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This article describes an unexplored transport phenomenon where a mildly viscoelastic
medium encroaches a narrow capillary channel under the action of surface-tension
force. The ultimate goal of the study is to provide the penetration length and the
intrusion rate of the liquid as functions of time. The resulting analysis would be
instrumental in building an inexpensive and convenient rheometric device which
can measure the temporal scale for viscoelastic relaxation from the stored data
of the aforementioned quantities. The key step in the formulation is a transient
eigenfunction expansion of the instantaneous velocity profile. The time-dependent
amplitude of the expansion as well as the intruded length are governed by a system of
integro-differential relations which are derived by exploiting the mass and momentum
conservation principles. The obtained integro-differential equations are simultaneously
solved by using a fourth-order Runge–Kutta method assuming a start-up problem
from rest. The resulting numerical solution properly represents the predominantly
one-dimensional flow which gradually slows down after an initial acceleration and
subsequent oscillation. The computational findings are independently verified by
two separate perturbation theories. The first of these is based on a Weissenberg
number expansion revealing the departure in the unsteady imbibition due to small
but finite viscoelasticity. In contrast, the second one explains the long-time behaviour
of the system by analytically predicting the decay features of the dynamics. These
asymptotic results unequivocally corroborate the simulation inferring the accuracy of
the numerics as well as the utility of the simplified mathematical models.

Key words: capillary flows, non-Newtonian flows, viscoelasticity

1. Introduction

The time-dependent imbibition of a purely viscous liquid inside a narrow conduit
due to capillary action is a century-old topic in fluid mechanics (Washburn 1921;
Szekely, Neumann & Chuang 1970; Chebbi 2007). Such a phenomenon plays a
crucial role in natural processes like ground water percolation (Marmur & Cohen
1997) and transport through xylem ducts in plants (Zhmud, Tiberg & Hallstensson
2000). Similarly, surface-tension-driven flow penetration is also important in industrial
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methods like micro-extrusion (Mitsoulis & Heng 1987) and lithography (Ichikawa,
Hosokawa & Maeda 2004). Surprisingly, past studies (Khuzhayorov, Auriault &
Royer 2000; Fan, Tanner & Phan-Tien 2001; Bazilevsky et al. 2003; Arada, Pires
& Sequeira 2005; Mora & Manna 2010) in the related fields have not attempted
to formulate a rigorous mathematical theory applicable to an intruding viscoelastic
medium instead of a purely viscous one. This article analyses the aforementioned
unexplored problem from a theoretical perspective where the penetrated length and
intrusion rate of a mildly viscoelastic fluid are calculated as temporal functions.

The existing theories for capillary-driven penetration dynamics of a purely viscous
liquid are inherently ill equipped for generalization to systems with viscoelasticity.
The reason behind such inability is a crucial assumption taken for granted in earlier
studies. According to these approximate formulations (Waghmare & Mitra 2010b;
Das, Waghmare & Mitra 2012), an integral approach is applied to describe the
rate of intrusion by equating the total force acting on the domain to the rate of
change of total momentum. However, while doing so, the viscous resistance on the
flow is assumed to be same as the one corresponding to an instantaneous steady
condition. This quasi-steady consideration can only be true for slow variation in
time, because velocity profile would, otherwise, deviate substantially from its steady
version (Bhattacharya & Gurung 2010; Azese 2011). Thus, the resulting analysis
would only be valid for problems where the temporal acceleration is much weaker
than the viscous dissipation. For mediums governed by linear viscoelastic relations, the
modification in the transport process due to rheological properties is typically revealed
under highly transient situation. This is why the well-known integral treatments cannot
be effectively extended for interesting case studies involving viscoelastic fluid.

In our recent analysis, we have presented a new mathematical procedure that can
accurately describe the penetration dynamics of a purely viscous fluid even in the
presence of strong transient variations (Bhattacharya, Azese & Singha 2016). The
developed theory computes the flow field in terms of an eigenfunction expansion
with unknown time-dependent amplitudes. These amplitudes, along with the unsteady
encroached length, are calculated from a system of ordinary differential equations
which are derived from mass and momentum conservation principles.

The eigen expansion technique is perfectly suited for analysing unsteady intrusion
of liquids governed by a linear viscoelasticity relation. In such a case, the system of
governing equations would become integro-differential in nature where the rheological
property is represented by a temporal integral. In this paper, a fourth-order Runge–
Kutta scheme is used to solve these new equations for computation of the unsteady
penetration length assuming a start-up problem from rest.

The described generalization can lead to an inexpensive and convenient rheometric
device. It is well known that any transiency in a medium reveals its rheology
(Groisman, Enzelberger & Quake 2003; Kang & Lee 2013; Koser & Pan 2013; Zilz
et al. 2014). Accordingly, the proposed rheometer would first record the penetrated
length of the fluid as function of time by using any optical device and a data storing
equipment. Then, the stored variation can be utilized to predict properties related
to viscoelastic relaxation of the intruding liquid by comparing the experimental
observation with theoretical expectation for known rheology in an iterative algorithm.
For example, if the measurement is accurate enough, the length versus time plot
can provide the frequency-dependent real and imaginary parts of complex viscosity,
leading to the evaluation of viscoelastic coefficients like G′ and G′′ often referred to
as the storage and loss moduli, respectively.

Apart from rheometry, the developed theory can also be relevant in estimating
the absorption rate of complex fluids in a porous medium. Such an application
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Free surface

Vent(a) (b)

FIGURE 1. (a) The system considered in our analysis where a capillary channel transports
fluid from a drop with a free surface due to the surface tension effect. (b) Earlier works
have considered a slightly different problem where the supplying fluid body is confined
in an infinite chamber requiring a mathematical model for entry loss before the entrance.

can contribute in the removal of oil spillage as well as in the development of new
absorbing materials.

This article is organized in the following way. In § 2, we outline the generalized
mathematical formulation leading to the system of integro-differential relations
involving the transient amplitudes and unsteady intrusion length. In § 3, the coupled
equations are solved simultaneously with a fourth-order Runge–Kutta scheme to
compute the penetration and its rate as functions of time. Section 4 verifies the
simulation results by a novel Weissenberg number expansion which provides further
insight in the short-time dynamics of the system. In contrast, § 5 corroborates the
long-time dynamics revealed in the computation by introducing another different
perturbation theory. Finally, the article is summarized, and conclusions are drawn in
§ 6.

2. Transient eigenfunction expansion for viscoelastic flow
In this section, we present the details of our mathematical analysis for the

unsteady intrusion dynamics of a linearly viscoelastic liquid driven by surface
tension into a narrow capillary channel. Accordingly, the flow equations are
non-dimensionalized, and the instantaneous velocity profile is expanded in terms
of appropriate eigenfunctions. Ultimately, our derivation yields a system of integro-
differential equations involving the transient amplitudes of the eigen expansion and
the time-dependent penetration length.

2.1. The flow system
In our analysis, we consider a horizontal capillary channel of cross-sectional area A
and perimeter s. It is initially prefilled with a liquid column of length h0 and in
contact with a drop of the same substance. The empty part of the conduit is totally
unwetted as long as it is not being occupied by the intruding fluid. The cross-sectional
dimension of the tube is assumed to be much smaller than the size of the drop so
that it can be approximated as an infinite reservoir with a free surface. The contact
point between the drop and the channel is very near to the free surface so that the
flow inside the vessel is solely driven by capillary action without any gravitational
influence. The system is schematically described in figure 1. It also shows side by
side the arrangement considered in earlier works where pressure at the entry point
has to be evaluated by modelling the outside flow. Such a calculation is not needed
in our case as the atmospheric condition prevails at the entrance of our considered
system.

