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Abstract Let ckl ∈ W 1,∞(Ω, C) for all k, l ∈ {1, . . . , d}; and Ω ⊂ Rd be open with uniformly C2 bound-
ary. We consider the divergence form operator Ap = −∑d

k,l=1 ∂l(ckl∂k) in Lp(Ω) when the coefficient

matrix satisfies (C(x)ξ, ξ) ∈ Σθ for all x ∈ Ω and ξ ∈ Cd, where Σθ be the sector with vertex 0 and
semi-angle θ in the complex plane. We show that a sectorial estimate holds for Ap for all p in a suit-
able range. We then apply these estimates to prove that the closure of −Ap generates a holomorphic
semigroup under further assumptions on the coefficients. The contractivity and consistency properties of
these holomorphic semigroups are also considered.
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1. Introduction

In his book, Kato [11] showed that an m-sectorial operator in a Hilbert space generates
a (quasi-)contraction holomorphic semigroup. One can generalize the notion of secto-
rial operators to Lp-spaces as follows (cf. [10, Definition 1.5.8, 11, Subsection V.3.10, 2,
Definition 1]).

Definition 1.1. Let d ∈ N, Ω ⊂ R
d be open and p ∈ (1,∞). Let Ap be an operator in

Lp(Ω). Then Ap is said to be sectorial if there exists a K > 0 such that

|Im (Apu, |u|p−2u1[u�=0])| ≤ KRe (Apu, |u|p−2u1[u�=0]) (1)

for all u ∈ D(Ap).

There are certain interests in showing that an operator is sectorial in this generalized
sense. The significance of these estimates lies in the fact that they are useful in showing
that the operators under consideration satisfy a necessary condition to generate holomor-
phic contraction semigroups. In particular, the estimate (1) can be established for certain
second-order differential operators in divergence form. In the proof of [16, Theorem 7.3.6],
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Pazy showed that (1) holds when the operator is strongly elliptic with symmetric real-
valued C1-coefficients, with an explicit constant K which depends on the coefficients, the
ellipticity constant and p. Okazawa improved Pazy’s result and showed that the estimate
also holds for degenerate elliptic operators with symmetric real-valued C1-coefficients,
with K = (|p− 2|/2√p− 1) (cf. [14]). Ouhabaz in [15, Theorem 3.9] proved that (1)
is true for generators of sub-Markovian semigroups. It is interesting to note that [15,
Theorem 3.9] gives the same constant K in (1) as in [14].

In this paper, we will prove the sectorial estimate (1) for degenerate elliptic second-
order differential operators with bounded complex-valued coefficients. The results are
generalizations of [14]. In comparison to [15, Theorem 3.9], we note that the operators we
consider here are, in general, no longer generators of sub-Markovian semigroups. We will
then apply the estimate to show that degenerate elliptic operators with smooth enough
coefficients generate contraction holomorphic semigroups.

In order to formulate the main theorem, we need to introduce some notation. Let d ∈ N,
Ω ⊂ R

d be open with uniformly C2 boundary and θ ∈ [0, π/2). Let ckl ∈W 1,∞(Ω,C) for
all k, l ∈ {1, . . . , d}. Define C = (ckl)1≤k,l≤d and

Σθ = {reiβ : r ≥ 0 and |β| ≤ θ}. (2)

Assume that

(C(x)ξ, ξ) ∈ Σθ (3)

for all x ∈ Ω and ξ ∈ C
d. For convenience, we will usually refer to (3) as C takes values

in the sector Σθ.
Let p ∈ (1,∞). Consider the operator Ap in Lp(Ω) defined by

Apu = −
d∑

k,l=1

∂l(ckl∂ku)

on the domain

D(Ap) = W 2,p(Ω) ∩W 1,p
0 (Ω).

If p = 2 then

|Im (A2u, u)| ≤ (tan θ)Re (A2u, u) (4)

for all u ∈ D(A2). This follows immediately from integration by parts. If p 	= 2, the situ-
ation is quite different. Write C = R+ iB, where R and B are real matrices. Let Ra and
Ba be the anti-symmetric parts of R and B, respectively, that is, Ra = (R−RT )/2 and
Ba = (B −BT )/2.

The main result of this paper is as follows.

Theorem 1.2. Let p ∈ (1,∞), θ ∈ [0, π/2), ckl ∈W 1,∞(Ω,C) for all k, l ∈ {1, . . . , d}
and C = (ckl)1≤k,l≤d take values in the sector Σθ. Suppose |1 − 2/p| < cos θ and Ba = 0.
Then

|Im (Apu, |u|p−2u1[u�=0])| ≤ KRe (Apu, |u|p−2u1[u�=0])
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for all u ∈ D(Ap), where

K =

⎧⎪⎪⎨
⎪⎪⎩

tan
(π

2
− φ+ θ

)
if Ra = 0,(

2/sinφ− 1
)
tan θ + cotφ

1 − (tan θ) cotφ
if Ra 	= 0

(5)

and φ = arccos |1 − 2/p|.

Note that when the coefficient matrix C consists of real entries and is symmetric, then
one can choose θ = 0 and (5) gives

K = tan
(
π

2
− φ

)
= cotφ =

|p− 2|
2
√
p− 1

,

which is the constant obtained by Okazawa in [14].

Remark 1.3. The conditions, conclusion and some implications can be rephrased in
the recently introduced terminology of Carbonaro and Dragičević [1]. For every p ∈ (1,∞)
and bounded d× d matrix valued function M : Ω −→ C

d×d define

Δp(M) := ess infx∈Ω min
ξ∈Cd

‖ξ‖=1

Re
(
M(x)ξ,Jpξ

)
, (6)

where Jp : C
d −→ C

d is defined by

Jpξ = ξ +
(

1 − 2
p

)
ξ. (7)

Suppose merely ckl ∈ L∞(Ω,C) for all k, l ∈ {1, . . . , d}. Then C takes values in the sector
Σθ if and only if Δ2(e±iψC) ≥ 0 for all ψ ∈ [0, π/2 − θ). Also, |1 − 2/p| < cos θ if and
only if Δp(eiθI) > 0 (cf. [1, (5.18)]).

Now φ > 0 by assumption and(
eiγC(x)ξ, ξ

) ∈ Σθ+|γ| ⊂ Σφ

for all x ∈ Ω, ξ ∈ C
d and γ ∈ R with |γ| ≤ φ− θ.

