
Math. Struct. in Comp. Science (2002), vol. 12, pp. 701–737. c© 2002 Cambridge University Press

DOI: 10.1017/S0960129502003687 Printed in the United Kingdom

A theory of mixin modules: algebraic laws and

reduction semantics†

D A V I D E A N C O N A and E L E N A Z U C C A

Dipartimento di Informatica e Scienze dell’Informazione,

Via Dodecaneso, 35, 16146 Genova (Italy)

Email: {davide, zucca}@disi.unige.it

Received 10 November 2000; revised 4 September 2001

Mixins are modules that may contain deferred components, that is, components not defined

in the module itself; moreover, in contrast to parameterised modules (like ML functors),

they can be mutually dependent and allow their definitions to be overridden. In a preceding

paper we defined a syntax and denotational semantics of a kernel language of mixin

modules. Here, we take instead an axiomatic approach, giving a set of algebraic laws

expressing the expected properties of a small set of primitive operators on mixins.

Interpreting axioms as rewriting rules, we get a reduction semantics for the language and

prove the existence of normal forms. Moreover, we show that the model defined in the

earlier paper satisfies the given axiomatisation.

1. Introduction

The notion of a mixin , which was first introduced in the context of object-oriented

programming (Bracha and Cook 1990), has recently become the subject of increasing

interest in many respects and with many slight variations in the intended meaning

(Bracha 1992; Bracha and Lindstrom 1992; Banavar and Lindstrom 1996; Duggan and

Sourelis 1996; Van Limberghen and Mens 1996; Flatt et al. 1998; Duggan and Sourelis

1998; Findler and Flatt 1998).

This paper continues the work in Ancona and Zucca (1998b), where we provided a

rigorous formulation of the mixin notion, covering and making precise the various ways in

which the word is used in the literature; we will refer to this formulation in the following.

Mixins (or mixin modules) are a generalisation of the usual modules in programming

languages, which are collections of definitions of heterogeneous components, for example,

types, functions, procedures, exceptions and so on (typical examples are Modula-2 or

Standard ML). The generalisation has two main features.

First, some of the components can be only declared in the module, without having an

associated definition; we say that these components are deferred (the terminology comes

† Partially supported by Murst (Tecniche formali per la specifica, l’analisi, la verifica, la sintesi e la trasformazione

di sistemi software) and CNR (Formalismi per la specifica e la descrizione di sistemi ad oggetti).

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 702

from object-oriented languages). A mixin with deferred components cannot be used in

isolation; a binary merge operation allows us to combine two mixins, say M1,M2, in such

a way that a deferred component in M1 can be concreted by a definition provided in

M2, and conversely. This operation is commutative and associative, and no conflicting

definitions are allowed, that is, a component defined in both arguments. In the resulting

mixin M1 ⊕M2 there can still be deferred components (if some deferred component in

one argument has not been matched in the other), or we can get a concrete module, that

is, a module with no deferred components, which can be effectively used. An important

remark is that the symmetry of the merge operator allows recursive definitions to span

module boundaries, with a great benefit for modularity, as illustrated, for example, in

Duggan and Sourelis (1996), Ancona and Zucca (1998b) and Crary et al. (1999).

The second extension with respect to the usual modules, which is again inspired by

the object-oriented approach, is the possibility that when assembling modules together

some definition in a module is replaced by a new definition provided in another module.

This feature is called overriding and is typical of inheritance in object-oriented languages:

anyway, the concept turns out to be completely orthogonal to the object-oriented nature

of the language and can be formulated independently from the notions of object, class

and subtyping hierarchies.

Formally, overriding can be seen as another binary operation such that M1 ⇐ M2 is

the same as M1 ⊕M2, except that there can be conflicting definitions and in this case

the definitions in M2 takes precedence. Overriding can be seen as the composition of

two different operations: a restrict operation whose effect is to ‘cancel’ some definitions

in a module, and the merge operation (this view of overriding was originally due to

Bracha (1992)).

Since definitions of components can refer to each other, redefining a component, say

m, can actually change the behaviour of other components, for example, a component m′
defined by m′ = . . . m This is not always the case: some languages allow the user to

specify explicitly whether, if m is redefined, m′ should refer to the new or old version. We

will say that m is virtual in the first case (cf. virtual and non virtual methods in C++)

and frozen in the second (the term frozen was introduced in Bracha (1992)).

In Ancona and Zucca (1998b) we proposed a formal model for mixin modules. The

basic idea was to see a mixin as a function from input to output components, where

output components are those defined in the module, while input components are those

on which definitions in the module can depend (hence deferred and virtual components).

Moreover, we have defined a kernel language of mixin modules, that is, a set of operators

for composing mixins corresponding to a variety of constructs existing in programming

languages (including merge, restrict, inheritance/overriding, hiding, functional composi-

tion). An important point is that we have not fixed an underlying core language (following

the ML terminology), but provided a language of modules that can be instantiated on top

of a variety of different languages – the module language is a small language of its own,

which is, as far as possible, independent of the core language and has its own typing rules.

This structure was a design goal of the Standard ML module system (Milner et al. 1990)

and has been recently recognised as fundamental from both the type theoretic (Leroy

1994; Harper and Lillibridge 1994) and the software engineering (Bracha and Lindstrom

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 703

1992; Banavar and Lindstrom 1996; Van Limberghen and Mens 1996) points of view.

The idea is also closely related to that of ‘institution independent’ operators for writing

specifications, which were originally proposed in Goguen and Burstall (1992) and further

developed, for example, in Sannella and Tarlecki (1986), Sannella and Tarlecki (1988),

Sannella et al. (1992) and Sannella and Wallen (1992); indeed we achieve the independence

from the core language at the semantic level by using an abstract semantic framework

very close to that of institutions.

In this paper, we take a different approach to the formal definition of mixin modules,

that is, we give an axiomatic characterisation of the operators, in the spirit of the seminal

paper Bergstra et al. (1990). In other words, we state a number of algebraic laws specifying

the expected properties of the operators. The axiomatisation is given in two steps: first, we

characterise three primitive operations by means of a small set of axioms; then, we give

for each operator of the language an axiom stating that it can be expressed in terms of

these three primitive operators. Moreover, interpreting axioms as rewriting rules, we get

a reduction semantics for the language and prove the existence of normal forms. Finally,

we show that the the denotational semantics of the language previously defined actually

satisfies the given axiomatisation.

The paper is organised as follows. In Section 2 we provide a summary of our preceding

work in Ancona and Zucca (1998b): we introduce basic ideas on mixin modules through

some examples in Section 2.1, give syntax and semantics of the kernel language in

Section 2.2 and introduce the three primitive operators in Section 2.3. In Section 3 we

provide the axiomatic characterisation of the operators (primitive in Section 3.1 and

derived in Section 3.3). In Section 4 we prove the existence of normal forms and derive

from the specification a confluent and strongly normalizing rewriting system, which

provides a reduction semantics for the language. In Section 5 we show that the model

defined in Ancona and Zucca (1998b), where mixins are interpreted as functions, actually

satisfies the specification in Section 3: hence the ‘mixins as functions’ view satisfies all the

expected properties. Finally, in Section 6 we summarise the contribution of the paper and

outline further work.

This paper is meant to be a continuation of Ancona and Zucca (1998b); a preliminary

version was presented in Ancona and Zucca (1998a).

2. A kernel language of mixin modules

In this section, in order to keep the paper self-contained, we provide a summary of our

preceding work on mixin modules (Ancona and Zucca 1998b). In particular, Section 2.1

contains a brief informal introduction to mixin modules, in Section 2.2 we formally define

the syntax and semantics of a kernel language, and in Section 2.3 we define three lower-

level operators that can be used, as will be formally proved in Section 5, as primitive

operators allowing us to define as derived forms all the operators of the kernel language.

For an extended presentation, including more examples and discussions about the mixin

notion and the various operators, we refer the reader to the preceding paper Ancona and

Zucca (1998b).

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 704

2.1. Mixin modules

Consider the following example definition of a mixin M, defined on top of a very simple

functional language supporting basic types only:

mixin M =

deferred leq:int*int→bool

frozen eq(i1,i2:int):bool=leq(i1,i2) and leq(i2,i1)

frozen lth(i1,i2:int):bool=not leq(i2,i1)

lleq(i1,i2,j1,j2:int):bool=lth(i1,j1) or (eq(i1,j1) and leq(i2,j2))

frozen llth(i1,i2,j1,j2:int):bool=not lleq(j1,j2,i1,i2)

end

As shown by the example, the components of a mixin module (functions in this case)

are of three kinds: deferred, virtual (default case with no label) and frozen. All these

components are visible to the outside; in addition, there can be local components, which

are only used inside the module (see later examples).

Deferred components have no associated definition, but are intended to be provided

by some other module (indeed a mixin with deferred components cannot be used in

isolation). For instance, the semantics of all the functions defined in M depends on the

deferred component leq; M could be merged with another module defining the leq

component, thus obtaining a concrete module (a mixin with no deferred components),

which can be used effectively.

On the other hand, both virtual and frozen components are defined in the module;

however, there is a difference in the way calls to these components are interpreted:

— A call to a virtual component (for example, to lleq in the body of llth) is meant to be

bound to the (possibly changing) definition of the virtual component. Hence, if there

is a redefinition (for example, replacing the definition of lleq by a new definition),

the behaviour of all other components that refer to the redefined component (llth

in the example) changes, as happens for methods in object-oriented programming.

This change of definition can be achieved by composing M with another module M’

providing an alternative definition for lleq via the overriding operator (see later).

Hence, in this case inlining of lleq in the body of llth would not yield a mixin

equivalent to M.

— On the other hand, call to a frozen component (for example, all those in the body

of lleq), is meant to be bound forever to the current definition. Hence, redefining a

frozen component has no effect on other components. In other words, a mixin can

always be reduced to an equivalent mixin with no calls to frozen components by

replacing each call either by the corresponding definition or (this is the only possibility

for mutual recursion) by a call to a local function defined exactly in the same way, as

shown below:

mixin M =

deferred leq:int*int→bool

frozen eq(i1,i2:int):bool=leq(i1,i2) and leq(i2,i1)

frozen lth(i1,i2:int):bool=not leq(i2,i1)

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 705

local eq local(i1,i2:int):bool=leq(i1,i2) and leq(i2,i1)

local lth local(i1,i2:int):bool=not leq(i2,i1)

lleq(i1,i2,j1,j2:int):bool=

lth local(i1,j1) or (eq local(i1,j1) and leq(i2,j2))

frozen llth(i1,i2,j1,j2:int):bool=not lleq(j1,j2,i1,i2)

end

In the following, we will always write mixins in this standard form with no calls to

frozen components.

We will describe as input components all those components on which definitions in the

module may depend (that is, the deferred and virtual components are input components);

we will describe as output components all those components that are defined in the

module (that is, the virtual and frozen components are output components). Hence,

virtual components are those that are both input and output.

Since we want to abstract with respect to the nature of components in a specific lan-

guage, we take an approach analogous to that taken in the theory of institutions (Goguen

and Burstall 1992) for abstracting from a particular specification language. More precisely,

we model a collection of (names and types of) components by a signature, and a possible

interpretation for them by a model over this signature. Hence, the syntactic interface of a

mixin module will be modelled abstractly by a pair of signatures <Σin ,Σout>, called the

input and output signature, respectively, whereas a mixin module over <Σin ,Σout> will be

modelled by a function F that, for any given model over Σin for the input components,

returns a model over Σout for the output components. Signatures are required to form

a category Sig, whose concrete definition will depend on the underlying core language.

Moreover, we require that there is a notion of inclusion between signatures with related

operations of union, intersection and difference, which are the generalisations of the

corresponding operations on sets (formally, we assume that signatures form a boolean

signature category, see Definition 2.2 below).

In the example language, signatures are just sets of function symbols with their types;

the input signature Σin is {leq: int ∗ int→ bool, lleq: int ∗ int ∗ int ∗ int→ bool},
whereas the output signature Σout is

{eq: int ∗ int→ bool, lth: int ∗ int→ bool,

lleq: int ∗ int ∗ int ∗ int→ bool, llth: int ∗ int ∗ int ∗ int→ bool}.
Hence, omitting types for simplicity, Σin \Σout = {leq} (deferred components), Σin∩Σout =

{lleq} (virtual component) and Σout \ Σin = {eq, lth, llth} (frozen components).

In this case, models over a signature are families of partial functions indexed over the

function symbols of the signature; for instance, an example of model A over Σin is given

by two partial functions leqA:Z×Z→ B and lleqA:Z×Z×Z×Z→ B, where Z
and B denote the sets of integer and boolean values, respectively.

Hence, a mixin module over <Σin ,Σout> is modelled by a functional F (that is, a

function over families of functions) that, for any model over the input signature Σin (that

is, a family of functions), returns a model over the output signature Σout (that is, another

family of functions). In the example, for each model Ain over Σin , we obtain a model

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 706

Aout = F(Ain) defined by:

eqA
out

(i1, i2) = leqA
in

(i1, i2) ∧ leqAin

(i2, i1)

lthA
out

(i1, i2) = ¬leqAin

(i2, i1)

lleqA
out

(i1, i2, j1, j2) = lthA
in

(i1, j1) ∨ (eqA
in

(i1, j1) ∧ leqAin

(i2, j2))

llthA
out

(i1, i2, j1, j2) = ¬lleqAin

(j1, j2, i1, i2)

Note that, as a matter of fact, the functional F keeps track of the dependency from

the input (hence, both deferred and virtual) components. Our proposed model for mixin

modules follows the same idea for modelling inheritance that was first adopted by W. Cook

(Cook 1989) and U. S. Reddy (Reddy 1988).

