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Abstract

Late Quaternary terraces and sediments in the Holy Cross Mountain region of Poland, emplaced within an environment
that had evolved following multiple Pleistocene glaciations, provide evidence of increasing anthropogenic influence on
landscape development since the Middle Ages, as revealed by research in the Kamionka, Kamienna, Czarna Konecka,
and Nida valleys. The development of the “anthropogenic small-scale water retention system” (ASWRS), including
numerous artificial ponds, channels, and forges and mills along the watercourses, resulted in changes in river patterns,
with additional anthropogenic channels, which in turn reduced the maximum flood-stage levels during the Little Ice Age.
With the collapse of the industries and the disappearance of the ASWRS, several major flood events took place. Unknown
in the earlier Holocene, and caused by hydrotechnical failures, the geomorphic effects of these catastrophic flash floods

significantly exceeded those of natural processes.
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INTRODUCTION

Central Europe encompasses the area from the Rhine River
basin in the west to the upper Dnieper basin in the east and
stretches northwards to the Alps and Carpathians. The region
can be split into the lowlands, the middle Hercynian moun-
tains and uplands, and the Subalpine and Subcarpathian
basins. Research in the Vistula valley downstream of Kra-
kéw, one of the most intensely studied floodplain areas in
Poland and beyond (Kalicki, 1991), has shown that central
European river valleys of different types and different orders
responded simultaneously to climatic changes in the late
glacial and Holocene, particularly with respect to climatically
driven increases in fluvial activity. This is reflected in chan-
ges in channel forms; river patterns; and sedimentation on
floodplains including peat growth, cover of peats by over-
bank deposits, buried soils, and accumulation of large num-
bers of tree trunks in floodplain sediments (Kalicki, 2006 and
references therein).
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Comparison at a regional scale, with reference to western,
central, and eastern subregions, of climatic records and
human impact and their influence on geomorphology and
sedimentation have led to important conclusions. Phases of
increased river activity (“alluviation”) occurred in various
lowland valleys. Despite environmental and historical dif-
ferences such as the eastward increase in climatic con-
tinentality with distance from the Atlantic, and the timing and
degree of the Neolithic agrarian revolution, very significant
temporal convergence of late glacial and Holocene fluvial
activity is recorded in all studied piedmont, upland, and
lowland river basins along a west—east transect. Climatic
influence is also seen in the neoholocene (Subboreal, Sub-
atlantic), even in areas that were also under considerable
anthropogenic pressure, being permanently deforested and
settled by agrarian communities; notwithstanding the
numerous direct and indirect anthropogenic impacts, rivers
in these areas were dominantly controlled by climatic
oscillations, in particular the clustering of extreme events
(Kalicki, 2006).

Phases of increased fluvial activity have been important in
the evolution of valleys in extraglacial areas, although they
have had a lesser influence in recently glaciated areas and in
areas proximal to the last ice sheet. Since the Boreal (from
about 9300 yr BP), however, climatic factors have played an
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increasingly dominant role in influencing river dynamics
(Kalicki, 2006).

Human impact on the evolution of large river valleys
during the last millennium, and especially within the last 500
yr, is evident from the increase in overbank sedimentation
that resulted from accelerated agricultural disturbance within
catchments and in lateral channel migration (Kalicki, 2006).

The aim of this study is a comparison between the evolu-
tion of large river valleys (first order, flowing to the sea) and
middle and small rivers (second to fourth order) during the
late glacial and Holocene (Krupa, 2013, 2015; Kalicki et al.,
2016).

MATERIALS AND METHODS

An interdisciplinary approach was employed, using a wide
range of methods: geologic, sedimentologic, geomorphic,
geoarchaeological, cartographic, and historical. Archival
sources were analysed (cartographic, historical), including
data from the Archaeological Map of Poland (AZP); findings
were verified in the field. The particle-size distribution of
silty-clayey sediments was determined using a Mastersizer
3000 Particle Analyzer from Malvern Instruments. For sandy
deposits, a sieve set in accordance with Deutsches Institut fiir
Normung International Organization for Standardization
3310-1 and British Standard 410-1 norm (sieve size 63—
2,800 um) was used (dimensions of 200x25mm) in
conjunction with a Vibratory Sieve Shaker AS 200 basic.
Textural features were evaluated using Folk and Ward’s
(1957) distribution parameters, with the GRANULOM pro-
gram (with some modifications) used for the graphic pre-
sentation of results. Thermoluminescence (TL)/optically
stimulated luminescence (OSL) measurements were con-
ducted using a Manual Reader-Analyser TL/OSL RA’04
manufactured by the MIKROLAB company (Krakéw,
Poland). Subsamples were irradiated in a Gamma Chamber
5000. The TL/OSL dating and sediment texture analysis were
conducted in the Scientific-Didactic Laboratory Centre of the
Institute of Geography of Jan Kochanowski University in
Kielce (Poland). Geochemical analysis was undertaken using
a portable spectrometer (Delta HHXRF Analyzer series Delta
Professional). Radiocarbon and dendrochronological dating
was done in the Laboratory of Absolute Dating in Skata
(Poland).