The conduit is assumed to be prefilled by a liquid column of initial length h0
before the start of the dynamics. We anticipate the need for such partial filling
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for accurate rheological measurements. This is because the discrepancy between the
theoretical prediction and the experimental data can be unnecessarily high due to entry
effects if the penetrated distance is of the order of the cross-sectional dimensions. In
the rheometric set-up, h0 can be introduced by either using a retractable barrier or
dissolvable obstacle in the path of the fluid. As a result, the motion in the system
vanishes for some time after reaching a distance, and resumes from a stationary
condition after removal of the blockage. Accordingly, the additional parameter h0 in
the analysis will provide us with the mathematical flexibility to accommodate future
experimental necessity. If this feature is not needed, h0 can simply be taken as 0.

The encroaching medium is a complex fluid whose dynamics is governed by a linear
viscoelastic equation. As a result, the instantaneous stress σ in the liquid domain is
dependent on a weighted history of the velocity field v so that

σ =µ0[∇(L̂tv)+ {∇(L̂tv)}
T
]. (2.1)

Here, superscript T represents transpose, µ0 is the steady-state viscosity and L̂t is an
integral operator in time t and τ

L̂tv|t =
1
τv

∫ t

−∞

M
(

t− τ
τv

)
v(τ ) dτ . (2.2)

The dimensionless weight function M manifests the viscoelastic effect by including the
cumulative influence of past strain rates on the instantaneous stress at a point in the
medium (Rousse Jr 1953). Different mildly viscoelastic liquids can be characterized
by the memory function M. For example, a Maxwell fluid is defined by an exponential
M. For purely viscous case, M becomes a Dirac delta function, so that stress depends
only on the strain rate at that instant and L̂t transforms to an identity operator. Fourier
transform of M yields the complex viscosity normalized by µ0. Consequently, it would
be also possible to evaluate the frequency-dependent viscoelastic coefficients G′ and
G′′ of the medium by relating them to the real and imaginary parts of the Fourier
transform of M.

The definition of steady-state viscosity µ0 implies the zeroth moment of the memory
function M is unity. The convolution in (2.2) explicitly involves the effective time
scale τv for viscoelastic relaxation. It can be uniquely obtained by ensuring the first
moment of M to be unity. In that case, even if the medium involves multiple scales
for relaxation, their weighted average would be expressed by τv. In other words, the
definitions of µ0 and τv impose two constraints on the functional distribution of the
non-dimensional weight function M by specifying two of its moments∫

∞

0
M(ζ ) dζ = 1 and

∫
∞

0
ζM(ζ ) dζ = 1. (2.3a,b)

Properties of any mildly viscoelastic liquid can be represented by µ0, τv and M(ζ )
with ζ being the normalized time interval. Even if multiple time scales of relaxation
are present, these can be described by combining τv and M(ζ ), where the latter would
reveal non-trivial non-monotonic variations.

The fluid domain mainly contains unidirectional but transient flow as long as h0� s.
So apart from the two ends of the liquid column, the dynamics is represented by the
velocity component vz along the direction z of the channel length. Accordingly, the
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system is governed by the following momentum equation involving vz and pressure p

ρ
∂vz

∂t
=µ0∇

2
‖
L̂tvz −

∂p
∂z
, (2.4)

where ρ is the density of the encroaching medium and ∇‖ is the gradient in
cross-sectional plane. When (2.4) is combined with the integral mass balance equation
involving average over cross-sectional area A

dh
dt
=

1
A

∫
vz dA, (2.5)

the penetrated length h can be evaluated as function of t.

2.2. Scaling and non-dimensionalization
We solve (2.4) and (2.5) in dimensionless form to provide a concise and general
description of the transport phenomenon. This requires identification of proper scales
for the variables relevant in the dynamics of the system.

The scales for the cross-sectional coordinates and pressure field are readily available
from the geometric and parametric properties. The former is defined as bc, and
identified as the area-to-perimeter ratio. The latter, denoted Ps, is determined by
equating the average forces due to pressure and capillary action. This means that Ps

is the cross-sectional mean of the Laplace pressure near the propagating interface.
Thus, we conclude:

bc =
A
s

and Ps =
γ s
A
. (2.6a,b)

Here, the constant γ corresponds to the net capillary force along z if multiplied
by the cross-sectional projection of the perimeter. It is given by the difference
between surface-tension coefficients γsa and γsl for solid–air and solid–liquid interfaces,
respectively. Equivalently, due to equilibrium of the contact line, γ is the same as the
product of the liquid–air interfacial tension γla and the cosine of the contact angle θ .
This means that

γ = γsa − γsl = γla cos θ. (2.7)

For low capillary number, γ does not vary, as the propagating front does not change
its shape considerably during the transport process keeping the contact angle θ fixed.

The remaining scales correspond to the penetration length, the phenomenal
duration and the velocity field. These are not only dependent on geometric and
material parameters but also dictated by the period of the relevant transport process.
Kinematic consideration concludes the velocity scale vs to be the ratio of characteristic
penetration hs and time ts. However, we need two more constraints to ultimately
determine vs, hs, ts. At this point, we recall that for rheometry, one has to resolve
the timeframe in which transient effects are comparable to the dissipative influence
of viscous friction. As a result, the characteristic values for both should be equated
to the same for the pressure term induced by the capillary action. So one can derive
the following conditions

hs

tsvs
= 1,

tsµ0

ρb2
c

= 1,
γ ts

ρbchsvs
= 1. (2.8a−c)
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From these it is inferred that

ts = ρb2
c/µ0, hs = bc

√
ργ bc/µ

2
0, vs =

√
γ /(ρbc). (2.9a−c)

This implies that ts is defined as the relevant period for viscous dissipation in (2.9).
The infiltration and its rate are characterized by hs and vs accordingly. For rheometric
purposes, ts and τv should be comparable. Under such conditions, however, the
integral approximation calculating resistance from the steady-state profile would not
be accurate enough.

The scales defined in (2.6) and (2.9) are used to normalize all quantities in (2.4)
and (2.5). As a result, the non-dimensional governing relations become

∂v̄z

∂ t̄
= ∇̄

2
‖
L̂tv̄z −

∂ p̄
∂ z̄

and
dh̄
dt̄
=

1
A

∫
v̄z dA, (2.10a,b)

where v̄z= vz/vs, t̄= t/ts, p̄= p/Ps, h̄= h/hs are all dimensionless and ∇̄‖ is the cross-
sectional gradient normalized by bc. The corresponding dimensionless interpretation of
the operator L̂t in (2.2) redefines it as

L̂tv̄z =
1

Wi

∫ t

−∞

M
(

t̄− τ̄
Wi

)
v̄z(τ ) dτ̄ . (2.11)

Here, Wi is the Weissenberg number

Wi=
τvµ0

ρb2
c

, (2.12)

which is a system-defining non-dimensional parameter denoting the ratio of the time
scales for viscoelastic relaxation and the transient transport process.

