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Nonlinear stability and patterns in granular
plane Couette flow: Hopf and pitchfork
bifurcations, and evidence for resonance
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The first evidence of a variety of nonlinear equilibrium states of travelling and
stationary waves is provided in a two-dimensional granular plane Couette flow
via nonlinear stability analysis. The relevant order-parameter equation, the Landau
equation, has been derived for the most unstable two-dimensional perturbation of
finite size. Along with the linear eigenvalue problem, the mean-flow distortion, the
second harmonic, the distortion to the fundamental mode and the first Landau
coefficient are calculated using a spectral-based numerical method. Two types
of bifurcations, Hopf and pitchfork, that result from travelling and stationary
instabilities, respectively, are analysed using the first Landau coefficient. The present
bifurcation theory shows that the flow is subcritically unstable to stationary finite-
amplitude perturbations of long wavelengths (kx ∼ 0, where kx is the streamwise
wavenumber) in the dilute limit that evolve from subcritical shear-banding modes
(kx = 0), but at large enough Couette gaps there are stationary instabilities with
kx =O(1) that lead to supercritical pitchfork bifurcations. At moderate-to-large
densities, in addition to supercritical shear-banding modes, there are long-wave
travelling instabilities that lead to Hopf bifurcations. It is shown that both supercritical
and subcritical nonlinear states exist at moderate-to-large densities that originate from
the dominant stationary and travelling instabilities for which kx =O(1). Nonlinear
patterns of density, velocity and granular temperature for all types of instabilities
are contrasted with their linear eigenfunctions. While the supercritical solutions
appear to be modulated forms of the fundamental mode, the structural features of
unstable subcritical solutions are found to be significantly different from their linear
counterparts. It is shown that the granular plane Couette flow is prone to nonlinear
resonances in both stable and unstable regimes, the signature of which is implicated
as a discontinuity in the first Landau coefficient. Our analysis identified two types of
modal resonances that appear at the quadratic order in perturbation amplitude: (i)
a ‘mean-flow resonance’ which occurs due to the interaction between a streamwise-
independent shear-banding mode (kx = 0) and a linear/fundamental mode kx �= 0, and
(ii) an exact ‘1 : 2 resonance’ that results from the interaction between two waves with
their wavenumber ratio being 1 : 2.
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1. Introduction
1.1. Pattern formation and order-parameter models for granular fluids

Pattern-forming systems belong to a class of problems in which an external control
parameter governs the system behaviour beyond the critical point. As the control
parameter is increased above its critical value, the homogeneous state loses stability,
giving rise to a new patterned state. A collection of particles, when subjected to
strong external forcing, show a variety of dynamical patterns. For example, when
a thin layer of granular materials is subjected to vertical harmonic oscillation, a
range of standing wave patterns (squares, stripes, hexagon and interfaces), similar to
Faraday waves, can be observed (Umbanhowar, Melo & Swinney 1996), depending
on the shaking strength and its frequency. Moreover, a localized structure, ‘oscillon’,
which is reminiscent of solitary waves in water (Umbanhowar et al. 1996), can
appear via a hysteretic transition under certain external forcing conditions on
the frequency and acceleration. In many experiments in the rapid flow regime, a
variety of patterns such as longitudinal vortices (Forterre & Pouliquen 2002), Kelvin–
Helmholtz instability (Goldfarb, Glasser & Shinbrot 2002) and convection from
granular Leidenfrost state (Eshuis et al. 2010) have been observed; the onset of such
patterns has been theoretically explained from linear stability analyses of pertinent
hydrodynamic equations (Alam & Nott 1998; Forterre & Pouliquen 2002; Eshuis
et al. 2010).

Tsimring & Aranson (1997) proposed a phenomenological order-parameter model,
the Ginzburg–Landau equation coupled with an effective mass conservation equation,
to theoretically study the patterns in a vibrated granular bed:

∂ψ

∂t
= γ ψ̃ − (1 − iω)ψ + (1 + ib)∇2ψ − |ψ |2ψ − �ψ, (1.1)

∂�

∂t
= α∇ ·

(
�∇|ψ |2

)
+ β∇2�. (1.2)

Equation (1.1) is an evolution equation for a complex quantity ψ(x, t), called the
order-parameter or the amplitude function; (1.2) represents an effective equation for
the conservation of mass (average mass of granular material per unit area), with
�(x, t) being the mass density of granular materials. The last term in (1.1), �ψ ,
represents a coupling between the order parameter and the local bulk density of
material; the cubic nonlinear term |ψ |2ψ accounts for the nonlinear saturation of
oscillations due to dissipation; the term involving the Laplacian accounts for any
diffusive mechanism, providing a length scale for patterns.

The above order-parameter model is phenomenological in the sense that it has not
been derived from the governing equations of granular fluids, and the coefficients in
(1.1)–(1.2) have to be determined from experiments or simulations on a case-by-case
basis. Note that the above model is strictly valid for flows in which the mean velocity
is zero, such as in a vertically shaken bed under harmonic excitation, for which the
momentum equation is identically satisfied. Information about the rheology of the
flow needs to be supplemented, in addition to (1.1)–(1.2), via momentum balance
equations (Aranson & Tsimring 2006). At any rate, the above order-parameter model
has been able to interpret the experimental (and simulation) data in a variety of
granular flows (see Aranson & Tsimring 2006 for a review; see Orpe & Khakhar
2007 for an application of this model to predict the rheology of surface flows in a
rotating drum), thus lending support to derive such order-parameter equations from
first principles.
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Order-parameter equations such as the Ginzburg–Landau equation or the Swift–
Hohenberg equation (Eckhaus 1965; Newell & Whitehead 1969; Stewartson & Stuart
1971; Stuart 1971; Busse 1978; Manneville 1990; Cross & Hohenberg 1993; Schmid &
Henningson 2001; Mozorov & van Saarloos 2007) are widely used to study pattern-
forming systems in many fields (such as superconductivity, superfluidity, vacancy
diffusion, defect turbulence, convection, surface waves, and absolute and convective
instabilities). For example, the Ginzburg–Landau equation (1.1), without the coupling
term �ψ , gives a model for the parametric instability in an oscillating liquid layer;
in particular, the term γ ψ̃ (‘tilde’ denoting a complex conjugate quantity) accounts
for the parametric driving that excites standing waves. As seen in (1.1), the order
parameter ψ(x, t) is a function of space and time, and hence is suitable for describing
aperiodic patterns having slow modulations in space and time.

For patterns having spatial periodicity, the Ginzburg–Landau equation reduces to
the well-known Landau equation, which is an ordinary differential equation for a
temporally varying order parameter ψ(t) ≡ ψ(x, t):

dψ

dt
= c(0)ψ + c(2)ψ |ψ |2 + · · · , (1.3)

where the coefficients c(0) = a(0) + ib(0) and c(2) = a(2) + ib(2) are the linear eigenvalue
and the first Landau coefficient (which represents the leading nonlinear correction
to the linear mode), respectively. Developing an order-parameter theory via (1.3) to
describe patterns in a granular plane Couette flow is the focus of the present paper.

1.2. Patterns in a granular plane Couette flow and the present work

The pattern formation in a granular plane Couette flow has attracted much attention
during the last two decades using both simulation and theory (Hopkins & Louge
1991; Savage 1992; Tan & Goldhirsch 1997; Alam & Nott 1998; Conway &
Glasser 2004; Sasvari, Kertesz & Wolf 2000; Alam et al. 2005; Alam & Luding
2005; Conway, Liu & Glasser 2006; Alam 2006; Gayen & Alam 2006; Khain &
Meerson 2006; Khain 2007; Alam, Shukla & Luding 2008; Alam & Shukla 2008;
Shukla & Alam 2009, 2011). The earliest particle-dynamics simulations of Hopkins
& Louge (1991) identified travelling wave patterns in the form of oblique bands,
aligned along the compressional axis of the shear flow, for a range of densities;
most of these simulations were carried out with about 5000 particles and hence the
observed structures were not so well defined. The ‘large-scale’ particle simulations of
Tan & Goldhirsch (1997) at a particle volume fraction of 0.05 identified a variety
of two-dimensional patterns, including a ‘churn-type’ flow. That the granular plane
Couette flow supports inhomogeneous patterns, having modulations along both the
streamwise and gradient directions, was predicted by Alam & Nott (1998) from a
linear stability analysis of the pertinent continuum equations; they also systematically
probed the effects of boundary conditions on the predicted instabilities. The structures
of theoretically predicted (travelling and stationary) patterns look qualitatively similar
to those observed in simulations (Hopkins & Louge 1991; Tan & Goldhirsch 1997).

Recently, Conway & Glasser (2004) have conducted a series of two-dimensional
particle simulations of the bounded plane Couette flow at low-to-moderate densities
(particle volume fraction less than 0.4 in two-dimensions), with walls acting as
sinks of granular energy, which is one of the three cases considered by Alam &
Nott (1998). In these simulations, the width and the length of the channel were
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systematically varied so as to get access to any long-wave instability with streamwise
modulations. They reproduced the main features of the full phase diagram of different
instabilities as predicted by the linear stability analysis of Alam & Nott (1998).
However, some of the long-wave instabilities of Alam & Nott (1998) were not found
in simulations (Conway & Glasser 2004). Possibly those very long-wave instabilities
are not admitted once the nonlinear terms are taken into account or the channel length
of simulations was not long enough to capture structures with very large wavelengths.
More recent dense simulations of Conway et al. (2006) identified a two-dimensional
antisymmetric stationary wave (i.e. a sinuous-type mode), with significant modulations
along the streamwise direction, which was found to be stable over millions of particle
collisions. A nonlinear analysis of two-dimensional instabilities (kx �= 0, where kx is the
wavenumber along the periodic streamwise direction) is required to find out whether
the simulated patterns can be predicted by continuum theory.

1.2.1. Previous work on order-parameter theory in the granular Couette flow

The one-dimensional shear-banding patterns (Tan 1995; Sasvari et al. 2000; Alam
& Luding 2003; Conway & Glasser 2004; Alam et al. 2005; Conway et al. 2006;
Khain & Meerson 2006; Khain 2007) in the granular plane Couette flow, in which
the uniform shear flow breaks itself into regions of high and low shear rates
along the gradient direction, appear due to a bulk instability of the underlying
streamwise-independent equations (Alam & Nott 1998; Alam et al. 2005, 2008). An
order-parameter theory, using the Landau–Stuart equation, of such shear-banding
instabilities has recently been developed (Shukla & Alam 2009, 2011). Starting
with granular hydrodynamic equations, Shukla & Alam (2009, 2011) derived the
Landau–Stuart equation for the shear-banding instabilities (for the first time in
granular flows) via weakly nonlinear analyses. They employed both the direct method
of centre manifold reduction (Shukla & Alam 2009) and the indirect method of
amplitude expansion (Shukla & Alam 2011), and showed the equivalence between
these two methods that result in the same expression for the first Landau coefficient,
which is the leading-order nonlinear correction in the nonlinear stability analysis.
From a detailed analysis of the Landau–Stuart equation, Shukla & Alam (2011)
showed that there is a switchover in the hierarchy of pitchfork bifurcations with
increasing mean density (volume fraction of particles): (i) ‘bifurcation from infinity’
in the Boltzmann limit (φ < φl

c ∼ 0.15, where φl
c is the minimum density below which

the uniform shear flow is linearly stable), (ii) ‘subcritical’ bifurcation over a small
window of densities at low-to-moderate densities (φl

c < φ < φs
c ∼ 0.2), (iii) ‘supercritical’

bifurcation at moderate densities (φs
c <φ <φs1

c ∼ 0.4), (iv) ‘subcritical’ bifurcation in
dense flows (φs1

c < φ < φs2
c ∼ 0.55) and finally (v) ‘supercritical’ bifurcation in the dense

limit (φ > φs2
c ). It has been aptly concluded (Shukla & Alam 2011) that the granular

plane Couette flow is a ‘microcosm’ of pitchfork bifurcations.
The plethora of pitchfork bifurcations at different densities agrees qualitatively

with previous particle-dynamics simulations of the granular plane Couette flow. For
example, the dilute simulations of Tan (1995) identified shear-banding patterns at
a particle volume fraction of 0.05 which agrees with our scenario (i). The recent
simulations of Khain (2007) also identified shear bands as a subcritical bifurcation
(and hence bistability) in the dense limit, which agrees with our scenario (iv),
and he has also verified his observation from the solution of one-dimensional
continuum equations using modified constitutive relations with viscosity divergence.
The simulations of Conway et al. (2006) on high-shear granular plane Couette flows of
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both monodisperse and bidisperse particles showed the existence of ‘stable’ symmetric
and asymmetric shear bands (with the symmetry being about the spatial location of
the shear band around the channel centreline) for a range of mean densities. Both
the linear stability analysis (Alam & Nott 1998) and the order-parameter theory
(Shukla & Alam 2011) predicted such symmetric and asymmetric modes that can
be stable/unstable depending on the Couette gap. What was missing for a long
time is some experimental evidence of shear bands in the ‘rapid’ shear regime of
the plane Couette flow, which is hard to realize in Earth-bound experiments where
gravity dominates. However, the recent experiments of Conway et al. (2006) in a
circular Couette geometry have uncovered the existence of shear bands (at moderate
densities) which was shown to be stable over the experimental time scales of about an
hour. On the whole, the predictions of the order-parameter theory (Shukla & Alam
2011) agree qualitatively with results from both particle simulations and experiments,
with regard to the formation of shear bands in a rapid granular plane Couette flow.

1.2.2. Present work

Given the reasonable success of our order-parameter theory to predict one-
dimensional finite-amplitude shear-banding instabilities (Shukla & Alam 2009, 2011),
it is worthwhile to probe the nonlinear stability of two-dimensional patterns that
emerge due to the travelling and stationary instabilities in granular Couette flow using
the Landau–Stuart order-parameter equation (1.3). Following the Stuart–Watson
theory (Stuart 1960; Watson 1960; Reynolds & Potter 1967) and our previous work
(Shukla & Alam 2011), the order-parameter theory for such spatially inhomogeneous
patterns in the two-dimensional granular Couette flow is developed in this paper,
which constitutes one of our major goals here. Note that Shukla & Alam (2009,
2011) considered only streamwise-independent flow, which is equivalent to the zero-
wavenumber (kx = 0) limit of the present problem. Another goal of this work is to
understand the nonlinear saturation of two-dimensional (kx �= 0) patterns that arise
from a variety of linear instability modes in the granular plane Couette flow. Along
with two-dimensional ‘stationary’ patterns that lead to pitchfork bifurcations, we
found Hopf/oscillatory bifurcations in this flow and identified the parameter regimes
of both subcritical and supercritical bifurcations in each case. We found that the
two-dimensional granular plane Couette flow is susceptible to a plethora of nonlinear
resonances, the criteria for which are clearly identified from an analysis of modal
equations at quadratic order.