STUDY AREA

The study area is located in the uplands and Hercynian
mountains of southern central Poland (Figs. 1 and 2). The
majority of individual research projects have been conducted
in the Mesozoic margin of the Holy Cross Mountains, with a
single case, in the Nida River valley near Wislica, located in
the southern part of Nida basin, between the uplands of the
Wodzistaw and Pinczow horsts, where Cretaceous marls are
covered with Miocene (Tortonian) rocks.
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The Holy Cross Mountains have a radial drainage pattern,
with the Kamienna River basin on their northern side and the
Nida River to the south. This drainage arose in the early
Tertiary by the creation of a broad Mesozoic upland (axis
northwest—southeast) above a Palacozoic core during the
Alpine orogeny (Lencewicz, 1934; Kowalski, 1988b). Rivers
have incised into the Mesozoic cover and the Palaeozoic
core, following tectonic structures (irrespective of rock
resistance) and creating polygenetic (epigenetic-antecedent)
gorges. The valley pattern in the northeastern margin of the
Holy Cross Mountains (including Kamionka) is controlled by
the direction of rock jointing (Kosmowska-Suffczyriska,
2000) and geodynamic joints (Kowalski, 2002b).

Pleistocene valley evolution was strongly influenced by
glaciation (e.g., Lencewicz, 1913; Czarnocki, 1927, 1931;
Samsonowicz, 1934; Klimaszewski, 1952; Radlowska, 1957,
1960, 1963; Lyczewska, 1959, 1971; Klatka, 1964; Rézycki,
1964, 1972; Mycielska-Dowgialto, 1969, 1972; Lindner,
1971, 1978, 1980, 1984a, 1984b, 2004; Bartosik, 1972;
Hakenberg, 1974), with a periglacial zone forming in this
region on at least three occasions (Mojski, 2005). Significant
differences in elevation have caused vertical zonality of
processes (Klatka, 1956, 1968) and the accumulation of slope
and fluvioglacial deposits in the periglacial valleys. Valleys
in the Holy Cross Mountains therefore lack complex terrace
systems (Rézycki, 1972) such as occur in other valleys of the
“periglacial area” (Mojski, 1993).

The southern Polish ice sheet (San I and San II glaciation)
covered the Holy Cross Mountains region (Mojski, 2005), its
relief being glacially transformed, including the erosion of
gaps that were later occupied by rivers (Kowalski, 1988a,
2002a). At the beginning of the Mazovian interglacial period,
there was erosion of the deglaciated landscape, with the
deepening of subsequent valleys below the scarps of cuestas
at the Mesozoic margins (R6zycki, 1967) and the cutting of
river gorges in the Palacozoic core (Lencewicz, 1913;
Kowalski, 1988b). The extent of this interglacial erosion was
considerable, reaching bedrock (in the valleys of the northern
margin), perhaps as a result of epeirogenic uplift of the
northeastern mountain foreland (Radlowska, 1963;
Gilewska, 1972).

The extent of the Odra ice sheet was strictly relief con-
trolled. Ice lobes were restricted to the lowest areas and val-
leys and basins (up to 260-270 m above sea level) were filled
with fluvioglacial and fluvial deposits interdigitating with
solifluction covers.

In the pre-Warta warming, incision and terrace formation
occurred in the valleys: 10-12m terraces in the Belnianka
and Lubrzanka valleys (Klatka, 1962), terrace III (§—10 m) in
the Czarna Nida valley (Krupa, 2013, 2015), terrace IV (10—
15m) in the middle Nida valley (Hakenberg and Lindner,
1971), and terrace G III in the Kamionka valley (Lewandowski
etal., 1975). In the late Warta glaciation, significant changes in
the river network occurred in the upper Kamienna basin
(Kosmowska-Suffczyriska, 1966; Lindner, 1970).

Vistulian cooling brought the return of periglacial condi-
tions, with prevailing mechanical weathering and solifluction
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Figure 1. (colour online) Location of study areas on a digital terrain model. Previously published: Belnianka River valley (Ludwikowska-
Kedzia, 2000) (A); Lubrzanka River valley (Kowalski, 2002a) (B); Czarna Nida valley (Krupa, 2013, 2015) (C). New research area:
Kamienna River valley (1); Kamionka River valley (2); Czarna Konecka River valley (3), Nida River valley near Wislica (4).