2.3. Estimation of the pressure gradient
The capillary effect on the flow is manifested by suction at the propagating front. This
creates a driving pressure gradient across the region of unidirectional streamlines

∂ p̄
∂ z̄
=
1p̄
h̄
, (2.13)

where the dimensionless suction pressure between two ends of the domain is 1p̄. We
provide a proper model for 1p̄, and solve (2.10) to describe the transport process.

In past studies (Stange, Dreyer & Rath 2003; Waghmare & Mitra 2010a; Das et al.
2012) on this topic, 1p̄ is related to two separate pressure drops. The first of these
appears outside the inlet of the channel where the pressure has to be slightly less
than the ambient far away from the entry point to sustain a converging flow towards
the conduit. Our problem, however, is fundamentally different from the systems
considered in the earlier works where the capillary vessel sucks from an infinite
body of fluid without exposure to the atmosphere in close proximity. In contrast, we
have a free-surface reservoir in the form of an infinite drop with its atmospheric
interface situated very near to the entrance. As mentioned before, this distinction is
well represented in the two diagrams in figure 1. Thus, in the present problem, there
is no difference in elevation between the inlet and the atmosphere. Moreover, the
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large size of the drop ensures negligible Laplace pressure in its interior. So one can
safely assume an ambient condition at the entrance of the channel. As a result, we
can find 1p̄ by only taking into account the second contribution in 1p̄ coming from
the region attached to the propagating front.

The region near the front contains axially varying flow with three-dimensional
structure transforming the unidirectional profile into a flow near a propagating front.
Thus, the three-dimensional unsteady Navier–Stokes equation should govern the
hydrodynamic fields here. Still, the scales for time, cross-sectional dimension,
velocity and pressure must be identical between the two adjacent regions with
one-dimensional and three-dimensional streamlines. The only scale which changes
between these two subdomains is the axial length scale, which is bc for the latter
instead of hs defined as the characteristic penetrated distance in § 2.2. When this
change is included in the dimensional analysis, it makes the pressure gradient and the
convective acceleration predominant over temporal and viscous terms. Consequently,
one finds a new dimensionless momentum equation for velocity v̄

δ
∂ v̄

∂ t̄
+ v̄ · ∇v̄ =−∇̄p̄+ δ∇̄2L̂tv̄. (2.14)

The constant non-dimensional parameter δ represents the effective capillary number
which is the ratio of the characteristic viscous and surface-tension forces relevant to
the system

δ =

√
µ2

0/(ργ bc)= bc/hs. (2.15)

If bc is much greater than 100 nanometres, δ is a very small quantity for a wide
range of fluids. We are typically interested in cross-sectional dimensions of a few
millimetres. Then, the value of δ becomes less than 10−3. Hence, we can safely
identify δ to be a very small quantity. Such a fact does not affect the transient nature
of the unidirectional flow, as the pressure gradient there becomes comparable to the
viscous and temporal terms due to the rescaling of the axial scale from bc to hs.
This, however, simplifies the analysis near the front in two ways. Firstly, it makes the
viscous resistance at the boundary layer attached to any interface negligible, especially
in the calculation of the leading-order pressure field. Secondly, we can assume the
shape of the propagating front to be fixed, as a small value of δ implies a small
capillary number and a much stronger capillary force compared to the viscous stress.
Consequently, for leading-order analysis in δ, 1p̄ near the front should be obtained
from a steady inviscid flow equation near an undeformed free surface. This is why all
the past studies (Stange et al. 2003; Waghmare & Mitra 2010a; Das et al. 2012) have
correctly obtained the pressure drop across the front region by using conservation of
linear momentum without considering any boundary layer dissipation or interfacial
deformation. We import their conclusion into our present analysis.

Accordingly, we note that the cross-sectional average 1p̄f of the non-dimensional
Laplace pressure at the front must be −1 due to the normalizing scale. This
nominal value should be modified according to linear momentum conservation at
the subdomain attached to the front to find the pressure 1p̄ at the transition point
between the unidirectional and three-dimensional flow. The difference between 1p̄
and 1p̄f should be equated to a change in linear momentum flux across the region.
When we substitute 1p̄f as −1 in this integral momentum relation, we find the
well-known expression (Waghmare & Mitra 2010a)

1p̄=
(∫

v̄z dĀ
)2

−

∫
v̄2

z dĀ− 1, (2.16)
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where dĀ= dA/A. When the expression for 1p̄ is combined with (2.10) and (2.13),
the final form of the governing relation can be derived

∂v̄z

∂ t̄
=∇

2
‖
L̂tv̄z +

1+
∫
v̄2

z dĀ−
(∫

v̄z dĀ
)2

h̄
and

dh̄
dt̄
=

∫
v̄z dĀ, (2.17a,b)

which has to be solved to compute the flow field, the transport rate and the time-
dependent penetration length.

2.4. Eigenfunction expansion
To obtain the flow solution, we consider a transient eigenfunction expansion of the
velocity v̄z, so that the unsteady flow is expressed in a separable form:

v̄z =
∑

αi(t̄)ui(r̄‖). (2.18)

Here, time-dependent amplitudes are αi, whereas time-invariant eigenfunctions ui only
vary with r̄‖ which is the cross-sectional coordinates normalized by bc. A Helmholtz
equation corresponding to the following eigen value equation defines ui

∇
2
‖
ui =−β

2
i ui, (2.19)

where −β2
i are the allowable eigen values for which ui can satisfy no-slip boundary

conditions at the periphery of the vessel. Sturm–Liouville theorem confirms that the
eigenfunctions ui for any arbitrary geometry should be orthogonal to each other. We
normalize ui in such a way that they become orthonormal as well:∫

uiuj dĀ= δij, (2.20)

where δij is the Kronecker delta. These functions can be constructed for any
cross-section of interest using standard techniques such as the finite volume technique
(Patankar 1980).

Ideally, the summation in (2.18) is an infinite one. However, we truncate it at a
finite but reasonably high limit so that the solution of v̄z is properly represented in
the spectral space. Then, a complete set of integro-differential equations is derived
involving all relevant αi(t̄) as well as h̄(t̄) by considering two facts. Firstly, the linear
momentum conservation relation in (2.17) is exploited to obtain the number, N, of
independent equations for the same number of eigen modes included in the analysis.
Secondly, the integral mass conservation also provides a single relation involving h̄(t̄)
and all αi(t̄). This means that there are (N + 1) unknowns including α1, α2, . . . , αN

as well as h̄(t̄). These have to be evaluated by simultaneously solving the (N + 1)
coupled equations.

In our derivation, we first derive the expression of 1p̄ in terms of eigen amplitudes
αi(t̄) by applying Parseval theorem in (2.16)

1p̄=
(∑

ηiαi

)2
−

∑
α2

i − 1, (2.21)
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where ηi is the cross-sectional integral of ui

ηi =

∫
ui dĀ. (2.22)

Then, v̄z is replaced in the linear momentum conservation relation of (2.17) with the
expansion (2.18). The resulting equality is multiplied by the ith eigenfunction ui, and
integrated over the cross-section. Then, equations (2.19)–(2.22) are used to obtain the
following:

dαi

dt̄
=−β2

i L̂tαi + ηi
1+

∑
α2

j −
(∑

ηjαj
)2

h̄
(2.23)

for i = 1, 2, . . . , N. The remaining equation is obtained from mass conservation so
that the rate of penetration can be expressed in terms of αi and ηi

dh̄
dt̄
=

N∑
i=1

ηiαi(t̄). (2.24)

We solve (2.23) and (2.24) simultaneously to find h̄(t̄) and relevant αi(t̄).