The Navier–Stokes hydrodynamic equations and constitutive relations are described
in § 2, along with the steady mean flow of the plane Couette flow. The amplitude
expansion method and the modal equations at different orders are briefly discussed
in §§ 3 and 3.1; we have identified two types of resonances that are discussed in § 3.2,
along with their numerical evidence in § 6.3. Different measures of nonlinear stability in
terms of the first Landau coefficient as well as the signatures of Hopf bifurcations are
discussed in § 4. The spectral-based numerical method of our previous work (Shukla
& Alam 2011) has been extended to the present two-dimensional problem as discussed
briefly in § 5. Detailed numerical results on various stationary and travelling wave
instabilities, their nonlinear saturation, possible occurrences of nonlinear resonances,
effects of mean density, and Couette gap and restitution coefficients are discussed in
§§ 6.1–6.5. A qualitative comparison of nonlinear patterns with previous molecular
dynamics simulations of granular Couette flow is provided in § 6.6. The conclusions
are given in § 7.
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2. Governing equations
The balance equations for mass, momentum and granular (pseudo-thermal) energy,

in the absence of gravity, are(
∂

∂t
+ u · ∇

)
� = −�(∇ · u), (2.1)

�

(
∂

∂t
+ u · ∇

)
u = −∇ · Σ, (2.2)

dim

2
�

(
∂

∂t
+ u · ∇

)
T = −∇ · q − Σ : ∇u − D, (2.3)

respectively. Here � =m n= ρφ is the mass density, with m, n, ρ, φ being the particle
mass, the number density, the material density and the volume fraction of particles,
respectively; u is the bulk velocity (coarse-grained velocity field) and T is the granular
temperature that measures the fluctuation kinetic energy of particles; Σ is the stress
tensor, q is the flux of pseudo-thermal energy and D denotes the rate of dissipation of
energy per unit volume (granular energy). Here, the ‘overbar’ denotes the dimensional
variables and ‘dim’ is the dimension of the problem (i.e. 2 for disks and 3 for spheres).

2.1. Constitutive relations

At Navier–Stokes order, the stress tensor is defined by the Newtonian form and the
flux of granular (pseudo-thermal) energy by Fourier’s law:

Σ =
(
p − ζ (∇ · u)

)
I − 2µS, (2.4)

q = −κ∇ T , (2.5)

where p is the pressure, κ is the thermal conductivity, µ and ζ are the coefficients of
shear and bulk viscosities, respectively, and S =

(
∇u + (∇u)T

)
/2 − (∇ · u)I/dim is the

deviatoric strain-rate tensor. The transport coefficients are

p(φ, T ) = ρT f1(φ), µ(φ, T ) = ρ d T
1/2

f2(φ),

ζ (φ, T ) = ρ d T
1/2

f3(φ), κ(φ, T ) = ρ d T
1/2

f4(φ),

⎫⎬
⎭ (2.6)

and the rate of collisional dissipation per unit volume is

D(φ, T ) =
ρ

d
T

3/2
f5(φ, e), (2.7)

where d is the diameter of a particle, e is the normal restitution coefficient, and fi(.)
are the non-dimensional functions of particle volume fraction:

f1(φ) = φ(1 + 4φχ), f2(φ) =
5
√

π

96χ

(
1 +

8

5
φχ

)2

+
8

5
√

π
φ2χ,

f3(φ) =
8

3
√

π
φ2χ, f4(φ) =

25
√

π

128χ

(
1 +

12

5
φχ

)2

+
4√
π

φ2χ,

f5(φ, e) =
12√

π
(1 − e2)φ2χ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

In the above expressions, χ(φ) is the contact radial distribution function, which is
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Figure 1. Schematic of the planar shear flow of granular materials. In Cartesian coordinates,
x and y represent the streamwise (flow) and tranverse (gradient) directions, respectively. The
gap between two walls is ly ≡ h and the channel length is lx; the particles are of the same

diameter d and material density ρ.

chosen to be

χ(φ) =
1

1 − (φ/φm)1/3
, (2.9)

where φm is the maximum volume fraction at random close packing. In continuation
of our previous work on the nonlinear shear-banding instability (Shukla & Alam
2011), we will present results with (2.9); a different choice of χ(φ) of the form

χ(φ) =
(1 − φ/2)

(1 − φ/φm)3
(2.10)

was tested, which did not yield any new instability in the granular plane Couette flow.
Note that with φm = 1, (2.10) simplifies to the well-known Carnahan–Starling form of
the radial distribution function for spheres.

The choice of the above constitutive model, which is strictly valid in the quasi-
elastic limit (e → 1), has been discussed in our previous paper (Shukla & Alam 2011).
It may be noted that the recent works on the kinetic theory of granular fluids (Sela
& Goldhirsch 1998; Brilliantov & Pöschel 2004) have identified additional terms in
the constitutive relations for the heat flux q and the collisional dissipation D at
Navier–Stokes order: (i) a ‘Dufour-like’ term (∝ ∇φ) in (2.5) and (ii) a ‘dilatational’
term (∼∇ · u) in (2.7). While the effect of the additional ‘dilatational’ term in D was
not tested, the effect of the ‘Dufour-like’ term in q was tested on the linear stability
of bounded and unbounded plane shear flows (Alam & Nott 1998; Gayen & Alam
2006; Alam et al. 2008) but yielded no new instability mode.

2.2. Non-dimensional equations and the steady mean flow

We consider the plane shear flow of granular materials between two oppositely
moving parallel walls with speed Uw/2, as shown schematically in figure 1. We
assume that the flow is ‘two-dimensional’ with x and y being the streamwise/flow and
transverse/gradient directions, respectively, having no variations along the spanwise
direction (i.e. z-direction, which is normal to the flow-gradient plane). The analysis
holds both for the plane shear flow of inelastic hard disks and for inelastic hard
spheres in a box having a shallow depth such that the hydrodynamic fields are
uniform along the spanwise direction.

For non-dimensionalization, we are using the gap between the two walls as the
reference length (h), the difference between the wall velocities as the reference velocity
(Uw), the inverse of the overall shear rate as the time scale (h/Uw) and the material
density of particles as the density scale (ρ); the scale for granular temperature is
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U
2

w(d/h)2. The stress tensor (2.4), the granular heat flux (2.5) and the collisional

dissipation (2.7) have been non-dimensionalized by using ρU
2

w(d/h)2, ρU
3

w(d/h)3 and

(ρ/d)U
3

w(d/h)3, respectively. With this scaling, the dimensionless balance equations
for two-dimensional granular flows are

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂y
(φv) = 0, (2.11)

φ

[
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

]
u = − 1

H 2

∂p

∂x
+

1

H 2

∂

∂x

[
2µ

∂u

∂x
+ λ

(
∂u

∂x
+

∂v

∂y

)]

+
1

H 2

∂

∂y

[
µ

(
∂u

∂y
+

∂v

∂x

)]
, (2.12)

φ

[
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

]
v = − 1

H 2

∂p

∂y
+

1

H 2

∂

∂y

[
2µ

∂v

∂y
+ λ

(
∂u

∂x
+

∂v

∂y

)]

+
1

H 2

∂

∂x

[
µ

(
∂u

∂y
+

∂v

∂x

)]
, (2.13)

dim

2
φ

[
∂

∂t
+ u

∂

∂x
+ v

∂

∂y

]
T =

1

H 2

[
∂

∂x

(
κ

∂T

∂x

)
+

∂

∂y

(
κ

∂T

∂y

)]

− p(∇ · u) + 2µ

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
1

2

(
∂u

∂y
+

∂v

∂x

)2

+
λ

2µ
(∇ · u)2

]
− D, (2.14)

with dimensionless constitutive relations as

p(φ, T ) = f1T , µ(φ, T ) = f2

√
T , ζ (φ, T ) = f3

√
T ,

λ(φ, T ) =

(
ζ − 2

dim
µ

)
, κ(φ, T ) = f4

√
T , D(φ, T ) = f5T

3/2.

⎫⎪⎬
⎪⎭ (2.15)

In the above, H = h/d is the ratio between the wall separation and the particle
diameter, hereafter called the scaled Couette gap. In our previous papers (Shukla &
Alam 2009, 2011), we considered one-dimensional streamwise-independent equations
which can be obtained by putting ∂/∂x(·) = 0 in (2.11)–(2.14) since our focus was on
the shear-banding instability, for which the associated patterns have no variations
along the streamwise direction.

As in our previous work (Shukla & Alam 2009, 2011), we are imposing no-slip and
zero heat-flux conditions at walls:

u = ±1/2, v = 0,
dT

dy
= 0, at y = ±1/2, (2.16)

which is, of course, an idealization of the reality. Nevertheless, probing instability
with such ideal boundary conditions helps to make a bridge with instabilities in a
plane Couette flow with slip velocity and non-zero heat flux boundary conditions
as established previously by Alam & Nott (1998) in the context of linear stability
analysis.
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The steady, fully developed equations with boundary conditions (2.16) admit the
uniform shear solution:

u0(y) = y, v0(y) = 0, φ0 = const., T 0 =
f2(φ

0)

f5(φ0, e)
, (2.17)

for which the shear rate (du0/dy = 1) is uniform/constant, with density and granular
temperature being constants. The linear stability of (2.17) against two-dimensional
perturbations has been investigated in detail by Alam & Nott (1998). In the present
paper, we focus on nonlinear saturation of various linear instability modes using
the Landau–Stuart equation which is derived in the following section for spatially
periodic patterns.

3. Nonlinear stability: Landau–Stuart equation and resonance
In linear theory, we perturb the mean flow with infinitesimal perturbations and

seek a solution of linearized perturbed equations in terms of Fourier modes

X(x, y, t) = X0(y) + X′(x, y, t), (3.1)

X′(x, y, t) = X̂(y) e(a+iω)t eikxx = X̂(y) eat ei(kxx+ωt), (3.2)

and the latter (3.2) is possible since the linearized equations are invariant under
translation in x and t . Here, X0 = (φ0, u0, v0, T 0) is the steady mean flow (2.17),
X̂ = (φ̂, û, v̂, T̂ ) is the modal amplitude of perturbation, kx is the wavenumber
along the streamwise direction, a and ω are the growth rate and frequency of the
perturbation, respectively. The flow is stable (or unstable) according to linear theory
if a is negative (or positive) and neutrally stable if a = 0. The above solution is valid
as long as the perturbation amplitude is infinitesimally small (|X′/X0| 	 1), so that
we can neglect the nonlinear terms. For ‘finite’ amplitude perturbations, the nonlinear
terms are important and an amplitude equation is required to predict the behaviour
of the flow. Shukla & Alam (2011) followed the amplitude expansion method (Stuart
1960; Watson 1960; Reynolds & Potter 1967) to develop an order-parameter theory
for the nonlinear shear-banding instability (kx =0) of a granular plane Couette flow.
The same order-parameter theory is extended to two-dimensional disturbances (kx �= 0)
in this work.

We start with the nonlinear disturbance equations, which can be represented in
matrix form (

∂

∂t
− L

)
X′ = N2(X

′, X′; ∂t ) + N3(X
′, X′, X′), (3.3)

where

L ≡ L
(

∂

∂x
,

∂2

∂x2
,

∂

∂y
,

∂2

∂y2
; φ0, . . .

)
(3.4)

is the linear stability operator, N2 and N3 are the quadratic and cubic nonlinear
terms, respectively, of state variables X′ and their spatial derivatives. The explicit
expressions of L and the nonlinear terms N2 and N3 are omitted for the sake of
brevity. The argument ∂t in N2(X

′, X′; ∂t ) refers to the fact that there are quadratic
nonlinearities that involve time derivatives of the form φ′∂(u′, v′, T ′)/∂t (in momentum
and granular energy equations) and this is a consequence of the fact that the granular
fluid is compressible. All nonlinear terms are accumulated by Taylor expansion of
each transport coefficient around the base state (φ0, T 0), and retaining terms that
are up to cubic order in perturbation amplitude as detailed in Shukla & Alam
(2011). In the following, we provide a brief account of the nonlinear theory, mainly
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pointing out the essential differences from our previous work (Shukla & Alam 2011)
as well as deriving the criteria for possible nonlinear resonances at quadratic order in
amplitude. It may be noted that the present nonlinear equations agree with those in
Shukla & Alam (2011) for the special case of streamwise-independent perturbations
(kx = 0).

Let A(t) be the real amplitude of the finite-size disturbance and let ω(A) be its
frequency, which is allowed to depend on A in nonlinear theory. Now all phase
information of the disturbance (see (3.2)) is incorporated into a new variable θ via
the following transformation (Reynolds & Potter 1967):

θ = kxx + ωt, ω = ω(A), A = A(t), y = y. (3.5)

Using (3.5), the time and spatial derivatives are transformed according to

∂

∂t
→ dA

dt

∂

∂A
+

[
ω +

dω

dA

(
t
dA

dt

)]
∂

∂θ
, (3.6a)

(
∂

∂x
,

∂2

∂x2

)
→

(
kx

∂

∂θ
, k2

x

∂2

∂θ2

)
, (3.6b)

(
∂

∂y
,

∂2

∂y2

)
→

(
∂

∂y
,

∂2

∂y2

)
. (3.6c)

Since the perturbation amplitude A(t) is assumed to be a slowly varying function of
time, the first and second terms on the right-hand side in (3.6a) represent slow and
fast time scales, respectively. On the whole, the above transformation (3.5) embodies
a two time-scale ansatz.

Substituting (3.6a), (3.6b) and (3.6c) into (3.3) we transform the nonlinear equations
(3.3) from the (x, y, t)-plane to (A, θ, y)-plane:[

M(∂A, ∂θ ; ω) − L
(
kx∂θ , k

2
x∂

2
θ , ∂y, ∂

2
y ; φ0, . . .

)]
X′ = N2(X

′, X′; ∂t ) + N3(X
′, X′, X′),

(3.7)

where

L(·) ≡ L
(

kx

∂

∂θ
, k2

x

∂2

∂θ2
,

∂

∂y
,

∂2

∂y2
; φ0, . . .