2.2. Typing and semantic rules

We now define a set of operators for composing mixin modules, that is, a kernel language

of mixins.

As we have already pointed out, this language is parametric, in the sense that its syntax

and semantics depend on some ingredients that should be provided by the core language.

These ingredients are formalised by the notion of core framework, given below.

Definition 2.1. A signature category is a category Sig with all finite colimits whose objects

are called signatures . If Σ1 and Σ2 are two signatures, then we use Σ1
j1+j2Σ2 to denote the

coproduct of Σ1 and Σ2 with injections j1, j2. We will omit the injections when they are

clear from the context.

Definition 2.2. A boolean signature category is a pair <Sig,I> where Sig is a signature

category and I is a subcategory of Sig with |I| = |Sig| and such that:

— I is a distributive lattice with bottom element (denoted 6); we call the morphisms in

I inclusions and use the notation Σ1 ⊆ Σ2 if there is an inclusion from Σ1 into Σ2, and

denote this (unique) inclusion iΣ1 ,Σ2
. We call union (denoted Σ1 ∪ Σ2) and intersection

(denoted Σ1 ∩ Σ2), respectively, the join and the meet of Σ1 and Σ2 in I. For any

morphism σ: Σ1 → Σ2 and signature Σ′1 ⊆ Σ1, we write σ|Σ′1 for the composition

σ ◦ iΣ′1 ,Σ1
;

— for any Σ1,Σ2 ∈ |Sig| there exists a signature Σ such that Σ ∪ Σ1 = Σ2 ∪ Σ1 and

Σ ∩ Σ1 =6. It is easy to show that such a signature (denoted Σ2 \ Σ1) is unique;

— 6 is initial in Sig and for any Σ1,Σ2 ∈ |Sig|, we have Σ1 ↪→ Σ1∪Σ2 ←↩ Σ2 is a pushout

for Σ1 ←↩ Σ1 ∩ Σ2 ↪→ Σ2.

Definition 2.3. A core framework is a triple <Sig,Mod , fix> where:

— Sig is a boolean signature category;

— Mod is a functor, Mod : Sigop → Set, preserving finite colimits; for any signature Σ,

objects in Mod (Σ) are called models over Σ or Σ-models; for any signature morphism

σ: Σ→ Σ′, Mod (σ) is called the reduct via σ and denoted −|σ;

— fix is a family of functions (that is, morphisms in Set)

fixΣ: (Mod (Σ)→ Mod (Σ))→ Mod (Σ)

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 707

satisfying the following properties:

1 (Fix-point) for any F: Mod (Σ)→ Mod (Σ),

F(fixΣ(F)) = fixΣ(F);

2 (Uniformity) for any F: Mod (Σ)→ Mod (Σ), F ′: Mod (Σ′)→ Mod (Σ′) and for any

σ:Σ′ → Σ, if (F(A))|σ = F ′(A|σ) for any A ∈ Mod (Σ), then

(fixΣ(F))|σ = fixΣ′(F
′);

3 (Currying) for any F: Mod (Σ)×Mod (Σ)→ Mod (Σ),

fixΣ(fixΣ ◦ F) = fixΣ(F ◦<id , id>),

where F and <id , id> are the functions defined by

F(A)(B) = F(A,B), <id , id>(A) = <A,A>,

for any A,B ∈ Mod (Σ).

We will omit the subscript from fixΣ whenever it can be determined unambigously from

the context.

As we have already said, signatures provide an abstract notion of (names and types of)

components (for example, sets of typed function names) and, correspondingly, models over

a signature Σ provide an abstract notion of possible interpretations for components in Σ

(for example, a partial function for each function name). These two components, as the

reader can see, correspond, with some additional requirements, to the first two components

of an institution (Goguen and Burstall 1992), that is, a category of signatures and a model

functor. The third component provides an abstract notion of fixed point operator. As

we have already mentioned, in our example language elements of Mod (Σ) are families

of partial functions; mixin modules are modelled by functions F: Mod (Σ)→ Mod (Σ) that

are expected to be continuous, whereas fixΣ denotes the usual least fixed point operator.

Property 1 reflects the intuition that each fixΣ is actually a fixed point operator, while

the two other properties express global coherency conditions over the family of fix

operators.

From now on, we will assume a fixed core framework <Sig,Mod , fix>.

For each <j1, j2> coproduct of Σ1,Σ2 in Sig, A1, A2 models in Mod (Σ1), Mod (Σ2),

respectively, we use A1
j1+j2A2 to denote the amalgamated sum of A1 and A2, that is, the

unique model A over Σ1 + Σ2 such that A|ji = Ai, for i = 1, 2. The existence and unicity

of A follows from the assumption that Mod preserves finite colimits (see Ancona (1998)

for the proof). We omit the superscript from j1+j2 whenever it can be unambigously

determined from the context.

We will now introduce the kernel language of mixin modules. Any expression M

of the language has a type, modelling the interface of the module, which is a pair of

signatures: we write M: Σin → Σout and the intended meaning is that Σin \ Σout , Σin ∩
Σout and Σout \ Σin are the deferred, virtual and frozen components, respectively. The

semantics of an expression M of type M: Σin → Σout will be a function from Mod (Σin)

into Mod (Σout).

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 708

For each operator, we give a typing rule specifying compatibility conditions between the

types of the arguments, and the resulting type of the result, and a semantic rule formally

expressing the meaning of the operator.

Merge This operator allows us to combine two mixin modules, say M1 and M2, obtaining

a new module where some deferred components of M1 are concreted by the definitions

given in M2, and vice versa. Two mixin modules can be merged together only if no

components are defined in both (first side condition). The defined (output) components

of M1 ⊕M2 are the (disjoint) union of those of M1 and M2. The input components are

the union of those of M1 and M2, where components that were frozen in either M1 or M2

are cancelled: that eliminates components that were deferred in one argument and have

been bound to a frozen component in the other. The semantics of M1 ⊕M2 corresponds

to taking the union (with possible sharing) of the deferred components and the (disjoint)

union of the definitions of M1 and M2:

(M-ty)
Mi: Σin

i → Σout
i , i = 1, 2

M1 ⊕M2: Σin \ Σfr → Σout
1 ∪ Σout

2

Σout
1 ∩ Σout

2 =6
Σfr

i = Σout
i \ Σin

i , i = 1, 2

Σin = Σin
1 ∪ Σin

2

Σfr = Σfr
1 ∪ Σfr

2

(M-sem)
[[Mi]] = Fi, i = 1, 2

[[M1 ⊕M2]] = λA.fix (λB.F1((A+ B|Σfr)|Σin
1

) + F2((A+ B|Σfr)|Σin
2

))

The semantic clause expresses the fact that the definitions in M1 ⊕M2 are obtained by

taking the union of the definitions of M1 and M2; moreover, it is necessary to apply the

fix operator in order to eliminate from the input signature the deferred components of

one argument concreted by frozen components of the other.

Consider the following schematic example, where we use G to denote a function that

maps values for h and f into a value for g, and analogously for F.

mixin M1 =

deferred h

deferred f

frozen g = G(h,f)

end

mixin M2 =

deferred h

deferred g

f = F(h,g,f)

end

Then, M1 denotes the function that takes a model Ain
1 assigning values hA

in
1 and fA

in
1

to h and f, respectively, and returns a model Aout
1 assigning the value G(hA

in
1 , fA

in
1) to

g. Analogously, M2 denotes the function that takes a model Ain
2 assigning values hA

in
2 ,

gA
in
2 and fA

in
2 to h, g and f, respectively, and returns a model Aout

2 assigning the value

F(hA
in
2 , gA

in
2 , fA

in
2) to f. Then, the mixin M1 ⊕M2 corresponds to the function defined by:

mixin

deferred h

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 709

frozen g = G(h,f)

f = F(h,G(h,f),f)

end

which takes a model Ain assigning values hA
in

and fA
in

to h and f, respectively, and

returns a model Aout assigning the values G(hA
in

, fA
in

) and F(hA
in

, G(hA
in

, fA
in

), fA
in

) to g and

f, respectively.

Freeze This operator allows us to make a module independent from the redefinition of

some components (Σfr in the typing rule); hence these components, if they were virtual,

become frozen, that is, disappear from the input signature.

The semantics is given by means of the fix operator; the intuition is that all the

components will refer from now on to the values of the Σfr -components as they are

determined by the current definitions. Note that the only effect of the freeze operator is

to switch the status of defined components from virtual to frozen; deferred and frozen

components are unmodified.

(F-ty)
M: Σin → Σout

freeze Σfr in M: Σin \ Σfr → Σout
Σfr ⊆ Σout

(F-sem)
[[M]] = F

[[freeze Σfr in M]] = λA.fix (λB.F(A+ B|Σfr∩Σin))

For instance, we can transform the function lleq of the previously defined mixin M

into a frozen function, obtaining a new mixin freeze lleq in M that is equivalent to

the following:

mixin

deferred leq:int*int→bool

frozen eq(i1,i2:int):bool=leq(i1,i2) and leq(i2,i1)

frozen lth(i1,i2:int):bool=not leq(i2,i1)

local lleq local(i1,i2,j1,j2:int):bool=

lth(i1,j1) or (eq(i1,j1) and leq(i2,j2))

frozen lleq(i1,i2,j1,j2:int):bool=lth(i1,j1) or (eq(i1,j1) and leq(i2,j2))

frozen llth(i1,i2,j1,j2:int):bool=not lleq local(j1,j2,i1,i2)

end

Hiding This operator allows us to hide some defined components (Σhd in the typing rule)

from the outside: these components are cancelled from the output signature and (those

that are virtual) from the input signature too. Hiding deferred components makes no sense

since definitions of other components could depend on them. Hiding virtual components

requires us first to apply the fix operator in such a way that all the other definitions will

refer from now on to their current definitions.

(H-ty)
M: Σin → Σout

hide Σhd in M: Σin \ Σhd → Σout \ Σhd
Σhd ⊆ Σout

(H-sem)
[[M]] = F

[[hide Σhd in M]] = λA.(fix (λB.F(A+ B|Σhd∩Σin)))|Σout\Σhd

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 710

Consider the following schematic example:

mixin M0 =

deferred k

f = F(f,k,h)

h = H(f,k,h)

frozen g = G(f,k,h)

end

Then, the mixin hide f,g in M0 corresponds to the following:

mixin

deferred k

local f = F(f,k,h)

h = H(f,k,h)

end

Restrict This operator allows us to ‘throw away’ some definitions (Σrs in the typing rule)

in a module, that is, to cancel the corresponding components from the output signature.

Restrict is different from hiding, since a virtual component whose definition is thrown

away remains in the interface of the module as deferred and can be redefined later, while

a hidden component becomes invisible from the outside; However, for frozen components

the effect is the same as for hiding.

The semantic clause expresses the fact that some definitions are forgotten, hence the

corresponding components are no longer in the output signature (this is formally expressed

by the reduct functor):

(R-ty)
M: Σin → Σout

restrict Σrs in M: Σin → Σout \ Σrs
Σrs ⊆ Σout

(R-sem)
[[M]] = F

[[restrict Σrs in M]] = λA.(F(A))|Σout\Σrs

For instance, the module restrict lth,lleq in M is equivalent to the following:

mixin

deferred leq:int*int→bool

deferred lleq:int*int*int*int→bool

frozen eq(i1,i2:int):bool=leq(i1,i2) and leq(i2,i1)

frozen llth(i1,i2,j1,j2:int):bool=not lleq(j1,j2,i1,i2)

end

Overriding This operator allows us to combine two mixins with conflicting defined compo-

nents, by overriding the definitions of M1 by the corresponding definitions of M2. Hence,

the overriding operator coincides with the merge operator when there are no components

defined in both mixins.

The typing rule is similar to that of the merge operator; however, there is no side

condition requiring no conflict of definitions. As for merge, the defined (output) compo-

nents of M1 ⇐ M2 are the union of those of M1 and M2, where components that were

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 711

frozen in either M1 or M2 are cancelled. Note, however, that frozen components in M1 are

considered only if they are not defined in M2 (first side condition), since in this case the

definition in M2 would take the precedence. The semantics is that M1 ⇐M2 corresponds

to taking the union (with possible sharing) of the deferred components and the union of

definitions of M1 and M2, and choosing the definition in M2 if there is a conflict.

(O-ty)
Mi: Σin

i → Σout
i i = 1, 2

M1 ⇐M2: (Σin
1 ∪ Σin

2) \ Σfr → Σout
1 ∪ Σout

2

Σfr
1 = (Σout

1 \ Σout
2) \ Σin

1

Σfr
2 = Σout

2 \ Σin
2

Σfr = Σfr
1 ∪ Σfr

2

(O-sem)
[[Mi]] = Fi, i = 1, 2

[[M1 ⇐M2]] = λA.fix (λB.(F1((A+ B|Σfr)|Σin
1

))
|Σout

1 \Σout
2

+ F2((A+ B|Σfr)|Σin
2

))

Consider the two mixins M1 and M2 defined schematically as follows:

mixin M1 =

deferred h

f = F1(f,h)

frozen g = G(f,h)

end

mixin M2 =

deferred h

deferred g

frozen f = F2(h,g)

end

Then, the mixin M1 ⇐M2 corresponds to the following:

mixin

deferred h

frozen g = G(f,h)

frozen f = F2(h,g)

end

Functional Composition This operator is a generalisation of the application of parame-

terised modules, like ML functors; here the formal parameters are the deferred components

Σin
2 \ Σout

2 of M2, whereas the actual parameters are the defined components Σout
1 of M1.