3. Unsteady intruded length and its rate for rectangular channels
In this section, we solve (2.23) and (2.24) simultaneously to compute αi(t̄) and

h̄(t̄) considering the capillary channel to be rectangular in shape. As an outcome, the
intrusion rate and the penetration length are evaluated as functions of time. The results
are presented for different prefilled length h0 and Weissenberg number Wi. Considering
practical rheometric applications, we choose h0 to be of the order of hs and Wi to be
less than 1. Also, we take into account two aspect ratios for the rectangular conduit
which is assumed to be either a square or a slit pore. Finally, we briefly outline the
algorithm to extract rheological properties from the observed transiency in penetration
dynamics.

3.1. Details of the numerical solution scheme
The computation requires determination of the geometric parameters representing
the shape of the conduit. These are the eigenfunctions ui, eigen values β2

i and
cross-sectional integrals ηi. However, we recognize that we need two eigen parameters
associated with the two-dimensional feature of a rectangular cross-section. Accordingly,
we replace the subscript i by two indices n and m. Thus, from now on, ui, βi and
ηi will be referred to as unm, βnm and ηnm, respectively. For a rectangular tube, these
quantities are

unm = 2 cos
(

2n+ 1
2

π
x̄
L̄x

)
cos
(

2m+ 1
2

π
ȳ
L̄y

)
, (3.1)

β2
nm =

π2

4

[
(2n+ 1)2

L̄2
x

+
(2m+ 1)2

L̄2
y

]
=

π2

4(1+ λ)2
[λ2(2n+ 1)2 + (2m+ 1)2], (3.2)

and

ηnm =
8
π2

(−1)n+m

(2n+ 1)(2m+ 1)
. (3.3)
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Here, x̄ and ȳ are the x and y coordinates normalized by bc=A/s, whereas L̄x and L̄y
are the non-dimensional lengths of the sides along the x and y axes. The aspect ratio
of the cross-section is defined by λ which is the ratio of L̄x and L̄y. Although ideally
an infinite number of eigenfunctions should be considered, we take the maximum
value for both m and n to be 40. This ensures less than 0.01 % relative error due
to the spectral convergence.

Subsequent computation considers the flow to be driven by the capillary action
from an initially static condition with an initial prefilled length h0. So the simulation
essentially solves a start-up problem where the initial conditions are taken as
h̄(0) = h̄0 = h0/hs and αnm(0) = 0. Then, a fourth-order Runge–Kutta scheme is
used to simultaneously compute h̄(t̄) and αnm(t̄) from (2.23) and (2.24).

In each time step, we apply a Simpson technique to calculate the integral in the
operator L̂t defined by (2.2) representing the effect of viscoelasticity. In this integral,
the lower limit is replaced by 0 in place of −∞, as there has been no motion before
the initial time. Then stored past values of αnm are multiplied with the memory
function M, and the product is numerically integrated to determine the viscoelastic
stress in (2.23). The fluid is considered to be a Maxwell fluid so that M is exponential
in nature

M(ζ )= e−ζ . (3.4)

It is to be noted that (3.4) satisfies both constraints for M as shown in (2.3).

3.2. Temporal variation in penetration dynamics
The outlined solution scheme finds the rate of imbibition of the viscoelastic liquid
by using the computed values of αnm at each time step in (2.24). The intrusion
rate is presented as a temporal function in figure 2. The result is obtained for both
square channels and slit pores. Moreover, the simulation considers two different
prefilled lengths for each geometry, as well as two values of the Weissenberg number
to illustrate the impact of viscoelasticity. For mildly viscoelastic fluids like dilute
polymeric solutions, a typical Weissenberg number should be less than 1. If the
Weissenberg number becomes more than 1, the medium might not be governed by a
linear viscoelastic law. This is the rationale behind choosing the specific Wi values for
the plots shown in figure 2. For proper comparison, the quantities are also calculated
for a purely viscous fluid as a base case.

In figure 2, higher values of the Weissenberg number Wi imply a stronger
viscoelastic effect causing significant departure in the short-time dynamics from
the behaviour of a purely viscous liquid. Initially, the resistive stress in a viscoelastic
fluid is less than the same for a viscous medium. So, the transport rate for the former
is higher than the latter in the initial phase. At a later time, however, the difference is
reversed, as the flow is pushed back in overcompensation after the relaxation of the
memory effect. Such a reversal is a common feature in systems with viscoelasticity
(Felderhof 2009). Further explanation for the temporal oscillation is provided in § 4
where the Weissenberg number perturbation is described.

We expect the intrusion rate to decrease with the prefilled length h0. This is because
a higher value of h0 means a higher resistance to the flow. Such behaviour is evident
in figure 2. It is to be noted, however, that h0 does not affect the temporal period over
which the relative departure between the viscoelastic and the purely viscous systems
occurs.

Curves for different Wi eventually approach the one for a purely viscous
fluid under the long-time limit. The leading-order decay characteristic is actually
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FIGURE 2. Dimensionless encroachment rates versus normalized time for a square
channel (a,c) and slit pore (b,d) with initial prefilled length 0.5 (a,b) and 1.0 (c,d). The
Weissenberg number Wi is considered to be 0.5 (solid lines) and 0.2 (dash-dot line),
whereas the dotted lines represent the curves for a purely viscous fluid.

independent of Wi. However, the next-order asymptotic decrease does depend on Wi.
Details of this feature are described in our subsequent perturbation analysis in § 5.

We also note that the flow rate is higher in a square channel compared with a slit
pore. This is an expected behaviour, as the former is more conducive than the latter
as long as the hydraulic radius given by 2bc is the same for both.

The computation also provides the penetrated length at each time step. We plot this
as a temporal function in figure 3 for all the parametric values considered in figure 2.

The plots reveal two regimes of temporal variation. In the initial time, the
penetration increases linearly. However, under the long-time limit, it shows Washburn’s
prediction h̄∼

√
t̄. These results are corroborated by recent experiments (Quere 1997;

Das et al. 2012).
From figure 3, one can conclude that the penetrated length h is always larger

in systems with higher Wi at any temporal point. Although the intrusion rate is
overcompensated after the initial larger value in a viscoelastic fluid, the compensation
is not strong enough to reverse the difference in h. Also, h(t) for fixed Wi is higher
for a larger prefilled length as well as for a square channel compared to a slit pore.

3.3. Postprocessing algorithm for rheometry
In the actual rheometric experiments, the rheological properties defined by the memory
function M have to be detected from the observed transiency in the penetration rate.
This is the reverse calculation of what is presented in § 3.2, where time-dependent
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FIGURE 3. Dimensionless encroachment length versus normalized time for a square
channel (a,c) and slit pore (b,d) with initial prefilled length 0.5 (a,b) and 1.0 (c,d).
Weissenberg number Wi is considered to be 0.5 (solid lines) and 0.2 (dash-dot line), the
dotted lines represent curves for a purely viscous fluid.

behaviour is computed for given M. Thus, an effective measurement technique requires
an inversion algorithm.