If both Ba = 0 and Ra = 0, then [1, Proposition 5.18 (3 ⇒ 1)] implies that

Δp

(
e±i(φ−θ)C

)
≥ 0. (8)

On the other hand, if Δ2(C) > 0 (the operator is strongly elliptic) then [1, Theorem
1.3 (a ⇒ b)] together with the Lumer–Phillips theorem establishes that (8) implies (1),
where K = tan(π/2 − φ+ θ) which coincides with (5) if Ra = Ba = 0.

If Ra = Ba = 0 then one has equivalence in [1, Proposition 5.18 (3 ⇔ 1)] and in the
strongly elliptic case one also has equivalence in [1, Theorem 1.3 (a ⇔ b)]. Hence, the angle
of the sector of contractivity in Lp(Ω), that is π/2 − arctanK, is optimal. Consequently,
also K is optimal if Ra = Ba = 0.
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In Theorem 1.2, we do not require that Ra = 0 nor strong ellipticity, but we require
Lipschitz continuity of the ckl.

It is not difficult to see that Ap is closable. Let Ap be the closure of Ap. Under the
current conditions imposed on the coefficient matrix C and the domain Ω, we do not
know whether −Ap is a generator of a C0-semigroup. If Ω = R

d and C consists of twice
differentiable entries, then we prove the following generation result for −Ap based on
Theorem 1.2.

Theorem 1.4. Let p ∈ (1,∞), θ ∈ [0, π/2), ckl ∈W 2,∞(Rd,C) for all k, l ∈ {1, . . . , d}
and C = (ckl)1≤k,l≤d take values in the sector Σθ. Suppose |1 − 2/p| < cos θ and Ba = 0.
Set φ = arccos |1 − 2/p|. Then the closure −Ap generates a holomorphic semigroup on
Lp(Rd) with angle ψ given by

ψ =

⎧⎨
⎩
φ− θ, if Ra = 0,
π

2
− arctan

((
2/sinφ− 1

)
tan θ + cotφ

1 − (tan θ) cotφ

)
, if Ra 	= 0.

(9)

Note that

ψ1 :=
π

2
− arctan

((
2/sinφ− 1

)
tan θ + cotφ

1 − (tan θ) cotφ

)
≤ φ− θ

since

tanψ1 =
1 − (tan θ) cotφ(

2/sinφ− 1
)
tan θ + cotφ

≤ 1 − (tan θ) cotφ
tan θ + cotφ

= tan(φ− θ). (10)

It is also interesting that in the case when Ra = 0, Theorem 1.4 provides better angles
of holomorphy compared with those of Stein’s interpolations [15, Proposition 3.12] and
[18, Theorem 1]. In the one-dimensional case, these better angles were also obtained in
[5, Corollary 1.3].

Along the same line as our results, [8] considered a type of second-order degenerate
elliptic operator in divergence form whose coefficients of the principle part need not satisfy
the sectorial condition (3). Other results about angles of holomorphy were considered in
[19, Theorem 1, 9, Theorem 1.1, 3, Theorem 1.4.2, 17, Theorem X.55, 12, 15, Theorems
3.12 and 3.13].

The holomorphic semigroup generated by −Ap in Theorem 1.4 also possesses nice
contractivity and consistency properties.

Theorem 1.5. Adopt the assumptions and notation as in Theorem 1.4. Let S(p) be
the semigroup generated by −Ap and S the semigroup generated by −A2. Then the
following hold.

(i) S(p) is contractive on Σγ , where

γ =

⎧⎨
⎩
ψ if Ra = 0,

ψ ∧ sup
{
β ∈

[
0,
π

2

)
: (tan θ) tanβ <

1
3

}
if Ra 	= 0. (11)

(ii) S(p) is consistent with S on Σψ.
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Recently, there is a lot of interest in differential operators with complex coeffi-
cients which are accretive on Lp(Ω) with p 	= 2 and then are the minus generator of a
C0-semigroup on Lp(Ω). Strongly elliptic operators with mixed boundary conditions are
considered in [6, 7]. All results in [1] for C0-semigroups are for strongly elliptic operators.
The main emphasis in this paper is to consider degenerate elliptic operators. In [8], the
operator is allowed to be degenerate elliptic, but the coefficient matrix cannot degenerate
on a set with positive measure. For W 1,∞-coefficients in one dimension, the coefficient
function cannot vanish at any point in [8]. In contrast, our operators may degenerate on
a set with positive measure. The domain of the operator is delicate for proving the range
condition for the C0-semigroup and this is even more delicate for degenerate operators.

The outline of subsequent sections is as follows. In §2, we provide some estimates on the
coefficient matrix C. These estimates are used to prove Theorem 1.2 in §3. Theorems 1.4
and 1.5 are proved in §4, in the proof of which we use a density result [4, Proposition 4.9]
that is valid if Ω = R

d. This explains why we require Ω = R
d in Theorems 1.4 and 1.5.

2. Estimates on coefficients

Let Ω, θ and C be as in §1. In this section, we provide some preliminary estimates on the
coefficient matrix C for later use.

Define

ReC =
C + C∗

2
and ImC =

C − C∗

2i
,

where C∗ is the conjugate transpose of C. Then (ReC)(x) and (ImC)(x) are self-adjoint
for all x ∈ Ω and

C = ReC + iImC. (12)

It is important to keep in mind that ReC and ImC defined in this manner are not
necessarily real-valued.

We will also decompose the coefficient matrix C into

C = R+ iB, (13)

where R and B are matrices with real entries. Write R = Rs +Ra, where Rs =
(R+RT )/2 is the symmetric part of R and Ra = (R−RT )/2 is the anti-symmetric part
of R. Similarly B = Bs +Ba, where Bs = (B +BT )/2 and Ba = (B −BT )/2. It follows
from (12) and (13) that

ReC = Rs + iBa and ImC = Bs − iRa.

Lemma 2.1. We have

|(Rsξ, η)| ≤ 1
2

(
(Rsξ, ξ) + (Rsη, η)

)
for all ξ, η ∈ R

d.

Proof. By hypothesis, C takes values in Σθ. This implies ((ReC)ξ, ξ) ≥ 0 for all ξ ∈
C
d. We deduce that (Rsξ, ξ) ≥ 0 for all ξ ∈ R

d. Finally, we use polarization to obtain the
lemma. �
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Lemma 2.2. We have

|(Bsξ, η)| ≤ 1
2
(tan θ)

(
(Rsξ, ξ) + (Rsη, η)

)
for all ξ, η ∈ R

d.