)
, (3.8a)

M =

[
dA

dt

∂

∂A
+

(
ω +

dω

dA

(
t
dA

dt

))
∂

∂θ

]
I (3.8b)

are the linear stability operator and a diagonal operator, respectively, with I being
the identity operator.

The coefficients of transformed disturbance equations (3.7) and boundary conditions
do not depend explicitly on θ , which implies that (3.7) is translation invariant in θ .
This leads us to assume a solution for disturbance variables in terms of a Fourier
series in θ,

X′(x, y, t) ≡ X′(A, θ, y) =

∞∑
k=−∞

X(k)(A(t), y) eikθ , (3.9)

where the superscript k represents a particular Fourier mode, X(−k) = X̃(k) and the
‘tilde’ denotes a complex conjugate quantity. Substituting (3.9) into (3.7) and equating
the coefficients of eikθ , we obtain a set of partial differential equations for X(k),
with k =1, 2, . . . . For example, the continuity equation (first equation in (3.7)) gets
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transformed into

dA

dt

∂φ(k)

∂A
+

[
ω +

dω

dA

(
t
dA

dt

)]
∂φ(k)

∂θ
+ ikkxu

0φ(k) + ikkxφ
0u(k)

+

(
φ0

y + φ0 ∂

∂y

)
v(k) = NL terms. (3.10)

Note that the steady terms O(1) represent the mean flow (φ0, u0, v0, T 0), O(A)
terms give the linear problem, and O(A2) terms represent the harmonics of the
fundamental and the leading-order distortion of the mean flow. This suggests the
following separation of variables solution in terms of a power series in perturbation
amplitude:

X(k)(A(t), y) =
∑
n�k

An(t)X[k;n](y), (3.11)

where the ‘dual index’ in superscripts [k; n] is applied such that the first index k � 0
refers to a particular mode and the second index n � 1 refers to the order of a
particular term O(An). Here, X(1;1) is the fundamental mode which is O(A), and X[0;n]

is the distortion of the mean flow which is O(An).
Since the perturbation amplitude A(t) must be proportional to eat as A → 0

(the limit of infinitesimal disturbances of linear theory), we can write power-series
expansions for

A−1 dA

dt
=

∑
n�0

a(n)An, (3.12)

dθ

dt
≡ ω +

dω

dA

(
t
dA

dt

)
=

∑
n�0

b(n)An. (3.13)

Note that the leading terms of (3.12) and (3.13) constitute the eigenvalue, a(0) + ib(0),
of the linear stability operator. Equations (3.11)–(3.13) are of the same type as are
all expansions in small perturbation amplitude A, and this is why the Stuart–Watson
theory is termed the ‘amplitude expansion method’.

Substituting (3.11)–(3.13) into (3.10) and equating the coefficients of An, we obtain

(na(0) + ikb(0))φ[k;n] + ikkx(u
0φ[k;n] + φ0u[k;n]) +

(
φ0

y + φ0 ∂

∂y

)
v[k;n]

= −(a[n−1] + ib[n−1])φ[1;1]δk1 − (ma[n−m] + ikb[n−m])φ{k;m} + NL terms, (3.14)

where δk1 is the Kronecker delta. In the above, we have used the following superscript
summation notations in terms of three brackets:

(j ) ⇒ j � 0, [j ] ⇒ j � 1 and {j} ⇒ j � 2. (3.15)

When these brackets, (·), [·] and {·}, are applied to the dual-index notation such
as k; n, the above definition (3.15) holds for the second index n. Similarly, we can
represent x-momentum, y-momentum and energy equations in the form (3.14). This
leads to a sequence of linear inhomogeneous ordinary differential equations at each
order in perturbation amplitude O(An), the matrix equivalent of which can be written
in operator form:

LknX
[k;n] = −c[n−1]X[1;1]δk1 + Gkn, (3.16)
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where X[k;n] = (φ[k;n], u[k;n], v[k;n], T [k;n])T is the disturbance vector,

c[n−1] = a[n−1] + ib[n−1], (3.17a)

Gkn = −
(
ma[n−m] + ikb[n−m]

)
X{k;m} + Ekn/(1 + δ0k) + Fkn, (3.17b)

Lkn =
(
na(0) + ikb(0)

)
I − Lk (3.17c)

are the Landau coefficients, nonlinear vector, and linear operator, respectively, and

Lk ≡ L
(

ikkx, (ikkx)
2,

d

dy
,

d2

dy2
; φ0, . . .

)
(3.18)

is the linear operator for the kth Fourier mode, with Lk = 1 being the well-known
linear stability operator. It can be verified that X[k;n] = 0, when k + n is odd and
hence c[n] vanishes for odd n. Note that the nonlinear terms Ekn ≡ Ekn(X, X) and
Fkn ≡ Fkn(X, X, X) have quadratic and cubic nonlinearities, respectively. It is worth
pointing out that the cubic nonlinearities must be retained in disturbance equations
(3.7) for correct computation of the first Landau coefficient c(2).

The above system (3.16) needs to be solved at each order of amplitude along with
boundary conditions:

u[k;n] = 0, v[k;n] = 0,
dT [k;n]

dy
= 0. (3.19)

3.1. First Landau coefficient, solvability condition and higher harmonics

At cubic order O(A3), we get an equation for the distortion to the fundamental mode
X[1;3] by substituting k = 1 and n= 3 into (3.16):

L13X
[1;3] ≡

[(
3a(0) + ib(0)

)
I − L1

]
X[1;3] = −c[2]X[1;1] + G13, (3.20)

where c(2) is the first Landau coefficient that needs to be determined. The dependence
of G13 on modal amplitudes X[i;j ] is given by

G13 = N2(X
[0,2], X[1;1]) + N2(X

[1;1], X[0,2]) + N2(X̃
[1,1], X[2;2])

+ N2(X
[2;2], X̃[1,1]) + N3(X̃

[1,1], X[1;1], X[1;1])

+ N3(X
[1;1], X̃[1,1], X[1;1]) + N3(X

[1;1], X[1;1], X̃[1,1]). (3.21)

This nonlinear vector is completely known since X[1;1], X[2;2] and X[0,2] can be found
by solving the following set of equations sequentially:

L11X
[1;1] ≡

[
(a(0) + ib(0))I − L1

]
X[1;1] = 0, (3.22)

L22X
[2;2] ≡

[
2(a(0) + ib(0))I − L2

]
X[2;2] = N2(X

[1;1], X[1;1]), (3.23)

L02X
[0;2] ≡

[
2a(0) I − L0

]
X[0;2] = N2(X̃

[1;1], X[1;1]) + N2(X
[1;1], X̃[1;1]), (3.24)

where the linear operators L0, L1 and L2 can be easily obtained from (3.18). It is
worth pointing out that L0 is simply the linear stability operator for streamwise-
independent or shear-banding (kx = 0) modes. While the second harmonic X[2;2] is, in
general, a complex quantity, the mean-flow distortion X[0;2] is always a real harmonic.
For the special case of shear-banding modes (kx = 0), it has been shown (Shukla &
Alam 2011) that the second harmonic X[2;2] is real and X[2;2] = X̃[2;2] = X[0;2].

From (3.20), we note that when a(0) = 0, L13 is identical to L11, for which the
associated homogeneous problem and its adjoint (see below) have eigensolutions
and hence the problem (3.20) is solvable if and only if the inhomogeneous part is
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orthogonal to the adjoint eigenfunction. This is called the solvability condition, which
simplifies to yield the expression for the first Landau coefficient:

c[2] = a[2] + ib[2] =

〈
X†, G13

〉
〈X†, X[1;1]〉 , (3.25)

with the inner product 〈·, ·〉 for two complex-valued functions f (y) and g(y) being
defined by

〈f (y), g(y)〉 =

∫ 1/2

−1/2

f̃ (y)g(y) dy. (3.26)

The adjoint eigenfunction X† in (3.25) is obtained by solving the adjoint eigenvalue
problem

∂X†

∂t
= L†X†, (3.27)

with the adjoint operator L† being obtained from the following definition:

〈X†, LX〉 = 〈L†X†, X〉. (3.28)

The explicit form of L† is omitted for the sake of brevity.
Once c[2] is determined from (3.25), the right-hand side of (3.20) is completely

known since G13 is a function of X[1;1], X[0;2] and X[2;2] only as defined in (3.21), and
hence we can solve (3.20) to yield the distortion to the fundamental mode X[1;3]. The
equation for the third harmonic X[3;3],

L33X
[3;3] ≡

[
3(a(0) + ib(0))I − L3

]
X[1;3] = G33, (3.29)

is also simultaneously solved since the nonlinear terms

G33 = N2(X
[1;1], X[2;2]) + N2(X

[2;2], X[1;1]) + N3(X
[1;1], X[1;1], X[1;1]) (3.30)

are known functions of the first and second harmonics. Knowing X[1;1], X[2;2], X[0;2],
X[1;3] and X[3;3], we can calculate the nonlinear disturbance field up to cubic order as
discussed in § 4.3.

3.2. Nonlinear resonance: criteria for mean-flow and 1 : 2 resonances

The modal equations at quadratic order (3.24) and (3.23) admit two types of
resonances: (i) mean-flow resonance and (ii) 1 : 2 resonance, which are analysed
below. Since both appear at O(A2) we call them ‘nonlinear’ resonances, and this
nomenclature distinguishes them from linear resonance, which occurs when two
eigenvalues of the linear stability operator (3.22) are identical.

The system of equations for mean-flow distortion (3.24) is solvable, i.e.

X[0;2] =
[
2a(0) I − L0

]−1
G02 = finite, (3.31)

if the operator (2a(0) I − L0) is non-singular; this is possible if and only if 2a(0) is
not equal to any of the eigenvalues of L0 (which is the linear stability operator for
shear-banding modes kx =0). The violation of this condition is responsible for the
resonance between a linear mode of the operator L0 (which is a shear-banding mode)
and the mean-flow distortion X[0;2] at kx , called the ‘mean-flow resonance’. Therefore,
the criterion for the mean-flow resonance can be written as

2a
(0)
j1

(kx) = a
(0)
j2

(kx = 0) and b
(0)
j2

(kx = 0) = 0, (3.32)

for two modes j1 and j2. Here a
(0)
j1

=Re{c(0)
j1

} is an eigenvalue of the linear stability

operator L1 and a
(0)
j2

≡ c
(0)
j2

is an eigenvalue of the shear-banding operator L0.
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Therefore, the interaction of a linear mode with a shear-banding mode, obeying
(3.32), is responsible for the genesis of the ‘mean-flow’ resonance. We will show
evidence of such resonance in § 6.3.

The system of inhomogeneous equations for the second harmonic (3.23) has a
solution, i.e.

X[2;2] =
[
2c(0) I − L2

]−1
G22 = finite (3.33)

if and only if 2c(0) is not equal to any of the eigenvalues of L2. Recall from (3.18)
that the second harmonic operator L2 is simply the linear stability operator with
wavenumber 2kx . Therefore, the solution for the second harmonic (3.33) becomes
indeterminate when 2c(0) (with c(0) being an eigenvalue of L1) is an eigenvalue of L2,
leading to a resonance between two modes with their wavenumber ratio being 1 : 2.
This is referred to as ‘1 : 2 resonance’, the criterion for which can be written as

2c
(0)
j1

(kx) = c
(0)
j2

(2kx),

⇒ 2a
(0)
j1

(kx) = a
(0)
j2

(2kx) and 2b
(0)
j1

(kx) = b
(0)
j2

(2kx), (3.34)

for any positive integers j1 and j2 that correspond to two different modes. It is clear
from (3.18) that while c

(0)
j1

(kx) is an eigenvalue of L1, c
(0)
j2

(2kx) is an eigenvalue of L2.
Therefore, the interaction of a fundamental mode with a second harmonic, obeying
(3.34), is responsible for the genesis of 1 : 2 resonance. We will discuss the possible
occurrence of such resonance in § 6.3.

In either type of resonances, X[0;2] or X[2;2] diverges and hence the first Landau
coefficient (3.25), which is given in terms of an inner product of a nonlinear function
G13, would also diverge since G13 in (3.21) is a linear function of X[0;2] and X[2;2].
Therefore, the signature of above resonances would appear as a discontinuity in the
first Landau coefficient as we shall demonstrate in § 6.3. It is worth pointing out that
the mean-flow and 1 : n resonances have been uncovered and are known to play an
important role in dynamical transition and pattern formation, via mode interactions,
for both Newtonian and non-Newtonian fluids in a variety of flows (Mizushima &
Gotoh 1985; Knobloch & Proctor 1988; Proctor & Jones 1988; Manneville 1990;
Fujimura 1992; Suslov & Paolucci 1997; Guba & Worster 2010).

4. Analysis of Landau–Stuart equation, bifurcation and disturbance field
From the viewpoint of nonlinear stability, the pertinent question is: do the

unstable/stable ‘linear’ modes become stable/unstable if we disturb the flow with
finite amplitude disturbances? Do we have supercritical or subcritical bifurcation
in each case? The nonlinear terms may saturate the exponential growth of the
disturbance for the bands of wavenumbers where the flow is linearly unstable due
to travelling and stationary instabilities. What is the nature of nonlinear solutions?
The above issues are systematically probed in § 6 using the weakly nonlinear theory
developed in § 3. In the following, we briefly discuss different measures of nonlinear
stability in terms of the equilibrium amplitude, the types of bifurcations (pitchfork or
Hopf) and the nonlinear disturbance field.

4.1. Equilibrium amplitude and phase velocity

As in our previous work (Shukla & Alam 2009, 2011), we will restrict our attention
to the leading nonlinear correction in the order-parameter theory, namely the
computation of the first Landau coefficient c(2) = a(2) + ib(2) from (3.25). Knowing the
growth rate a(0) and the real part of the first Landau coefficient a(2), the equilibrium
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amplitude (dA/dt = 0) is calculated from (3.12) as

Ae = ±
√

−a(0)

a(2)
. (4.1)

Clearly, the equilibrium solution exists if and only if a(0) and a(2) are of opposite
signs. For linearly unstable flows, a(0) > 0 and therefore a(2) must be negative for the
existence of any equilibrium solution – the new stable solution bifurcates from the
critical point, leading to supercritical bifurcations. On the other hand, the existence of
any equilibrium solution for linearly stable [a(0) < 0] flows requires a positive value of
a(2), leading to subcritical bifurcations.