The first step for this reverse analysis is to consider the temporal Fourier transform
of (2.4). The resulting relation is, then, convoluted with the spatial eigenfunctions unm.
As a result, after rearrangement, one finds

vsα̂nm =
ηnm f̂ (ω)

iρω+µ0µ̂β2
nm/b2

c

. (3.5)

Here, ω is the Fourier frequency, whereas the transformations of the amplitudes,
memory function and force density are given as

α̂nm =

∫
e−iωtαnm(t) dt, µ̂=

∫
e−iωtM(t) dt, f̂ =−

∫
e−iωt ∂p

∂z
dt. (3.6a−c)

At this point, we consider (2.24) in dimensional form and conclude the Fourier
transform ĵ for penetration rate to be

ĵ(ω)=
∫

e−iωtḣ dt= vs

∑
ηnmα̂nm. (3.7)
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When (3.5) and (3.7) are combined, the inversion relation is derived

ĵ(ω)=
∑

nm

η2
nm f̂ (ω)

iρω+µ0µ̂(ω)β2
nm/b2

c

. (3.8)

If ĵ and f̂ are known, the only unknowns remaining in (3.8) are the nominal viscosity
for steady state µ0 and the normalized frequency-dependent complex coefficient µ̂.
The postprocessing algorithm exploits (3.8) to determine these rheological properties.

From the recorded experimental data, ĵ can be obtained directly from the Fourier
transform of the dimensional version of the plots presented in figure 2. In contrast, f̂
has to be determined iteratively due to the presence of the subdominant but non-zero
convective terms in (2.16). Still, in the first approximation, one can consider f̂ to be
a simple Fourier transform of inverse of the penetration length h representing the
predominant capillary effect. Then one can solve (3.8) for different ω to find µ0 and
µ̂(ω). For ω = 0, normalized µ̂ is 1 by definition. Hence, for such a steady-state ω
value, equation (3.8) yields the actual value for µ0. Once this is evaluated, µ̂ can be
calculated for non-zero ω. When the complete description of the rheology is available,
one can repeat the flow analysis presented earlier to compute the hydrodynamic fields.
As a result, the small convective contribution can be included in a more accurate f̂ .
A subsequent solution of (3.8) would, next, render new values for the rheological
properties. In this way, an iterative scheme can be devised to improve f̂ and the
frequency-dependent viscosity in successive iterations until the results converge.
The smallness of the convection term ensures the fast convergence of the proposed
algorithm.

If µ0 and µ̂(ω) are determined, the frequency-dependent complex viscosity would
be known for a mildly viscoelastic medium. Then, the memory function M can
be constructed from the Fourier transform of µ̂ in the spectral domain and the
viscoelastic time scale can be detected using the first moment normalization in (2.3).
Also, the viscoelastic coefficients G′ and G′′ are related to µ0µ̂(ω) by known simple
expressions. Thus, the outlined procedure can determine the desired viscoelastic
coefficients from easily acquired experimental data. Such technology has the potential
to provide an accurate and cost effective means for rheometric measurement.

4. Perturbation analysis by Weissenberg number expansion
The effect of the viscoelasticity on the short-time dynamics can be quantified by the

departure from the base case for the purely viscous liquid. For a mildly viscoelastic
medium with a Weissenberg number Wi < 1, temporal variation in such difference
between viscous and viscoelastic systems can be mathematically described by using
a perturbation analysis. This theory can provide precise explanation to understand the
transport phenomenon better.

The analysis is based on the perturbation of Wi, which is considered as a
small parameter. It shows how the leading-order difference between a viscous and
viscoelastic medium can be expressed in terms of expansion terms in Wi. Moreover,
the perturbative relations are simplified to an approximate formulation where the
effect of viscoelasticity can be described by a single second-order linear ordinary
differential equation. The time-dependent spring, damping and forcing terms in the
reduced model help to understand the temporal oscillations in the system of interest
seen in figure 2.
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We compare the computed departure between a viscous and viscoelastic medium
with the exact perturbation theory and the approximate reduced description. All
three sets of results match with each other with the expected accuracy. As a result,
our numerical results can be independently verified. Moreover, the simplified but
approximate mathematical model can be utilized as a useful tool which provides both
faster quantitative calculation and further insight into the transient dynamics.

4.1. Taylor series expansion of the viscoelastic term
The first step in the perturbation analysis is to represent the following viscoelasticity
term in a power series of the Weissenberg number:

L̂tαi|t̄ =
1

Wi

∫ t̄

−∞

M
(

t̄− τ̄
Wi

)
αi(τ̄ ) dτ̄ . (4.1)

Here M is taken as a considerably localized distribution for small Weissenberg number,
which implies ts�τv. As a result, we can disregard any difference in the viscoelastic
dynamics caused by the initial condition of the system.

For the Weissenberg number expansion, we consider the following change in
variable

(t̄− τ̄ )/Wi= ζ H⇒ τ̄ = t̄−Wiζ . (4.2)

The new temporal variable ζ represents the time relevant to the viscoelastic scale
instead of the transport scale. This transforms the viscoelastic integral

L̂tαi|t̄ =

∫
∞

0
M(ζ )αi(t̄−Wiζ ) dζ , (4.3)

which is an equivalent reinterpretation of the memory effect.
We note that a Taylor series expansion in Wi yields

αi(t̄−Wiζ )=
∞∑

n=0

(−Wiζ )n

n!
dnαi

dtn
. (4.4)

When (4.4) is substituted into (4.3), one finds

L̂tαi|t̄ =

∞∑
n=0

(−1)nWin Mn

n!
dnαi

dt̄n

∣∣∣∣
t̄

, (4.5)

where,

Mn =

∫
∞

0
ζ nM(ζ ) dζ (4.6)

is the nth moment of the distribution M(ζ ) with M0 and M1 both being 1 as per (2.3).

4.2. Perturbation expansion in the Weissenberg number
The leading-order effect of the viscoelasticity on the dynamics is captured by
expanding the dependent variables of (2.23) and (2.24) in power series of Wi

αi = α
(0)
i +Wiα(1)i + · · · , h̄= h̄(0) +Wih̄(1) + · · · . (4.7a,b)
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Here, the superscript 0 represents the quantities corresponding to the purely viscous
fluid. In contrast, the first-order corrections in these variables due to viscoelasticity are
denoted by the superscript 1.

We replace the dependent variables in (2.24) by their respective expansions, and
form the mass conservation relation for each order in Wi

dh̄(k)

dt̄
=

N∑
i=1

ηiα
(k)
i (t̄), (4.8)

where k is either 0 or 1. When (2.23) is similarly modified using (4.5)–(4.7) and
arranged according to the exponent of Wi, the zeroth-order recovers the momentum
equation for the purely viscous flow (Bhattacharya et al. 2016)

dα(0)i

dt̄
+ β2

i α
(0)
i =

ηi

h(0)

[
1+

∑
[α

(0)
j ]

2
−

(∑
ηjα

(0)
j

)2
]
. (4.9)

Also the leading-order correction in momentum conservation due to viscoelastic stress
is represented by

dα(1)i

dt̄
+β2

i

[
α
(1)
i −

dα(0)i

dt̄

]
= 2ηi

∑
α
(0)
j α

(1)
j − ḣ(0)ḣ(1)

h(0)
− ηih(1)

1+
∑
[α

(0)
j ]

2
−

(∑
ηjα

(0)
j

)2

[h(0)]2
.