Proof. Since C takes values in Σθ, we have∣∣((ImC)ξ, ξ
)∣∣ ≤ (tan θ)

(
(ReC)ξ, ξ

)
(14)

for all ξ ∈ C
d. It follows that

|(Bsξ, ξ)| ≤ (tan θ)(Rsξ, ξ)

for all ξ ∈ R
d. Finally, we use polarization to obtain

|(Bsξ, η)| ≤ (tan θ)(Rsξ, ξ)1/2(Rsη, η)1/2 ≤ 1
2
(tan θ)

(
(Rsξ, ξ) + (Rsη, η)

)
for all ξ, η ∈ R

d as required. �

Lemma 2.3. We have∣∣(Bsξ, ξ) + (Bsη, η) − 2(Raξ, η)
∣∣ ≤ (tan θ)

(
(Rsξ, ξ) + (Rsη, η) + 2(Baξ, η)

)
for all ξ, η ∈ R

d.

Proof. Let ξ, η ∈ R
d. Then(

(ImC)(ξ + iη), ξ + iη
)

= (Bsξ, ξ) + (Bsη, η) − 2(Raξ, η)

and (
(ReC)(ξ + iη), ξ + iη

)
= (Rsξ, ξ) + (Rsη, η) + 2(Baξ, η).

The claim is now immediate from (14). �

Lemma 2.4. Suppose Ba = 0. Then∣∣(Raξ, η)∣∣ ≤ (tan θ)
(
(Rsξ, ξ) + (Rsη, η)

)
for all ξ, η ∈ R

d.

Proof. Since Ba = 0, Lemma 2.3 gives∣∣(Bsξ, ξ) + (Bsη, η) − 2(Raξ, η)
∣∣ ≤ (tan θ)

(
(Rsξ, ξ) + (Rsη, η)

)
.

The result now follows from the triangle inequality and Lemma 2.2. �

Lemma 2.5. Let Q be a positive matrix and U a complex d× d matrix. Then

(QUξ,Uξ) ≤ tr (U∗QU)‖ξ‖2

for all ξ ∈ C
d.
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Proof. Since Q is a positive matrix, we have (QUξ,Uξ) ≥ 0 for all ξ ∈ C
d. It follows

that U∗QU ≥ 0. Hence U∗QU ≤ tr (U∗QU)I, where I denotes the identity matrix. This
justifies the claim. �

Lemma 2.6. We have the following.

(a) (Rsξ, ξ) ≥ 0 for all ξ ∈ C
d.

(b) (((tan θ)Rs ±Bs)ξ, ξ) ≥ 0 for all ξ ∈ C
d.

(c) Suppose Ba = 0. Then ((2(tan θ)Rs ± iRa)ξ, ξ) ≥ 0 for all ξ ∈ C
d.

Proof. Let ξ ∈ C
d. Write ξ = ξ1 + iξ2, where ξ1, ξ2 ∈ R

d. We note that

(Rsξ, ξ) = (Rsξ1, ξ1) + (Rsξ2, ξ2)

and

(Bsξ, ξ) = (Bsξ1, ξ1) + (Bsξ2, ξ2).

Also,

(Raξ, ξ) = −2i(Raξ1, ξ2).

The claim now follows from Lemmas 2.1, 2.2 and 2.4. �

Next, let α ∈ (−π/2 + θ, π/2 − θ) and write Cα = eiαC. In a similar manner as above,
we define Re (Cα), Im (Cα), Rα, Bα, Rs,α, Ra,α, Bs,α and Ba,α. Note that we also have

Re (Cα) = Rs,α + iBa,α and Im (Cα) = Bs,α − iRa,α.

Lemma 2.7. Let j ∈ {1, . . . , d}. Suppose U is a complex d× d matrix with UT = U .
Then

|tr ((∂jCα)U)|2 ≤Mtr (URs,αU),

where

M = 32d
(
1 + tan(θ + α)

)2‖∂2
l C‖∞.

Proof. It follows from [4, Corollary 2.6] that

|tr ((∂jCα)U)|2 ≤ 32d
(
1 + tan(θ + α)

)2‖∂2
l (e

iαC)‖∞tr (URs,αU)

≤ 32d
(
1 + tan(θ + α)

)2‖∂2
l C‖∞tr (URs,αU)

as required. �

Lemma 2.8. Suppose Ba = 0. Then the following hold.

(i) Re (Cα) = Rs cosα−Bs sinα+ iRa sinα.

(ii) Im (Cα) = Rs sinα+Bs cosα− iRa cosα.
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(iii) Rα = Rs cosα+Ra cosα−Bs sinα, Rs,α = Rs cosα−Bs sinα, Ra,α = Ra cosα.

(iv) Bα = Rs sinα+Ra sinα+Bs cosα, Bs,α = Rs sinα+Bs cosα, Ba,α = Ra sinα.

Proof. These identities follow directly from the definition of C and Cα. �

3. Sectorial property

Let p ∈ (1,∞). Let Ω, θ, C and Ap be as in §1. In this section, we prove Theorem 1.2.
A convenient tool that we will use repeatedly is the formula of integration by parts in
Sobolev spaces given in the next theorem. The theorem is immediate from the proof
of [13, Proposition 3.5]. We emphasize that we do not require C = CT in this theorem
(cf. [13, Theorem 3.1] for the same result but with extra assumption that C = CT ).

Theorem 3.1. Let u ∈ D(Ap). Then∫
[u�=0]

(Apu)|u|p−2u =
∫

[u�=0]

|u|p−2(C∇u,∇u)

+ (p− 2)
∫

[u�=0]

|u|p−4
(
CRe (u∇u),Re (u∇u))

− i(p− 2)
∫

[u�=0]

|u|p−4
(
CRe (u∇u), Im (u∇u)). (15)

An immediate remark is in order.

Remark 3.2. Recently, [1] introduced the concept of p-ellipticity. Let Δp and Jp be
given by (6) and (7). A matrix C is said to be p-elliptic if

Δp(C) > 0. (16)

Using the operator Jp, the formula of integration by parts (15) can be rephrased as∫
[u�=0]

(Apu)|u|p−2u =
p

2

∫
[u�=0]

|u|p−4
(
Cu∇u,Jp(u∇u)

)
.

Following this, the sectorial condition (1) can be rewritten as〈|u|p−4Cu∇u,Jp(u∇u)1[u�=0]

〉
L2(Ω)

∈ ΣarctanK ,

and hence can be viewed as a degenerate case of (16).

Using Theorem 3.1, we obtain the following proposition, the first part of which is along
the same line as [1, Proposition 7.6 and (5.7)]. Nevertheless, in general, the domain for
the accretivity (dissipativity) in [1, Proposition 7.6] on Lp(Ω) has no relation with our
domain D(Ap). Moreover, [1, Proposition 7.6] is only valid for p ≥ 2.

