−1

(τ − c̄(q, q̇) − ḡ(q)) + J̇ q̇. (20)

Then, the equations of motion of the robot are obtained as
following:

m(x)ẍ + c(x, ẋ) + g(x) = f (21)

where f = (J T )−1τ is input expressed in task space.
Let the dynamic equation of the robot manipulator in the

constraint coordinates be represented as

m(x)ẍ + c(x, ẋ)ẋ + g(x) = f + frf . (22)

where f denotes the input force and frf is the resultant force
of the normal force fn and the tangential force ft exerted on
the tool tip. The tangential force 9,10,19 can be represented as

ft = bdvtem

Vt

(23)

where Vt is the spindle speed of deburring tool; b is the
tool width; d is the depth of cut; vt is the feed rate (or the

traveling speed of the end effector along the surface of the
workpiece); em is the material-stiffness of the workpiece.
The normal force fn is assumed to be proportional to the
tangential force ft . Besides, the force angle of the deburring
tool affects the tangential force. Although the value of the
angle may vary substantially depending on the nature of the
material flow at the tool-chip interface, as approximation 0.3
was used in these calculations.12 Therefore, the normal force
fn is considered to be smaller than the tangential force ft in
Eq (23), where the ratio is fn/ft ≈ 0.3.24

III. CONTROL DESIGN
The IPAS based deburring robot can be treated as a system
that consists of two primary subsystems; the arm and
the IPAS. The two subsystems differ substantially in their
task assignments, dynamic characteristics and controller
requirements. This physical interpretation provides an
efficient approach to the control of the robotic deburring
system. The control strategy for the deburring robot is
illustrated in Figure 4. The arm is commanded to follow
the desired trajectory in task space, which is modified based
on the position of the second piston due to varying length
of the tool. In other words, the primary cutter at the front
side cuts the burr first and the second cutter then attempts
to eliminate the remaining burr. In case that the burr is not
removed completely, the uncut depth is incorporated into the
desired trajectory for compensation.

The developed control design is a decentralized con-
trol,25–27 which consists of two independent controllers in-
teracting based on the coordination scheme aforementioned
for the manipulator and the IPAS, respectively. Constraint
equations are derived in terms of position variables and
are differentiated twice to lead to a relationship in terms
accelerations, which integrate the separate controllers for
stability proof. Feedback linearization is employed to design
a coordination based controller. In what follows, it is shown
that use of a nonlinear dynamic feedback achieves exact
linearization and input-output decoupling for the robotic
deburring system.

The coordination control method is developed first and
then its efficiency will be compared with the hybrid control
method through simulation study.
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III.1. Coordination control
The decoupled dynamic robot model become as following:

mr (xr )ẍr + cr (xr, ẋr ) = fr − Rr (xr )Ẍt (24)

where xr , ẋr and ẍr denote the displacement, velocity
and acceleration of the tip of the manipulator, mr is the
inertia mass matrix, cr consists of Coriolis, centripetal, and
gravity forces, fr is the input force acting on the tip of
the mainpulator, Rr is the inertia matrix which reflects the
dynamic effect of the deburring tool on the manipulator, and
Ẍt is the acceleration of IPAS. Likewise, the equations of
motion for deburring tool are written as

MtẌt − Ct (Ẋj ) + Fe = Ft (A3, P3) − Rt (xr )ẍr (25)

where Ẍt and Ẋt denote the acceleration and velocity of
each piston, Mt is the mass matrix, Ct consists of the viscous
friction and gravity forces, Ft is the forces acting on the
pistons, Rt is the inertia matrix which represents the end
point of the manipulator on the tool, Fe is the external force
of IPAS. Let p denote the position vector of the contact point,
in fixed workspace coordinate system. Therefore the robotic
deburring system is assumed that the constraint surface can
be defined in algebraic terms by

φ(p) = 0 (26)

where p is comprised of xr and Xt . Now, the constraint
equation (26) is differentiated once as following:

φ̇(p) = Jc(q)q̇ = 0 (27)

where Jc denotes the geometric Jacobian matrix. The initial
Lagrange coordinate q0 satisfies the holonomic constraint
φ(p0) = 0, where p0 is the initial position of the robot. Then,
Eq. (27) is differentiated once to produce φ̈ = 0, into which
the subsystems, Eqs. (24) and (25) are incorporated. Then,
feedback linearization can be applied to cancel the coupling
terms and to design linear controllers as the outer feedback
loop. Since the manipulator velocity is always in the null
space of φ̇(p), it is possible to define a vector of generalized
velocities η(t) as following:

ẋr = ζ (xr )η(t) (28)

where ζ (xr )is a full matrix, whose columns are in the null
space of φ(p). Differentiating (28), substituting the resulting
expression for ẍr into Eq. (24), and premultiplying Eq. (24)
by ζ T , we have

ζ T (mrζ η̇ + mrζ̇η + cr ) = ζ T fr − ζ T RrẌt . (29)

Note that ζ T φT = 0.
Similarly substituting ẍr into Eq. (25), we have

MtẌt − Ct + Fe = Ft − Rt ζ̇ η − Rtζ η̇. (30)

Using the state vector χ = [xT
r XT

t ηT ẊT
t ]T and the block

partition of the state vector

χ =

χ1

χ2

χ3


 , with χ1 = xr, χ2 = Xt, χ3 =

[
η

Ẋt

]
.

Where Xt = [X1, X2] is the displacement of each position.

The following expression is obtained:

χ̇ =

 χ̇1

χ̇2

χ̇3


 =


 ζη

Ẋt

M−1C


 +


 0

0
M−1E


 λ (31)

where

M =
[
ζ T mrζ ζ T Rr

Rtζ Mt

]
, E =

[
ζ T 0
0 I

]
,

C =
[−ζ T mr ζ̇ η −ζ T cr

Ct + Fe −Rt ζ̇ η

]
, and λ =

[
fr

Ft

]
.

The system is input-output linearizable by using the
following nonlinear feedback:

λ = E−1(Mu − C), (32)

which results in simpler state equations as following:

χ̇ =

 ζη

Ẋt

0


 +


 0

0
I


 u. (33)

To derive the decoupling matrix, each component of the
output equations is differentiated until the input appears
explicitly in the derivative. In this case, the output equation
is differentiated twice as following:

y =
[

f1

f2

]
(34)

ÿ = �̇(χ)

[
η

Ẋt

]
+ �(χ)u (35)

where �(χ) is the decoupling matrix of the system given by

�(χ) =
[

�r (χ) 0
0 �t (χ)

]
(36)

where

�p(χ) = ∂f1(Xt )

∂Xt

, f1 = Xt + f2

�r (χ) = ∂f2(qr )

∂qr

, f2(qr ) =
[
l1 cos q1 + l2 cos(q1 + q2)
l1 sin q1 + l2 sin(q1 + q2)

]

Applying the following nonlinear state feedback

u = �−1(χ)

(
υ − �̇(χ)

[
η

Ẋt

])
, (37)

the input-output relationship is decoupled because each
component of the auxiliary input, υ, controls one and
only one component of the output, y. It is noted that the
existence of the nonlinear feedback require the inverse of the
decoupling matrix�(χ). To complete the controller design,
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Fig. 5. Block diagram for Robot with deburring tool (Hybrid control)

it is necessary to stabilize each of the above subsystem with
constant state feedback. Then, the stability of the system is
guaranteed by selecting appropriate constant feedback gains
for the linearized system.

III.2. Hybrid control of the robot with a rigid tool
The robotic arm with a rigid tool is considered for the hybrid
control design. The performance of the active pneumatic
tool based deburring can be degraded due to the fact that the
hybrid control method explicitly controls the position and
force simultaneously, which can be difficult for a compliant
tool.

Since a manipulator task specification, such as deburring
a work-piece is typically given relative to the end-effector,
the dynamic equation is represented in task space, rather
than joint space or actuator space. The controller is designed

by considering these coordinates, whose control input τcan
be transformed to the torque in the joint coordinates. The
transformation is

τ = J T (x)uh. (38)

In the constraint coordinates, the force and position errors
are defined. fdi ∈ R1 is the desired force in the xi direction
(i = 1, 2) and xid ∈Rn−1 is the desired position in other
directions. From the assumption that the stiffness ke is known,
ep is defined as

ep = K−1

(
ef

ep2

)
= K−1

(
fd1 − f1

x2d − x2

)
(39)

where k = ( ke 0
0 I

). xi is the displacement of the robot, xid the
desired position , and fi ∈R1 the force component of the xi

direction. Figure 5 depicts hybrid control of a robot with a
rigid tool without a pneumatic cylinder.
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Fig. 6. Rigid tool (a) tracking (b) position error (c) control input.
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IV. SIMULATION
Simulation study was performed to investigate the
performance of the controllers developed for the robotic
deburring systems with different tools: (1) the hybrid
controller for the rigid tool based system, as shown in
Figure 5 (2), the coordination controller for the single active
pneumatic tool (3) the coordination controller for the double
active pneumatic tool based system.