(4.10)
In our earlier paper (Bhattacharya et al. 2016), we solve (4.8) and (4.9) to obtain the
zeroth-order temporal variations given by h̄(0) and α

(0)
i . These known functions are

used in (4.10) to determine the leading-order corrections h̄(1) and α(1)i .

4.3. Simplified mathematical model

We attempt to describe the corrections h̄(1) and α
(1)
i in two ways. Firstly, equations

(4.8) and (4.10) are solved exactly by numerical means using the Runge–Kutta
method assuming a start-up problem from rest. These precise solutions, however,
are not adequate for a complete physical understanding so we also pursue a second
approach, where necessary simplifications are assumed so that the results can be
justified more intuitively. Also such alternative analysis can verify the simulation
independently.

Accordingly, we first simplify (4.10) for i > 0 by neglecting the quadratic terms
involving the zeroth-order amplitudes α(0)j

dα(1)i

dt̄
+ β2

i α
(1)
i = β

2
i

dα(0)i

dt̄
−
ηih(1)

[h(0)]2
+

2ηi

h(0)

[∑
α
(0)
j α

(1)
j − ḣ(0)ḣ(1)

]
. (4.11)

The rationale behind this simplification is derived from our prior study on purely
viscous flow where α(0)j is seen to be much less than unity.

Next, we also observe βi is much larger than unity for any channel when i > 0.
This means that α(1)i for i > 0 saturates quickly to its long-time solution due to the
fast exponential decay of the contribution from the initial condition. Hence, for i> 0,
we approximate the long-time solution of (4.11) to be the actual α(1)i

α
(1)
i (t̄)= (1− e−β

2
i t̄)

dα(0)i

dt̄
−

1
β2

i

[
ηih(1)

[h(0)]2
−

2ηi

h(0)

{∑
α
(0)
j α

(1)
j − ḣ(0)ḣ(1)

}]
(1− e−β

2
i t̄).

(4.12)
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Such an approximation immediately reduces the (N + 1)-variable problem into a
system with two variables only: h(1) and α(1)0 .

The approximate solution in (4.12) is then included into the integral mass
conservation relation (4.8) which after rearrangements yields

α
(1)
0 = A(t)

dh(1)

dt̄
+ B(t)h(1) −C(t). (4.13)

Here, A(t̄), B(t̄), C(t̄) are temporal functions dependent on the zeroth-order quantities:

A(t)=

1+
2

h(0)
∑
i 6=0

η2
i ḣ(0)

β2
i
(1− e−β

2
i t̄)

η0+
2

h(0)
∑
i 6=0

η2
i α

(0)
0

β2
i
(1− e−β

2
i t̄)

,

B(t)=

∑
i 6=0

η2
i

[h(0)]2β2
i
(1− e−β

2
i t̄)

η0+
2

h(0)
∑
i6=0

η2
i α

(0)
0

β2
i
(1− e−β

2
i t̄)

and C(t)=

∑
i6=0

ηi
dα(0)i

dt̄
(1− e−β

2
i t̄)

η0+
2

h(0)
∑
i 6=0

η2
i α

(0)
0

β2
i
(1− e−β

2
i t̄)

.



(4.14)

One can explicitly compute A(t̄), B(t̄), C(t̄) from the known transient variation of h(0)

and α(0)i .
Finally, the simplified momentum relation (4.11) is considered for i = 0 and α

(1)
0

is replaced by using (4.13). As a result, we derive the following linear second-order
equation involving only one dependent variable h(1)

d2h(1)

dt̄2
+G(t̄)

dh(1)

dt̄
+H(t̄)h(1) = F(t̄). (4.15)

Here, G(t̄), H(t̄), F(t̄) are three time-dependent functions representing transient
damping, restoring and forcing terms, respectively. These are numerically computed
from their respective expressions

G(t̄)=
2η0

A(t̄)
ḣ(0)

h(0)
+

Ȧ(t̄)
A(t̄)
+

B(t̄)
A(t̄)
+ β2

0 −
2η0α

(0)
0

h(0)
,

H(t̄)=
η0

A(t̄)[h(0)]2
+

Ḃ(t̄)
A(t̄)
+

B(t̄)
A(t̄)

[
β2

0 −
2η0α

(0)
0

h(0)

]

and F(t̄)=
β2

0

A(t̄)
dα(0)0

dt̄
+

Ċ(t̄)
A(t̄)
+

C(t̄)
A(t̄)

[
β2

0 −
2η0α

(0)
0

h(0)

]
.


(4.16)

We present G(t̄), H(t̄), F(t̄), for different geometries and initial conditions in figure 4.
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FIGURE 4. The quantities defined in (4.16) are plotted as functions of time t̄ for square
channels (solid lines) and slit pores (dashed lines) with h̄0= 1.0 (thick lines) and h̄0= 0.5
(thin lines).

In figure 4, the effective dissipation in the system is represented by the function G.
This is essentially the ratio between the damping factor and the mass, both of which
increase proportionally with the intruded length. So G is expected to be approximately
a constant in time. This is evident in figure 4.

In contrast, the function H manifests a restoring spring term due to the viscoelasticity
of the liquid. For a gradual deceleration over a long time, the elastic effect in the
medium becomes irrelevant. This happens because for time scales much larger than
the duration of viscoelastic relaxation, the medium acts like a purely viscous fluid. So
the restoration function H should monotonically decay to 0, as revealed in figure 4.

The crucial impact of viscoelasticity is captured by the forcing term F which
underlines the discrepancy in stress due to the memory effect. The main contribution
in F comes from the leading-order flow acceleration represented by the temporal
derivative of α(0)i . For a purely viscous system, the fluid first accelerates from rest
under the action of the surface tension. Then, after some time, the flow starts to
decelerate due to enhanced resistance coming from the increased length of the
penetrated column. Accordingly, we expect F to change sign after an initial period
of positive value. This is precisely what can be seen in figure 4. Such a reversal is
the core reason explaining the oscillatory behaviour in figure 2.

4.4. Comparative studies between reduced mathematical models and exact
simulations

We compute the leading-order deviation in the transport rate for a purely viscous
case due to the viscoelastic effect in three independent ways. Firstly, we consider a
very small Weissenberg number (Wi = 0.01) and solve (2.23) and (2.24) directly, as
described in § 3. As a result, the departure between the results for mildly viscoelastic
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FIGURE 5. First-order deviation in penetration rate due to the viscoelastic effect is
obtained as a function of time in three different ways for a square channel (a,c) and
slit pore (b,d) where h̄0 is 0.5 (a,b) and ¯1.0 (c,d). We first use an approximate reduced
description in (4.15) (dashed lines), and then the perturbative relations (4.8) and (4.10)
(dotted lines). Also, the same results are directly computed from the departure between
mildly viscoelastic (Wi=0.01) and purely viscous (Wi=0) systems using (2.23) and (2.24)
(solid dots).

and purely viscous systems is calculated exactly so that first-order correction ḣ(1) in
the transport rate can be obtained by dividing the difference by Wi. Then, ḣ(1) is
also evaluated by solving the perturbation relation given by (4.8) and (4.10) using a
Runge–Kutta method assuming a start-up problem from rest. Thirdly and finally, the
approximate formulation given by (4.15) is exploited in another Runge–Kutta scheme
to determine ḣ(1).