For the sake of clarity, we present here a proof that holds for all p ∈ (1,∞) under our
current setting.
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Proposition 3.3. Let u ∈ D(Ap). Write u∇u = ξ + iη, where ξ, η ∈ R
d. Then

Re (Apu, |u|p−2u1[u�=0]) =
∫

[u�=0]

|u|p−4
(
(p− 1)(Rsξ, ξ) + (Rsη, η)

+ (p− 2)(Bsξ, η) + p(Baξ, η)
)

and

Im (Apu, |u|p−2u1[u�=0]) =
∫

[u�=0]

|u|p−4
(
(p− 1)(Bsξ, ξ) + (Bsη, η)

− (p− 2)(Rsξ, η) − p(Raξ, η)
)
.

Proof. We will prove the first inequality only. The second is similar.
Consider (15). We have

|u|2(C∇u,∇u) = (Cu∇u, u∇u) =
(
C(ξ + iη), ξ + iη

)
= (Rξ, ξ) + (Rη, η) + (Bξ, η) − (Bη, ξ)

− i
(
(Rη, ξ) − (Rξ, η) + (Bξ, ξ) + (Bη, η)

)
.

Therefore,

Re
(|u|2(C∇u,∇u)) = (Rξ, ξ) + (Rη, η) + (Bξ, η) − (Bη, ξ)

= (Rsξ, ξ) + (Rsη, η) + 2(Baξ, η).

Also,
Re

(
CRe (u∇u),Re (u∇u)) = Re (Cξ, ξ) = (Rξ, ξ) = (Rsξ, ξ).

Similarly

Re
(
i
(
CRe (u∇u), Im (u∇u))) = Re

(
i(Cξ, η)

)
= −(Bξ, η) = −(Bsξ, η) − (Baξ, η).

Hence taking the real parts on both sides of (15) yields the result. �

The following lemma is essential in the proof of Theorem 1.2.

Lemma 3.4. Suppose |1 − 2/p| < cos θ. Let φ = arccos |1 − 2/p|. Then(
tan

(
π

2
− φ

)
+ tan θ

)(
(Rsξ, ξ) + (Rsη, η)

)

≤ tan
(
π

2
− φ+ θ

)(
(Rsξ, ξ) + (Rsη, η) +

p− 2√
p− 1

(Bsξ, η)
)

for all ξ, η ∈ R
d.

Proof. First, note that

tan
(
π

2
− φ

)
(tan θ)

(
(Rsξ, ξ) + (Rsη, η)

)
+

p− 2√
p− 1

(Bsξ′, η)
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≥ tan
(
π

2
− φ

)
(tan θ)

(
(Rsξ, ξ) + (Rsη, η)

) − |p− 2|√
p− 1

|(Bsξ, η)|

= tan
(
π

2
− φ

)(
(tan θ)

(
(Rsξ, ξ) + (Rsη, η)

) − 2|(Bsξ, η)|
)
≥ 0 (17)

as tan(π/2 − φ) = cot(φ) = |p− 2|/2√p− 1 and we used Lemma 2.2 in the last step. We
also deduce from the hypotheses that tan(π/2 − φ+ θ) ≥ 0. Therefore,(

tan
(
π

2
− φ

)
+ tan θ

)(
(Rsξ, ξ) + (Rsη, η)

)

≤
(

tan
(
π

2
− φ

)
+ tan θ

)(
(Rsξ, ξ) + (Rsη, η)

)

+ tan
(
π

2
− φ+ θ

)(
tan

(
π

2
− φ

)
(tan θ)

(
(Rsξ, ξ) + (Rsη, η)

)
+

p− 2√
p− 1

(Bsξ, η)
)

= tan
(
π

2
− φ+ θ

)(
(Rsξ, ξ) + (Rsη, η) +

p− 2√
p− 1

(Bsξ, η)
)
,

where we used (17) in the first step. �

Next, we prove Theorem 1.2.

Proof of Theorem 1.2. Let u ∈ D(Ap). Write u∇u = ξ + iη, where ξ, η ∈ R
d. By

Proposition 3.3, it suffices to show that∣∣(p− 1)(Bsξ, ξ) + (Bsη, η) − (p− 2)(Rsξ, η) − p(Raξ, η)
∣∣

≤ K
(
(p− 1)(Rsξ, ξ) + (Rsη, η) + (p− 2)(Bsξ, η)

)
, (18)

where K is defined by (5). Set ξ′ =
√
p− 1ξ. Then (18) is equivalent to

∣∣(Bsξ′, ξ′) + (Bsη, η) − p− 2√
p− 1

(Rsξ′, η) − p√
p− 1

(Raξ′, η)
∣∣

≤ K
(
(Rsξ′, ξ′) + (Rsη, η) +

p− 2√
p− 1

(Bsξ′, η)
)
. (19)

Note that by Lemma 2.1, we have

|p− 2|√
p− 1

∣∣(Rsξ′, η)∣∣ ≤ tan
(
π

2
− φ

)(
(Rsξ′, ξ′) + (Rsη, η)

)
(20)

as tan(π/2 − φ) = cot(φ) = |p− 2|/2√p− 1.
Now we consider two cases.

Case 3.5. Suppose Ra = 0. Using Lemma 2.2 again, we obtain∣∣(Bsξ′, ξ′) + (Bsη, η)
∣∣ ≤ (tan θ)

(
(Rsξ′, ξ′) + (Rsη, η)

)
. (21)
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It follows that∣∣(Bsξ′, ξ′) + (Bsη, η) − p− 2√
p− 1

(Rsξ′, η) − p√
p− 1

(Raξ′, η)
∣∣

=
∣∣(Bsξ′, ξ′) + (Bsη, η) − p− 2√

p− 1
(Rsξ′, η)

∣∣
≤ (

tan
(
π

2
− φ

)
+ tan θ

)(
(Rsξ′, ξ′) + (Rsη, η)

)

≤ tan
(
π

2
− φ+ θ

)(
(Rsξ′, ξ′) + (Rsη, η) +

p− 2√
p− 1

(Bsξ′, η)
)
,

where we used Ra = 0 in the first step, (21) and (20) in the second step and Lemma 3.4
in the last step.

Hence, (19) is valid and the result follows in this case. �

Case 3.6. Suppose Ra 	= 0. We rewrite the left-hand side of (19) as

L :=
∣∣∣((Bsξ′, ξ′) + (Bsη, η) − 2(Raξ′, η)

)
− p− 2√

p− 1
(Rsξ′, η)

−
(

p√
p− 1

− 2
)

(Raξ′, η)
∣∣∣.