As explained in § 3, the nonlinearities also affect the propagation speed of the
disturbance: see (3.5) and (3.13). More specifically, the imaginary part of the first
Landau coefficient, b(2), changes the equilibrium phase velocity ce

ph, whose expression
follows from (3.13):

ce
ph = − ω

kx

= cph − b(2)A2
e

kx

, (4.2)

where Ae is given by (4.1), and cph represents the linear phase velocity,

cph = −b(0)

kx

, (4.3)

with b(0) being the imaginary part of the complex frequency c(0) = a(0) + ib(0). Note
that b(2) = 0 for a stationary instability, for which ce

ph = cph =0.

4.2. Bifurcations, limit cycle and spirals

Up to the cubic order in amplitude, the Landau–Stuart equations (3.12)–(3.13) simplify
to

dA

dt
= a(0)A + a(2)A3, (4.4)

dθ

dt
= b(0) + b(2)A2. (4.5)

For stationary disturbances, b(n) = 0 for n � 0 and the phase equation (4.5) is
identically satisfied, θ ≡ 0. Hence, the normal form for pitchfork bifurcations is
(4.4), for which the fixed points are simple as given by 0 and Ae in (4.1). In
contrast to pitchfork bifurcations, for which the linear eigenvalue is real, a complex
eigenvalue c(0) = a(0) + ib(0), representing an oscillatory mode, leads to oscillatory or
Hopf bifurcation, for which the normal-form equations are (4.4)–(4.5), which we
discuss below.

4.2.1. Case I: a(2) < 0

For negative values of the first Landau coefficient (a(2) < 0), we have three situations
when (i) a(0) < 0: the origin A= 0 is a stable spiral; (ii) a(0) = 0: the origin is a stable
spiral with algebraically fast decay; and (iii) a(0) > 0 yields an unstable spiral at

the origin and a stable limit cycle solution at A=
√

−a(0)/a(2) via a supercritical
Hopf bifurcation. All the above situations are schematically shown in figure 2(a–c).
Figure 2(a) shows a state of a stable spiral at the origin for a(0) < 0, which loses
stability as the control parameter increases from its critical value (when a(0) = 0)
and gives a stable limit-cycle solution which is shown in figure 2(b). The supercritical
bifurcation is shown in figure 2(c), where the stable (indicated by arrows) and unstable
solutions are shown by solid and dashed lines, respectively.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

59
4X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000594X


162 P. Shukla and M. Alam

(a)

(d)
(e)

( f )

(c)(b)

Supercritical

Subcritical

Control parameter

Control parameter

O
rd

er
 p

ar
am

et
er

O
rd

er
 p

ar
am

et
er

Figure 2. Hopf bifurcation and solution trajectories: (a) a(0) < 0 and a(2) < 0, stable spiral;
(b) a(0) > 0 and a(2) < 0, stable limit cycle; (c) supercritical bifurcation; (d) a(0) > 0 and a(2) > 0,
unstable spiral; (e) a(0) < 0 and a(2) > 0, unstable limit cycle; (f ) subcritical bifurcation.

4.2.2. Case II: a(2) > 0

Similarly, for a(2) > 0 we have two situations, a(0) > 0 or a(0) < 0. In the former case,
we have an unstable spiral at the origin (see figure 2d). If a(0) < 0, three solutions

exist: a stable spiral at the origin, an unstable limit cycle at a distance A=
√

−a(0)/a(2)

and a stable limit cycle corresponding to the higher-amplitude branch. This higher-
amplitude branch can be obtained by adding a stabilizing ‘quintic’ nonlinear term to
the Landau–Stuart equation:

dA

dt
= a(0)A + a(2)A3 + a(4)A5. (4.6)

This equation has five equilibrium solutions, a zero solution (base state or mean flow)
and four non-trivial solutions, as defined by

|Ae| = ±

√
−a(2) ±

√
(a(2))2 − 4a(0)a(4)

2a(4)
. (4.7)

Among these four solutions, two are stable equilibrium solutions and the remaining
two are unstable. Figure 2(f ) shows the bifurcation diagram for subcritical
instabilities, where the dotted line represents an unstable solution corresponding
to an ‘unstable’ limit cycle (dashed circle in figure 2e). The solid line in figure 2(f )
corresponds to the higher-order solution that represents a ‘stable’ limit cycle with a
larger amplitude as shown by the outer circle in figure 2(e) – this solution corresponds
to a(0) < 0, a(2) > 0 and a(4) < 0 in (4.6). A disturbance with an amplitude greater than
the amplitude of the stable limit cycle (outer circle in figure 2e) or an amplitude in
between the outer limit cycle and the inner limit cycle will converge to the ‘stable’
outer limit cycle as shown by curved arrows in figure 2(e). If the amplitude of the
disturbance is less than the amplitude of the inner (unstable) limit cycle in figure 2(e),
the amplitude converges to the origin, which gives a stable spiral at the origin.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

59
4X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000594X


Nonlinear stability, patterns and resonance in granular plane Couette flow 163

4.3. Nonlinear disturbance field

The nonlinear disturbance flow field X′(x, y, t)= (φ′, u′, v′, T ′)(x, y, t), correct up to
the cubic order in perturbation amplitude O(A3), can be written as

X′(x, y, t) = A2X[0;2] +
[(

AX[1;1]eiθ + A3X[1;3]eiθ + A2X[2;2]e2iθ + A3X[3;3]e3iθ
)

+ c.c.
]

= A2X[0;2] + 2A
[
X[1;1]

r cos(θ) − X
[1;1]
i sin(θ)

]
+ 2A3

[
X[1;3]

r cos(θ) − X
[1;3]
i sin(θ)

]
+ 2A2

[
X[2;2]

r cos(2θ) − X
[2;2]
i sin(2θ)

]
+ 2A3

[
X[3;3]

r cos(3θ) − X
[3;3]
i sin(3θ)

]
. (4.8)

Here the subscripts r and i refer to the real and imaginary parts of the complex
vector X[i;j ], and θ =(kxx + ωt). Note that X[0;2] is the distortion of the mean flow
(that appears at O(A2)), which is always real. At equilibrium (dA/dt = 0), (3.12) leads
to ω = (b(0) + b(2)A2), and hence the expression for θ is

θ = kxx +
(
b(0) + b(2)A2

)
t = kx

(
x − ce

pht
)
, (4.9)

with ce
ph being given by (4.2).

Knowing the equilibrium amplitude (4.1) and the phase velocity (4.2), now we
can calculate the nonlinear disturbance flow field from (4.8) and (4.9) by using the
numerical solutions for X[1;1], X[0;2], X[2;2], X[1;3] and X[3;3] that are obtained from
(3.22), (3.24), (3.23), (3.20) and (3.29), respectively. In § 6, we will a make comparison
between the linear (O(A)) and nonlinear (O(A3)) disturbance fields in the (x, y)-plane.

5. Numerical method and control parameters
In our previous work (Shukla & Alam 2011), a spectral-based numerical method has

been developed to solve (3.22), (3.24), (3.23), (3.20), (3.25) and (3.29) for the special
case of shear-banding instability kx = 0. The same numerical technique has been
extended to the present problem with kx �= 0; there is no change in the methodology
of the numerical technique, rather we needed to incorporate additional terms, which
depend on kx , in the numerical code. In short, we have discretized all the differential
equations (linear and nonlinear) by spectral collocation techniques using Chebyshev
polynomials as basis functions. Since there are no boundary conditions for density
(particle volume fraction), the staggered grid method (Canuto et al. 1988; Alam &
Nott 1998) has been employed: the continuity equation is collocated at Gauss points
and the other three equations (x and y momentum equations and the granular energy
equation) at Gauss–Lobatto points; the spectral interpolation matrices are used to
transform variables from Gauss to Gauss–Lobatto grids.

With the above spectral discretization scheme, the linear eigenvalue problem (3.22)
is transformed into a matrix eigenvalue problem,

AX[1;1] = c(0)BX[1;1], (5.1)

where A and B are square matrices of size (4M + 3), with M being the degree of
Chebyshev polynomials; there are (4M + 3) number of eigenvalues c(0), and each
mode corresponds to an eigenvector X[1;1]. The above problem (5.1) has been solved
using the QZ-algorithm, which yields all eigenvalues at a time. For the fundamental
mode, we have used a normalization such that

max
y

|T [1;1](y)| = T 0, (5.2)
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where T 0 is the base state temperature as defined in (2.17). Such a normalization is
directly tied to the fact that the nonlinear perturbation amplitude A is measured in
terms of temperature perturbation which can be linked to pressure perturbation. For
the nonlinear stability, each of the inhomogeneous system of equations (3.24), (3.23),
(3.20) and (3.29) has been solved using the singular value decomposition (SVD)
method. To evaluate the integrals in the solvability condition (3.25), the Gauss–
Chebyshev quadrature formula (Shukla & Alam 2011) has been used. We have used
Matlab software for all these computations.

The details on the accuracy of our numerical method over other equivalent
numerical methods for the special case of shear-banding instabilities (kx = 0) can
be found in Shukla & Alam (2011). For the present case with kx �= 0, it has been
verified that about 30 collocation points are enough to obtain converged eigenvalues
(with an error less than 1 %). For an accurate computation of the first Landau
coefficient, we needed M ∼ 50 if the Couette gap is H � 100; for larger Couette gaps
H > 100, we have used M = 100 or more collocation points.

There are four control parameters to describe the granular plane Couette flow: (i)
the mean density or the volume fraction of particles φ0, (ii) the Couette gap H = h/d

(i.e. the gap between two walls in terms of particle diameter) and (iii) the restitution
coefficient e. For stability, we have an additional parameter: (iv) the dimensionless
streamwise wavenumber

kx =
2π

λx

, with λx =
λx

h
(5.3)

being the dimensionless wavelength of perturbation. Note that λx sets the streamwise
length of the Couette cell in the sense that for any perturbation with wavelength λx

to grow, the channel length must be large enough (i.e. lx/h > λx , where lx is the length
of the Couette cell and h is its height; see figure 1) to accommodate it.

6. Results and discussion: Hopf and pitchfork bifurcations, and resonances
It is known (Alam & Nott 1998) that the plane Couette flow is unstable to shear-

banding (kx = 0), stationary and travelling instabilities with kx �= 0 for a range of
particle volume fractions (φ0) and Couette gaps (H ) at any restitution coefficient
e < 1. Let us focus on the specific case of H =100, φ0 = 0.2 and e =0.8, for which
all the above instabilities coexist. For these parameters the variations of the growth
rate of the least-stable mode, a

(0)
l , and its phase velocity cph (see (4.3)) are shown

in figure 3 by the solid and dot-dashed lines, respectively. We define the least-stable
mode (or the leading eigenvalue) as the eigenvalue having the maximum real part for
a given wavenumber kx:

a
(0)
l = max a(0), (6.1)

out of all (4M+3) eigenvalues of (5.1), where (M+1) is the number of Gauss–Lobatto
collocation points (momentum and energy equations) and M is the number of Gauss
collocation points (continuity equation). While the solid and dot-dashed lines in
figure 3 correspond to results with M = 50, the circles and crosses refer to results with
M = 75 and 100 collocation points, respectively. This validates the convergence of
our numerical results with M = 50 collocation points; for most computations, about
M = 75 collocation points have been used.

In figure 3, the phase velocity corresponding to the first peak of the growth rate
curve is zero, which represents a stationary instability. Similarly, the phase velocity
for the second peak is non-zero and thus the flow is unstable due to travelling waves
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Figure 3. Variations of the growth rate (solid line) and the phase velocity (dot-dashed line)
of the least-stable mode for φ0 = 0.2, H = 100 and e = 0.8, with M = 50 collocation points. The
circles and crosses refer to results with M = 75 and 100, respectively.

0.6

0.5

0.4

0.3

0.2

0.1

50 100

H

φ0

150

Figure 4. (Colour online) Phase diagram for the nonlinear instability of shear-banding modes
(kx =0); the restitution coefficient is e = 0.8. The thick red/blue contour represents ‘critical
line’ at which the linear growth rate is zero, i.e. a(0) = 0, and the thin black contours represent
zeros of the first Landau coefficient a(2) = 0; the grey-shaded region corresponds to a(0) > 0 and
a(2) > 0. The square, star and triangle symbols refer to points at which most of the nonlinear
results with kx �= 0 will be presented. The blue circle is the degenerate point.

there. For parameter values of figure 3, the flow is also unstable to the shear-banding
mode (kx = 0); moreover, there are other stationary and travelling wave instabilities
at very long wavelengths (kx =2π/λx ∼ 0) as we discuss next in § 6.1.

6.1. Nonlinear shear-banding (kx = 0) and long-wave (kx ∼ 0) instabilities

Before presenting results for kx �= 0, let us briefly recall nonlinear results for shear-
banding modes (kx = 0) since they eventually give birth to long-wave instabilities.
Figure 4 presents a phase diagram in the (φ0, H )-plane for a restitution coefficient of
e = 0.8, delineating the regimes of supercritical and subcritical flows. The thick contour
in figure 4 corresponds to the zero growth rate [a(0) = 0], representing the critical line,
and the thin contours represent the zeros of the first Landau coefficient [a(2) = 0]. In
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figure 4, a(2) has been calculated that corresponds to the shear-banding mode (kx = 0)
having the maximum growth rate over all possible gradient wavenumbers (kβ =βπ,
with β = 1, 2, 3, . . . , being the mode number; the value of the mode number β

corresponds to the number of zero crossings, along y, of the density eigenfunction;
see Shukla & Alam 2011). The grey-shaded regions in figure 4 correspond to a(0) > 0
and a(2) > 0, in which there are ‘growing’ nonlinear solutions at cubic order, and this
calls for higher-order Landau coefficients (not calculated here) to locate the related
stable solutions, if any. The point at which the growth rate and the first Landau
coefficient are simultaneously zero [a(0) = 0 = a(2)] is known as the ‘degenerate’ point,
shown by the blue circle in figure 4 at φs ≈ 0.1735. The red upper branch of the critical
line above the degenerate point in figure 4 is supercritically stable, and the blue lower
branch is subcritically unstable. The nonlinear equilibrium solutions of shear-banding-
type appear via a supercritical bifurcation for φ0 >φs and via a subcritical bifurcation
for φ0 <φs below it (Shukla & Alam 2011).

In addition to the shear-banding instability, there are long-wave (kx ∼ 0) stationary
and travelling instabilities whose origin can be tied to the shear-banding modes
(Alam & Nott 1998) – these long-wave modes might be unstable/stable and might
be responsible for supercritical and subcritical nonlinear solutions as we discuss next
in § 6.1.1.