The three sets of simulations describing ḣ(1) as a temporal function are presented
in figure 5 for a comparative study. We consider two different geometries and two
separate initial conditions in figure 5. All cases show that the direct simulation and the
exact perturbation corroborate each other precisely. It also reveals that the approximate
model given by (4.15) predicts values which are very close to the other two results.
Thus, we can assert the correctness of our numerical simulation and the validity of
both the perturbative theory as well as the approximate reduced model.

The validity of the reduced model allows us to use its simplicity for an intuitive
explanation of the oscillating temporal behaviour seen in both figures 2 and 5.
The cause of the oscillation can be attributed to the fluctuating forcing function F(t̄)
given in figure 4 and defined in (4.15)–(4.16). A positive F makes ḣ(1) > 0 at the
initial time. However, the subsequent reversal in F induces an eventual reversal in
ḣ(1) too. However, the latter happens after a certain delay which can be justified
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by considering the phase difference due to the inertial second-order term and the
restorative zeroth-order term in (4.15). The lag is also understandable from the
causality perspective.

The dynamics of the system seems to be overdamped, as ḣ(1) approaches 0 gradually
in the long-time limit. The reason for this is obvious from the functions in figure 4.
The restorative term H(t̄), representing the elastic effect in (4.15), decays with time
whereas the dissipative term G remains more or less constant. This means that the
system has to correspond to an overdamped situation for a large temporal scale.

5. Asymptotic analysis for the long-time dynamics
The exact simulation, the Weissenberg number perturbation and the reduced model

show that the transport rate slows down over time. When the elapsed time is much
larger than ts defined in (2.9), the motion inside the system is expected to decrease
due to enhanced dissipation in the longer fluid column. In this section, we formulate
an asymptotic theory to describe this decaying feature.

The analysis especially reveals how the long-time dynamics is modified by the
viscoelastic effect. One can conclude intuitively that the impact of viscoelasticity
should be reduced over time. Our asymptotic theory investigates the validity of this
assumption, as well as estimates any subdominant contribution of the memory effect.

5.1. Rescaling of variables and perturbation expansion
The perturbation analysis considers a transport time scale to which is much
larger than ts defined in (2.9). If time is normalized by to, the corresponding
non-dimensional variable is defined as t̃. The rescaled time is related to t̄ by the
following renormalization:

t̃= ε t̄, (5.1)

where the ratio between ts and to is ε which is identified as a small quantity based
on which the perturbation theory is formulated.

We also take into account the corresponding rescaling of the intruded length and the
amplitudes of the eigenfunctions. Accordingly, it is assumed that the leading orders of
the viscous dissipation and the capillary force balance each other. Consequently, the
rescaled penetration length and the n spectral amplitudes are respectively defined as

h̃=
√
εh̄, (5.2)

and
α̃n = αn/

√
ε. (5.3)

As pressure gradient due to surface tension is inversely proportional to penetration, the
factor

√
ε has to be involved in the renormalized quantities in (5.2) and (5.3).

Then we use the following expansions in ε to identify the decay features in the
dynamics

h̃(t̃)= h̃(0)(t̃)+ εh̃(1)(t̃)+ · · · , (5.4)

and
α̃nm(t̃)= α̃(0)nm(t̃)+ εα̃

(1)
nm(t̃)+ · · · , (5.5)

where the ith-order quantities in the small parameter ε are h̃(i) and α̃(i)nm, respectively.
The relation between h̃(i) and the corresponding ith-order decaying feature in h̄ is
represented by the following transformation

h̄(i)(t̄)= ε i−(1/2)h̃(i)(ε t̄). (5.6)
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If the ith-order solutions are calculated properly, the transformation in (5.6) should
ensure that the ith-order decay in h̄ is independent of ε. This invariance is a feature
which can be used as a verification for the mathematical treatment.

Finally, the integral operator in (4.5) is recast in an expansion of ε after modifying
the expression in terms of the transformed variables

L̂tαnm|t̄ =

∞∑
k=0

(−1)kWik Mk

k!
dkαnm

dt̄k

∣∣∣∣∣
t̄

=
√
ε

∞∑
k=0

εk(−1)kWik Mk

k!
dkα̃nm

dt̃k

∣∣∣∣∣
t̄

. (5.7)

Expansions of L̂t as well as the transformed quantities are substituted into (2.23) and
(2.24) to obtain a series of relations corresponding to specific orders of ε. The leading-
order and the next-order equations are the focus of the subsequent analysis.

5.2. The leading-order behaviour
The leading-order momentum equation in ε provides a simple algebraic relation

α̃(0)nm =
ηnm

M0β2
nm

1

h̃(0)
=
ηnm

β2
nm

1

h̃(0)
, (5.8)

where we recall M0 = 1. When this relation is used in the leading-order mass
conservation equation, a simple differential equation for h̃(0) can be derived

dh̃(0)

dt̃
=

∑
n,m

η2
nm

β2
nm

1

h̃(0)
=

1
k̄

1

h̃(0)
. (5.9)

Here, k̄ is a constant dependent on the cross-sectional geometry

k̄=
1∑

n,m

[η2
nm/β

2
nm]
, (5.10)

which represents the cumulative viscous dissipation in the system.
The solution for (5.9) is

h̃(0) =

√
2t̃
k̄
+ c̃2

0. (5.11)

Consequently, the transformation in (5.6) gives the leading-order trend in h̄

h̄(0) =

√
2t̄
k̄
+ c̄2

0, (5.12)

as well as the long-time penetration rate

˙̄h(0) =
1

k̄h̄(0)
=

1√
2k̄t̄+ k̄2c̄2

0

. (5.13)
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Here, c̃0 and c̄0 are two integration constants which are related to the short-time
dynamics and are irrelevant in the leading-order asymptotic feature

lim
t̄→∞

h̄(0) ≈

√
2t̄
k̄

(5.14)

and
lim
t̄→∞

˙̄h(0) ≈
1
√

2k̄t̄
. (5.15)

It is to be noted that h̄(0) and ˙̄h(0) are independent of ε, confirming validity of the
analysis.

It is evident that the leading-order decay does not involve the Weissenberg number
Wi, as it is the same result also given by Washburn for a purely viscous fluid
(Washburn 1921). This means that this asymptotic behaviour is not affected by
viscoelasticity. Such an observation can be intuitively justified by the fact that a
viscoelastic liquid acts as a purely viscous one in gradual transport under a long-time
limit much greater than the relaxation time τv.

5.3. First-order correction in the decay characteristic
The effect of viscoelasticity on the long-time dynamics is manifested in the next-order
correction in ε, as the corresponding term in the expansion of the memory integral
involves Wi in (5.7). To highlight this fact, we obtain the solutions for α̃(1)nm and h̃(1).