(Note that p/
√
p− 1 ≥ 2 for all p ∈ (1,∞).) Since Ba = 0, it follows from Lemma 2.3

that ∣∣(Bsξ′, ξ′) + (Bsη, η) − 2(Raξ′, η)
∣∣ ≤ (tan θ)

(
(Rsξ′, ξ′) + (Rsη, η)

)
. (22)

Next, we deduce from Lemma 2.4 that(
p√
p− 1

− 2
)∣∣(Raξ′, η)∣∣ ≤

(
2

sinφ
− 2

)
(tan θ)

(
(Rsξ′, ξ′) + (Rsη, η)

)
(23)

as sinφ = 2
√
p− 1/p. Now it follows from (20), (22) and (23) that

L ≤
((

2
sinφ

− 1
)

tan θ + tan
(
π

2
− φ

))(
(Rsξ′, ξ′) + (Rsη, η)

)

=

(
2/sinφ− 1

)
tan θ + tan (π/2 − φ)

tan θ + tan (π/2 − φ)

(
tan θ + tan

(
π

2
− φ

))(
(Rsξ′, ξ′) + (Rsη, η)

)

≤
(
2/sinφ− 1

)
tan θ + tan (π/2 − φ)

tan θ + tan (π/2 − φ)
tan

(
π

2
− φ+ θ

)

×
(

(Rsξ′, ξ′) + (Rsη, η) +
p− 2√
p− 1

(Bsξ′, η)
)

=

(
2/sinφ− 1

)
tan θ + tan (π/2 − φ)

1 − (tan θ) tan (π/2 − φ)

(
(Rsξ′, ξ′) + (Rsη, η) +

p− 2√
p− 1

(Bsξ′, η)
)
,

where we used Lemma 3.4 in the second step.
Hence, (19) is also valid in this case.
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4. Generation of contraction holomorphic semigroup

Let Ω = R
d and θ ∈ [0, π/2). We assume ckl ∈W 2,∞(Rd,C) for all k, l ∈ {1, . . . , d}.

Assume further that (C(x)ξ, ξ) ∈ Σθ for all x ∈ R
d and ξ ∈ C

d, where C = (ckl)1≤k,l≤d
and Σθ is defined by (2).

Let p ∈ (1,∞). We will prove in Proposition 4.1 that Ap is closable. Let Ap be the
closure of Ap. We will show in this section that −Ap generates a holomorphic semigroup
on Lp(Rd) which is contractive on a sector. This is the content of Theorems 1.4 and 1.5.

First, we introduce some more definitions. Let q be such that 1/p+ 1/q = 1. Define

Hqu = −
d∑

k,l=1

∂k(ckl∂lu) (24)

on the domain
D(Hq) = C∞

c (Rd).

Define
Xp = (Hq)∗,

which is the dual of Hq. Then Xp is closed by [11, Theorem III.5.29]. Also note that
W 2,p(Rd) ⊂ D(Xp) and

Xpu = −
d∑

k,l=1

∂l(ckl∂ku)

for all u ∈W 2,p(Rd).

Proposition 4.1. The operator Ap is closable.

Proof. Since Ap ⊂ Xp and Xp are closed, the operator Ap is closable. �

It turns out that Xp = Ap under certain conditions, as shown in the following
proposition.

Proposition 4.2. Suppose |1 − 2/p| ≤ cos θ and Ba = 0. Then Ap = Xp. Moreover,
Ap is m-accretive.

Proof. By [4, Proposition 4.9] the operator Xp is m-accretive and the space C∞
c (Rd)

of test functions is a core for Xp. It follows that Ap = Xp and Ap is m-accretive as
claimed. �

Using Theorem 1.2, we are now able to prove the generation result in Theorem 1.4.

Proof of Theorem 1.4. It follows from Theorem 1.2 that

|Im (Apu, |u|p−2u1[u�=0])| ≤ KRe (Apu, |u|p−2u1[u�=0])

for all u ∈ D(Ap), where K is defined by (5). Therefore, the interior Σ◦
π−arctan(K) ⊂

ρ(−Ap) by [16, Theorem 1.3.9] and Proposition 4.2, where ρ(−Ap) denotes the resolvent

https://doi.org/10.1017/S0013091521000456 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091521000456


On sectoriality of degenerate elliptic operators 701

set of −Ap. Moreover,

‖(λ+Ap)−1‖p→p ≤ 1
dist (λ, S(−Ap))

(25)

for all λ ∈ Σ◦
π−arctan(K), where S(−Ap) is the numerical range of −Ap defined by

S(−Ap) =
{ − (

Apu, |u|p−2u1[u�=0]

)
: u ∈ D(Ap) and ‖u‖p = 1

}
.

Let ε ∈ (0, π − arctan(K)). Then dist (λ, S(−Ap)) ≥ (sin ε)|λ| for all λ ∈ Σπ−arctan(K)−ε.
Therefore, (25) implies

‖(λ+Ap)−1‖p→p ≤ 1
(sin ε)|λ|

for all λ ∈ Σπ−arctan(K)−ε. Hence we deduce from [16, Theorem 2.5.2(c)] that −Ap
generates a holomorphic semigroup on Lp(Rd) with angle ψ = π/2 − arctan(K). �

Our next aim is to show Theorem 1.5. We will do this by first showing that −Xp

generates a holomorphic semigroup which is contractive on a sector. This together with
Proposition 4.2 implies the theorem. We first obtain some preliminary results.

In what follows we let Xp,α = eiαXp for all α ∈ (−π/2 + θ, π/2 − θ) and adopt the
notation used in Lemmas 2.7 and 2.8. We aim to show that Xp,α is an m-accretive
operator for all α in a suitable range. Following [4, 20], we need two crucial inequalities
for Xp,α in order to do this which are given in Propositions 4.3 and 4.5, respectively.

The first inequality is as follows.

Proposition 4.3. Suppose Ba = 0. Let p ∈ (1,∞) be such that |1 − 2/p| < cos θ. Let
α ∈ (−ψ,ψ), where ψ is given by (9). Then

Re (Xp,αu, |u|p−2u1[u�=0]) ≥ 0

for all u ∈W 2,p(Rd).