of debris covers (Klatkowa, 1955). Intensive mass move-
ments led to the dissection of the old structural escarpments
and monoclinal cuestas (Radtowska, 1963), and there was
accumulation of sands and gravels in valley bottoms. These
fluvial sediments interdigitate with two solifluction covers,
forming the terraces from the “Middle Polish” (Odranian and
Wartian) glaciation (Klatkowa, 1955; Klatka, 1956): terrace
IIT (7-8 m) in the confluence area of the Czarna and Biata
Nida valleys and in the middle Nida valley is attributed to the
Vistulian (Hakenberg and Lindner, 1971, 1973), whereas the
deposits of terrace I (4—6 m) in the Czarna Nida valley were TL
dated to 25-16ka (Krupa, 2013, 2015). Furthermore, TL ages
indicate that the 5—16 m terraces in the Belnianka valley (Lud-
wikowska-Kedzia, 2005 and references therein) and high ter-
races (8—14 m) in the Lubrzanka valley (Kowalski, 2002a) were
formed during the pleniglacial period (Swiecie stadial period,
Grudziadz interstadial period). Terrace G IV in the Kamionka
valley was also correlated with the Baltic (Vistulian) glaciation
(Lewandowski et al., 1975). These terraces were cut in the
Older Dryas (Klatka, 1968) or Allergd (Hakenberg and Lind-
ner, 1971), and numerous aeolian dunes were formed on them
in the late glacial (Czarnik, 1966; Jaskowski, 1996), albeit
subsequently destroyed anthropogenically (Przepiéra, 2017). In
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the Younger Dryas, an extensive platform 3—4 m above river
level (terrace II of Hakenberg and Lindner, 1971, 1973; terrace I
of Krupa, 2013, 2015) was formed in several parts of the Czarna
Nida valley by a braided river. A subfossil pine trunk lying
in situ in sandy-gravely braid-channel sediments was dated at
10,480 + 70 '“C yr BP (MKL-3453), 10,658-10,156 cal yr BC
(Nowak, 2017), confirming a Younger Dryas age at a similar
level in the Czarna Konecka valley. These gravel platforms
were dissected at the Younger Dryas—Holocene boundary
(Klatka, 1968; Hakenberg and Lindner, 1971, 1973) by rivers
with large meanders (Krupa, 2013, 2015), which are preserved
in the marginal parts of floodplains in numerous valleys in the
Holy Cross Mountains (Kalicki et al., 2016).

The studied valleys have in common a history of sig-
nificant anthropogenic modification of the environment.
Since the Neolithic there has been intensive agricultural land
use (Nida) and then mining and exploitation of iron ore in
these areas, first in the Roman period (Bielenin, 1993;
Orzechowski, 2007) and later in the Old Polish Industrial
Region and the Central Industrial District. From the Middle
Ages to the beginning of the twentieth century, rivers were
regulated anthropogenically to power forges and mills.
Therefore, in all studied valleys there are numerous artificial
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Figure 2. (colour online) Reconstruction of the Laramide morphostructure of the Holy Cross Mountains. Section of the Middle Polish
Elevation on the sub-Quaternary basement (Kowalski, 2002b, supplemented).

landforms associated with this activity, both convex
(embankments, piles, etc.) and concave (excavations, pits,
channels). The gradual eradication of these objects (and
associated infrastructure) began later, leading to the renatur-
alisation of the rivers.

STRUCTURE AND AGE OF TERRACES AND
FLOODPLAINS—SELECTED VALLEYS

The study region in the upper Czarna Konecka River valley is
located downstream of Staporkéw (Fig. 1). In the upper
reaches, this subsequent valley runs along an erosional
depression between Mesozoic hills. During the Middle Polish
(Odranian and Wartian) glaciation (Gowarczéw phase), the
study area was in a proximal proglacial location, and an ice-
dammed lake formed (Lindner and Fedorowicz, 1996; Fig.
3). This has left glaciolacustrine deposits on the erosional
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platforms of erosion-accumulation terraces (profiles 5 and 2),
but only in the eastern part of the study area. In the western
part, near a morainic hill (kame?) called Ostre Gérki, terraces
are of the accumulation type and are composed of thick series
of sandy channel deposits. After the retreat of the ice sheet
and draining of the lake, the formation of the upper Czarna
Konecka River valley began. The river has cut into glacio-
lacustrine deposits that are preserved on the erosional plat-
form of the middle terrace (Fig. 4).

The valley can be divided into morphological levels of
different age and structure (Kalicki et. al., 2016; Fig. 3). First,
the Vistulian (?) high (cut-and-fill) terrace, approximately
7.0-7.5m above river level, is composed of sandy braided
river channel sediments (profile 5). The Vistulian (?) middle
terrace (4.5-5.0 meters above river level [m arl]) is also of
cut-and-fill and braided river origin (profile 2). Two series, of
differing ages and origins, can be distinguished within the
middle terrace in profile 2 (Fig. 4). The lower series consists
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Figure 3. (colour online) Detailed geomorphic map of the Czarna Konecka River valley between Janéw and Wasosz Stara Wie§ (Kusztal,

2016).

of cryoturbated layers of clayey and sandy glaciolacustrine
deposits. The upper series is composed of braided river
channel alluvia in the form of two fluvial members. Sand-
stone is dominant in the petrographic composition of gravels
in both members, but the content of crystalline rocks is higher
in the basal lag deposits of the lower member. This indicates
the reworking of fluvioglacial sediments into the alluvia of
this terrace (Kalicki et al., 2016).