Hence, these components must coincide (first side condition). The second side condi-

tion is needed to avoid confusion between deferred components of M1 and components

of M2: these components must be distinct, since otherwise they would result virtual

in M2◦M1. Input components of M2◦M1 are deferred components of M1 and virtual

components of M2; output components of M2◦M1 are those of M2. The semantics is

expressed in terms of the fix operator, in order to handle the virtual components of M1

correctly.

(FC-ty)
Mi: Σin

i → Σout
i i = 1, 2

M2◦M1: (Σin
1 \ Σout

1) ∪ (Σin
2 ∩ Σout

2)→ Σout
2

Σin
2 \ Σout

2 = Σout
1

(Σin
1 \ Σout

1) ∩ Σout
2 =6

(FC-sem)
[[Mi]] = Fi, i = 1, 2

[[M2◦M1]] = λA.F2(fix (λB.F1(A|Σin
1 \Σout

1
+ B|Σin

1 ∩Σout
1

)) + A|Σin
2 ∩Σout

2
)

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 712

As an example, consider the two mixins M1 and M2 defined schematically as follows:

mixin M1 =

deferred h

g = G(g,h)

end

mixin M2 =

deferred g

f = F(f,g)

end

Then, the mixin M2◦M1 corresponds to the following:

mixin

deferred h

local g = G(g,h)

f = F(f,g)

end

Constants Constant operators, corresponding to basic modules like those shown in the

preceding examples, cannot be fixed once and for all in the kernel language, since they

obviously depend on the particular core language we are considering, notably on the

particular form taken by signatures. In the example language, where, as we have already

said, signatures are just sets of typed function symbols, a constant has the general form:

mixin

deferred D1:τ
D
1 , ..., Dk:τ

D
k

frozen F1:τ
F
1 =e

F
1 , ..., Fl:τ

F
l =e

F
l

local L1:τ
L
1 =e

L
1 , ..., Lm:τ

L
m=e

L
m

V1:τ
V
1 =e

V
1 , ..., Vn:τ

V
n =e

V
n

end

where the decorated τ are types of the core language (in this case functional types

constructed over int and bool) and the decorated e are well-typed expressions of the

core language, possibly containing the names of the module components. More precisely,

each eFi (respectively, eLi , eVi) must be a correct core expression of type τFi (respectively,

τLi , τVi) where each Di (respectively, Fi, Li, Vi) is used as a variable of type τDi (respectively,

τFi , τLi , τVi).

Under these assumptions, a constant as above has type

{D1 : τD1 , . . . , Dk : τDk , V1 : τV1 , . . . , Vn : τVn } → {V1 : τV1 , . . . Vn : τVn , F1 : τF1 , . . . Fl : τFl }.
Note that, as expected, local components do not appear in the module interface.

2.3. Primitive operators

In the preceding subsection we have defined a kernel language of mixin modules and

its denotational semantics, based on the idea of interpreting a module as a function

from input into output components. Actually, all the operators we have presented can be

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 713

expressed in terms of three lower-level (families of) operators (as will be formally proved

in Section 5) with simple semantics, which correspond to three very primitive ways of

manipulating modules: sum (corresponding to assembling together two modules), reduct

(corresponding to renaming both input and output components) and primitive freeze

(corresponding to connecting some input to some output component). These operators

are also lower-level in the sense that they can be formally defined assuming that Sig is

just a signature category (that is, they do not require any notion of inclusion between

signatures).

Sum The sum operators are indexed over coproducts <j1, j2> in Sig.

(Sum-ty)
M1: Σin → Σout

1 M2: Σin → Σout
2

M1
j1+j2M2: Σin → Σout

1 + Σout
2

j1: Σout
1 → Σout

1 + Σout
2

j2: Σout
2 → Σout

1 + Σout
2

(Sum-sem)
[[Mi]] = Fi, i = 1, 2

[[M1
j1+j2M2]] = λA.F1(A)j1+j2F2(A)

By means of these operators it is possible to combine pairs of mixin modules having

the same input signature, but different output signatures. The coproducts specify how

output signatures are combined together. As an example, consider the mixins M1 and M2

defined schematically as follows.

mixin M1 =

deferred h

f = F1(h,f)

end

mixin M2 =

deferred h

f = F2(h,f)

g = G(h,f)

end

If j1: {f} → {f1, f2, g} and j2: {f, g} → {f1, f2, g} are defined by j1(f) = f1, j2(f) = f2,

j2(g) = g, then the sum M1j1+j2M2 is given by:

mixin

deferred h

f1 = F1(h,f)

f2 = F2(h,f)

g = G(h,f)

end

All the input components are shared, while the output components are kept distinct

(as happens for the two components f). Intuitively, the sum operator represents the most

primitive way of combining together two mixins and is the natural extension of the

amalgamated sum over models in the core framework (in Ancona and Zucca (1998b) we

proved that MixMod is a model functor in the usual sense and that this operator is indeed

an amalgamated sum for mixin models).

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 714

Reduct The reduct operators are indexed over pairs <σin , σout> of morphisms in Sig.

(Reduct-ty)
M: Σin → Σout

σin |M|σout : Σ′in → Σ′out

σin : Σin → Σ′in

σout : Σ′out → Σout

(Reduct-sem)
[[M]] = F

[[σin |M|σout]] = λA.(F(A|σin))|σout

Intuitively, reduct corresponds to a powerful form of renaming where the input and

output components can be renamed separately via σin and σout , respectively. As an

example, consider the mixin M schematically defined as follows:

mixin M =

deferred h

f = F(f,g,h)

g = G(f,g,h)

end

Let σin : {f, g, h} → {x, z} and σout : {y} → {f, g} be the morphisms mapping f, g, h into

x and y into f, respectively. Then, σin |F|σout is given by:

mixin

deferred z

deferred x

frozen y = F(x,x,x)

end

Note that through the reduct it is possible to add dummy input component (like z) and

to forget output components (like g). Again, this operator is the natural extension of the

corresponding operator at the level of the core framework (in Ancona and Zucca (1998b)

we proved that this operator is indeed the reduct in the usual sense for the model functor

MixMod).

Primitive Freeze Primitive freeze operators are indexed over pairs <<j1, j2>, σ
fr> with

<j1, j2> coproduct and σfr morphism in Sig, respectively, satisfying the side condition in

the typing rule.

(Prim-Freeze-ty)
M: Σin + Σfr → Σout

freezej1 ,j2
σfr (M): Σin → Σout

σfr : Σfr → Σout

j1: Σin → Σin + Σfr

j2: Σfr → Σin + Σfr

(Prim-Freeze-sem)
[[M]] = F

[[freezej1 ,j2
σfr (M)]] = λA.fix (λB.F(Aj1+j2B|σfr))

Primitive freeze operators are needed for getting rid of input components in mixin

modules; this can be achieved by associating with each input component to be eliminated a

defined component in the same mixin module. The morphism σfr specifies this association,

whereas the coproduct <j1, j2> shows how the input components are decomposed into

those to be frozen and the rest. As an example, let M be the previous mixin and let σ be

the signature morphism mapping f and g into f, with j1, j2 the obvious injections.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 715

Then, freezej1 ,j2σ (M) is given by:

mixin

deferred h

local f’ = F(f’,g’,h)

local g’ = F(f’,g’,h)

frozen f = f’

frozen g = g’

end

The freeze operator defined in Section 2.2 is a higher level version of the primitive

freeze operator where σ, j1, j2 are specified implicitly by selecting the signature of the

components to be frozen, as will be formally shown in Section 3.3.

3. An axiomatic definition for mixin modules

In the preceding section, we have formally defined the syntax and semantics of a kernel

language of mixin modules (parametric in the underlying core language). Our aim now is

to provide an alternative characterisation of this language in a purely axiomatic way (in

the spirit of the seminal paper Bergstra et al. (1990)), that is, to define a theory of mixin

modules by means of a specification in many-sorted (positive) conditional logic and to

derive from this specification a reduction semantics enjoying a normalisation property.

We will present this axiomatisation in two steps. In Section 3.1, we define a specification

SP in many-sorted conditional logic providing a minimal characterisation of the three

primitive operators defined in Section 2.3. Here ‘minimal’ should be understood in the

sense that these axioms are sufficient and necessary for proving a normal form theorem,

that is, that all terms can be reasonably simplified; moreover, some of them (notably

those for sum and reduct) corresponds to stating that the operator actually corresponding

to the natural extension of the corresponding operator at the core level. In Section 3.2 we

show that many equational laws that we intuitively expect to hold for mixin modules can

be proved in SP . In Section 5 we will prove that the interpretation previously defined for

the three basic operators actually satisfies this specification.

Then, in Section 3.3, we state a further set of axioms that express each operator of the

language in terms of the three primitive operators. In this way, the normalisation property

(which will be proved in Section 4) obviously applies to the full language. We will, again,

prove in Section 5 that the interpretation previously defined for the operators actually

satisfies this specification, that is, that their definition as derived operators is sound.

3.1. Axioms for primitive operators

We will now show the specification SP providing an axiomatic characterisation of the three

primitive operators. Note that the specification is presented in a highly schematic way and

not in any real specification language. Moreover, recall that there are no constant mixins,

since the choice of constants will depend on the particular core language, as exemplified in

Section 2.2; furthermore, in general, the given specification is not intended to completely

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 716

spec SP

sorts {mix (Σ in ,Σ out) | Σin ,Σout signatures in Sig}
opns

{ j1+j2 : mix (Σ in ,Σ out
1),mix (Σ in ,Σ out

2)→ mix (Σ in ,Σ out
1

j1+j2 Σ out
2)

| <j1, j2> coproduct in Sig}
{ σin | |σout : mix (Σ in ,Σ out)→ mix (Σ ′ in ,Σ ′out)

| σin : Σin → Σ′ in , σout : Σ′out → Σout}
{ freeze

j1 ,j2
σfr : mix (Σ in j1+j2 Σ fr ,Σ out)→ mix (Σ in ,Σ out)

| σfr : Σfr → Σout , <j1, j2> coproduct in Sig}
axioms

(1) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) (M1
j1+j2M2)|j1 = M1

(2) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) (M1
j1+j2M2)|j2 = M2

(3) ∀M1,M2:mix (Σ in ,Σ out
1 + Σ out

2) M1 |j1 = M2 |j1 ∧M1 |j2 = M2 |j2 ⇒M1 = M2

(4) ∀M:mix (Σ in ,Σ out) id
Σin |M|idΣout = M

(5) ∀M:mix (Σ in ,Σ out) σin
2
|σin

1
|M|σout

1
|σout

2
= σin

2
◦σin

1
|M|σout

1
◦σout

2

(6) ∀M:mix ((Σ in + Σ fr
2) + Σ fr

1 ,Σ
out)

freeze
k1 ,k2

σ
fr
2

(freeze
j1 ,j2

σ
fr
1

(M)) = freeze
l1 ,l2

[σ
fr
2
,σ

fr
1

]
([l1 ,l2◦m1 ,l2◦m2]|M)

(7) ∀M:mix (Σ in +6,Σ out) freeze
j1 ,j2
6Σout

(M) = [id
Σin ,6Σin]|M

(8) ∀M:mix (Σ in + Σ fr ,Σ out) freeze
j1 ,j2
σfr (M|σout) = (freeze

k1 ,k2

σ′fr (id
Σin +σin |M))|σout

(9) ∀M:mix (Σ in + Σ fr ,Σ out) σin |(freeze
j1 ,j2
σfr (M)) = freeze

k1 ,k2

σ′fr (σin +σ′ in |M)

(10) ∀M1:mix (Σ in + Σ fr
1 ,Σ

out
1),M2:mix (Σ in + Σ fr

2 ,Σ
out
2)

freeze
l1 ,l2

σ
fr
1

(M1)j1+j2 freeze
m1 ,m2

σ
fr
2

(M2) = freeze
p1 ,p2

σ
fr
1

+σ
fr
2

([p1 ,p2◦k1]|M1
j1+j2

[p1 ,p2◦k2]|M2)

Fig. 1. Definition of the specification SP

characterise the operators, but only to state their very general properties (as explained

above), hence it is a requirement specification rather than a design specification, following

the usual terminology (see, for example, Astesiano et al. (1999)).

The signature ΣSP of SP (see Figure 1) is parametric in the signature category Sig of

the core framework. The sort symbols are indexed over pairs of signatures and have the

form mix (Σ in ,Σ out), therefore the set of sorts may be infinite. Intuitively, each element of

sort mix (Σ in ,Σ out) corresponds to a mixin module whose input and output components

are specified by Σin and Σout , called the input and output signatures, respectively.

Some of the operation symbols of the signature are indexed over morphisms in Sig, so,

as happens for sorts, they may be infinite. However, the operation symbols are partitioned

into three classes, corresponding to the three primitive (families of) operators introduced

in Section 2.3.