Figure 6 shows the simulation results for the hybrid control
system. The following parameters were used in simulation:

m1 = 16 kg, m2 = 12 kg, l1 = 0.5 m, and l2 = 0.7 m.

The feedback gains of the controller were chosen as
following:

fd = 20N, kp1 = diag[150, 150, 150], kd1 = diag[70, 70, 70],

kp2 = diag[750, 750, 750], and kd2 = diag[230, 230, 230]

where fd is the desired force.

Figures 6 (a) and (b) show the performance of the
hybrid controller designed for the deburring robot with a
rigid tool. In the simulation, the stiffness of the material
was set to 500000 N/m and the desired cut depth was

chosen to be 0.0002 m. The results show large deburring
error, which remains oscillatory after large overshoot in
the transient period due to chattering caused by the air
compressibility and the contact motion between the robot and
the workpiece. Figure 6 (c) shows the input force. It is evident
that relatively large overshoot and chattering still persist
in the response. Note that Eq. (23) was used to obtain the
normal force. The parameters in Eq. (23) are referred to the
commercialized deburring tool as b = 16 mm, vt = 0.08 m/s,
and Vt = 30, 000 RPM.

Figure 7 depicts the deburring performance of the
coordination controller designed for the robot with a single
pneumatic tool. The following parameters were used for
simulation:

P1i = P2i = 1 × 105Pa, A1 = A2 = 0.000256m2,

M = 0.01kg, T1i = T2i = 293◦K, and X0 = 0.07m.

As shown in Figure 7 (a) and (b), the transient performance
is improved significantly with the single active pneumatic
tool with the coordination controller in comparison to the
previous case. However, the steady-state performance still
remains unsatisfactory due to the chatter that appears in the
response, which is caused by the compressibility of the air
in the pneumatic cylinder and therefore requires repetitive
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Fig. 7. Single pneumatic tool (a) tracking (b) position error(c) control input.
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deburring. Nevertheless, the simulation results demonstrate
the potential of a pneumatic actuator as an efficient tool which
can significantly enhance the performance of a deburring
robot if the chattering effect can be eliminated or minimized
by an improved design of the tool and/or an efficient
control.

Figure 8 demonstrates the deburring performance of the
robot with the IPAS as shown in Figure 3. The developed
coordination control method was utilized for the IPAS based
deburring system. It is noted that the initial position of
Mi(i=1, 2, 3, 4) is zero. The following is the additional
parameters used for the integrated cylinder:

P3i = 1 × 105Pa, A1 = A2 = 0.000256m2,

A3 = 0.00055m2, n = 0.8, Ff 1,2 = 10N,

Ff 3,4 = 15N, M1,2 = 0.01kg, M3,4 = 0.015kg,

T1i = T2i = T3i = 293◦K, and x0 = 0m.

It is evident as shown in Figure 8 (a) and (b) that the
deburring performance of the system is greatly improved
with the IPAS and the coordination controller. The simulation
results show quick and smooth transient response and nearly
zero steady-state error. The integrated system particularly
improves the transient behavior in comparison to the double
cylinder system. Figure 8 (c) depict the control input.

V. CONCLUSION
High-quality robotic deburring requires efficient control of
the deburring path and contact forces, as well as optimal
selection of a suitable feed-rate and tool design. In this paper,
an efficient robotic deburring method was developed based on
a new active pneumatic tool, which considers the interaction
among the tool, the manipulator, and the workpiece and
couples the tool dynamics and a control design that explicitly
considers deburring process information. A new active
pneumatic tool was developed by physically integrating
two pneumatic actuators, which implements double cutting
action – initial cut followed by fine cut. Then, a control
method was developed for the robotic deburring system based
on the active pneumatic tool, which utilizes coordination
of two cutters. The developed control system employs
the two-level hierarchical control structure based on a
simple coordination scheme. Simulation results show that
the developed system significantly reduces the chattering of
the deburring robot and improves the deburring accuracy.
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