The low terrace (~4.5-3.0 m arl), of late glacial age, was
formed by a meandering river (profile 3). Relatively narrow
high (2.0-3.0m arl) and low (1.0 m arl) strips of floodplain
extend along the river. Sediments in these two levels show a
clear facies differentiation of typical meandering river sedi-
ments. Lateral channel migration has created a meander-core
“hillock” (profile 3) and bodies of Holocene cut-and-fill
sediment (Fig. 5). Two of these have been dated to the early
(7350 £ 90 '*C yr BP [MKL-3029], 6411-6052 cal yr BC)
and late Atlantic (5570 + 50 '*C yr BP [MKL-2983], 4497
4337 cal yr BC) (Kalicki et al., 2016).

There are numerous subfossil tree trunks in both the
channel sediments (profile 3) and abandoned channel fill
(profiles 4 and 1). Some of these trees were 14C dated at
2610 +40 "*C yr BP (MKL-2984), 849-750 cal yr BC (pro-
file 4); and 1700 + 40 '*C yr BP (MKL-2862), 240420 cal yr
AD (profile 1) (Kalicki et al., 2016). They belong in the
beginning of the Subatlantic and the late Roman period and
were deposited at the limit between channel deposits and
sandy bars in the first stage of abandoned-channel filling.
Oxbow-lake fills (profiles 4 and 1) show distinct variation of
sedimentation types, in relation to changes in the frequency
of flooding during the Holocene (Fig. 6). Changes of this type
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were '“C dated in profile 4 at 2470 + 60 "*C yr BP (MKL-
-3031), 772—413 cal yr BC and 1410 + 70 '*C yr BP (MKL-
-3030), 567-672 cal yr AD—the beginning and end of peaty
silts accumulation, respectively—and in profile 1 at 630 + 60
4C yr BP (MKL-2861), 1270-1420cal yr AD when peats
were covered with levee deposits (intercalations of sands and
silts). The last age could be connected with increased Med-
ieval anthropogenic modification of the drainage basin and
valley floor but also with a clustering of catastrophic events
during the Little Ice Age. Archaeological data (AZP) indicate
that settlement encroached onto the valley floor (floodplain)
only in modern times. In recent centuries, the valley has been
transformed anthropogenically as is documented by carto-
graphic and historical data (Kalicki et al., 2016).

The study section of the upper Kamienna River is located
between Skarzysko-Kamienna and Marcinkéw, within the
Rydno Archaeological Reserve, in which there are Palaeo-
lithic hematite mines. The course of the Kamienna valley
here is controlled tectonically. There are two Pleistocene
terraces (from the Oder and the Vistulian glaciations) built by
sandy-gravel braided-river deposits. Dunes and windblown
sandy covers overlie buried soils on these terraces. The evi-
dent increase of aeolian activity could have resulted from
climatic (late glacial) and anthropogenic (Holocene) factors.

The incision into the Vistulian terrace started during the
late-glacial period, since the oldest palacochannel on the
floodplain has been dated at 9250 + 60 "*C yr BP (MKL-1363),
8630-8300cal yr BC (Marcinkéw II site/profile K4, K5-K8)
(Barwicka, 2011; Barwicka and Kalicki, 2012, 2013). The
extensive (150-750m wide) Holocene floodplain creates a
single morphological level resulting from lateral migration of
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the river. It has a very complex structure with several sedi-
ment bodies of different ages and facies (overbank and
channel deposits), with an overall fining-upward sequence,
all typical of a meandering river.

Because of lateral migration by the river, numerous sub-
fossil trees (known as “black oaks” in Polish) occur in
the floodplain alluvium. Two of these were radiocarbon
and dendrochronologically dated at 2020 +40 '“C yr BP
(MKL-1371), 120-70cal yr AD (Marcinkéw III site; Bar-
wicka and Kalicki, 2013) and 18645 cal yr BC (Marcinkéw
IV/K 7), respectively (Fig. 7). The entrainment of these trees
in the floodplain sediments took place during a phase of
increased river activity during Roman times. This phase (2.2—
1.7ka BP) is very well represented throughout the upper
Vistula River basin (Kalicki, 1991, 2006; Kalicki and
Krapiec, 1996). A buried soil along the river channel (Fig. 7),
dated at 730 +90 '*C yr BP (MKL-1362), 1150-1420 cal yr
AD (Marcinkéw I site/K3—-8), indicates an increase in vertical
accretion in recent centuries triggered by human impact and
flood events during the Little Ice Age (Barwicka and Kalicki,
2012, 2013).
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The Nida River valley near WiSlica has a completely dif-
ferent structure. It is located in the southern part of Nida
basin, where Cretaceous marls are covered with Miocene
(Tortonian) rocks. In relief, the most important structure is an
anticline and syncline of gypsum with karstic phenomena and
gypsum domes (Babel, 2006a, 2006b). Along the alignment
of the anticline were formed inversion karst basins occupied
by swamps and bogs lying directly on Cretaceous marls. On
the syncline were formed sinkholes and dry karstic valleys,
such as at Skorocice (Flis, 1954).