Accordingly, the next-order momentum equation in ε is isolated

α̃(1)nm =

[
−WiM1

M3
0 k̄

ηnm

β2
nm

+
1

M3
0 k̄
ηnm

β4
nm

+
(k′ − 1/k̄2)

M3
0

ηnm

β2
nm

](
1

h̃(0)

)3

−
1

M0

ηnm

β2
nm

h̃(1)

[h̃(0)]2
, (5.16)

where k′ is a constant dependent on the cross-sectional geometry

k′ =
∑
n,m

η2
nm

β4
nm

. (5.17)

We substitute (5.16) in the mass conservation of similar order to derive the governing
equation for h̃(1)

dh̃(1)

dt̃
=

(
2

k′

k̄
−

Wi

k̄2
−

1
k̄3

)(
1

h̃(0)

)3

−
h̃(1)

[h̃(0)]2
, (5.18)

where M0 and M1 are replaced by unity, as per (2.3).
We transform (5.18) into a convenient form by using (5.9)

d[h̃(1)h̃(0)]

dh̃
(0) =

(
2k′ −

Wi

k̄
−

1
k̄2

)
1

h̃(0)
. (5.19)

Finally, the solution for h̃(1) is obtained as

h̃(1) = kp
[ln(h̃(0)/c̃e

1)]

h̃(0)
, (5.20)
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FIGURE 6. Difference between the actual intruded length and the leading-order asymptotic
behaviour in (5.14) normalized by the corresponding first-order decay function in (5.22).
The ratio is plotted as a function of the non-dimensional time for a square channel (a,c)
and slit pore (b,d), where the prefilled length is 0.5 (a,b) and 1.0 (c,d). For each plot, the
Weissenberg number is 0.5 (solid line) or 0.2 (dashed line).

where c̃e
1 is a integration constant dependent on the short-time dynamics and kp is a

factor defined below

kp = 2k′ −
Wi

k̄
−

1
k̄2
. (5.21)

Thus, the long-time decaying feature of h̄(1) is given by the following ε-invariant
expression

lim
t̄→∞

h̄(1) ≈
kp√
2t̄/k̄

[
ln

(√
t̄

ke
1

)]
, (5.22)

where ke
1 is a constant related to c̃e

1.
For mutual corroboration of the simulation and the asymptotic theory, we subtract

the leading-order behaviour in (5.14) from the computed values of h̄(0) obtained from
the direct simulation. The difference is then divided by the first-order solution given
in (5.22). The resulting ratio is plotted as a function of time t̄ in figure 6 for slit
pores and square channels with different values of prefilled length h0 and Weissenberg
number Wi. All curves saturate to 1 in the long-time limit. This feature provides
mutual corroboration between the computational data and the perturbation theory.

The higher-order perturbation analysis also shows how viscoelasticity affects the
subdominant components of the asymptotic decay. This effect is represented by
the factor kp which is dependent on both the cross-sectional geometry and the
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FIGURE 7. The geometry-dependent constant kp defined in (5.21) is plotted as a function
of the aspect ratio λ for Wi= 0.4 (solid line), Wi= 0.2 (dotted line) and Wi= 0.1 (dash-dot
line).

viscoelastic condition. This is why Weissenberg number appears in the expression of
kp in addition to its variation with geometric parameters.

In figure 7, we present the constant kp as a function of the aspect ratio λ. We
consider three values of Wi to show how kp shifts with viscoelastic condition. For a slit
pore, under the limit Wi→ 0, kp should be 7/45 which is matched by the computed
result.

6. Summary and conclusion
In this article, we compute the time-dependent penetration length and intrusion rate

of a mildly viscoelastic medium driven by surface tension inside a narrow capillary
channel. To this end, eigenfunction expansion of the instantaneous velocity profile is
used to derive a system of integro-differential equations. These coupled equations are
solved simultaneously to determine the involved dependent variables which include the
infiltrated distance and the unsteady eigen amplitudes.

We solve the coupled integro-differential equations with a fourth-order Runge–Kutta
method assuming a start-up problem where an initially static prefilled column is driven
from rest. The solution scheme ultimately produces the penetration distance and the
intrusion rate as functions of time for a square channel and a slit pore. The simulation
considers cases with varying prefilled length.

The temporal variation in the intrusion rate essentially reveals the effect of
viscoelasticity on the infiltration dynamics. The fluid initially accelerates from rest
under the capillary action. The normalized non-dimensional value of this initial
acceleration is higher for stronger viscoelasticity because a stronger and more
protracted memory implies a less resistive stress at the beginning of the motion. This
is why initially the flow moves faster for higher Weissenberg number. After complete
viscoelastic relaxation, however, the enhanced velocity induces increased resistance,
prompting a significant retardation. As a result, we observe an overcompensation
leading to an oscillatory feature in the time versus imbibition rate plots. Eventually, for
all systems, the transport rate slows down asymptotically, as the longer fluid column
creates more dissipation in the long-time limit. One expects that the leading-order
temporal decay should not depend on the memory effect because all viscoelastic
fluids act as a purely viscous fluid under on a long time scale. The computational
findings justify this intuitive fact.
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The short- and long-time behaviours of the system are further analysed by two
respective perturbation theories. The first of these is based on a Weissenberg number
expansion, which provides an insightful explanation for the oscillatory features in the
intrusion rate and the ultimate decay in the dynamics. In contrast, the second one
verifies the independence of the leading-order long-time variation in the viscoelasticity
and quantifies how the next-order asymptotic characteristics can be affected by the
memory effect.

The Weissenberg number perturbation is focused on the first two terms in the
expansion of the variables. The leading order in Wi predicts the dynamics for a
purely viscous fluid, whereas the next order shows the departure created by the
viscoelasticity. We calculate this viscoelastic deviation in three ways. Firstly, it is
computed directly by comparing the intrusion of a purely viscous fluid and the
same for a system with very small Wi. Then, the difference due to the memory
effect is also evaluated by solving the relation provided by rigorous perturbative
analysis. Thirdly and finally, we propose a reduced model, where we have to solve
a linear second-order inhomogeneous differential equation to find the correction in
the intrusion rates. The results from all three methods corroborate each other with
the expected accuracy. This validates our general simulation, perturbation theory and
reduced model.

The second-order equation of the reduced model involves time-dependent damping,
restoring and forcing terms. The temporal variations in these three quantities explain
the oscillation and decay in the transport rate. The forcing term includes the
contribution from the leading-order acceleration which reverses after an initial positive
value. Such reversal causes the oscillating pattern in the time versus intrusion rate
plots. Also, it is seen that the restorative spring constant in the equation decays to
zero under the long-time limit while the dissipation remains more or less constant.
Hence, the system has to be overdamped under the long-time limit, corroborating the
asymptotic decay in the transport.

Our second perturbation analysis renders more a quantitative perspective on the
asymptotic behaviour of the system under the long-time limit. It recovers Washburn’s
result for a purely viscous fluid (Washburn 1921) where the infiltrated length varies
as the square root of time, irrespective of the viscoelastic condition represented by Wi.
The memory effect influences the next-order decay, however, where the quantity varies
inversely proportional to the square root of time. The corresponding proportionality
constant has a linear dependence on Wi.

In the future, we will apply the presented theory to form the working principle
of a rheometric device. The instrument will record the time versus penetration data
from which the rheological properties of the medium can be predicted. For detection
purposes, the theoretical prediction for the short- and long-time dynamics will be
matched to the stored results by iterative selection of the effective viscoelastic scale
τv. If the measurement is detailed enough, the memory function M can also be
constructed in a similar iteration scheme in Fourier space.
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