6.1.1. Long-wave modes (kx ∼ 0)

The variations of the growth rate of the least-stable mode a
(0)
l and its phase

velocity (inset plot) with wavenumber kx are shown in figure 5(a). The parameter
values are φ0 = 0.2, H = 100 and e = 0.8, which correspond to the ‘square’ symbol in
figure 4. The shear-banding mode corresponds to kx = 0, which is unstable [a(0) > 0
and a(2) < 0]. It is seen that the flow remains unstable to stationary disturbances with
long wavelengths (i.e. kx = 2π/λx ∼ 0) up to a wavenumber of kx ∼ 2.1 × 10−5, and
thereafter to travelling waves (see the inset for phase velocity in figure 5a). In fact,
two stationary modes merge together at kx ∼ 2.1 × 10−5 to yield a pair of forward-
and backward-propagating travelling waves which remain unstable for a range of kx .
It can be verified (Alam & Nott 1998) that the linear eigenvalue problem (3.22) is
invariant under the transformation

(x, y, t) → (−x, −y, t), [φ′, u′, v′, T ′] → [φ′, −u′, −v′, T ′], (6.2)

⇒ [φ̂, û, v̂, T̂ ](y) exp
(
c(0)t + ikxx

)
→ [φ̂, −û, −v̂, T̂ ](−y) exp

(
c(0)t − ikxx

)
. (6.3)

This implies that a forward-propagating wave (cph ≡ −b(0)/kx > 0: see (4.3)) always
coexists with a backward-propagating wave (cph < 0) in the plane Couette flow.

In figure 5(b), we show the variations of the real, a(2), and the imaginary, b(2), parts
of the first Landau coefficient for small kx . The sharp jump in each curve of figure 5(b)
at kx ∼ 2.1×10−5 indicates a mode-switching between stationary and travelling waves.
The variations of the equilibrium amplitude Ae and the equilibrium phase velocity ce

ph

are shown in figures 5(c) and 5(d), respectively. Note that the bifurcation-type changes
from pitchfork (static/stationary) to Hopf (dynamic/oscillatory) at kx ∼ 2.1×10−5 due
to the above-mentioned switchover from stationary to travelling waves. For the range
of kx in figure 5, a(0) > 0 and a(2) < 0 for both stationary and travelling waves, and
hence the bifurcations are supercritical in nature for both cases.

Fixing the Couette gap at H = 100, we now move to the dilute regime of φ0 = 0.05
(the ‘star’ symbol in figure 4), where the plane Couette flow is subcritically unstable
to shear-banding instability. Figure 6(a) shows the variation of the growth rate of the
least-stable mode for small kx , with the corresponding variation of the phase velocity
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Figure 5. Long wavelength variations at φ0 = 0.2, H = 100 and e = 0.8: (a) linear growth rate
and phase velocity (inset) of the least-stable mode; (b) a(2) (solid line) and b(2) (dot-dashed
line) with kx; (c) equilibrium amplitude with kx; (d) equilibrium phase velocity.

being displayed as an inset. The growth rates remain negative for both stationary and
travelling waves, and hence the flow is linearly stable at long waves kx ∼ 0 (and we
have verified that the flow is stable at any kx for this parameter set). However, the
variations of the first Landau coefficient in figure 6(b) clearly show that a(2) > 0 for a
range of kx ∼ 0 that represents only stationary waves. Therefore, the finite-amplitude
nonlinear solutions exist for stationary instabilities at long waves, as shown in the inset
of figure 6(b). Note that the corresponding nonlinear solutions are unstable since the
underlying bifurcation is subcritical [a(0) < 0 and a(2) > 0]; therefore Ae in figure 6(b)
provides a threshold for nonlinear stability in the sense that for any finite-amplitude
perturbation with A<Ae the uniform shear flow will be recovered; however, with
A > Ae the flow will reach a new stable equilibrium solution. To locate this stable
finite-amplitude solution we need to calculate the second Landau coefficient, which
has not been pursued in this paper.

Lastly, we consider the parameter values corresponding to the ‘triangle’ symbol
in figure 4 (φ0 = 0.5 and H =50) at which the nonlinear shear-banding solutions
(kx = 0) are growing since a(0) > 0 and a(2) > 0. The long-wave variations of a(0) and
cph are shown in the main panel and the inset of figure 7(a), respectively. It is seen
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Figure 6. Long wavelength variations in the dilute limit (φ0 = 0.05): (a) a
(0)
l (main panel)

and cph (inset); (b) a(2) and b(2) (main panel), and equilibrium amplitude Ae (inset). Other
parameters are the same as in figure 5.
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Figure 7. Long wavelength variations for dense flows at φ0 = 0.5 (corresponding to the

triangle symbol in figure 4 at H = 50): (a) a
(0)
l (main panel) and cph (inset); (b) a(2).

that the flow is unstable to stationary and travelling waves up to a wavenumber
kx ∼ 0.008, and stable thereafter. The corresponding variation of a(2) with kx is shown
in figure 7(b). Note that a(2) diverges and changes its sign at kx ∼ 0.008; the divergence
of a(2) is in fact tied to the onset of nonlinear resonance, which will be discussed
in § 6.3. Within the wavenumber band kx ∼ (0, 0.008), a

(0)
l > 0 but a(2) also remains

positive except over an extremely small range of kx (see the inset of figure 7b) just
below the mode-switching point, located at kx ≈ 3.8 × 10−4, at which two unstable
stationary modes merge to yield a pair of unstable travelling waves. Therefore, at
φ0 = 0.5 and H = 50, the flow remains nonlinearly stable except near kx ≈ 3.8 × 10−4.

Figures 8 and 9 show a comparison between nonlinear and linear disturbance
patterns for long-wave stationary and travelling instabilities, respectively, of figure 5 –
the wavenumbers are kx =10−5 and 4 × 10−5, respectively. The nonlinear disturbance
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Figure 8. Long-wave patterns of (a, b) density, (c, d) granular temperature and (e, f ) velocity
field with kx = 10−5. Parameter values are the same as in figure 5.

pattern is calculated using (4.8), which is correct up to cubic order O(A3), and the
linear disturbance field is calculated by setting O(A2)- and O(A3)-terms to zeros in
(4.8). Figures 8(a, c, e), 9(a, c, e) and 8(b, d, f ), 9(b, d, f ) correspond to nonlinear
and linear patterns, respectively; while figures 8(a–d ) and 9(a–d ) show the grey-
scale maps of the perturbation density φ′ and granular temperature T ′, those in
figures 8(e, f ) and 9(e, f ) display the vector plots of the perturbation velocity field
(u′, v′). On the grey scale, the black and white represent minimum and maximum
values, respectively. The linear eigenfunction of the stationary instability in figure 8(b,
d , f ) contains two rows of particle clusters (density maxima) across the gradient
direction y (see also the temperature eigenfunction in figure 8d): this is because
the parental origin of this long-wave stationary instability at H =100 (refer to
the ‘square’ symbol in figure 4) is the ‘mode 2’ shear-banding instability whose
density eigenfunction has two zero-crossings across y (Shukla & Alam 2011). The
corresponding nonlinear equilibrium solution in figure 8(a, c, e) is a modulated version
of the linear eigenfunction in figure 8(b, d , f ). Note that the temperature is maximum
at the location of minimum density, and the velocity field is seen to be changing its
direction at the location of density maxima.

The long-wave travelling solution displayed in figure 9 corresponds to a backward-
propagating mode. For this instability, the nonlinear fields in figure 9(a, c, e) appear
to be much more distorted from their linear counterparts in figure 9(b, d , f ). Other
features look similar to those for the stationary mode in figure 8.

6.2. Nonlinear results on stationary and travelling instabilities: kx ∼ O(1)

We now focus on the instabilities due to the first peak of figure 3: for the wavenumber
band kx ∼ (0.5, 0.65) in figure 3, the phase velocity is zero and the growth rate is
positive, and hence the flow is linearly unstable to stationary waves. The corresponding
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Figure 9. Same as figure 8, but for long-wave travelling instability at t = 0 with kx = 4 × 10−5.

variation of the real part of the first Landau coefficient, a(2), with kx is shown in
figure 10(a); the imaginary part, b(2), is not shown since it remains zero for stationary
waves. It is clear that a(2) is negative for kx ∼ (0.5, 0.65) but a(0) is positive there,
and hence there are stable nonlinear solutions, with the equilibrium amplitudes
as displayed in figure 10(b). Because of the stationary nature of the underlying
instability, we have supercritical pitchfork/static bifurcations within the wavenumber
band kx ∼ (0.5, 0.65) in figure 3.

Note that varying the streamwise wavenumber kx is equivalent to varying the
channel length since the ‘minimum’ length of the channel (see figure 1) is given by

lmin
x =

λx

d
=

2πH

kx

�
lx

d
, (6.4)

and therefore the range of channel lengths in figure 10 corresponds to lx ∈ (12.56 −
9.75)H at a Couette gap of H ≡ ly/d = 100. This has important implications for
molecular dynamics or hydrodynamic simulations of the granular Couette flow: the
nonlinear instabilities such as those in figure 10(b) can be realized if the simulations
are carried out in a rectangular box such that its aspect ratio is lx/ ly � 9.75 with
H = 100. This should be kept in mind while making any comparison between the
present theoretical results and simulations, as done briefly in § 6.6.

A comparison between the nonlinear and linear patterns of density, granular
temperature and velocity is shown respectively in figures 11(a, c, e) and 11(b, d, f ).
On the grey scale in figure 11(a, d), the white represents maximum and the black
represents minimum; the vector plot of the velocity field (u, v) is displayed in
figure 11(e, f ). The nonlinear density and temperature fields are seen to be highly
distorted from their linear counterparts: the location of the density maxima for the
nonlinear case (compare figures 11a and 11b) shifts away from the walls into the bulk.
With nonlinear corrections, the pockets of dilute and dense zones in figures 11(a)
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Figure 10. Variations of (a) the first Landau coefficient a(2) and (b) the equilibrium
amplitude Ae with wavenumber kx . Parameter values are as in figure 3.
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Figure 11. Patterns of (a, b) perturbation density φ′(x, y), (c, d) granular temperature T ′(x, y)
and (e, f ) velocity (u′, v′), for the dominant stationary mode in figure 10 at kx = 0.5858.
Panels (a, c, e) represent nonlinear patterns, while (b, d, f ) represent linear eigenfunction.
Other parameter values are H = 100, e = 0.8 and φ0 = 0.2, as in figure 3.

and 11(c) are seen to be tenuously distributed in the (x, y)-plane. To ascertain
the true aspect ratio of the plots in figure 11, we must stretch the x-axis by a
factor of about 2π/kx ≈ 10.72, since kx =0.5858 for these plots. A comparison of
the linear eigenfunctions in figure 11(b, d , f ) with those in figure 8(b, d , f ) suggests
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Figure 12. Variations with kx of (a) the growth rate, 100a
(0)
l (solid line), and the phase velocity,

cph (dot-dashed line), of the least-stable travelling mode; (b) the first Landau coefficient: real
part (solid line), imaginary part (dot-dashed line); and (c) the equilibrium amplitude Ae (solid
line) and the equilibrium phase velocity ce

ph (dot-dashed line); parameter values are as in

figure 3. (d) Stable limit cycle and two spiralling orbits in the (Ax,Ay)-plane at kx =0.93.

that the structural features of the ‘dominant’ stationary instability (at kx ∼ O(1)) are
significantly different from those for ‘long waves’ (at kx ∼ 0) stationary instability.

For the wavenumber band around the second peak in figure 3, we show the
variations of growth rate (solid line) and the phase velocity (dot-dashed line) in
figure 12(a): clearly, the flow is unstable to travelling waves. (It may be noted that
the growth rates of these travelling waves at kx = O(1) are an order of magnitude
larger than those at long waves kx ∼ 0: see figure 5.) The corresponding variations
of the real (solid line) and the imaginary (dot-dashed line) parts of the first Landau
coefficient are shown in figure 12(b). The real part of the first Landau coefficient
(a(2)) changes its sign from positive to negative at kx ≈ 0.926, shown by an arrow
in figure 12(b). Since the underlying instability is oscillatory, we have supercritical
Hopf/oscillatory bifurcations within the wavenumber band kx ∈ (0.926, 0.99). The
corresponding equilibrium amplitude (solid line) and the equilibrium phase velocity
(dot-dashed line) are shown in figure 12(c). Note that even though the flow is unstable
to travelling waves (i.e. a(0) > 0: see figure 12a) over kx ∈ (0.88, 0.926), the nonlinear
equilibrium solutions do not exist over kx ∈ (0.88, 0.926) since a(2) > 0 there (see
figure 12b).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

59
4X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000594X


Nonlinear stability, patterns and resonance in granular plane Couette flow 173

y

0 0.2 0.4 0.6 0.8 1.0
−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

y

−0.5

0

0.5

y

−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

x/2λx x/2λx

(e)

(b)(a)

(c) (d)

( f )

Figure 13. Same as figure 11, but for the dominant travelling wave at t = 0 with kx = 0.93.

The cubic Landau–Stuart equations (4.4)–(4.5) have exact analytical solutions:

A2(t) =
a(0)A2

0[
a(0) + a(2)A2

0

]
exp(−2a(0)t) − a(2)A2

0

, (6.5)

θ(t) = θ0 + b(0)t − b(2)a(0)

a(2)
ln

[
a(0) + a(2)A2

0(1 − exp(−2a(0)t))

a(0)

]
, (6.6)

with a(0) �=0, where A0 ≡ A(t = 0) and θ0 ≡ θ(t = 0) are initial conditions. At
kx =0.93 and other parameters of figure 12(c), the coefficients of (4.4)–(4.5) are
a(0) ≈ 2.9711×10−3, b(0) ≈ 9.7524×10−2, a(2) ≈ −1.5185×10−2 and b(2) ≈ 7.7618×10−1.

For these parameters, the equilibrium amplitude is Ae =
√

−a(0)/a(2) ≈ 0.4423. We
have evaluated the exact solution trajectories (6.5)–(6.6) for two initial conditions:
one with A0 > Ae and other with A0 <Ae, with θ0 = 0. These solutions are indicated by
solid lines in figure 12(d) in the (Ax, Ay)-plane, where Ax = A cos θ and Ay =A sin θ .
Both spiralling orbits asymptotically approach a limiting circle of radius A= Ae as
t → ∞ – this is the limit cycle, which is stable for the present case.