Proof. Let u ∈W 2,p(Rd). It follows from Theorem 3.1 that

(Xp,αu, |u|p−2u1[u�=0]) =
∫

[u�=0]

|u|p−2(Cα∇u,∇u)

+ (p− 2)
∫

[u�=0]

|u|p−4
(
CαRe (u∇u),Re (u∇u))

− i(p− 2)
∫

[u�=0]

|u|p−4
(
CαRe (u∇u), Im (u∇u)). (26)

Write u∇u = ξ + iη, where ξ, η ∈ R
d. Then

|u|2(Cα∇u,∇u) = (Cαu∇u, u∇u) =
(
Cα(ξ + iη), ξ + iη

)
= (Rαξ, ξ) + (Rαη, η) + (Bαξ, η) − (Bαη, ξ)

+ i
(
(Rαη, ξ) − (Rαξ, η) + (Bαξ, ξ) + (Bαη, η)

)
.
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Therefore,

Re
(|u|2(Cα∇u,∇u)) = (Rαξ, ξ) + (Rαη, η) + (Bαξ, η) − (Bαη, ξ)

= (Rs,αξ, ξ) + (Rs,αη, η) + 2(Ba,αξ, η).

We also have

Re
(
CαRe (u∇u),Re (u∇u)) = Re (Cαξ, ξ) = (Rαξ, ξ) = (Rs,αξ, ξ).

Similarly

Re
(
i
(
CαRe (u∇u), Im (u∇u))) = Re

(
i(Cαξ, η)

)
= −(Bαξ, η)

= −(Bs,αξ, η) − (Ba,αξ, η).

Hence taking the real parts on both sides of (26) yields

Re (Xp,αu, |u|p−2u1[u�=0])

=
∫

[u�=0]

|u|p−4
(
(p− 1)(Rs,αξ, ξ) + (Rs,αη, η) + p(Ba,αξ, η) + (p− 2)(Bs,αξ, η)

)

=
∫

[u�=0]

|u|p−4
(
(Rs,αξ′, ξ′) + (Rs,αη, η) +

p√
p− 1

(Ba,αξ′, η) +
p− 2√
p− 1

(Bs,αξ′, η)
)
,

(27)

where ξ′ =
√
p− 1ξ. Set

P = (Rs,αξ′, ξ′) + (Rs,αη, η) +
p√
p− 1

(Ba,αξ′, η) +
p− 2√
p− 1

(Bs,αξ′, η). (28)

We will show that P ≥ 0. We consider 2 cases.

Case 4.4. Suppose Ra = 0. Note that cotφ = |p− 2|/2√p− 1. We have

∣∣(sinα)
(
(Bsξ′, ξ′) + (Bsη, η)

)∣∣ ≤ sin(|α|)(tan θ)
(
(Rsξ′, ξ′) + (Rsη, η)

)
(29)

and ∣∣∣ p− 2√
p− 1

(cosα)(Bsξ′, η)
∣∣∣ ≤ (cotφ)(cosα)(tan θ)

(
(Rsξ′, ξ′) + (Rsη, η)

)
. (30)

by Lemma 2.2. Also,

∣∣∣ p− 2√
p− 1

(sinα)(Rsξ′, η)
∣∣∣ ≤ (cotφ) sin(|α|)((Rsξ′, ξ′) + (Rsη, η)

)
(31)
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by Lemma 2.1. Since Ra = 0, Lemma 2.8(iv) gives Ba,α = (sinα)Ra = 0. It follows from
Lemma 2.8, (28)–(31) that

P = (Rs,αξ′, ξ′) + (Rs,αη, η) +
p− 2√
p− 1

(Bs,αξ′, η)

= (cosα)
(
(Rsξ′, ξ′) + (Rsη, η)

) − (sinα)
(
(Bsξ′, ξ′) + (Bsη, η)

)
+

p− 2√
p− 1

(sinα)(Rsξ′, η) +
p− 2√
p− 1

(cosα)(Bsξ′, η)

≥ (
cosα− sin(|α|) tan θ − (cotφ) sin(|α|) − (cotφ)(cosα) tan θ

)(
(Rsξ′, ξ′) + (Rsη, η)

)
≥ 0,

where we used the fact that α ∈ (−ψ,ψ) in the last step. Hence, we deduce from (27)
that Re (Xp,αu, |u|p−2u1[u�=0]) ≥ 0 in this case.

Case 4.5. Suppose Ra 	= 0. Expanding (28) using Lemma 2.8 gives

P = (Rs,αξ′, ξ′) + (Rs,αη, η) +
p√
p− 1

(Ba,αξ′, η) +
p− 2√
p− 1

(Bs,αξ′, η)

= (cosα)
(
(Rsξ′, ξ′) + (Rsη, η)

) − (sinα)
(
(Bsξ′, ξ′) + (Bsη, η)

)
+

p√
p− 1

(sinα)(Raξ′, η) +
p− 2√
p− 1

(sinα)(Rsξ′, η) +
p− 2√
p− 1

(cosα)(Bsξ′, η)

= (cosα)
(
(Rsξ′, ξ′) + (Rsη, η)

) − (sinα)
(
(Bsξ′, ξ′) + (Bsη, η) − 2(Raξ′, η)

)
+

(
p√
p− 1

− 2
)

(sinα)(Raξ′, η) +
p− 2√
p− 1

(sinα)(Rsξ′, η)

+
p− 2√
p− 1

(cosα)(Bsξ′, η), (32)

where we used Lemma 2.8(iii) and (iv) in the second step. Next, we estimate the terms
in (32). By Lemma 2.3, we have∣∣∣(sinα)

(
(Bsξ′, ξ′) + (Bsη, η) − 2(Raξ′, η)

)∣∣∣ ≤ sin(|α|)(tan θ)
(
(Rsξ′, ξ′) + (Rsη, η)

)
(33)

since Ba = 0 by hypothesis. Using Lemma 2.4 and the fact that sinφ = 2
√
p−1
p , we deduce

that∣∣∣∣
(

p√
p− 1

− 2
)

(sinα)(Raξ′, η)
∣∣∣∣ ≤

(
2

sinφ
− 2

)
sin(|α|)(tan θ)

(
(Rsξ′, ξ′) + (Rsη, η)

)
.

(34)
Next note that cotφ = |p− 2|/2√p− 1. Therefore,∣∣∣∣ p− 2√

p− 1
(sinα)(Rsξ′, η)

∣∣∣∣ ≤ (cotφ) sin(|α|)((Rsξ′, ξ′) + (Rsη, η)
)

(35)
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by Lemma 2.1. It follows from Lemma 2.2 that

∣∣∣∣ p− 2√
p− 1

(cosα)(Bsξ′, η)
∣∣∣∣ ≤ (cotφ)(cosα)(tan θ)

(
(Rsξ′, ξ′) + (Rsη, η)

)
. (36)

Next, (32)–(36) together imply

P ≥
((

1 − (tan θ) cotφ
)
cosα−

((
2

sinφ
− 1

)
tan θ + cotφ

)
sin(|α|)

)

× (
(Rsξ′, ξ′) + (Rsη, η)

)
≥ 0, (37)

where we used that fact that α ∈ (−ψ,ψ) and Lemma 2.1 in the last step. Combining
(27) and (37) yields Re (Xp,αu, |u|p−2u1[u�=0]) ≥ 0 in this case.