— Sum. Sum operators have the form j1+j2 for all coproducts <j1, j2> in Sig. Note that

we also use the same symbol + at the level of signatures to denote the coproduct

object. Note also that each symbol j1+j2 is (possibly) overloaded, since the types of

arguments and result contain the signature Σin , which does not depend on the choice

of the coproduct <j1, j2>; however, the operator that is actually applied can always

be determined from the types of the arguments.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 717

— Reduct. Reduct operators have the form σin | |σout indexed for all pairs of morphisms

σin and σout in Sig.

— Primitive freeze. Primitive freeze operators have the form freezej1 ,j2
σfr for all morphisms

σfr : Σfr → Σout and coproducts <j1, j2> of Σin and Σfr in Sig.

Like sorts and operations symbols, axioms in Figure 1 are indexed over signatures and

morphisms in Sig; hence they are more appropriately called axiom schemas.

To give a better understanding of the axioms, we adopt the following precedence rules:

reduct operations have a higher priority than sum operations and sum operations are

left associative. Finally, in the axioms, and later, we use the following abbreviations: if

M:mix (Σ in ,Σ out), σout : Σ′out → Σout and σin : Σin → Σ′in , then σin |M stands for σin |M|idΣout

and M|σout stands for idΣin |M|σout .

We describe now in detail the axioms related to each primitive operators; each group

of axioms is repeated below to help the reader.

(1) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) (M1
j1+j2M2)|j1 = M1.

(2) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) (M1
j1+j2M2)|j2 = M2.

(3) ∀M1,M2:mix (Σ in ,Σ out
1 + Σ out

2) M1|j1 = M2|j1 ∧M1|j2 = M2|j2 ⇒M1 = M2.

Axiom schemas (1), (2) and (3) ensure that the sum operators enjoy the amalgamation

property (Ehrig and Mahr 1985); each schema produces a single axiom for each signature

Σin and coproduct <j1, j2> of Σout
1 and Σout

2 .

(4) ∀M:mix (Σ in ,Σ out) idΣin |M|idΣout = M

(5) ∀M:mix (Σ in ,Σ out) σin
2 |σin

1 |M|σout
1 |σout

2
= σin

2 ◦σin
1 |M|σout

1 ◦σout
2

Axiom schemas (4) and (5) express the functoriality of the reduct operators; schema (4)

has to be instantiated over each pair of identity morphisms idΣ in , idΣ out ; schema (5) over

morphisms σin
1 : Σin → Σin

1 , σin
2 : Σin

1 → Σin
2 , σout

1 : Σout
1 → Σout and σout

2 : Σout
2 → Σout

1 .

(6) ∀M:mix ((Σ in + Σ fr
2) + Σ fr

1 ,Σ
out)

freezek1 ,k2

σ
fr
2

(freezej1 ,j2
σ

fr
1

(M)) = freezel1 ,l2
[σ

fr
2 ,σ

fr
1]

([l1 ,l2◦m1 ,l2◦m2]|M)

Axiom schema (6) shows how composition of primitive freeze operators works; it holds

for each morphism σ
fr
1 : Σfr

1 → Σout , σfr
2 : Σfr

2 → Σout and coproducts <j1, j2> of Σin + Σfr
2

and Σfr
1 , <k1, k2> of Σin and Σfr

2 , <l1, l2> of Σin and Σfr
2 + Σfr

1 and <m1, m2> of Σfr
2 and

Σfr
1 .

If σ1: Σ1 → Σ and σ2: Σ2 → Σ are two signature morphisms, and <j1, j2> is a coproduct

of Σ1 and Σ2, we use [σ1, σ2] to denote the unique morphism from Σ1 + Σ2 to Σ making

the following diagram commute:

Σ1
j1- Σ1 + Σ2

�j2 Σ2

@
@
@
@
@

σ1
R 	�

�
�
�
�

σ2

Σ

[σ1 ,σ2]

?

Hence, [σfr
2 , σ

fr
1] denotes the unique morphism h such that h ◦ m1 = σ

fr
2 , h ◦ m2 = σ

fr
1 ;

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 718

we will use this notation from now on†. Extending this notation to general coproducts

(Adàmek et al. 1990, page 170), we have that [l1, l2 ◦ m1, l2 ◦ m2] denotes the unique

morphism h such that h◦ (j1 ◦ k1) = l1, h◦ (j1 ◦ k2) = l2 ◦m1 and h◦ j2 = l2 ◦m2; indeed, the

triple <j1 ◦ k1, j1 ◦ k2, j2> is a coproduct of Σin , Σfr
2 and Σfr

1 . Note that [l1, l2 ◦ m1, l2 ◦ m2]

can be written equivalently as [[l1, l2 ◦ m1], l2 ◦ m2].

(7) ∀M:mix (Σ in +6,Σ out) freezej1 ,j26Σout
(M) = [idΣin ,6Σin]|M

Axiom schema (7) states that primitive freeze is the identity whenever we consider the

unique morphism 6Σout from any initial object 6 to Σout . It holds for any morphism

6Σout and coproduct <j1, j2> of Σin and 6; the morphism [idΣ in ,6Σin] is determined by

the coproduct <j1, j2>, whereas 6Σin denotes the unique morphism from 6 to Σin .

(8) ∀M:mix (Σ in + Σ fr ,Σ out) freezej1 ,j2
σfr (M|σout) = (freezek1 ,k2

σ′fr (idΣin +σin |M))|σout

(9) ∀M:mix (Σ in + Σ fr ,Σ out) σin |(freezej1 ,j2
σfr (M)) = freezek1 ,k2

σ′fr (σin +σ′ in |M)

Axiom schemas (8) and (9) describe how the primitive freeze operators behave with

respect to the reduct operators.

Schema (8) holds for each morphism

σfr : Σfr → Σ′out
, σ′fr : Σ′fr → Σout , σin : Σfr → Σ′fr , σout : Σ′out → Σout

such that σ′fr ◦ σin = σout ◦ σfr , and coproduct <j1, j2> of Σin and Σfr and <k1, k2> of Σin

and Σ′fr .

If σ1: Σ1 → Σ′1 and σ2: Σ2 → Σ′2 are two signature morphisms, we use σ1 +σ2 to denote

the morphism [j ′1 ◦ σ1, j
′
2 ◦ σ2]:Σ1 + Σ2 → Σ′1 + Σ′2, where j ′1 and j ′2 are the injections of

the coproduct Σ′1 + Σ′2.

Σ1
j1- Σ1 + Σ2

�j2 Σ2

Σ′1

σ1

?
j ′1- Σ′1 + Σ′2

σ1 + σ2

?
�j
′
2 Σ′2

σ2

?

Therefore, idΣ in + σin denotes the morphism [k1 ◦ idΣ in , k2 ◦ σin] determined by <j1, j2>

and <k1, k2>; we will use this notation from now on; the same consideration made for

the notation [,] applies here also.

Schema (9) holds for each morphism

σfr : Σfr → Σout , σ′fr : Σ′fr → Σout , σin : Σin → Σ′in , σ′in : Σfr → Σ′fr

such that σ′fr ◦ σ′in = σfr and coproduct <j1, j2> of Σin and Σfr and <k1, k2> of Σ′in and

Σ′fr . Analogously to schema (8), the morphism σin + σ′in is determined by <j1, j2> and

<k1, k2>.

† Actually, in order to avoid ambiguities, the notation should also reveal the two injections of the coproduct, as

in [σ
fr
2 , σ

fr
1]m2,m1; however we will avoid this heavier notation, specifying explicitly the two injections whenever

they cannot be easily deduced from the context.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 719

(11) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) M1 |σout
1

k1+k2M2 |σout
2

= (M1
j1+j2M2)|σout

1
+σout

2

(12) ∀M:mix (Σ in ,Σ out) M|σout
1

j1+j2M|σout
2

= M|[σout
1
,σout

2
]

(13) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) σin |(M1
j1+j2M2) = σin |M1

j1+j2
σin |M2

(14) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) M1
j1+j2M2 = M2

j2+j1M1

(15) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2),M3:mix (Σ in ,Σ out
3)

(M1
j1+j2M2)l1+l2M2 = M1

m1+m2 (M2
p1+p2M3)

(16) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) M1

id
Σout

1 +
6

Σout
1 M2 |6

Σout
1

= M1

(17) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) M1 |6
Σout

1

= M2 |6
Σout

2

(18) ∀M1:mix (Σ in ,Σ out
1),M2:mix (Σ in ,Σ out

2) M1
k1+k2M2 = (M1

j1+j2M2)|[j1 ,j2]

(19) ∀M:mix (Σ in + Σ fr ,Σ out) freeze
j1 ,j2
σfr (M) = freeze

k1 ,k2

σ′fr (id
Σin +σ|M)

Fig. 2. Derived laws for specification SP .

(10) ∀M1:mix (Σ in + Σ fr
1 ,Σ

out
1),M2:mix (Σ in + Σ fr

2 ,Σ
out
2)

freezel1 ,l2
σ

fr
1

(M1)j1+j2 freezem1 ,m2

σ
fr
2

(M2) = freezep1 ,p2

σ
fr
1 +σ

fr
2

([p1 ,p2◦k1]|M1
j1+j2

[p1 ,p2◦k2]|M2)

Axiom schema (10) describes how the primitive freeze operators behave with respect

to the sum operators; it produces a single axiom for each morphism σ
fr
1 : Σfr

1 → Σout
1 ,

σ
fr
2 : Σfr

2 → Σout
2 and coproducts <j1, j2> of Σout

1 and Σout
2 , <k1, k2> of Σfr

1 and Σfr
2 , <l1, l2>

of Σin and Σfr
1 , <m1, m2> of Σin and Σfr

2 , and <p1, p2> of Σin and Σfr
1 + Σfr

2 ; the morphism

σ
fr
1 + σ

fr
2 is determined by the coproducts <k1, k2> and <j1, j2>, [p1, p2 ◦ k1] by <l1, l2>

and [p1, p2 ◦ k2] by <m1, m2>.

3.2. Derived laws

Several useful laws can be deduced from axioms of specification SP (see Figure 2):

distributivity of the reduct with respect to the sum (laws (11), (12) and (13)), commutativity

(law (14)), associativity (law (15)) and the existence and uniqueness (with respect to a

fixed input signature) of the neutral element of sum (laws (16) and (17)). Finally, laws

(18) and (19) formalise the intuition that we can always choose a canonical representative

for sum and primitive freeze operators, as will be explained in Section 4.1.

Proof of (11). The axiom schema holds for each morphism

σout
i : Σ′out

i → Σout
i , i = 1, 2,

and each coproduct <k1, k2> and <j1, j2> of Σ′out
1 and Σ′out

2 and of Σout
1 and Σout

2 ,

respectively. By (1) and (2),

(M1|σout
1

k1+k2M2|σout
2

)|ki = Mi|σout
i
, i = 1, 2.

By (5) and the definition of σout
1 + σout

2 ,

(M1
j1+j2M2)|σout

1 +σout
2 |ki = (M1

j1+j2M2)|ji|σout
i
, i = 1, 2.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 720

By (1) and (2),

(M1
j1+j2M2)|ji|σout

i
= Mi|σout

i
, i = 1, 2.

Therefore we can conclude the proof by (3).

Proof of (12). The axiom schema holds for each morphism

σout
i : Σout

i → Σout , i = 1, 2,

and each coproduct <j1, j2> of Σout
1 and Σout

2 .

By (1) and (2),

(M|σout
1

j1+j2M|σout
2

)|ji = M|σout
i
, i = 1, 2.

By (5) and the definition of [σout
1 , σout

2],

M|[σout
1 ,σout

2]|ji = M|σout
i
, i = 1, 2.

Therefore we can conclude the proof by (3).

Proof of (13). The axiom schema holds for each morphism σin : Σin → Σ′in , and each

coproduct <j1, j2> of Σout
1 and Σout

2 .

By (5),

id
Σ ′ in |σin |(M1

j1+j2M2)|idΣout |ji = σin |idΣin |(M1
j1+j2M2)|ji|idΣout

i

, i = 1, 2.

By (1) and (2),

σin |idΣin |(M1
j1+j2M2)|ji|idΣout

i

= σin |Mi, i = 1, 2.

By (1) and (2),

(σin |M1
j1+j2

σin |M2)|ji = σin |Mi, i = 1, 2.

Therefore we can conclude the proof by (3).

Proof of (14). The axiom schema holds for each coproduct <j1, j2> of Σout
1 and Σout

2 .

By (1) and (2), (M1
j1+j2M2)|ji = Mi = (M2

j2+j1M1)|ji , therefore we can conclude the

proof by (3).

Proof of (15). The axiom schema holds for each coproduct <j1, j2> of Σout
1 and Σout

2 ,

<l1, l2> of Σout
1 + Σout

2 and Σout
3 , <m1, m2> of Σout

1 and Σout
2 + Σout

3 and <p1, p2> of Σout
2

and Σout
3 such that l1 ◦ j1 = m1, l1 ◦ j2 = m2 ◦ p1 and l2 = m2 ◦ p2.

By (1) and (2),

((M1
j1+j2M2)l1+l2M3)|l1 = M1

j1+j2M2

((M1
j1+j2M2)l1+l2M3)|l2 = M3

By (1), (2), (5) and the hypothesis on the coproducts,

(M1
m1+m2 (M2

p1+p2M3))|l1|j1 = (M1
m1+m2 (M2

p1+p2M3))|m1
= M1,

(M1
m1+m2 (M2

p1+p2M3))|l1|j2 = (M1
m1+m2 (M2

p1+p2M3))|m2|p1
= M2.