For the dominant travelling wave instability of figure 12 that occurs at kx ≈ 0.93,
the nonlinear and linear perturbation fields of density, granular temperature and
velocity are compared in figure 13: this is a backward-propagating mode. To visualize
the true aspect ratio of these plots, we need to stretch the x-axis by a factor of about
2π/kx ≈ 6.75, and therefore the density bands, for example in figure 13(a), are much
more elongated than what is seen here. In contrast to the case of stationary instability
in figure 11, the nonlinear corrections induce a significant change in the velocity field
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Figure 14. Variations of (a) a
(0)
l (main panel) and cph (inset), (b) a(2) (solid line) and b(2)

(dot-dashed line), and (c) Ae (dashed line) and ce
ph (dot-dashed line) with kx; other parameters

are the same as in figure 3. (d) Unstable limit cycle and two spiralling orbits at kx = 0.215.

(compare figures 13e and 13f ); the nonlinear density and temperature fields have
some resemblance to their linear counterparts, even though they are also distorted
like the velocity field. In particular, the nonlinear velocity field shows vortical-type
motions (not shown for brevity) if we analyse the total velocity (u, v) = (u0 +u′, v+v′).

The evidence of subcritical instability at moderate values of kx is shown in figure 14
for a range of wavenumbers kx ∈ (0.21, 0.22); other parameters are as in figure 3.
While the variations of the growth rate of the least-stable mode and the phase velocity
(inset) are shown in figure 14(a), the first Landau coefficient is shown in figure 14(b).
These are ‘stable’ [a(0) < 0] travelling waves as seen in figure 14(a). Since a(2) and a(0)

are of opposite signs over kx ∈ (0.21, 0.22), this leads to ‘subcritical’ Hopf bifurcations,
with oscillatory nonlinear solutions. The corresponding variations of the equilibrium
amplitude Ae and the equilibrium phase velocity ce

ph are shown in figure 14(c)
by dashed and dot-dashed lines, respectively. As discussed in § 4.2, the equilibrium
amplitude in figure 14(c) provides a measure for the ‘threshold’ amplitude for nonlinear
stability since we have calculated only the first Landau coefficient. Figure 14(d) shows
the limit cycle (dashed circle) at kx = 0.215 with other parameters as in figure 14(c).
For these parameters, the coefficients of the Landau–Stuart equations (4.4)–(4.5) are
a(0) ≈ −2.3418×10−3, b(0) ≈ 1.0053×10−1, a(2) ≈ 9.6679×10−3 and b(2) ≈ 7.2967×10−2;

the corresponding equilibrium amplitude is Ae =
√

−a(0)/a(2) ≈ 0.4922. The solution
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Figure 15. Same as figure 13, but for the subcritical travelling wave at t = 0 with kx = 0.215
with parameter values as in figure 14(d).

trajectories (6.5)–(6.6) for two initial conditions (one inside the limit cycle and the
other outside) are plotted by solid lines in figure 14(d): both orbits spiral away from
the limit cycle (dashed circle) as t → ∞, confirming that this represents an ‘unstable’
limit cycle.

With parameter values as in figure 14(d), the nonlinear and linear patterns are
compared in figure 15(a–f ). Recall that this is an ‘unstable’ subcritical travelling
wave. Unlike the supercritical solutions in figure 13, the nonlinear subcritical
patterns in figure 15(a, c, e) have little resemblance to their linear eigenfunctions in
figure 15(b, d , f ). The structural features of all perturbation fields in figure 15(a, c, e)
appear to be elongated and aligned along the streamwise direction, and the pockets
of dilute and dense regions are tenuously distributed in the (x, y)-plane.

6.3. Evidence of mean-flow resonance and 1 : 2 resonance

We first consider the mean-flow resonance condition (3.32) which represents a resonant
interaction between a linear mode at some value of kx and a shear-banding mode
(i.e. a disturbance at zero wavenumber kx = 0). Focusing on the wavenumber band
kx =(0.26, 0.38) with other parameters as in figure 3, we have plotted the variations
of the least-stable growth rate and its phase velocity in figure 16(a) and that of a(2)

(solid line) and b(2) (dot-dashed line) with wavenumber in figure 16(b). Note that in
figure 16(b), a(2) has a kink near kx ∼ 0.365, which is a consequence of the mean-flow
resonance condition being satisfied, as we show below.

Recall from (3.32) that the condition for the mean-flow resonance is
2a

(0)
j1 (kx) = a

(0)
j2 (kx = 0) with b

(0)
j2 (kx =0) = 0 for any two modes j1 and j2. In figure 16(c),
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Figure 16. Variations of (a) a
(0)
l (main panel) and cph (inset plot) and (b) a(2) (solid line)

and b(2) (dot-dashed line). Evidence of the mean-flow resonance at (c) kx ≈ 0.3677 and
(d) kx ≈ 0.00785. Parameter values are (a–c) φ0 = 0.2 and H = 100 (same as in figure 3),
and (d) φ0 = 0.5 and H = 50 (same as in figure 7).

the line with open circles represents the variation of 2a(0) with kx (where a(0)

corresponds to the least-stable mode as displayed in figure 16a), and the dashed
horizontal line represents a real eigenvalue of the streamwise-independent flow (which
is not the least-stable eigenvalue at kx = 0 for this parameter set). Both the growth
rate curves intersect at kx ≈ 0.3677, as shown by an arrow in figure 16(c), and this is
the point at which the mean-flow resonance condition,

2a(0)(kx = 0.3677) = a
(0)
j (kx = 0) ≈ −8.56434 × 10−3, (6.7)

is exactly satisfied. In (6.7), j =11, implying that the 11th mode (the ordering of modes
is done by arranging them in descending order of their growth rates) of the streamwise-
independent flow (kx = 0) is responsible for the above mean-flow resonance, resulting
in a kink on the a(2)-curve in figure 16(b). The inset of figure 16(c) shows a zoomed
variation of the first Landau coefficient that diverges and undergoes a sign change at
the resonant wavenumber (kx ≈ 0.3677).

We now explain the divergence of a(2) at long waves in figure 7(b), for which
the parameter values are φ0 = 0.5, H = 50 and e = 0.8. The corresponding variations
of 2a(0)(kx) and a(0)(kx = 0) are displayed in figure 16(d) by solid and dashed lines,
respectively, which intersect at kx ≈ 0.00785. (The dashed line in figure 16d corresponds
to the second shear-banding mode, a

(0)
j =2(kx = 0) ≈ −2.97079 × 10−6, which is stable;
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Figure 17. (a) Evidence of mean-flow resonance: variation of the real part of the least-stable
mode [2a(0)(kx)] with kx at φ0 = 0.2, H = 100 and e = 0.8. The dashed horizontal lines refer to
different shear-banding modes kx = 0. The intersection points of dashed lines with the solid
line denote the locations of kx at which mean-flow resonance occurs as explained in the text.
(b) Divergence of a(2)(kx) for kx > 1.

note that the ‘leading’ shear-banding mode is unstable at φ0 = 0.5 and H = 50: see
figure 4.) Hence, there is a mean-flow resonance at kx ≈ 0.00785, which is responsible
for the divergence of a(2) in figure 7(b).

In fact, such a mean-flow resonance (3.32) can occur at multiple locations at various
values of kx for a given set of parameters (φ0, H, e). To demonstrate this, we replotted
the growth rate curve of figure 3 in figure 17(a) by a solid line – recall that this
corresponds to the parameter values (φ0 = 0.2, H = 100 and e = 0.8) of the square
symbol in figure 4. We have also plotted five real eigenvalues of shear-banding modes
(i.e. at kx = 0) whose growth rates can be parametrized by wavenumber such that

2a(0)(kx) = a
(0)
j (0), ∀ j = 1, 2, 3, . . . , (6.8)

shown by dashed horizontal lines in figure 17(a). In fact, the upper (thick) dashed
line in figure 17(a) corresponds to the first four modes, a

(0)
j =1,2,3,4(0) = 9.2125 × 10−5,

8.28485 × 10−5, 2.72077 × 10−5 and −5.99651 × 10−5, which are very close to each
other, as clarified in the zoomed inset. The first two (almost) vertical solid lines in
the inset correspond to the zoomed version of the dominant stationary wave (SW)
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Figure 18. Possible onset of the 1 : 2 resonance at φ0 = 0.2, H = 100 and e = 0.8: variation of
(a) the real part, a(0), (b) the imaginary part, b(0), of the least-stable mode with kx .

of figure 17(a) and the next two vertical lines correspond to travelling waves (TW).
It is clear from this inset that the growth rates of these four shear-banding modes
(a(0)(kx =0)) coincide with the growth rates (2a(0)(kx)) of the dominant stationary and
travelling waves, satisfying the mean-flow resonance condition (3.32) exactly at 16
different values of kx (which are, of course, very close to each other). Consequently,
there are multiple resonance points at various values of kx , near the zero crossings of
SW and TW. (That the first Landau coefficient diverges at such resonance points can
be ascertained from figures 10(a) and 12(b).) The lower dashed line in figure 17(a)
corresponds to the 11th shear-banding mode [a(0)

j =11(kx = 0) = −8.56434×10−3], which
is responsible for the mean-flow resonance in figure 16(c). Note that in figure 17(a) the
flow is linearly stable for large values of kx > 1. However, there are multiple resonance
points in this stable regime too, as implicated by the discontinuities on the curves of
a(2) and b(2) at various values of kx (see figure 17b), where the mean-flow resonance
condition (3.32) is satisfied.

Now we discuss the possible occurrence of the 1 : 2 resonance condition (3.34) in
the present flow. While the solid line in figure 18(a) represents the variation twice
of the growth rate of the least-stable mode, 2a(0)

l (kx), that in figure 18(b) represents

the corresponding variation of frequency, 2b
(0)
l (kx). The dashed lines in figure 18(a, b)

represent the growth rate and frequency curves, parametrized by a(0)(kx) = a
(0)
l (2kx)

and b(0)(kx) = b
(0)
l (2kx), respectively. The points of intersection of the solid and dashed

lines in figure 18(a) are marked by vertical dot-dashed lines where the growth rates
are equal. However, the 1 : 2 resonance condition (3.34) is not satisfied at these points
because while the condition on the growth rate,

2a
(0)
l (kx) = a

(0)
l (2kx), (6.9)

is satisfied, the equality of frequencies does not hold, i.e.

2b
(0)
l (kx) �= b

(0)
l (2kx) (6.10)
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Figure 19. Effect of mean density on the growth rate of the least-stable mode at H = 100
and e = 0.8.

at these points. We have checked a few other parameter combinations, but could not
find the occurrence of a 1 : 2 resonance in this flow. We note in passing that the 1 : 2
resonance between two travelling waves corresponds to a codimension-3 bifurcation
point (Golubitsky & Schaffer 1985; Proctor & Jones 1988; Fujimura 1992), and
therefore requires an exhaustive search in the parameter space which is not pursued
further in this paper.

Irrespective of the types of resonance (i.e. mean flow or 1 : 2), the first Landau
coefficient is divergent at the resonance point. In the following sections, we will
present results for a(2) and b(2), which contain such resonance points as implicated by
discontinuities in the first Landau coefficient.

6.4. Dominant stationary and travelling instabilities: effects of density and Couette gap

We define the dominant eigenvalue as the one having the maximum growth rate
over all wavenumbers for a specified control parameter combination of (H, φ0, e). In
other words, it is the supremum of all leading eigenvalues, as defined in (6.1), over
all kx:

ad
l = sup

kx

a
(0)
l . (6.11)

The wavenumber corresponding to this dominant mode is referred to as the dominant
wavenumber:

kd
x = kx(a

(0) = ad
l ). (6.12)

For example, in figure 3, we have plotted the growth rate of the leading eigenvalue,
a

(0)
l , with kx at (H, φ0) = (100, 0.2) and e = 0.8. The dominant mode for this parameter

combination comes from the maximum of the growth rate curve that occurs at the
first peak at kx ≈ 0.5858, which is a stationary wave; the second dominant mode
corresponds to the maximum of the second peak at kx ≈ 0.9349 in figure 3, which
is a travelling wave. Recall that the growth rates of these stationary and travelling
instabilities, which appear at kx =O(1), are an order of magnitude larger than those
appearing at long waves (kx ∼ 0: see § 6.1). So far, we have presented results on these
dominant instabilities at a mean density of φ0 = 0.2 and a Couette gap of H = 100
in §§ 6.2 and 6.3. In this section, we probe the effects of varying mean density and
Couette gap on the nonlinear saturation of these dominant stationary and travelling
instabilities.
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Figure 20. Effect of mean density on the dominant stationary instability, corresponding to
the first peak in figure 19. (a) ad

l (main panel) and kd
x (inset); (b) supercritical/stable Ae (main

panel) and a(2) (inset).

6.4.1. Effect of mean density

In figure 19, we show the variations of a
(0)
l with kx for 24 different mean densities

ranging from φ0 = 0.1 to 0.3, with parameter values as in figure 3. The dashed and
thick solid lines correspond to φ0 = 0.1 and 0.3, respectively, and the thin solid lines
refer to the remaining equally spaced densities. For each density, the first dominant
peak refers to stationary waves, and the next one to travelling waves. Note that the
locations of both the dominant stationary and travelling wave peaks move to larger
values of kx with increasing density from φ0 = 0.1 to 0.3.

The variation of the growth rate of the above-discussed dominant stationary
instability, ad

l , with mean density is shown in figure 20(a), and the corresponding
variation of the dominant wavenumber, kd

x , is shown in its inset. It is seen that the
dominant growth rate is maximum at an intermediate value of φ0 ∼ 0.3 and decreases
in both the dilute and dense limits. Also, the dominant wavenumber is minimum at
φ0 ∼ 0.1 and increases in both the dilute and dense limits, implying that the wavelength
(λx = 2π/kx) of the dominant instability is maximum at some intermediate density but
decreases sharply in both dilute and dense limits. Within the density range over which
the dominant stationary instability is unstable (ad

l > 0), the first Landau coefficient
a(2) is negative as seen in the inset of figure 20(b); the imaginary part of the first
Landau coefficient b(2) is zero for stationary waves and hence not shown. (Note that
the jumps in a(2), marked by arrows in the inset of figure 20b, correspond to the
mean-flow resonance condition (3.32) being satisfied at those locations.) Therefore,
at H = 100 (refer to the square symbol in figure 4), the supercritical (and hence
stable) stationary solutions exist for a range of mean densities as shown in the main
panel of figure 20(b). It has been verified that this range of φ0, over which such
nonlinear equilibrium states exist, becomes larger in wider Couette gaps (i.e. with
increasing H ).