Next, we prove the second inequality for Xp,α. We need the following density result.

Proposition 4.4. Let α ∈ (−ψ,ψ), where ψ is given by (9). Then the space C∞
c (Rd)

is dense in (D(Xp,α) ∩W 1,p(Rd), ‖ · ‖D(Xp,α)).

Proof. The claim follows from [4, Proposition 4.7]. �

The second inequality is as follows (see [20, proposition 6.1] for the case when α = 0
and Xp has real symmetric coefficients as well as [4, Proposition 4.8] for the case when
α = 0 and Xp has complex coefficients).

Proposition 4.5. Suppose Ba = 0. Let p ∈ (1,∞) be such that |1 − 2/p| < cos θ.
Let α ∈ (−γ, γ), where γ is given by (11). Then there exists an M > 0 such that

Re (∇(Xp,αu), |∇u|p−2∇u1[∇u�=0]) ≥ −M‖∇u‖pp

for all u ∈W 2,p(Rd) such that ∇(Xp,αu) ∈ (Lp(Rd))d.

Proof. We consider two cases. �

Case 4.8. Suppose Ra = 0. Then it follows from Lemma 2.8 that Ba,α = Ra sinα =
0. Moreover, the condition α ∈ (−ψ,ψ) implies tan(θ + |α|) < tanφ. Therefore,
[4, Proposition 4.8] still applies to yield the result.

Case 4.9. Suppose Ra 	= 0. If α = 0, the claim follows from [4, Proposition 4.8].
Therefore, we may assume that α 	= 0 for the rest of the proof. Note that α ∈ (−γ, γ)
implies (tan θ) tan(|α|) < 1

3 and K tan(|α|) < 1, where K is defined by (5). Let ε0 ∈
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(0, 1 ∧ (p− 1)) be such that

(tan θ) tan(|α|) ≤ 1 − ε

3 − ε
(38)

and ⎛
⎜⎜⎜⎜⎝

(
p√(

1 − ε

)
(p− 1 − ε)

− 1
)

tan θ +
|p− 2|

2
√

(1 − ε)(p− 1 − ε)

⎞
⎟⎟⎟⎟⎠ tan(|α|)

≤ 1 − (tan θ)
|p− 2|

2
√

(1 − ε)(p− 1 − ε)
(39)

for all ε ∈ (0, ε0). Let ε ∈ (0, ε0) be such that

ε <
ε0

32d
(
1 + tan(θ + |α|))2 sup1≤l≤d ‖∂2

l C‖∞
. (40)

Let u ∈W 2,p(Rd). By Lemma 4.4, we can assume without loss of generality that u has
a compact support. For the rest of the proof, all integrations are over the set {x ∈ R

d :
|(∇u)(x)| 	= 0}. We have

(∇(Xp,αu), |∇u|p−2∇u) = −
d∑

k,l,j=1

∫ (
∂j∂l(eiαckl∂ku)

)
|∇u|p−2∂ju

= −
d∑

k,l,j=1

∫
eiα

(
∂l

(
(∂jckl)(∂ku) + ckl(∂j∂ku)

))|∇u|p−2∂ju

= −
d∑

k,l,j=1

∫
eiα

(
∂l

(
(∂jckl)(∂ku)

))|∇u|p−2∂ju

+
d∑

k,l,j=1

∫
eiαckl(∂j∂ku)∂l

(|∇u|p−2∂ju
)

= (I) + (II).

We first consider the real part of (I). We have

− Re
d∑

k,l,j=1

∫
eiα

(
∂l

(
(∂jckl)(∂ku)

))|∇u|p−2∂ju

= −Re
d∑

k,l,j=1

∫
eiα(∂l∂jckl)(∂ku)(∂ju)|∇u|p−2
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− Re
d∑

k,l,j=1

∫
eiα(∂jckl)(∂l∂ku)(∂ju)|∇u|p−2

= (Ia) + (Ib).

For (Ia), we have

(Ia) ≥ −1
2

d∑
k,l,j=1

‖ckl‖W 2,∞

∫
(|∂ku|2 + |∂ju|2)|∇u|p−2 ≥ −M1‖∇u‖pp,

where M1 = d2 sup{‖ckl‖W 2,∞ : 1 ≤ k, l ≤ d}. Let U = (∂l∂ku)1≤k,l≤d. For (Ib), we esti-
mate

(Ib) = −Re
d∑
j=1

∫
tr ((∂jCα)U)(∂ju)|∇u|p−2

≥ −
d∑
j=1

∫ (
ε|tr ((∂jCα)U)|2|∇u|p−2 +

1
4ε

|∂ju|2|∇u|p−2
)

≥ −ε′
∫

tr (URs,αU)|∇u|p−2 −M2‖∇u‖pp

= −ε′
∫

tr (URs,αU)|∇u|p−2 −M2‖∇u‖pp,

where we used Lemma 2.7 in the third step with

ε′ = 32εd
(
1 + tan(θ + |α|))2 sup

1≤l≤d
‖∂2
l C‖∞

and M2 = 1/4ε. Note that ε′ ∈ (0, ε0) by (40).
Next, we consider the real part of (II). Note that

Re
d∑

k,l,j=1

∫
eiαckl(∂j∂ku)∂l

(|∇u|p−2∂ju
)

= Re
d∑

k,l,j=1

∫
eiαckl(∂j∂ku)(∂l∂ju)|∇u|p−2

+ Re
d∑

k,l,j=1

∫
eiαckl(∂j∂ku)(∂ju)∂l(|∇u|p−2)

= (IIa) + (IIb).
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In what follows we let U∇u = ξ + iη, where ξ, η ∈ R
d. For (IIa), we have

(IIa) =
∫

tr (URe (Cα)U)|∇u|p−2 =
∫

tr (URs,αU)|∇u|p−2 + i

∫
tr (UBa,αU)|∇u|p−2.