The marls at Gorystawice and the gypsum of the WiSlica
anticline form the eastern limit of the subsequent Nida valley
in the study area. The western slope of the valley is rectilinear
and steeper than the eastern one and is covered with loess
deposits. The flat valley bottom has a width of 1-3 km. It is
asymmetric, with a wide and swampy left side and narrow
right side (Fig. 8).

Within the valley bottom on a single morphological level
the following occur:

A “flat” above a karstic depression along the line of a
gypsum anticline (Flis, 1954). The karstic depression, near


https://doi.org/10.1017/qua.2018.55

590

Tomasz Kalicki et al.

7350+90 “C yr BP 6411 6052 cal. yr BC

CUT AND FILL BODIES
(FLOOD PLAIN)

£/

TL

MEANBERING HILLOCK
(LOW TERRACE)

11.9+1.8 ka

TL

»

11.3+1.7 ka

B mmm—
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(profile 3).

Gorystawice (north of Wislica), has a radius of about 300 m
and is connected by a “gap” (about 400 m wide) to the
southwest with the Nida River floodplain. Boreholes reveal a
cover of calcareous silts with molluscs and localized occur-
rences of peaty silts (near the valley slope) and peats (distant
from the slope). The thickness of organic sediments increases
towards the central part of the depression and the axis of the
Nida valley. The bottom of this stratum was radiocarbon
dated at 4280 + 50 '*C yr BP (MKL-3131), 30272857 cal yr
BC (Fig. 9). This may indicate the presence of an episodic
stagnant-water lake or pond here. Peat bogs and swamps with
small ponds (“‘water windows”‘) have occurred here from
the Subboreal until the present day. No traces of river flow
were found within the depression.

The alluvial plain formed by the Nida, probably with the
several cut-and-fill sediment bodies of different ages, repre-
sents changes of river pattern during the late glacial and
Holocene. This complexity is evidenced by oxbow lakes
preserved within the fluvial archive. There are at least two
generations: an older one, preserved in the form of linear
elongated swamps, with fairly straightforward courses, that
may suggest an anastomosing channel pattern of the Nida;
and a younger one in the form of palacomeanders preserved
along the modern riverbed. The alluvia are clearly facies
differentiated. Three profiles were studied in an outcrop
about 30 m long on the left side of the floodplain near the
Babia Dupa gypsum dome (Fig. 8). Organic sediments cov-
ered with overbank deposits occurred in the BD 3 profile. The
organic layers are probably palaeochannel fills, with a buried
soil at the top. According to radiocarbon dating, overbank
deposition started about 1160 + 60 "*C yr BP (MKL-3132),
763-994 cal yr AD. The overbank sediments generally have a
fining-upward sequence, with two members that were accu-
mulated during different phases of accretion (Fig. 8). This
indicates that this accumulation can be connected with a
meandering river regime (the final stage of evolution of the
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Nida River). The presence of a buried soil also indicates
changes in fluvial activity and in the rate of overbank accu-
mulation during the last millennium.

Monoclinal gypsum elevations and gypsum “tumuli” give
rise to small islands rising above the valley floor. These have
been settled since the Neolithic (Kalicki et al., 2016). Later,
small fortified settlements (at the end of the ninth century/
beginning of the tenth century AD) and strongholds (in the
eleventh century AD) were located on the dome at Wislica.

ANTHROPOGENIC MODIFICATION OF
CHANNELS, FLOODPLAINS, AND
DISCHARGE—SELECTED VALLEYS

The Kamionka is a small (17 km long), right-bank tributary
of the Kamienna. Its catchment (about 107 km?) lies within
the area of the Old Polish Industrial Region and Central
Industrial District, where mining and an iron-ore industry
developed from the late Middle Ages. This caused significant
anthropogenic modification of the environment in recent
centuries (e.g., embankments, channels, and mine shafts).
The Kamionka was used as a source of energy for many
blacksmith shops and forges and later for water mills. More
than a dozen forges and (later) mills functioned in the
catchment during different periods, about seven of them on
the Kamionka River near Suchedniéw (Przepiéra et al.,
2016). Therefore, the middle section of the valley was the
most anthropogenically modified, especially from the
seventeenth to the second half of the twentieth century
(Przepidra, 2017). This is very well documented by histor-
ical, cartographic, photographic, and other data since the
nineteenth century, and nowadays from the ruins of buildings
on riverbanks, embankments, reservoirs, millraces, shafts,
and many other types of infrastructure (Piasta, 2012; Przepiora,
2017).
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141070 “C yr BP
567-672 cal. yr AD