With the finite amplitudes as in figure 20(b), the corresponding nonlinear
stationary patterns of the perturbation density and velocity fields are displayed
in figures 21(a, c, e) and 21(b, d, f ), respectively, for three values of mean density:
figures 21(a, b), 21(c, d) and 21(e, f ) correspond to φ0 = 0.1, 0.3 and 0.45, respectively,
with dominant wavenumbers kd

x =0.52, 0.77 and 1.39. These plots should also be
compared with figure 11(a, e) for φ0 = 0.2. It is seen that the overall features of density
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Figure 21. Effect of mean density on nonlinear patterns of perturbation density (a, c, e) and
velocity (b, d, f ) for the dominant stationary instability in figure 20: (a, b) φ0 = 0.1 (kx =0.52),
(c, d) φ0 = 0.3 (kx = 0.77) and (e, f ) φ0 = 0.45 (kx = 1.39).

and velocity fields look similar at any mean density. Note further that the related plots
of linear perturbations at φ0 = 0.1, 0.3 and 0.45 (not shown) look strikingly similar
to those at φ0 = 0.2 as in figure 11(b, f ). Therefore, the overall structural features of
both linear and nonlinear perturbation fields for the dominant stationary instability
remain relatively unaffected by variations in mean density, i.e. whether the flow is
dilute (φ0 = 0.1) or dense (φ0 = 0.45).

For the dominant travelling wave, corresponding to the second peak in figure 19,
the variations of ad

l and cph with mean density φ0 are shown by solid and dot-dashed
lines, respectively, in figure 22(a). The phase velocity, cph, of the dominant travelling
mode remains relatively unaffected with changes in mean density; however, its growth
rate ad

l is maximum at some intermediate density φ0 ∼ 0.2 and decreases in both dilute
and dense limits. The corresponding dominant wavenumber kd

x , shown in the inset
of figure 22(a), varies non-monotonically with φ0 and is minimum at φ0 ∼ 0.1 and
increases in both dilute and dense limits. Comparing figure 22(a) with figure 20(a)
we find that the growth rate and the unstable range of densities are much smaller for
the dominant travelling wave than its stationary counterpart and so is its wavelength
(since λx ∼ 1/kd

x ).
The dominant travelling waves in figure 22(a) undergo ‘supercritical’ and

‘subcritical’ Hopf bifurcations over the density range of φ0 ∼ (0.12, 0.25) and
φ0 ∼ (0.317, 0.343), respectively: see figures 22(b) and 22(c). The variations of the
real part of the first Landau coefficient, a(2), and the growth rates are displayed in the
insets of figures 22(b) and 22(c), and those of the equilibrium amplitude Ae and the
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Figure 22. Effect of the mean density on the dominant travelling wave, corresponding to the
second peak in figure 19. (a) ad

l (solid line), its phase velocity (dot-dashed line) and kd
x (inset);

(b) supercritical/stable Ae , ce
ph (main panel) and a(0) and a(2) (inset); (c) subcritical/unstable

Ae , ce
ph (main panel) and a(0) and a(2) (inset).

equilibrium phase velocity ce
ph in their respective main panels. The nonlinear solution

branches in figures 22(b) and 22(c) are responsible for ‘stable’ and ‘unstable’ limit
cycles, respectively, similar to those in figures 12(d) and 14(d). Corresponding to an
unstable limit cycle such as in figure 14(d), there exists a stable limit cycle of larger
amplitude that requires the knowledge of the second Landau coefficient c(4) (which is
not calculated here).

The nonlinear travelling patterns (at t =0) of the perturbation density, granular
temperature and velocity fields are shown in figure 23 – figures 23(a, c, e) and
23(b, d, f ) correspond to stable and unstable solutions at φ0 = 0.15 and 0.33,
respectively, with other parameters as in figure 22. It must be noted that the structural
features of stable travelling solutions at any density over φ0 ∼ (0.12, 0.23) resemble
those in figure 23(a, c, e) and the unstable solutions at any φ0 ∼ (0.317, 0.342) look
similar to those in figure 23(b, d , f ). It is clear from figure 23 that the stable and
unstable nonlinear solutions for all three fields are markedly different from each other.
More specifically, the unstable patterns support larger fluctuations in the (x, y)-plane
in all fields than the corresponding stable patterns. This may be contrasted with the
fact that the underlying linear fields for either case of supercritical and subcritical
Hopf bifurcations look similar, such as those in figure 13(b, d , f ).
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Figure 23. Nonlinear patterns of (a, b) density, (c, d) temperature and (e, f ) velocity fields for
the dominant travelling instability in figure 22 at two mean densities: (a, c, e) φ0 = 0.15 and
kx = 0.84 (stable); (b, d, f ) φ0 = 0.33 and kx = 1.3 (unstable).

6.4.2. Effect of Couette gap

The results in § 6.4.1 pertain to a fixed Couette gap of H = 100 over a range of mean
densities φ0 ∈ (0.05, 0.5). Here, we fix the mean density at φ0 = 0.2 and probe the
effect of varying Couette gaps on dominant instabilities, along the horizontal arrows
in figure 4. Figure 24 shows the variation of the growth of the least-stable mode
with kx for a few values of H ∈ (25, 100). It is seen that the dominant stationary
instability at H = 100 (the first peak on the thick solid line) becomes stable for
narrower Couette gaps (say, at H = 25, indicated by the dashed line in figure 24).
Therefore, there is a minimum Couette gap (H =HSW

c ) below which the stationary
instability with kx ∼ O(1) becomes stable.

For the dominant instability, corresponding to the first peak in figure 24, we have
shown the variations of its growth rate ad

l with H and the corresponding first Landau
coefficient a(2) (with b(2) = 0) in figures 25(a) and 25(b), respectively. The flow is
unstable to this instability for H > 35.8; the growth rate ad

l reaches a maximum at
some value of H (∼70) and decreases slowly thereafter. The dominant wavenumber kd

x

decreases monotonically with increasing H (see the inset in figure 25a), and hence the
corresponding wavelength increases. In fact, the dominant wavelength λd

x/d (in terms
of particle diameter) increases from 20π to 1000π at H = 25 and 200, respectively, and
λd

x/h from 0.8π to 5π in terms of the Couette gap. The inset in figure 25(b) displays a
zoomed version of a(2) over a smaller range of H , and the two discontinuities in a(2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

59
4X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000594X


184 P. Shukla and M. Alam

0 1 2 3
−0.12

−0.08

−0.04

0

kx

al
(0)

SW
TW

H = 100

H = 25

Figure 24. Effect of the Couette gap on the growth rate of the least-stable mode at φ0 = 0.2
and e = 0.8.

50 100 150 200
−0.06

−0.04

−0.02

0

0.02

(a) (b)

(c)

H

H

H

H ∼ 35.8↓

40 80 120 160 200

0.5

1.5

2.5

50 100 150 200
−4

−3

−2

−1

0

1

a(2)al
d

25 30 35 40
−4

−3

−2

−1

0

1

50 100 150 200
0.20

0.25

0.30

0.35

Ae

↑ ↑

↑

↓

↓ ↓

29.0 29.5 30.0
0

0.1

0.2

0.3

0.4

↑

↑

↓

↓

kx
d

Figure 25. Effect of the Couette gap on the dominant stationary instability at φ0 = 0.2 and
e = 0.8: (a) ad

l (main panel) and kd
x (inset); (b) a(2); (c) ‘supercritical’ equilibrium amplitude

(main panel) for H > 36 and ‘subcritical’ amplitude (inset) for H ∈ (29, 30).

at H ∼ 29 and H ∼ 36 correspond to the mean-flow resonance condition (3.32) being
satisfied there.

For the dominant stationary instability in figure 25(a), the nonlinear solutions
appear via ‘supercritical’ pitchfork bifurcations for a large range of Couette gaps
H ∈ (36, 100) as shown in the main panel of figure 25(c). However, the ‘subcritical’
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Figure 26. Effects of the Couette gap on the nonlinear patterns of density (a, b), granular
temperature (c, d) and velocity (e, f ) for the dominant stationary instability in figure 25:
(a, c, e) H = 50 and kx = 1.18 (stable solution) and (b, d , f ) H = 30 and kx = 2.05 (unstable
solution).

solutions also exist but for a very narrow range of Couette gaps H ∈ (29, 30) as in
the inset of figure 25(c). Note that in the inset of figure 25(b), a(2) is positive for
H ∈ (29, 30), leading to subcritical bifurcations.

For parameter values of figure 25, the stable/supercritical nonlinear solutions at
any H ∈ (36, 100) look similar. This can be verified by comparing a representative
stationary-wave solution for the patterns of density, granular temperature and velocity
as displayed in figure 26(a, c, e) at a Couette gap of H =50 (with other parameters as in
figure 25) with figure 11(a, c, e) at H = 100. However, the unstable/subcritical solution
at H = 30 looks completely different as shown in figure 26(b, d , f ). (Note that the
height and length ratios between two sets of images in figures 26(a, c, e) and 26(b, d, f )
must be set proportional to H1/H2 = 5/3 and Lx1/Lx2 = kx2/kx1 ≈ 1.75, respectively,
for a fair comparison.) In the latter case, the particle bands/clusters are wavy and
aligned primarily along the streamwise direction, which is in contrast to oblique
clusters observed for stable/supercritical solutions in figure 26(a, c, e). The density
field in figure 26(b) has some resemblance to the sinuous stationary mode found
in particle simulations of Conway et al. (2006). (The solution for the corresponding
stable branch, which requires the second Landau coefficient, is expected to remain
similar since it represents a continuation of the unstable branch: see figure 2f .)

The effect of the Couette gap on the dominant travelling instability, corresponding
to the second peak on the thick solid line in figure 24, has been studied at φ0 = 0.2
for a range of H ∈ (25, 200), but we do not show these results, for the sake of
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Figure 27. Nonlinear travelling patterns (t = 0) of (a) density, (b) temperature and
(c) velocity field for the subcritical solution at H = 80, φ0 = 0.2, e = 0.8 and kx =1.1.

brevity. We found that the flow is linearly unstable to the dominant travelling
instability (i.e. ad

l > 0) beyond H = HT W
c ∼ 85.5. Here too we have subcritical and

supercritical Hopf bifurcations over H ∈ (78.5, 85.5) and H > 85.5, respectively. Over
the subcritical range H ∈ (78.5, 85.5), the flow is found to be susceptible to the
mean-flow resonance (since this range of H belongs to the stable regime where the
shear-banding modes, which participate in creating the mean-flow resonance, exists,
see § 6.3) at different values of H . The patterns of stable/supercritical nonlinear
travelling-wave solutions at H > 85.5 (not shown) look similar to those for H = 100,

as displayed in figure 13. In contrast, the unstable/subcritical nonlinear solution at
H = 80, shown in figure 27 (compare with figure 13a, c, e), looks markedly different
from supercritical solution, even though the underlying linear perturbation fields
(i.e. the eigenfunction or the fundamental mode) are similar in both cases. From
the density and temperature contours in figure 27(a, b), we find that there are two
additional rows of clusters in the bulk along with wall clusters, and the density bands
are aligned along the streamwise direction.

6.5. Effect of restitution coefficient

So far, we have presented all results for a single restitution coefficient of e =0.8, and
this was done in continuation of previous linear stability results (Alam & Nott 1998)
and nonlinear shear-banding results (Shukla & Alam 2011) of the same problem. It
is of interest to know how the values of e, which is a measure of inelastic dissipation
in a granular fluid, would affect the nonlinear saturation of dominant stationary
and travelling wave instabilities. Here, we present brief results at a mean density of
φ0 = 0.2 and a Couette gap of H = 500, focusing on a restitution coefficient of e = 0.95
that belongs to the quasi-elastic limit (e ∼ 1).

For e = 0.95, φ0 = 0.2 and H = 500, figures 28(a) and 28(b) show the variations with
kx of the least-stable growth rate a

(0)
l and its phase velocity cph, and the real part of

the first Landau coefficient a(2), respectively. As explained in § 6.3, the discontinuities
on the a(2)-curve in figure 28(b) signal the onset of mean-flow resonance (3.32). The
first peak on the growth rate curve in figure 28(a) corresponds to the dominant
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Figure 28. (a–e) Results in the quasi-elastic limit (e = 0.95) for a very large Couette gap
H = 500 at φ0 = 0.2. See text for details.

stationary (cph = 0: see dot-dashed line) instability since the global maximum of a
(0)
l

over all kx belongs to this peak; see the upper inset in figure 28(c) for a zoomed view
of this peak which is located at kx ∼ 0.22. The second peak of the a

(0)
l -curve belongs

to the dominant travelling (cph �=0) instability. The rest of the growth rate curve in
figure 28(a) for even larger values of kx belongs to travelling waves too, except for
a small window of kx ∼ (0.51, 0.535), over which the least-stable mode is stationary;
see the corresponding variation of a

(0)
l in the upper inset of figure 28(d).
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Figure 29. Nonlinear (a, c, e) and linear (b, d, f ) ‘stationary’ patterns of (a, b) density, (c, d)
temperature and (e, f ) velocity fields in the (x, y)-plane. Parameter values are H = 500, e = 0.95,
φ0 = 0.2 and kx = 0.517, as in figure 28(d).

The variations of a(2) and the equilibrium amplitudes Ae for the above two stationary
instabilities are displayed in the main panel and the lower inset, respectively, of
figures 28(c) and 28(d). For both cases, we have supercritical pitchfork bifurcations
since a(0) > 0 and a(2) < 0. The vertical double arrows in figures 28(c) and 28(d)
correspond to kx-values at which a(2) suffers a jump discontinuity due to the mean-
flow resonance. From the lower insets of figures 28(c) and 28(d), we find that
Ae(kx ≈ 0.22) is about five times larger than Ae(kx ≈ 0.517). Therefore, the nonlinear
saturation of the ‘second-type’ stationary instability (at larger kx) is more likely to
occur than the dominant stationary instability (at smaller kx), even though the growth
rate of the former is smaller than that of the latter by about an order of magnitude
(compare upper insets in figures 28c and 28d).