Therefore, by (1), (2) and (3),

((M1
j1+j2M2)l1+l2M3)|l1 = (M1

m1+m2 (M2
p1+p2M3))|l1 .

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 721

By (2), (5) and the hypothesis on the coproducts,

(M1
m1+m2 (M2

p1+p2M3))|l2 = (M1
m1+m2 (M2

p1+p2M3))|m2|p2
= M3

Therefore we can conclude the proof by (3).

Note that <l1 ◦ j1, l1 ◦ j2, l2> (or, equivalently, <m1, m2 ◦ p1, m2 ◦ p2>) is a coproduct of

Σout
1 , Σout

2 and Σout
3 . Hence, by virtue of law (15), we can adopt the following consistent

notation.

Let J = <j1, .., jn>, n > 1, denote a finite coproduct with ji: Σout
i → Σout , i = 1, .., n,

and let {Mi:mix (Σ in ,Σ out
i)}i=1,..,n be an indexed set of mixin expressions (for n = 1 the

coproduct reduces to the unique morphism 6Σout for some initial object 6 in Sig). Then∑
J Mi is inductively defined by:∑

<j0>

M0 = M0, j0 =6Σout

∑
J

Mi =

(∑
K

Mi

)
l+jnMn, if n > 1, K = <k1, .., kn−1>, l ◦ ki = ji for i = 1, .., n− 1.

Finally, the laws (11), (12), (13) and (14) can be easily generalized to this notation.

Proof of (16). The axiom schema holds for each morphism

6Σout
1

:6→ Σout
1 , 6Σout

2
:6→ Σout

2

and any initial object 6 in Sig.

By (1) and (4),

M1
idΣout

1 +
6Σout

1 M2|6Σout
2

= (M1
idΣout

1 +
6Σout

1 M2|6Σout
2

)
|idΣout

1

= M1.

Note that, by the definition of identity and initial object, <idΣ out
1
,6Σout

1
> is always a

coproduct.

Proof of (17). The axiom schema holds for any pair of morphisms 6Σout
1

:6→ Σout
1

and 6Σout
2

:6→ Σout
2 , with 6 any initial object in Sig.

By laws (14) and (16),

M1|6Σout
1

= M1|6Σout
1

id6+id6M2|6Σout
2

= M2|6Σout
2

id6+id6M1|6Σout
1

= M2|6Σout
2

Proof of (18). The axiom schema holds for any possible choice of coproducts <j1, j2>

and <k1, k2> of Σout
1 and Σout

2 .

By the definition of [j1, j2], and by (5), (1) and (2), we have (M1
j1+j2M2)|[j1 ,j2]|ki = Mi,

i = 1, 2, and hence, we can conclude the proof by (1), (2) and (3).

Proof of (19). The axiom schema holds for each morphism σfr : Σfr → Σout , σ′fr :Σ′fr →
Σout , σ: Σfr → Σ′fr such that σ′fr ◦ σ = σfr , and coproduct <j1, j2> of Σin and Σfr and

<k1, k2> of Σin and Σ′fr .

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 722

M1 ⊕M2 = freezeΣfr∩Σin (Σin |M1 + Σin |M2) (i)

freeze Σfr in M = freezeΣfr∩Σin (M) (ii)

restrict Σrs in M = M|Σout \Σrs (iii)

hide Σhd in M = (freezeΣhd∩Σin (M))|Σout \Σhd (iv)

M1 ⇐M2 = (restrict Σout
1 ∩ Σout

2 in M1)⊕M2(v)

M2◦M1 = hide Σout
1 in M1 ⊕M2 (vi)

Fig. 3. Definitions of high-level operations

M1 ⊕M2 = M2 ⊕M1 (vii)

(M1 ⊕M2)⊕M3 = M1 ⊕ (M2 ⊕M3) (viii)

M1 ⊕ restrict Σout
2 in M2 = M1 if Σin

2 ⊆ Σin
1 (ix)

M1 ⇐M2 = M1 ⊕M2 if Σout
1 ∩ Σout

2 =6(x)

M1 ⇐M2 = M2 if Σin
1 ⊆ Σin

2 ,Σ
out
1 ⊆ Σout

2 (xi)

M1 ⇐ restrict Σout
2 in M2 = M1 if Σin

2 ⊆ Σin
1 (xii)

Fig. 4. Some properties of high-level operations

This can be obtained easily as a particular instantiation of (8) or (9), by choosing

σout = idΣ out (in (8)) or by choosing σin = idΣ in (in (9)) and then applying (4).

3.3. Axioms for derived operations

In this subsection we provide a formal definition of the operators for combining mixin

modules that were introduced in Section 2.2 in terms of the three operators of sum, reduct

and primitive freeze.

In Figure 3 we give a set of axioms that state that each high-level operator can be

defined from the primitive operations. We use the abbreviation freezeΣfr for freezej1 ,j2
σfr

when σfr is the inclusion from Σfr into Σout , and j1 and j2 are the inclusions from Σfr and

Σin , respectively, into Σout . Note indeed that, by our assumptions on boolean signature

categories, if Σ1 ∩ Σ2 = 6, then Σ1 ↪→ Σ1 ∪ Σ2 ←↩ Σ2 is a coproduct. In particular, this

holds when Σ2 = Σ \ Σ1.

Analogously, if Σin ⊆ Σ′in and Σ′out ⊆ Σout , then Σ′ in |M|Σ′out stands for σin |M|σout , where

σin = iΣin ,Σ′ in and σout = iΣ′out ,Σout .

In Figure 4 we state some (intuitively expected) properties of the high-level operators.

They all can be derived from the axioms for primitive operations (1)–(19) and the axioms

defining derived operations (i)–(vi).

Let us begin by proving that the merge operator is commutative (axiom (vii)). Indeed,

by axiom (1) and law (14),

M1 ⊕M2 = freezeΣfr∩Σin (Σin |M1 + Σin |M2)

= freezeΣfr∩Σin (Σin |M2 + Σin |M1)

= M2 ⊕M1.

A less trivial proof is the associativity of merge (axiom (viii)). We need the following

two lemmas.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 723

Lemma 3.1. Let Mi: Σin → Σout
i , i = 1, 2, be two mixins, with Σout

1 ∩ Σout
2 = 6, and let

Σfr ,Σ′fr be two signatures such that Σfr ⊆ Σ′fr , Σfr ⊆ Σout
1 ∩ Σin , Σ′fr ⊆ (Σout

1 ∪ Σout
2) ∩ Σin .

Then,

freezeΣ′fr (Σin |freezeΣfr (M1) +M2) = freezeΣ′fr (M1 +M2).

Proof. Set Σout = Σout
1 ∪ Σout

2 . Then by axioms (9), (7), (10) and (6) of SP ,

freezeΣ′fr ((Σin |freezeΣfr (M1)) +M2)

= freeze[i
Σ′fr ,Σout ,iΣfr ,Σout](id

Σfr +i
Σ in \Σfr ,Σin |M1 + Σfr +Σin |M2).

Now set σ′in = [iΣfr ,Σ′fr , idΣ ′fr].

By unicity, iΣ′fr ,Σout ◦ σ′in = [iΣ′fr ,Σout , iΣfr ,Σout]. Hence, by axiom (9)

freeze[i
Σ′fr ,Σout ,iΣfr ,Σout](id

Σfr +i
Σ in \Σfr ,Σin |M1 + Σfr +Σin |M2)

= freezeΣ′fr (id
Σin \Σ ′fr +σ′ in |id

Σfr +i
Σ in \Σfr ,Σin |M1 + id

Σin \Σ ′fr +σ′ in |Σ fr +Σ in |M2).

Now

(idΣ in\Σ ′fr + σ′in) ◦ (idΣ fr + iΣ in\Σ fr ,Σ in)|Σ in\Σ fr = (idΣ in\Σ ′fr + σ′in)|Σin\Σfr

= [iΣin\Σ′fr ,Σin , iΣ′fr\Σfr ,Σin]

= iΣin\Σfr ,Σin

and

(idΣ in\Σ ′fr + σ′in) ◦ (idΣ fr + iΣ in\Σ fr ,Σ in)|Σ fr = (idΣ in\Σ ′fr + σ′in)|Σfr

= σ′in |Σfr

= iΣfr ,Σin .

Hence (idΣ in\Σ ′fr + σ′in) ◦ (idΣ fr + iΣ in\Σ fr ,Σ in)|Σ in\Σ fr = [iΣ in\Σ fr ,Σ in , iΣ fr ,Σ in] = idΣ in .

Analogously, if j denotes the injection from Σin to Σin + Σfr , then

(idΣ in\Σ ′fr + σ′in) ◦ j = [iΣ in\Σ ′fr ,Σ in , iΣ ′fr ,Σ in] = idΣ in .

Therefore, we have

freezeΣ′fr (id
Σin \Σ ′fr +σ′ in |id

Σfr +i
Σ in \Σfr ,Σin |M1 + id

Σin \Σ ′fr +σ′ in |Σ fr +Σ in |M2)

= freezeΣ′fr (M1 +M2),

which concludes the proof.

Lemma 3.2. Let M: Σin → Σout be a mixin and let Σfr ,Σ′in be two signatures such that

Σfr ⊆ Σout ∩ Σin , Σin ⊆ Σ′in . Then,

freezeΣ′fr (Σ′ in |M) = freezeΣ′fr\(Σ′ in\Σin)((Σ′ in\(Σin∪Σfr))∪Σin |M).

Proof. Trivially,

freezeΣ′fr (Σ′ in |M) = freezeΣ′fr ((Σ′ in\Σin)∪Σin |M).

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 724

Now, by axiom (6),

freezeΣ′fr ((Σ′ in\Σin)∪Σin |M)

= freezeΣfr\(Σ′ in\Σin)(freezeΣfr∩(Σ′ in\Σin)((Σ′ in\(Σin∪Σfr))∪((Σ′ in\Σin)∩Σfr)∪Σin |M)),

which, by axiom (9),

= freezeΣfr\(Σ′ in\Σin)(freeze6((Σ′ in\(Σin∪Σfr))∪Σin |M)),

which by axiom (7),

= freezeΣ′fr\(Σ′ in\Σin)((Σ′ in\(Σin∪Σfr))∪Σin |M),

concluding the proof.

From Lemmas 3.1 and 3.2 we can derive:

(M1 ⊕M2)⊕M3 = freezeΣfr∩Σin (Σin |M1 + Σin |M2 + Σin |M3) = M1 ⊕ (M2 ⊕M3),

with Σfr = Σfr
1 ∪Σfr

2 ∪Σfr
3 , Σfr

i = Σout
i \Σin

i , i = 1, 2, 3, Σin = Σin
1 ∪Σin

2 ∪Σin
3 . Note that from

this proof we can easily derive the following law (for a finite non-empty set of indexes

I): ⊕i∈IMi = freezeΣfr∩Σin (
∑

i∈I Σin |Mi), where Mi: Σin
i → Σout

i , i ∈ I , Σfr =
⋃
i∈I (Σout

i \ Σin
i),

Σin =
⋃
i∈I Σin

i , Σout
i ∩ Σout

j =6, for any i, j ∈ I , i 6= j.

The existence of the neutral element (axiom (ix)) derives from axioms (4), (7) and

law (16):

M1 ⊕M2|6 = freeze(Σout
1 \Σin

1)∩Σin
1
(Σin

1 |M1 + Σin
1 |M2|6) = freeze6(M1) = M1.

The overriding operator reduces to merge (axiom (x)) when the output signatures are

disjoint: M1 ⇐M2 = M1|Σout
1 \Σout

2
⊕M2 = M1|Σout

1
⊕M2 = M1 ⊕M2.

The existence of the left neutral element for overriding is stated in axiom (xi):

M1 ⇐M2 = M1|Σout
1 \Σout

2
⊕M2 = M1|6 ⊕M2 = M2.

From axiom (xi) one can easily deduce idempotency of overriding: M ⇐M = M.

The existence of the right neutral element for overriding is stated in axiom (xii):

M1 ⇐M2|6 = M1|Σout
1 \6 ⊕M2|6 = M1.

4. Normal form theorem

In this section we show that each mixin expression is provably equal to another mixin

expression having a standard form (only one application of the freeze and the ouput

reduct operator). Note that, since our approach is parametric in the core language, mixin

expressions are not built on top of constants (which depend on the core language), but

only on top of variables.

For the sake of simplicity, we omit the coproducts over which sum and freeze operators

are indexed.

Definition 4.1. Let X be a family of non-empty sets of variables indexed over

{mix (Σ in ,Σ out) | Σin ,Σout in Sig}.
Then MEX denotes the set of all terms inductively defined over the signature of SP and

X.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 725

Theorem 4.2. Let M be a term in MEX . Then there exist a coproduct J = <j1, .., jn>,

variables xi in X and morphisms σin
i , σout and σfr , i = 1, .., n (n > 1), such that

M = (freezeσfr (
∑
J

σin
i |xi))

|σout

.

Proof. The proof is by induction over the structure of terms.

Basis: let M ≡ x, where ≡ denotes syntactic equality, with x in Xmix (Σ in ,Σ out). Then it is

immediate to prove, by axioms (4) and (7), that

x = (freeze6Σout
(
∑

<6Σout>

[idΣin ,6Σin]|x))

|idΣout

,

with 6 any initial object in Sig.