2470+60 “C yr BP
772-413 cal. yr AD

2.72%0.41 ka
TL dating

2610£40 ““C yr BP
849-750 cal. yr AD

2.84%0.43 ka
TL dating

Figure 6. Variation of sedimentation type in oxbow-lake fill at profile 4, reflecting increases (red box) and decreases (dotted blue box) of
fluvial activity. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

About 50% of the river’s length in the lower and middle
sections was regulated (Przepidéra, 2017), and numerous
artificial channels and millraces caused changes to the river
pattern. In numerous reaches, the Kamionka had an anasto-
mosing (multichannel) pattern because water flowed simul-
taneously along two or more riverbeds: natural and
anthropogenic. These “anthropogenic anastomoses” are
visible on historical maps from the last two centuries.
Downstream of an old mill at Baranéw, additional channels
that are still active nowadays can be seen (Fig. 10). Some
industrial developments have also led to the disappearance of
smaller streams in the twentieth century (e.g., Pstraznica;
Przepiodra, 2017).

Numerous dams and water reservoirs were also built, as
part of the hydro-infrastructure driving nearby forges (Fig.
11): the “anthropogenic small-scale water retention system’
(ASWRS). All these human activities changed water circu-
lation in the Kamionka drainage basin—stabilizing dis-
charges and slowing down water circulation.

Analogous changes occurred in the Czarna Konecka val-
ley, where, according to historical data, an iron industry
developed from the fifteenth century (Fajkosz, 1978).
Numerous forges with industrial ponds (Fig. 11) and artificial
channels were built on the river (Bielenin, 1993). From the
end of nineteenth century/beginning of the twentieth century,
this infrastructure was used by mills and sawmills (Solarz,
2005). This ASWRS replaced a natural system associated
with beaver activity, the scale of which must have been very
large, as confirmed by a record of Polish King Leszek Biaty
for Sobkoéw village related to beaver trappers on the Czarna
River from 1224 (Piekosinski, 1876).

After the collapse of the industries, most of the small
reservoirs disappeared, and larger flood-control reservoirs
have been created in their place. One of these, Suchedniéw
Lake, has been very full in recent years (Gorski et al., 2012;
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Przepiéra, 2017). Their construction contributed to the
emergence of catastrophic flash floods on the river caused by
the failure of hydrotechnical facilities, such as floods in
Rejow (in 1939) and Suchedniéw (in 1974). In 1974, the
flood wave left very coarse deposits in the riverbed, and the
later anthropogenic floods, related to flood-control measures,
formed very coarse gravel bars in a 300 m reach downstream
of the dam (Przepidra, 2017).

The collapse of anthropogenic water-retention structures
also took place in the Czarna Konecka River valley. There

Figure 7. (colour online) Roman subfossil trees, radiocarbon (A)
and dendrochronologically (B) dated, and Medieval buried soil
(Marcinkéw I) (C) in the upper Kamienna River alluvia (photo
2011 and 2015).
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Figure 8. (colour online) (A) Digital terrain model of the Nida valley near Wislica, with the location of study cross section A-B (see Fig.
9) and profile. (B) Lithology, grain size, and Folk-Ward distribution parameters of Nida River sediments at Babia Dupa 3 profile. Folk-
Ward’s distribution parameters: 8y, standard deviation (sorting); K¢, kurtosis; Sk, skewness; Mz, mean diameter (Malgga, 2016).

were anthropogenic flash floods here because of the breaking
of dams during natural rainfall-induced floods, in 1903
(Wagléw), 1939 (Wasosz, Janéw), the 1970s (Matachéw),
1976 (Janéw), and 1997 (Janéw, Matachéw). Such a high-
energy discharge caused, in a few hundred meters down-
stream of a broken dam at Wasosz Stara Wie§ village, the
accumulation of very coarse-grained (sandy gravel) channel
sediments with artefacts. The thickness of this cut-and-fill
body reaches 2m in the middle floodplain, whereas on the
lower floodplain this member is about 30 cm thick and lies in
superposition above older deposits (Nowak, 2017).
Intensive basal erosion in reaches upstream of un-rebuilt
dams has resulted in incision of the riverbed, which reached
about 2.5 m in the 1993-1995 period upstream of Matachéw.
Material eroded from this section was deposited (100,000 m)
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downstream of Sielpia reservoir, the area of which has
decreased by about 13% (Grzyb et al., 1995). This erosion
resulted in the formation of incised meanders with very slow
lateral migration, fixing a single-channel meander system.