The nonlinear and linear disturbance patterns for the dominant stationary
instability, corresponding to the first peak in figure 28(a), resemble those in figure 11
at e = 0.8 and H = 100, and hence we do not show them here. However, we focus on
patterns for the ‘new’ stationary waves in figure 28(d) at kx =0.517 (with maximum
growth rate). The corresponding nonlinear and linear patterns of perturbation density,
granular temperature and velocity field are displayed in figures 29(a, c, e) and
29(b, d, f ), respectively. A comparison between the linear density eigenfunctions in
figures 11(b) and 29(b) suggests that the latter mode has two additional rows of particle
clusters near two walls, the signature of which is also evident in the temperature and
velocity maps as in figure 29(d , f ). Therefore, this is a ‘new’ stationary instability
which is structurally different (from that in figure 11) and that appears only in wider

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

59
4X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000594X


Nonlinear stability, patterns and resonance in granular plane Couette flow 189

0 0.2 0.4 0.6 0.8 1.0
−0.5

0y

y

y

0.5
(a)

(c)

(e) ( f )

(d)

(b)

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

x/2λx x/2λx

Figure 30. Nonlinear patterns of the travelling instability at (a, c, e) kx = 0.75 and (b, d , f )
kx = 1.0. Parameter values are the same as in figure 28.

Couette cells of large H . The corresponding nonlinear patterns also look different, as
seen in figures 29(a, c, e) and 11(a, c, e).

We have checked that the above-discussed new stationary mode persists at other
values of e as long as the Couette gap H is large enough. More specifically, reducing
the restitution coefficient e leads to the appearance of this new stationary instability
in a system with a smaller Couette gap (H < 500), with other parameters being fixed
as in figure 28.

With parameters as in figure 28(a), the variations of Ae for larger values of kx

are shown in figure 28(e) over which supercritical Hopf bifurcations occur: see the
corresponding zoomed variation of a(0) > 0 in the inset of figure 28(e) and that
of a(2) < 0 in the main panel of figure 28(b). For these travelling waves too, Ae

decreases with increasing kx . We show a comparison between the nonlinear patterns
at kx = 0.75 and 1.0 in figures 30(a, c, e) and 30(b, d , f ), respectively. Both represent
backward-travelling waves – note that the lengths of images in both columns should be
proportional to the ratio of their wavelengths (λx1/λx2 = kx2/kx1 = 4/3). The patterns of
density, temperature and velocity at kx =1 are more stretched and tenuous around the
centreline compared with those at kx = 0.75, but their structures near two walls look
similar. The overall structural features of the pattern at kx = 1 have some resemblance
to the corresponding dominant travelling wave pattern: see figure 13(a, c, e).

6.6. Discussion and qualitative comparison with molecular dynamic simulations

It is important to pinpoint how the present results of a variety of nonlinear states in
the granular plane Couette flow can be realized if we carry out particle simulations
or direct simulations of full nonlinear hydrodynamic equations. Since our theory is
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based on the assumption of streamwise periodicity (characterized by a wavenumber of
kx = 2π/λx , with its wavelength being λx: see (5.3)) and no-slip boundary conditions,
simulations with similar restrictions should be able to capture the qualitative features
of predicted patterns. For example, molecular dynamic simulations of inelastic hard
disks with Lees–Edward boundary conditions (Alam & Luding 2003, 2005; Conway
& Glasser 2004) should be able to capture nonlinear patterns. We have found that the
predicted patterns correspond to streamwise wavenumbers of kx = O(1) or less (see
figures 19 and 24), and hence the simulations must be performed in a rectangular box
(lx > ly: see figure 1) since a square box corresponds to a streamwise wavenumber of
kx = 2π (cf. (5.3)) for which the uniform shear flow remains stable. Moreover, the box
length along the x-direction (refer to figure 1) should be chosen such that it admits
at least one wavelength of the corresponding nonlinear pattern (i.e. lx � λx: see (5.3)
and (6.4)).

As mentioned in § 1.2, the most comprehensive particle simulation to track
instabilities in a granular shear flow was carried out by Conway & Glasser (2004) in
a rectangular box. They used sink-type and slip boundary conditions so as to verify
certain instabilities predicted by the linear stability theory of Alam & Nott (1998).
Hence, a direct comparison between present results (with no-slip and adiabatic
walls) and simulations of Conway & Glasser is not possible. Even though the
structural features of some nonlinear patterns appear to be different from those
found in simulations of Conway & Glasser, certain features of our predictions
agree qualitatively with their simulations as we discuss below. Also, some of our
density patterns might be related to the tenuous structures of ‘churn-type’ flow in the
simulations of Tan & Goldhirsch (1997).

Conway & Glasser (2004) reported the appearance of two-dimensional stationary
waves in dilute flows when the Couette gap H was large enough (refer to their phase
diagram of different patterns in figure 17). Now, our nonlinear theory predicts (refer
to figures 4, 19 and 20) that there are ‘supercritical’ stationary waves with kx = O(1)
as well as ‘subcritical’ shear-banding solutions (kx = 0) in dilute flows. Note that the
subcritical instabilities require a priori presence of ‘finite’ amplitude perturbations
of specific types, but the supercritical instabilities can grow from ‘infinitesimal’
perturbations. Therefore, in the absence of any biased forcing, as per our theory
the two-dimensional stationary waves are likely to prevail in dilute flows, which
agrees with simulations of Conway & Glasser.

At larger mean densities (say, φ0 > 0.2), the two-dimensional stationary and
travelling waves (figure 19) with kx = O(1) coexist with shear-banding (kx = 0) and
long-wave (kx ∼ 0) instabilities (figure 5a). Since all instabilities at φ0 = 0.2 (refer
to the square symbol in figure 4) belong to ‘supercritical’ states, each can evolve
from ‘infinitesimal’ perturbations with respective growth rate. Therefore, we have
a competition among different instability modes and it is interesting to determine
which mode is likely to eventually prevail. Comparing figure 5(a) with figure 19,
we find that the growth rates of long-wave instabilities are about two orders
of magnitude lower than those of the dominant stationary and travelling waves.
Also, the growth rates of stationary waves with kx = O(1) are much larger than
the corresponding travelling waves. Therefore, the dominant stationary waves with
kx = O(1) are likely to emerge as the prevailing nonlinear patterns at φ0 = 0.2 and
H = 100 if the channel length is such that the flow admits all four types of instabilities.
This observation also agrees with simulations of Conway & Glasser (see their
figure 17).
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Referring to figures 20(a) and 22(a), we note that the growth rates of dominant
stationary and travelling waves decrease with increasing mean density (φ0 > 0.25)
and both eventually become stable in dense flows; however, the ‘supercritical’ shear-
banding and long-wave instabilities still exist at much higher densities (see figure 4).
This implies that the shear-banding-type patterns would prevail in dense flows if
the Couette gap is kept fixed (say, at H = 100). At large enough Couette gaps
(H >HSW

c , where HSW
c is the minimum Couette gap beyond which the dominant

stationary instabilities appear), therefore, we are likely to observe a transition from
two-dimensional stationary waves at dilute-to-moderate densities to shear-banding
solutions in denser flows. This transition scenario has been verified in figure 17 by
Conway & Glasser.

Lastly, for specific combinations of φ0, H and kx , it is possible that the dominant
stationary and travelling wave instabilities may have comparable growth rates. This
is a special case in which the present theory of a single Landau equation is unlikely to
hold since our assumption of time-scale separation between critical and non-critical
modes (see § 3) breaks down. In such a scenario, the final pattern selection can be
probed via the theory of mode interactions for which coupled Landau equations need
to be derived (Proctor & Jones 1988; Manneville 1990). Clearly, much research needs
to be carried out in this direction in future, focusing on different types of prototypical
granular shear flows.

7. Conclusions and outlook
We have developed an order-parameter theory to describe the nonlinear periodic

patterns in a two-dimensional granular plane Couette flow which is known to
be linearly unstable to a variety of stationary and travelling instabilities, having
modulations in both streamwise (x) and gradient (y) directions. This is the
first nonlinear study of its kind in the literature of granular fluids for spatially
inhomogeneous two-dimensional patterns. The related order-parameter equation, the
Landau–Stuart equation, has been derived using the amplitude expansion method
(Stuart 1960; Watson 1960) of nonlinear stability theory, extending our previous
work (Shukla & Alam 2009, 2011) on one-dimensional shear-banding instability.
The nonlinear stability of two classes of modes (in different regimes of streamwise
wavenumber kx) in the granular plane Couette flow has been studied in detail using
the present order-parameter theory. The numerical results, obtained by employing a
spectral-based numerical method, are presented for the first Landau coefficient, the
equilibrium amplitude, the equilibrium phase velocity, the limit cycle and the nonlinear
perturbation fields. The supercritical and subcritical regimes of both pitchfork/static
and Hopf/oscillatory bifurcations have been identified, and the first evidence of two-
dimensional nonlinear equilibrium states for stationary and travelling waves has been
found in the granular plane Couette flow.

In addition to the well-known shear-banding instability (kx = 0) whose nonlinear
saturation has been studied recently by us (Shukla & Alam 2009, 2011), there are
long-wave (kx ∼ 0) stationary and travelling instabilities in a granular plane Couette
flow. For such long-wave modes, we have uncovered nonlinear equilibrium states
of stationary waves in the dilute limit (where the flow is known to be stable to
the shear-banding mode) and of both stationary and travelling waves at moderate-
to-large densities. While the nonlinear solutions in the dilute limit appear via a
subcritical pitchfork bifurcation, those at larger densities appear via supercritical
pitchfork and Hopf bifurcations. From a comparison between linear and nonlinear
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perturbation fields, we found that the origin of nonlinear states at kx ∼ 0 is tied to the
corresponding ‘subcritical’/‘supercritical’ nonlinear shear-banding solutions (kx = 0).

There are stationary and travelling instabilities at moderate values of wavenumber
kx ∼ O(1) whose growth rates are larger than those at long waves by an order
of magnitude or more: these are referred to as ‘dominant’ instabilities (see, for
example, two dominant peaks at kx ∼ 0.6 and kx ∼ 0.95 in figure 3) in a granular
plane Couette flow. For the dominant stationary instability, we found that the
nonlinear solutions appear via supercritical pitchfork bifurcations (figures 20 and
25) over a range of mean densities (φ0) at sufficiently large Couette gaps (H >HSW

c )
and this range of unstable φ0 increases with increasing H ; in the linearly stable
regime (H <HSW

c ) there could be subcritical bifurcations (figure 25c). The nonlinear
stationary patterns have density bands that are located at some oblique angle to
the streamwise direction (figure 21). The structural features of supercritical stationary
solutions look similar at any value of φ0 and H , but the related unstable subcritical
solutions are markedly different (having density bands parallel to the streamwise
direction) from their supercritical counterparts, even though the linear eigenfunctions
are similar for both cases.

For the dominant travelling instability, the flow is linearly unstable for a range of
mean densities if the Couette gap is sufficiently large (H > HT W

c >HSW
c ), and there

are subcritical nonlinear travelling waves at H <HT W
c at a given φ0. For H >HT W

c ,
there are supercritical and subcritical Hopf bifurcations at small and large values
of φ0 (figure 22), respectively; the latter finding of subcritical travelling solutions at
moderate-to-large densities is in contrast to supercritical solutions for the dominant
stationary mode. The supercritical and subcritical solutions look structurally different
for the dominant travelling waves too. In addition to dominant travelling wave
instability, there are linearly stable travelling waves at kx ∼ O(1) which could also be
unstable with respect to finite-amplitude disturbances (figure 14).

The effect of restitution coefficient on the nonlinear saturation of dominant
instabilities has been studied. We found that the structural features of the nonlinear
stationary and travelling wave solutions remain unaffected by the level of inelastic
dissipation as long as the underlying linear eigenfunctions are similar. We have
uncovered a new stationary instability in a very wide Couette cell (H = 500), which
seems to persist at any restitution coefficient (e �= 1), and the equilibrium amplitude
Ae required to attain this mode is much smaller than the corresponding ‘dominant’
stationary instability. Apart from providing the first evidence of a variety of two-
dimensional nonlinear patterns in a granular plane Couette flow, we hope that the
present work will inspire large-scale particle simulations to detect such stable and
unstable nonlinear states in the granular plane Couette flow as discussed briefly in
§ 6.6.

By analysing the modal equations at quadratic order in perturbation amplitude, we
have identified two types of nonlinear resonances: (i) the ‘mean-flow’ resonance and
(ii) the ‘1 : 2’ resonance. The former occurs due to the interaction of least-stable mode
at some kx �= 0 with a shear-banding mode (kx =0), obeying the following condition
on growth rate [a(0)] and frequency [b(0)]: 2a(0)

α (kx) = a
(0)
β (kx = 0) and b

(0)
β (kx = 0) = 0,

where α and β refer to two interacting modes. The 1 : 2 resonance occurs due to the
interaction of two modes α and β , obeying 2a(0)

α (kx) = a
(0)
β (2kx) and 2b(0)

α (kx) = b
(0)
β (2kx),

with their wavenumber ratio being 1 : 2. The signature of either type of resonances
is implicated by the divergence of the first Landau coefficient at specific values
of wavenumber kx where the resonance takes place. Our numerical results in § 6.3
have clearly demonstrated the existence of mean-flow resonance in a granular plane
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Couette flow; however, the existence of the 1 : 2 resonance remained elusive in the
present flow. Note that the 1 : 2 resonance points, being codimension-3 bifurcation
points, require an exhaustive search in the parameter space to locate them, which has
not been pursued in this paper.

It must be noted that the present nonlinear analysis using a single Landau
equation is not valid near resonance points. For parameter values at which such
mode interactions occur, we need to include the amplitudes of all interacting modes
in the perturbation method and this leads to a coupled set of Landau equations
(Mizushima & Gotoh 1985; Proctor & Jones 1988; Manneville 1990; Fujimura
1992). The detailed perturbation method and the bifurcation analysis for resonating
modes and the coupled Landau equations are left to future work. The present order-
parameter theory can be used to probe the bifurcation and pattern-formation scenario
in a host of granular flow problems, namely granular Faraday waves (Umbanhower,
Melo & Swinney 1996), granular Rayleigh–Bénard convection (Khain & Meerson
2003; Eshuis et al. 2010), granular Poiseuille flow (Raafat, Hulin & Herrmann 1996;
Alam, Chikkadi & Gupta 2009), Kelvin–Helmholtz instability (Goldfarb et al. 2002)
and inclined chute flow of granular materials (Forterre & Pouliquen 2002). Work in
this direction is in progress.

M.A. gratefully acknowledges partial financial support from a project of the
Department of Atomic Energy, Government of India (DAE/MA/4416) in the form
of ‘DAE-SRC Outstanding Research Investigator’ award (2010).
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