Induction step:

— M ≡ σ′ in |M ′|σ′out : By induction,

M ′ = (freezeσfr (
∑
J

σin
i |xi))

|σout

.

Therefore, by axioms (5) and (9),

σ′ in |((freezeσfr (
∑
J

σin
i |xi))

|σout

)

|σ′out

= (freezeσfr (σ′ in +id
Σfr |
∑
J

σin
i |xi))

|σout◦σ′out

,

which, by law (13) and axiom (5),

= (freezeσfr (
∑
J

(σ′ in +id
Σfr)◦σin

i |xi))
|σout◦σ′out

.

— M ≡ freezeσ′fr (M
′): By induction

M ′ = (freezeσfr (
∑
J

σin
i |xi))

|σout

.

Therefore, by axioms (8), (4) and (6)

freezeσ′fr ((freezeσfr (
∑
J

σin
i |xi))

|σout

)

= (freeze[σ′fr ,σout◦σfr]([l1 ,l2◦m1 ,l2◦m2]|
∑
J

σin
i |xi))

|σout

,

which, by law (13) and axiom (5),

= (freeze[σ′fr ,σout◦σfr](
∑
J

[l1 ,l2◦m1 ,l2◦m2]|σin
i |xi))

|σout

— M ≡M1 +M2: By induction

Mk = (freeze
σ

fr
k
(
∑
Jk

σ
(k)
i |x

(k)
i))

|σout
k

,

with Jk = <j
(k)
1 , .., j(k)

nk
>, k = 1, 2.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 726

Therefore, by law (11) and axiom (10),

(freeze
σ

fr
1
(
∑
J1

σ
(1)
i |x

(1)
i))

|σout
1

l1+l2 (freeze
σ

fr
2
(
∑
J2

σ
(2)
i |x

(2)
i))

|σout
2

=

(freeze
σ

fr
1 +σ

fr
2
(([p1 ,p2◦k1]|

∑
J1

σ
(1)
i |x

(1)
i)l1+l2 ([p1 ,p2◦k2]|

∑
i∈J2

σ
(2)
i |x

(2)
i)))

|σout
1 +σout

2

which, by law (13) and axiom (5),

= (freeze
σ

fr
1 +σ

fr
2
(
∑
J

σin
i |xi))

|σout
1 +σout

2

where J = <l1 ◦ j(1)
1 , .., l1 ◦ j(1)

n1
, l2 ◦ j(2)

1 , .., l2 ◦ j(2)
n2
>

for all i = 1, .., n1 + n2, xi =

{
x

(1)
i if i 6 n1

x
(2)
i if i > n1

σin
i =

{
[p1, p2 ◦ k1] ◦ σ(1)

i if i 6 n1

[p1, p2 ◦ k2] ◦ σ(2)
i if i > n1

4.1. A term rewriting system for mixin modules

From the specification SP we can derive a complete, that is, strongly normalizing and

confluent, term rewriting system T where normal forms have the shape specified in

Theorem 4.2 (see Figure 5).

The rewriting rules correspond to all axioms used for proving the induction step of

Theorem 4.2, including the derived laws (11) and (13). In order to keep the set of rewriting

rules as simple as possible, the reduct operators have been split into two different classes,

the input reduct operators σin | and the output reduct operators |σout for any morphism

σin and σout , respectively.

The right direction of the rewriting rules is driven by Theorem 4.2, so that multiple

applications of the reduct and freeze operators can reduce to a unique application (rules

(4), (5) and (7)) and applications of the reduct operators over input and output signatures

can migrate inside and outside the terms, respectively (all the other rules).

Note that axiom (10) and law (11) have been slightly changed in T in order to get a

confluent system. Rules (1) and (2) correspond to law (11), whereas rules (10) and (11)

correspond to axiom (10). In rule (10) the coproduct <m1, m2> (see Figure 1) is defined

by m1 = idΣ in and m2 = 6Σin , with 6 any initial object in Sig; analogously, in rule (11),

l1 = idΣ in and l2 =6Σin .

The proof of strong normalisation is also driven by Theorem 4.2; indeed, it suffices to

define a reduction ordering that counts all the operations that are in the ‘wrong’ position

inside a given term.

Theorem 4.3. The term rewriting system of T is strongly normalizing.

Proof. Let us define a map | | from the set of terms of T into the set of natural

numbers such that:

— |φl| > |φr| for any reduction rule l → r in T and any substitution φ;

— if |M1| < |M2|, then |C[M1]| < |C[M2]|, for any context C[] and terms M1, M2 of T.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 727

(1) M1 |σout
1

k1+k2M2 → (M1
j1+j2M2)|σout

1
+id

Σout
2

(2) M1
k1+k2M2 |σout

2
→ (M1

j1+j2M2)|id
Σout

1
+σout

2

(3) σin |(M1
j1+j2M2)→ σin |M1

j1+j2
σin |M2

(4) σin
2
|σin

1
|M → σin

2
◦σin

1
|M

(5) M|σout
1
|σout

2
→M|σout

1
◦σout

2

(6) σin |(M|σout)→ (σin |M)|σout

(7) freeze
k1 ,k2

σ
fr
2

(freeze
j1 ,j2

σ
fr
1

(M))→ freeze
l1 ,l2

[σ
fr
2
,σ

fr
1

]
([l1 ,l2◦m1 ,l2◦m2]|M)

(8) freeze
j1 ,j2
σfr (M|σout)→ (freeze

k1 ,k2

σ′fr (id
Σin +σin |M))|σout

(9) σin |(freeze
j1 ,j2
σfr (M))→ freeze

k1 ,k2

σ′fr (σin +σ′ in |M)

(10) freeze
l1 ,l2

σ
fr
1

(M1)j1+j2M2 → freeze
p1 ,p2

σ
fr
1

+6
Σout

2

([p1 ,p2◦k1]|M1
j1+j2

p1 |M2)

(11) M1
j1+j2 freeze

m1 ,m2

σ
fr
2

(M2)→ freeze
p1 ,p2

6
Σout

1
+σ

fr
2

(p1 |M1
j1+j2

[p1 ,p2◦k2]|M2)

Fig. 5. The term rewriting system T derived from SP

Then, by induction over the reduction rules, it is trivial to prove that for any term M1

and M2 of T, if M1
+→ M2, then |M2| < |M1| (with

+→ the transitive closure of →), so it

is not possible to have an infinite reduction sequence.

To this end, we define the following map | |:
|x| = 0

|σin |M| =
{ |M|+ 1 if sym(M) 6=6
|M| otherwise

|M1
j1+j2M2| =

{ |M1|+ |M2|+ 1 if (Freeze ∪ OutReduct) ∩ sym(M1
j1+j2M2) 6=6

|M1|+ |M2| otherwise

|freezej1 ,j2
σfr (M)| =

{ |M|+ 1 if (Freeze ∪ OutReduct) ∩ sym(M) 6=6
|M| otherwise

|M|σout | =
{ |M|+ 1 if OutReduct ∩ sym(M) 6=6
|M| otherwise

where Freeze and OutReduct are defined by

Freeze = {freezej1 ,j2σ | σ morphism in Sig, <j1, j2> coproduct in Sig}
OutReduct = { |σ | σ morphism in Sig}

and sym is the function returning the set of all operator symbols contained in a given

term:

sym(x) =6
sym(σin |M) = {σin | } ∪ sym(M)

sym(M1
j1+j2M2) = { j1+j2 } ∪ sym(M1) ∪ sym(M2)

sym(freezej1 ,j2
σfr (M)) = {freezej1 ,j2

σin } ∪ sym(M)

sym(M|σout) = { |σout } ∪ sym(M)

Now it is trivial to prove that |φl| > |φr| for any reduction rule l → r in T and any

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 728

substitution φ. For instance, in rule (1) we have

|φl| = 1 + |φM1|+ |φM2| < |φM1|+ |φM2| = |φr|.
Furthermore, it is easy to show that for any context C[] and terms M1, M2 of T, if

|M1| < |M2|, then |C[M1]| < |C[M2]|, and hence we can conclude the proof.

Now let us consider confluency. Formally, the term rewriting system defined in Figure 5

is not confluent, except for some rare cases†. For instance, let Sig be the category Set

of small sets and consider the term M ≡ x|σk1+k2y with x:mix ({i}, {o ′}), y:mix ({i}, {o}),
σ: {o} → {o′} and k1, k2: {o} → {o1, o2} defined by ki(o) = oi, i = 1, 2.

By applying rule (1), we have M → (xj1+j2y)|id{o1 ,o2 }
, but also M → (xj

′
1+j ′2y)|σ′ , where

<j1, j2>, <j ′1, j ′2> are the two coproducts defined by j1(o′) = o1, j2(o) = o2, j ′1(o′) = o2,

j ′2(o) = o1, and σ′ is defined by σ′(o1) = o2, σ′(o2) = o1. But both (xj1+j2y)|id{o1 ,o2 }
and

(xj
′
1+j ′2y)|σ′ are normal forms, therefore the term rewriting system is not confluent. Clearly,

this counter-example works as long as the system allows us to choose any possible

coproduct of {o′} and {o}, and the problem can be solved once a unique coproduct is

fixed. In this way, for each pair of output signatures Σout
1 , Σout

2 we can restrict ourselves

to consider only the canonical representative of the class of operators {j1+j2 | <j1, j2>
coproduct of Σout

1 and Σout
2 }. Note that this is the equivalence class determined by the

relation over sum operators defined by:

j1+j2 ∼ k1+k2 iff <j1, j2> and <k1, k2> are coproducts of Σout
1 and Σout

2 .

An analogous problem arises with the freeze operators; by a careful analysis of the

rewriting rules from (7) to (11) we can note that, for each pair of signatures Σin , Σout , it is

possible to choose a freeze operator for the right-hand side ranging over the equivalence

class determined by the following relation over freeze operators:

freezej1 ,j2
σfr ∼ freezek1 ,k2

σ′fr

iff σfr : Σfr → Σout , σ′fr : Σ′fr → Σout , <j1, j2> is a coproduct of Σin and Σfr , <k1, k2> is

a coproduct of Σin and Σ′fr and there exists an isomorphism σ: Σfr → Σ′fr such that

σ′fr ◦ σ = σfr (note the analogy with law (19)).

By laws (18) and (19), for every term M there always exists a canonical term M, that is,

a term built on top of canonical sum and freeze operators such that M = M. This allows

us to consider only canonical reduction sequences, that is, reduction sequences containing

only canonical terms.

Finally, we can prove that T is confluent whenever we restrict ourselves to consider

canonical reduction sequences only.

Theorem 4.4. The term rewriting systemT is confluent for canonical reduction sequences.

Proof. It is sufficient to show that each canonical critical pair (M1,M2) of T is

convergent, that is, there exists a canonical term M such that M1
∗→ M, M2

∗→ M, with

† For instance, when Sig is a partial order with finite colimits.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 729

∗→ the reflexive and transitive closure of→ (restricted to canonical terms); therefore,T is

weakly confluent, and by Theorem 4.3 we can conclude that T is confluent. For reasons

of space, we will only show the two most significant cases; the others can be proved

routinely in an analogous way.

— The left-hand side of rule (7) unifies with its proper subterm freezej1 ,j2
σ

fr
1

(M) yielding the

canonical term freezek1 ,k2

σ
fr
3

(freezej1 ,j2
σ

fr
2

(freezeh1 ,h2

σ
fr
1

(M))); then, applying rule (7) to the outer-

and inner-most redex, respectively, we obtain the canonical critical pair <M1,M2>,

with

M1 = freezel1 ,l2
[σ

fr
3 ,σ

fr
2]

([l1 ,l2◦m1 ,l2◦m2]|freezeh1 ,h2

σ
fr
1

(M)),

M2 = freezek1 ,k2

σ
fr
3

(freeze
l′1 ,l′2
[σ

fr
2 ,σ

fr
1]

([l′1 ,l′2◦m′1 ,l′2◦m′2]|M)).

By rule (9),

M1 → freezel1 ,l2
[σ

fr
3 ,σ

fr
2]

(freeze
h′1 ,h′2
σ′fr1

([l1 ,l2◦m1 ,l2◦m2]+σ′ in |M)).

By rules (7) and (4),

freezel1 ,l2
[σ

fr
3 ,σ

fr
2]

(freeze
h′1 ,h′2
σ′fr1

([l1 ,l2◦m1 ,l2◦m2]+σ′ in |M))
+→

freeze
l′′1 ,l′′2
[[σ

fr
3 ,σ

fr
2],σ′fr1]

([l′′1 ,l′′2 ◦m′′1 ,l′′2 ◦m′′2]◦([l1 ,l2◦m1 ,l2◦m2]+σ′ in)|M).

Again by rules (7) and (4),

M2
+→ freeze

l′′′1 ,l
′′′
2

[σ
fr
3 ,[σ

fr
2 ,σ

fr
1]]

([l′′′1 ,l
′′′
2 ◦m′′′1 ,l′′′2 ◦m′′′2]◦[l′1 ,l′2◦m′1 ,l′2◦m′2]|M).

Hence we can conclude by unicity of the canonical term.

— The left-hand side of rule (10) unifies with that of rule (11) yielding the canonical term

freezel1 ,l2
σ

fr
1

(M1)j1+j2 freezem1 ,m2

σ
fr
2

(M2).