For (IIb), we have

(IIb) = Re
d∑

k,l,i,j=1

p− 2
2

∫
eiαckl(∂j∂ku)(∂ju)

(
(∂l∂iu)(∂iu) + (∂l∂iu)(∂iu)

)
|∇u|p−4

=
p− 2

2

∫
Re

((
CαU∇u,U∇u) +

(
CαU∇u,U∇u))|∇u|p−4

= (p− 2)
∫ (

(Rαξ, ξ) − (Bαη, ξ)
)
|∇u|p−4

= (p− 2)
∫ (

(Rs,αξ, ξ) − (Bs,αξ, η) + (Ba,αξ, η)
)
|∇u|p−4,

where ξ, η ∈ R
d and U∇u = ξ + iη.

In total, we obtain

Re (∇(Xp,αu), |∇u|p−2∇u) ≥ −(M1 +M2)‖∇u‖pp + (1 − ε′)
∫

tr (URs,αU)|∇u|p−2

+ i

∫
tr (UBa,αU)|∇u|p−2

+ (p− 2)
∫ (

(Rs,αξ, ξ) − (Bs,αξ, η) + (Ba,αξ, η)
)
|∇u|p−4

= −(M1 +M2)‖∇u‖pp + P, (41)

where

P = (1 − ε′)
∫

tr (URs,αU)|∇u|p−2 + i

∫
tr (UBa,αU)|∇u|p−2

+ (p− 2)
∫ (

(Rs,αξ, ξ) − (Bs,αξ, η) + (Ba,αξ, η)
)
|∇u|p−4.

Next, we will show that P ≥ 0. First note that (1 − ε′)(cosα) − (3 − ε′) sin(|α|) tan θ ≥ 0
due to (38). It follows that

(1 − ε′)tr (URs,αU)|∇u|2 + itr (UBa,αU)|∇u|2

= (1 − ε′)(cosα)tr (URsU)|∇u|2 − (1 − ε′)(sinα)tr (UBsU)|∇u|2

+ i(sinα)tr (URaU)|∇u|2

=
(
(1 − ε′) cosα− (3 − ε′) sin(|α|) tan θ

)
tr (URsU)|∇u|2
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+ (1 − ε′) sin(|α|)tr
(
U

(
(tan θ)Rs − sinα

sin(|α|)Bs
)
U

)
|∇u|2

+ sin(|α|)tr
(
U

(
2(tan θ)Rs + i

sinα
sin(|α|)Ra

)
U

)
|∇u|2

≥
(
(1 − ε′)(cosα) − (3 − ε′) sin(|α|) tan θ

)
(RsU∇u,U∇u)

+ (1 − ε′) sin(|α|)
((

(tan θ)Rs − sinα
sin(|α|)Bs

)
U∇u,U∇u

)

+ sin(|α|)
((

2(tan θ)Rs + i
sinα

sin(|α|)Ra
)
U∇u,U∇u

)

= (1 − ε′)(cosα)(RsU∇u,U∇u) − (1 − ε′)(sinα)(BsU∇u,U∇u)
+ i(sinα)(RaU∇u,U∇u)

= (1 − ε′)(cosα)
(
(Rsξ, ξ) + (Rsη, η)

)
− (1 − ε′)(sinα)

(
(Bsξ, ξ) + (Bsη, η)

)
+ 2(sinα)(Raξ, η),

where we used Lemmas 2.5 and 2.6 in the third step. Hence we obtain

P ≥
∫ (

(1 − ε′)(cosα)
(
(Rsξ, ξ) + (Rsη, η)

)
− (1 − ε′)(sinα)

(
(Bsξ, ξ) + (Bsη, η)

)

+ 2(sinα)(Raξ, η)
)
|∇u|p−4

+ (p− 2)
∫ (

(Rs,αξ, ξ) − (Bs,αξ, η) + (Ba,αξ, η)
)
|∇u|p−4

=
∫ (

(cosα)
(
(p− 1 − ε′)(Rsξ, ξ) + (1 − ε′)(Rsη, η)

)
− (sinα)

(
(p− 1 − ε′)(Bsξ, ξ) + (1 − ε′)(Bsη, η)

)
+ p(sinα)(Raξ, η) − (p− 2)(sinα)(Rsξ, η) − (p− 2)(cosα)(Bsξ, η)

)
|∇u|p−4

=
∫ (

(cosα)
(
(Rsξ′, ξ′) + (Rsη′, η′)

) − (sinα)
(
(Bsξ′, ξ′) + (Bsη′, η′)

)
+

p√
(1 − ε′)(p− 1 − ε′)

(sinα)(Raξ′, η′) − p− 2√
(1 − ε′)(p− 1 − ε′)

(sinα)(Rsξ′, η′)

− p− 2√
(1 − ε′)(p− 1 − ε′)

(cosα)(Bsξ′, η′)
)
|∇u|p−4, (42)

where we used Lemma 2.8(iii) and (iv) in the second step, ξ′ =
√
p− 1 − ε′ξ and η′ =√

1 − ε′η. Finally, using (39), we argue in a similar manner to that used in Case 2 of the
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proof of Proposition 4.3 to derive P ≥ 0. Thus, it follows from (41) that

Re (∇(Xp,αu), |∇u|p−2∇u) ≥ −(M1 +M2)‖∇u‖pp
as claimed. �

Next, we use the two inequalities obtained in Propositions 4.3 and 4.5 to show that
Xp,α is m-accretive for all α in a suitable range.

Proposition 4.6. Suppose Ba = 0. Let p ∈ (1,∞) be such that |1 − 2/p| < cos θ. Let
α ∈ (−γ, γ), where γ is given by (11). Then Xp,α is m-accretive.

Proof. The result follows from the arguments used in the proof of [4, Proposition 4.9].
Note that [4, Propositions 4.1, 4.7 and 4.8] used in the proof of [4, Proposition 4.9] are
now replaced by Propositions 4.3, 4.4 and 4.5 respectively.

We are now ready to prove Theorem 1.5. �

Proof of Theorem 1.5. We consider two parts.

(i) Contractivity: Using Proposition 4.6 and [11, Theorem IX.1.23], we deduce that
−Xp generates a holomorphic semigroup with angle ψ given by (9) which is
contractive on the sector Σγ , where γ is given by (11). Note that Xp = Ap by
Proposition 4.2. Hence S(p) is contractive on Σγ .

(ii) Consistency: It suffices to show that S(p) is consistent with S. It follows from
[4, Propositions 1.1 and 5.1] that the C0-semigroup generated by −B2 is consis-
tent with the C0-semigroup generated by −Xp. Since B2 = A2 and Xp = Ap by
Proposition 4.2, the semigroup S(p) is consistent with S as required. �

Acknowledgements. I wish to thank Tom ter Elst and the referees for giving
detailed and valuable comments. I also thank the referees for informing about Remark 1.3.

References
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