GEOCHEMICAL CHANGES OF VALLEY
BOTTOM SEDIMENTS—SELECTED
VALLEYS

In the middle section of the Kamionka, lacustrine (ponds,
abandoned channels) and fluvial sediments (mainly overbank
deposits) and layers of slags and charcoal are involved,
respectively. They are related to the activity of forges, as
confirmed by OSL dating, 0.44 +0.06ka (UJK-OSL-68),
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and '“C dating, 40+80 '*C yr BP (MKL-3250), 1799- DISCUSSION
1943 cal yr AD, and contained fragments of contemporary
ceramics (Fig. 12). At the same time, slag layers in the
lacustrine deposits could have caused an increase in iron
content, which was not found in other facies of the floodplain
sediments (Przepidra, 2017; Fig. 13).

Sedimentologic and geochemical traces of human activity
have also been identified in Kamienna River deposits. These
include charcoal fragments (up to ~3cm in diameter) in
the channel deposits near Olszanka and chocolate flint arte-
facts and slag intercalations close to the Medieval forge at

Some terraces from the Oder and Vistulian glaciations occur
in the valleys of the Holy Cross Mountains. Valley floors
have complex structures, especially in the karstic region

265[ |«

255

245

Marcinkéw. The principal effect of prehistoric settlement 5
was an increase of phosphorus content in overbank deposits i
(profile K4, 60-80cm depth), whereas modern human

activity has caused geochemical changes in topsoil, with B v A

increased concentration of phosphorus, iron, manganese, and ' y / o

trace elements such as arsenic, chromium, copper, zinc, lead, / ] //’ ' 'ﬁO 12'0 m

and nickel (profile K4, 0-20 cm depth; Fig. 14) within the &
Kamienna floodplain as a whole. The highest accumulation Figure 10. (colour online) Present-day anthropogenic channel

f)f heavy metals, especially chromium, copper, and arsenic, occurs multiplication in the reach of the Kamionka River near Baranéw
in flood channel fills or young oxbow-lake fills (Kiusakiewicz (on digital terrain model). The river flows simultaneously in

et al., 2017). natural and anthropogenic channels (multichannel system).
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Figure 11. Anthropogenic industrial ponds on the upper Czarna
Konecka River (A) and the Kamionka and Losiennica Rivers (B)
from the historical map Heldensfeld and Benedicti from 1808 (red
arrow indicates presently nonexistent; green arrow indicates
presently existing). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of
this article.)

(Nida) where the valley bottom consists of fluvial segments
and karstic depressions. Floodplains have a highly complex
structure, with several alluvial bodies of different ages. Both

40460 “C yr BP

Tomasz Kalicki et al.

their morphology and sedimentology show clear traces of
phases of increased fluvial activity during the Holocene, in
which several types of processes occurred: channel changes
(cutoffs), changes of sedimentation type (covering of organic
sediments by overbank deposits), and deposition of tree
trunks.

In the valleys of the Holy Cross region, the first changes of
sedimentation type that can be linked to human activities are
dated to the last millennium. A surge in nonarboreal pollen
concentration of more than 50% was recorded in pollen dia-
grams (Szczepanek, 1961, 1982). Deforestation caused an
increase in the overbank sediment accumulation rate. The
first group of sedimentation changes coincides with the dates
from the Czarna Nida valley (Zbrza 1: 1230 +70 "*C yr BP
[MKL-1064], 660-900 cal yr AD; Laziska 2: 1190 +35 '*C
yr BP [MKL-2855], 765-902 cal yr AD) (Krupa and Kalicki,
2012; Krupa, 2013, 2015; Kalicki et al., 2016) and from the
Nida valley (1160 + 60 '*C yr BP, 763-994 cal yr AD), and
these refer to the spread of Slavic settlement after the Great
Migration Period (fifth and sixth centuries AD). The second,
somewhat younger, coincides with the beginning of the Little
Ice Age, which is discernible in the upper Kamienna valley
(730 +90 '“C yr BP, 1150-1420cal yr AD), in the upper
Czarna Konecka valley (630 + '*C yr BP, 1270-1420 cal yr
AD), and in the Wierna Rzeka valley (610 +40 '*C yr BP
[MKL-3133], 1290-1409 cal yr AD). This can be correlated
with Medieval settlement. Changes of this type are also
known from adjacent valleys—for example, from the Bel-
nianka valley, where overbank deposition stopped peat
growth in abandoned channels (Niwy: 1300 + 120 '*C yr BP,
474-995 cal yr AD; Napekéw: 270 +60 '“C yr BP [Gd-
7262], 14601807 cal yr AD; Czapléw: 140 + 120 "*C yr BP
[Gd-10455] after 1617 cal yr AD), the increased accumula-
tion rate of levee deposits led to the formation of peat bogs in