Then, applying rules (10) and (11), respectively, we obtain the canonical critical pair

<M3,M4>, with

M3 = freezep1 ,p2

σ
fr
1 +6Σout

2

([p1 ,p2◦k1]|M1
j1+j2

p1|freezem1 ,m2

σ
fr
2

(M2)),

M4 = freeze
p′1 ,p′2
6Σout

1
+σ

fr
2

(p′1|freezel1 ,l2
σ

fr
1

(M1)j1+j2
[p′1 ,p′2◦k′2]|M2)

By rules (9), (11) and (4),

M3
+→ freezep1 ,p2

σ
fr
1 +6Σout

2

(freeze
p′′1 ,p′′2
6Σout

1
+σ′fr2

(p′′1◦[p1 ,p2◦k1]|M1
j1+j2

[p′′1 ,p′′2◦k′′2]◦(p1+σ′ in)|M2)).

By rules (7), (4) and (3),

freezep1 ,p2

σ
fr
1 +6Σout

2

(freeze
p′′1 ,p′′2
6Σout

1
+σ′fr2

(p′′1◦[p1 ,p2◦k1]|M1
j1+j2

[p′′1 ,p′′2◦k′′2]◦(p1+σ′ in)|M2))
+→

freeze
l′′1 ,l′′2
[σ

fr
1 +6Σout

2
,6Σout

1
+σ′fr2]

(M ′3j1+j2M ′4)

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 730

with

M ′3 = [l′′1 ,l′′2 ◦m′′1 ,l′′2 ◦m′′2]◦p′′1◦[p1 ,p2◦k1]|M1,

M ′4 = [l′′1 ,l′′2 ◦m′′1 ,l′′2 ◦m′′2]◦[p′′1 ,p′′2◦k′′2]◦(p1+σ′ in)|M2.

By rules (9), (10) and (4),

M4
+→ freeze

p′1 ,p′2
6Σout

1
+σ

fr
2

(freeze
p′′′1 ,p′′′2
σ′fr1 +6Σout

2

([p′′′1 ,p′′′2 ◦k′′′1]◦(p′1+σ′′ in)|M1
j1+j2

p′′′1 ◦[p′1 ,p′2◦k′2]|M2)).

By rules (7), (4) and (3),

freeze
p′1 ,p′2
6Σout

1
+σ

fr
2

(freeze
p′′′1 ,p′′′2
σ′fr1 +6Σout

2

([p′′′1 ,p′′′2 ◦k′′′1]◦(p′1+σ′′ in)|M1
j1+j2

p′′′1 ◦[p′1 ,p′2◦k′2]|M2))
+→

freeze
l′′′1 ,l

′′′
2

[6Σout
1

+σ
fr
2 ,σ

′fr
1 +6Σout

2
]
(M ′′3 j1+j2M ′′4),

with

M ′′3 = [l′′′1 ,l
′′′
2 ◦m′′′1 ,l′′′2 ◦m′′′2]◦[p′′′1 ,p′′′2 ◦k′′′1]◦(p′1+σ′′ in)|M1,

M ′′4 = [l′′′1 ,l
′′′
2 ◦m′′′1 ,l′′′2 ◦m′′′2]◦p′′′1 ◦[p′1 ,p′2◦k′2]|M2.

Hence we can conclude by unicity of the canonical term.

5. Soundness

In this section we prove that the specification presented in Section 3 is sound with

respect to the model previously defined in Ancona and Zucca (1998b) (summarised in

Section 2 and called in this section the standard model). In other words, we prove that

the interpretations where mixins are seen as functions from input to output components

satisfy all the expected properties.

As expected, the proof is independent of the particular core framework on which the

standard model is instantiated; in other words, every standard model built on a framework

satisfying the properties in Definition 2.3 of Section 2 satisfies all axioms of SP .

Of course, since the specification SP is in many-sorted (positive) conditional logic, it

also trivially includes non-standard models (that is, models where mixins are not seen as

functions).

Theorem 5.1. For any core framework F, the standard model M(F) built on top of F
is a model of the algebraic specification SP .

Proof. We show that each axiom in SP is satisfied by M(F).

(1) For all A ∈ Mod (Σin):

By the definition of reduct and functoriality of Mod),

(M1
j1+j2M2)|j1 (A) = ((M1

j1+j2M2)(A))|j1 .

By the definition of sum,

((M1
j1+j2M2)(A))|j1 = (M1(A)j1+j2M2(A))|j1 .

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 731

By the amalgamation property,

(M1(A)j1+j2M2(A))|j1 = M1(A).

(2) This case is symmetric to (1).

(3) Let us assume by hypothesis that M1|ji = M2|ji , i = 1, 2. Then, for all A ∈ Mod (Σin):

By the definition of reduct and functoriality of Mod ,

M1(A)|ji = M2(A)|ji , i = 1, 2.

By the amalgamation property,

M1(A) = M2(A).

(4) For all A ∈ Mod (Σin), by the definition of reduct and functoriality of Mod ,

idΣin |M|idΣout (A) = M(A).

(5) For all A ∈ Mod (Σin
2):

By the definition of reduct,

σin
2 |σin

1 |M|σout
1 |σout

2
(A) = (M(A|σin

2 |σin
1

))|σout
1 |σout

2

.

By functoriality of Mod ,

(M(A|σin
2 |σin

1
))|σout

1 |σout
2

= (M(A|σin
2 ◦σin

1
))|σout

1 ◦σout
2

.

By the definition of reduct

(M(A|σin
2 ◦σin

1
))|σout

1 ◦σout
2

= σin
2 ◦σin

1 |M|σout
1 ◦σout

2
(A).

(6) For all A ∈ Mod (Σin):

By the definition of freeze,

freezek1 ,k2

σ
fr
2

(freezej1 ,j2
σ

fr
1

(M))(A) = fix (λX.fix (λY .M((Ak1+k2X|σfr
2
)j1+j2Y|σfr

1
))).

By property (3) of fix ,

fix (λX.fix (λY .M((Ak1+k2X|σfr
2
)j1+j2Y|σfr

1
)))

= fix (λX.M((Ak1+k2X|σfr
2
)j1+j2X|σfr

1
)).

By the amalgamation property,

fix (λX.M((Ak1+k2X|σfr
2
)j1+j2X|σfr

1
))

= fix (λX.M((Al1+l2X|[σfr
2 ,σ

fr
1])|[l1 ,l2◦m1 ,l2◦m2]

)).

By the definition of freeze and reduct,

fix (λX.M((Al1+l2X|[σfr
2 ,σ

fr
1])|[l1 ,l2◦m1 ,l2◦m2]

))

= (freezel1 ,l2
[σ

fr
2 ,σ

fr
1]

([l1 ,l2◦m1 ,l2◦m2]|M))(A).

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 732

(7) For all A ∈ Mod (Σin):

By the definition of freeze,

freezej1 ,j26Σout
(M)(A) = fix (λX.M(Aj1+j2X|6Σout)).

By the amalgamation property and finite cocompleteness of Mod ,

fix (λX.M(Aj1+j2X|6Σout)) = fix (λX.M(A|[idΣin ,6Σin])).

By property (1) of fix and the definition of reduct,

fix (λX.M(A|[idΣin ,6Σin])) = ([idΣin ,6Σin]|M)(A).

(8) For all A ∈ Mod (Σin):

By the definition of freeze and reduct:

freezej1 ,j2
σfr (M|σout)(A) = fix (λX.(M(Aj1+j2X|σfr))|σout).

By property (2) of fix and functoriality of Mod ,

fix (λX.(M(Aj1+j2X|σfr))|σout) = (fix (λY .M(Aj1+j2Y|σout◦σfr)))|σout .

By the amalgamation property and σ′fr ◦ σin = σout ◦ σfr ,

(fix (λY .M(Aj1+j2Y|σout◦σfr)))|σout = (fix (λY .M((Ak1+k2Y|σ′fr)|idΣin +σin
)))
|σout

.

By the definition of freeze and reduct,

(fix (λY .M((Ak1+k2Y|σ′fr)|idΣin +σin
)))
|σout

= (freezek1 ,k2

σ′fr (idΣin +σin |M))|σout
.

(9) For all A ∈ Mod (Σ′in):

By the definition of freeze and reduct,

σin |(freezej1 ,j2
σfr (M))(A) = fix (λX.M(A|σin

j1+j2X|σfr)).

By the amalgamation property,

fix (λX.M(A|σin
j1+j2X|σfr)) = fix (λX.M((Ak1+k2X|σ′fr)|σin +σ′ in

)).

By the definition of freeze,

fix (λX.M((Ak1+k2X|σ′fr)|σin +σ′ in
)) = (freezek1 ,k2

σ′fr (σin +σ′ in |M))(A).

(10) For all A ∈ Mod (Σin):

By the definition of freeze and sum,

(freezel1 ,l2
σ

fr
1

(M1)j1+j2 freezem1 ,m2

σ
fr
2

(M2))(A)

=

fix (λX1.M1(Al1+l2X1|σfr
1
))j1+j2fix (λX2.M2(Am1+m2X2|σfr

2
))

By the amalgamation property and property (2) of fix .,

fix (λX1.M1(Al1+l2X1|σfr
1
))j1+j2fix (λX2.M2(Am1+m2X2|σfr

2
))

=

fix (λX.M1(Al1+l2X|j1|σfr
1
)j1+j2M2(Am1+m2X|j2|σfr

2
))

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 733

By the amalgamation property,

fix (λX.M1(Al1+l2X|j1|σfr
1
)j1+j2M2(Am1+m2X|j2|σfr

2
))

=

fix (λX.M1((Ap1+p2X|σfr
1 +σ

fr
2
)|[p1 ,p2◦k1]

)j1+j2M2((Ap1+p2X|σfr
1 +σ

fr
2
)|[p1 ,p2◦k2]

)).

By the definition of freeze, sum and reduct,

fix (λX.M1((Ap1+p2X|σfr
1 +σ

fr
2
)|[p1 ,p2◦k1]

)j1+j2M2((Ap1+p2X|σfr
1 +σ

fr
2
)|[p1 ,p2◦k2]

))

=

(freezep1 ,p2

σ
fr
1 +σ

fr
2

([p1 ,p2◦k1]|M1
j1+j2

[p1 ,p2◦k2]|M2))(A).

Theorem 5.1 states that the standard model for the three primitive mixin operations

summarised in Section 2 is a model of SP . However, we can also prove a similar result

when considering the high-level operations defined in Section 2 and the corresponding

axioms defined in Figure 3.

Theorem 5.2. For any core framework F, the standard model built on top of F and

extended to high-level operations is a model of the axioms defined in Figure 3.

Proof. The only non-trivial case concerns the operation of functional composition;

proofs for the other high-level operations can be obtained easily by applying the semantic

definitions.

In order to prove the soundness of axiom (vi), we first show that the two expressions

M2◦M1 and hide Σout
1 in (M1 ⊕M2) have the same type (recall that Mi: Σin

i → Σout
i , i = 1, 2,

and that Σout
1 = Σin

2 \ Σout
2 and (Σin

1 \ Σout
1) ∩ Σout

2 =6). To this end we use the following

(easy to prove) properties of boolean categories:

— (Σ1 ∪ Σ2) \ Σ3 = (Σ1 \ Σ3) ∪ (Σ2 \ Σ3)

— Σ1 \ (Σ2 ∪ Σ3) = (Σ1 \ Σ2) \ Σ3

— Σ1 ∩ Σ2 =6⇒ Σ1 \ Σ2 = Σ1

— Σ1 \ (Σ1 \ Σ2) = Σ1 ∩ Σ2

— Σ1 ⊆ Σ2 ⇒ Σ1 \ Σ2 =6

By the side conditions, Σout
1 = Σin

2 \ Σout
2 , therefore Σout

1 ∩ Σout
2 = 6, so the expression

M1 ⊕M2 is well-typed and has type Σin
1 ∪ (Σin

2 ∩ Σout
2)→ Σout

1 ∪ Σout
2 . Indeed,

Σin
1 ∩ Σfr

2 = ((Σin
1 \ Σout

1) ∩ (Σout
2 \ Σin

2)) ∪ ((Σin
1 ∩ Σout

1) ∩ (Σout
2 \ Σin

2)) =6;

Σin
2 ∩ Σfr

2 = Σin
2 ∩ (Σout

2 \ Σin
2) =6;

Σin
1 ∩ Σfr

1 = Σin
1 ∩ (Σout

1 \ Σin
1) =6;

(Σin
2 ∩ Σout

2) ∩ Σfr
1 = (Σin

2 ∩ Σout
2) ∩ (Σout

1 \ Σin
1) =6;

(Σin
2 \ Σout

2) \ Σfr
1 = Σout

1 \ (Σout
1 \ Σin

1) = Σout
1 ∩ Σin

1 .

Therefore,

(Σin
1 ∪ Σin

2) \ (Σfr
1 ∪ Σfr

2) = ((Σin
1 ∪ Σin

2) \ Σfr
2) \ Σfr

1

= (Σin
1 ∪ Σin

2) \ Σfr
1

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 734

= Σin
1 ∪ (Σin

2 \ Σfr
1)

= Σin
1 ∪ (Σout

1 ∩ Σin
1) ∪ (Σin

2 ∩ Σout
2)

= Σin
1 ∪ (Σin

2 ∩ Σout
2).

Now Σout
1 ⊆ Σout

1 ∪ Σout
2 , hence the expression hide Σout

1 in (M1 ⊕M2) is well-typed and

has type (Σin
1 \ Σout

1) ∪ (Σin
2 ∩ Σout

2)→ Σout
2 . Indeed,

(Σout
1 ∪ Σout

2) \ Σout
1 = Σout

2

and

(Σin
1 ∪ (Σin

2 ∩ Σout
2)) \ Σout

1 = (Σin
1 \ Σout

1) ∪ (Σin
2 ∩ Σout

2).

Then we can show that the two expressions have the same semantics; by axioms (i),

(iv) and (6) we have:

hide Σout
1 in (M1 ⊕M2)

= hide Σout
1 in (freezeΣin∩Σfr (Σin |M1 + Σin |M2))

= (freezeΣout
1 ∩(Σin\Σfr)(freezeΣin∩Σfr (Σin |M1 + Σin |M2)))|Σout\Σout

1

= (freeze(Σout
1 ∩(Σin\Σfr))∪(Σin∩Σfr)(Σin |M1 + Σin |M2)|Σout

2

where Σin = Σin
1 ∪ Σin

2 .

Now

(Σout
1 ∩ (Σin \ Σfr)) ∪ (Σin ∩ Σfr) = Σout

1 ∩ (Σin
1 ∪ (Σin

2 ∩ Σout
2) ∪ (Σout

1 \ Σin
1))

= (Σout
1 ∩ Σin

1) ∪ (Σout
1 \ Σin

1)

= Σout
1 .

Therefore, by definition and by the amalgamation property:

(freezeΣout
1

(Σin |M1 + Σin |M2))|Σout
2

= λA.(fix (λB.F1((A+ B|Σout
1

)|Σin
1

) + F2((A+ B|Σout
1

)|Σin
2

)))
|Σout

2

= λA.(fix (λB.F1(A|Σin
1 \Σout

1
+ B|Σin

1 ∩Σout
1

) + F2(A|Σin
2 ∩Σout

2
+ B|Σout

1
)))|Σout

2

Set

f = fix (λB.F1(A|Σin
1 \Σout

1
+ B|Σin

1 ∩Σout
1

) + F2(A|Σin
2 ∩Σout

2
+ B|Σout

1
)).

Then, by property (1) of fix and the amalgamation property, we obtain

λA.(F1(A|Σin
1 \Σout

1
+ f|Σin

1 ∩Σout
1

) + F2(A|Σin
2 ∩Σout

2
+ f|Σout

1
))|Σout

2

= λA.F2(A|Σin
2 ∩Σout

2
+ f|Σout

1
).

Finally, we can conclude by property (2) of fix since

f|Σout
1

= fix (λB.F1(A|Σin
1 \Σout

1
+ B|Σin

1 ∩Σout
1

)).

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 735

6. Conclusion

We have given an axiomatic characterisation of the notion of a mixin module, following

the spirit of the seminal paper Bergstra et al. (1990). Intepreting axioms as rewriting

rules, we have obtained a confluent and strongly normalizing rewriting system, which

provides a reduction semantics for the language. Moreover, we have shown that the

given axiomatisation is sound with respect to the model previously defined in Ancona and

Zucca (1998b) where mixins are interpreted as functions from input to output components.

Finally, we have used the axioms to prove many other expected properties of the mixin

operators.

This paper is meant to be a continuation of Ancona and Zucca (1998b); a preliminary

version was presented in Ancona and Zucca (1998a). In Ancona and Zucca (1997) and

Ancona (2000) we explored instantiations of the formal framework presented in Ancona

and Zucca (1998b) and here in concrete cases. In Ancona and Zucca (1997) we gave

the translation in terms of our operators of various overriding mechanisms present in

programming languages (including invocation via super), and are able, in this way, to

formalise the relation between these different mechanisms. In Ancona (2000), a concrete

mixin language was obtained by fixing as core language a simple functional language.

Finally, a comprehensive survey of a large part of our work on mixins is given in

Ancona (1998).

Even though inspired by Bergstra et al. (1990), the work presented here is different

with respect to the well-established algebraic treatment of module composition. Here

we address the problem of combining together programming rather than specification

modules, so we have to consider, together with classical operators (like export and

renaming), new operators (like freeze) related to the notions of module modification and

extension that hardly make sense in the context of specifications.

Several papers (Cardelli 1997; Harper and Lillibridge 1994; Jones 1996; Leroy 1994;

Leroy 2000) have pointed out the importance of modularity mechanisms independent of

the underlying core language and supporting the notions of separate compilation and

linking. As far as we are aware, our proposal of axiomatisation for mixins is the first that

supports these principles.

What is missing in this paper is, on the one hand, a true calculus for mixins and, on

the other, a more strict integration of our framework with the notions of type system and

type checking.

For the first point, the work presented here already provides a language of mixin

expressions with a reduction semantics. However, this language is, more appropriately,

a language schema; indeed, it needs to be instantiated over a core language providing,

for example, mixin constants corresponding to basic mixin definitions, as we have shown

in Section 2.2. In Ancona and Zucca (1999) and Ancona and Zucca (2001) we took a

less abstract approach, assuming that mixin constants are collections of definitions of

components that are expressions of the core language (this corresponds to taking as

signatures typed families of symbols). However, the definition of module expressions is

still parametric in that of core expressions; this independence was achieved by adopting

an approach based on implicit substitutions. In this way, we were able to define a true

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

D. Ancona and E. Zucca 736

calculus of mixins, that is, an analogue of λ-calculus where the basic combinators, instead

of application and λ-abstraction, are the mixin primitives (sum, reduct and freeze), together

with a form of dot notation for accessing mixin components. We proved confluence and

soundness of the type system for this calculus, and we also showed that λ-calculus can

be effectively encoded in this mixin calculus, as the result about functional composition

proved in this paper already suggests. Other related proposals for module calculi can be

found in Wells and Vestergaard (2000) and Machkasova and Turbak (2000).

As for type checking, an important point to be investigated is how to integrate the

mixin-based approach with the possibility of specifying various kinds of type constraints

in signatures: for instance, subtyping constraints, type sharing and manifest types (Leroy

1994). A promising direction seems to be to use some formal notion of signature param-

eterised by a type system, as defined in Ancona (1999).

References

Adàmek, J., Herrlich, H. and Strecker, G. (1990) Abstract and Concrete Categories, Pure and

Applied Mathematics, John Wiley & Sons.

Ancona, D. (1998) Modular Formal Frameworks for Module Systems, Ph. D. thesis, Dipartimento di

Informatica, Università di Pisa.

Ancona, D. (1999) An algebraic framework for separate type-checking. In: Fiadeiro, J. (ed.)

WADT’98 (13th Workshop on Algebraic Development Techniques). Springer-Verlag Lecture

Notes in Computer Science 1589 1–15.

Ancona, D. (2000) MIX(FL): a kernel language of mixin modules. In: Rus, T. (ed.) AMAST 2000

– Algebraic Methodology And Software Technology. Springer-Verlag Lecture Notes in Computer

Science 1816 454–468.

Ancona, D. and Zucca, E. (1997) Overriding operators in a mixin-based framework. In: Glaser, H.,

Hartel, P. and Kuchen, H. (eds.) PLILP ’97 - 9th Intl. Symp. on Programming Languages,

Implementations, Logics and Programs. Springer-Verlag Lecture Notes in Computer Science 1292

47–61.

Ancona, D. and Zucca, E. (1998a) An algebra of mixin modules. In: Parisi Presicce, F. (ed.) Recent

Trends in Algebraic Development Techniques (12th Intl. Workshop, WADT’97 - Selected Papers).

Springer-Verlag Lecture Notes in Computer Science 1376 92–106.

Ancona, D. and Zucca, E. (1998b) A theory of mixin modules: Basic and derived operators.

Mathematical Structures in Computer Science 8 (4) 401–446.

Ancona, D. and Zucca, E. (1999) A primitive calculus for module systems. In: Nadathur, G. (ed.)

PPDP’99 - Principles and Practice of Declarative Programming. Springer-Verlag Lecture Notes in

Computer Science 1702 62–79.

Ancona, D. and Zucca, E. (2001) A calculus of module systems. Journal of Functional Programming

(to appear).

Astesiano, E., Broy, M. and Reggio, G. (1999) Algebraic specification of concurrent systems. In:

Astesiano, E., Kreowski, H.-J. and Krieg-Brueckner, B. (eds.) Algebraic Foundations of Systems

Specification, IFIP State-of-the-Art Report, Berlin, Springer Verlag.

Banavar, G. and Lindstrom, G. (1996) An application framework for module composition tools.

In: ECOOP ’96. Springer-Verlag Lecture Notes in Computer Science 1098 91–113.

Bergstra, J. A., Heering, J. and Klint, P. (1990) Module algebra. Journ. ACM 37 (2) 335–372.

Bracha, G. (1992) The Programming Language JIGSAW: Mixins, Modularity and Multiple Inheri-

tance, Ph. D. thesis, Department of Comp. Sci., Univ. of Utah.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

A theory of mixin modules: algebraic laws and reduction semantics 737

Bracha, G. and Cook, W. (1990) Mixin-based inheritance. In: ACM Symp. on Object-Oriented

Programming: Systems, Languages and Applications 1990. SIGPLAN Notices 25 (10) 303–311.

Bracha, G. and Lindstrom, G. (1992) Modularity meets inheritance. In: Proc. International Confer-

ence on Computer Languages, San Francisco, IEEE Computer Society 282–290.

Cardelli, L. (1997) Program fragments, linking, and modularization. In: ACM Symp. on Principles

of Programming Languages 1997, ACM Press 266–277.

Cook, W. (1989) A Denotational Semantics of Inheritance, Ph. D. thesis, Dept. Comp. Sci., Brown

University.

Crary, K., Harper, R. and Puri, S. (1999) What is a recursive module? In: PLDI’99 - ACM Conf.

on Programming Language Design and Implementation.

Duggan, D. and Sourelis, C. (1996) Mixin modules. In: Intl. Conf. on Functional Programming,

Philadelphia. SIGPLAN Notices 31 (6) 262–273.

Duggan, D. and Sourelis, C. (1998) Parameterized modules, recursive modules, and mixin modules.

In: 1998 ACM SIGPLAN Workshop on ML, Baltimore Maryland, ACM Press 87–96.

Ehrig, H. and Mahr, B. (1985) Fundamentals of Algebraic Specification 1. Equations and Initial

Semantics, EATCS Monograph in Computer Science 6, Springer-Verlag.

Findler, R. B. and Flatt, M. (1998) Modular object-oriented programming with units and mixins.

In: Intl. Conf. on Functional Programming 1998.

Flatt, M., Krishnamurthi, S. and Felleisen, M. (1998) Classes and mixins. In: ACM Symp. on

Principles of Programming Languages 1998 171–183.

Goguen, J. A. and Burstall, R. M. (1992) Institutions: Abstract model theory for computer science.

Journ. ACM 39 95–146.

Harper, R. and Lillibridge, M. (1994) A type theoretic approach to higher-order modules with

sharing. In: ACM Symp. on Principles of Programming Languages 1994, ACM Press 127–137.

Jones, M. P. (1996) Using parameterized signatures to express modular structure. In: ACM Symp.

on Principles of Programming Languages 1996, St. Petersburg Beach, Florida, ACM Press 68–78.

Leroy, X. (1994) Manifest types, modules and separate compilation. In: ACM Symp. on Principles

of Programming Languages 1994, ACM Press 109–122.

Leroy, X. (2000) A modular module system. Journ. of Functional Programming 10 (3).

Van Limberghen, M. and Mens, T. (1996) Encapsulation and composition as orthogonal operators

on mixins: A solution to multiple inheritance problems. Object Oriented Systems 3 (1) 1–30.

Machkasova, E. and Turbak, F. A. (2000) A calculus for link-time compilation. In: Smolka, G. (ed.)

European Symposium on Programming 2000. Springer-Verlag Lecture Notes in Computer Science

1782 260-274.

Milner, R., Tofte, M. and Harper, R. (1990) The Definition of Standard ML, The MIT Press.

Reddy, U. S. (1988) Objects as closures: Abstract semantics of object-oriented languages. In: Proc.

ACM Conf. on Lisp and Functional Programming 289–297.

Sannella, D., Soko lowski, S. and Tarlecki, A. (1992) Towards formal development of programs from

algebraic specifications: Parameterisation revisited. Acta Informatica 29 (8) 689–736.

Sannella, D. and Tarlecki, A. (1986) Extended ML: an institution-independent framework for formal

program development. In: Proc. Workshop on Category Theory and Computer Programming.

Springer-Verlag Lecture Notes in Computer Science 240 364–389.

Sannella, D. and Tarlecki, A. (1988) Towards formal development of programs from algebraic

specifications: Implementations revisited. Acta Informatica 25 233–281.

Sannella, D. and Wallen, L. (1992) A calculus for the construction of modular Prolog programs.

Journ. of Logic Programming 12 147–177.

Wells, J. B. and Vestergaard, R. (2000) Confluent equational reasoning for linking with first-class

primitive modules. In: Smolka, G. (ed.) European Symposium on Programming 2000. Springer-

Verlag Lecture Notes in Computer Science 1782 412-428.

https://doi.org/10.1017/S0960129502003687 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129502003687