1799-1943 cal. yr AD
OSL 0.44+0.06 ka
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back swamps (Pipata-Smykéw: 990 + 140 '“C yr BP [Gd-
9610], 722-1276 cal yr AD; 840 + 110 '“C yr BP [Gd-10451],
985-1315cal yr AD; Napekéw: 770+50 '*C yr BP
[Gd-7263], 1161-1298 cal yr AD; Czapléw: 660 + 100 *C yr
BP [Gd-10367], 1169-1441cal yr AD), and soil erosion
caused accumulation of colluvial deposits (Napekow:
7204200 '*C yr BP [Gd-10452], 888-1530cal yr AD)
(Ludwikowska-Kedzia, 2000); and also from the Lubrzanka
valley, where anthropogenically dammed-lake sediments
(after 1360 + 60 '“C yr BP, 563-774 cal yr AD) and various
series of overbank deposits (760+50 '*C yr BP, 1165-
1299 cal yr AD; 530 +50 "*C yr BP, 1301-1449cal yr AD;
440 +50 "C yr BP, 1405-1632cal yr AD) were formed
(Kowalski, 2002a).

At a similar time, at the end of the eleventh century/
beginning of the twelfth century, water mills appeared in
Poland (Baranowski, 1977), and the Old Polish Industrial
Region, based on iron ore resources and hydropower for
forges, began to develop in the Holy Cross Mountains region.
This led to the construction of hydrotechnical infrastructure
on many rivers (riverbed regulation, digging drainage sys-
tems and channels, millraces, ponds, etc.). As a result, an
extensive ASWRS replaced the natural beaver activity. This
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also led to the creation of sections of anthropogenic channel
multiplication along numerous rivers, where the river flowed
at the same time within both its natural and artificial channels
(channel, leat). Many Polish and foreign authors had already
attributed a significant role in the modification of the condi-
tions in the river valleys to mills (e.g., Sheppard, 1958;
Dembinska, 1973; Los, 1978; Bond, 1979; Kaniecki, 1993,
1999, 2004; Bork et al., 1998; Brykata, 2003, 2005, 2009;
Fajer, 2003; Podgérski, 2004; Kobojek, 2009) and to the
ASWRS (e.g., Falkowski, 1967, 1975, 1982).

In addition to changes of river channel pattern, human
activity has caused anthropogenic landforms to be very
common in the valleys, both accumulative (convex) (e.g.,
railway, road, and hydrotechnical embankments) and ero-
sional (concave) (e.g., channels, drainage systems, leats,
artificial water reservoir depressions, and quarries [sand and
gravel pits]).

The activity of forges has led to the accumulation of
charcoal in the overbank sediments and slag in the lacustrine
sediments of now dry ponds (Kamionka valley) and in
channel sediments such as in the Kamienna valley. However,
although contamination by metals has been found in the
entire Kamienna floodplain surface sediments in the
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Kamionka valley, such changes are only visible in the limnic
sediments of industrial ponds. The absence of subfossil trees
in the Kamionka floodplain sediments, in contrast to the
numerous examples found nearby in the Kamienna and in
other larger Holy Cross Mountains rivers, indicates the high
planar stability of the Kamionka riverbed, which may have
been associated with numerous anthropogenic channels
along the river. During the Little Ice Age, with an increased
frequency of extreme events, large floods covering the whole
valley floor did not occur, as indicated by the absence of
overbank sediment polluted by heavy metals across the
whole floodplain. This probably reflects the development of
the ASWRS (many ponds near the forges and mills, mill-
races, etc.), leading to lowered flood peaks and preventing
flooding of the valley bottom. This is indirectly confirmed by
historical photographs documenting settlements located at
that time on the floodplain (Przepiéra, 2017).

At the end of the nineteenth century/beginning of the
twentieth century, the activity of the forges finally came to an
end, as with water mills in the middle of the twentieth cen-
tury. Some of the ponds were drained, and their infrastructure
was destroyed. The function of other ponds was changed to
flood control and recreation. The ASWRS constructed since
the Middle Ages had a beneficial effect on the regulation and
speed of water circulation in the catchment area. In the
twentieth century, the decay of technical infrastructure was
conducive to the occurrence of catastrophic flash floods that
were not present during the earlier Holocene (there is no
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evidence of such events in sediments or morphology). During
rainfall-induced floods, there were failures of shafts and dams
that led to rapid drainage of reservoirs and formed flash
floods in the valley farther downstream. This kind of event
occurred many times in the Czarna Konecka and Kamionka
valleys. The geomorphic effects of these floods were sig-
nificant, surpassing many times the effects of natural pro-
cesses. These high-energy flows caused cut-and-fill
accumulation of very coarse-grained channel sediments in
the reaches downstream of the broken dams in these two
valleys. The failure to rebuild dams in the Czarna Konecka
valley led to very intensive incision of the riverbed, resulting
in incised meanders and the fixing of the single channel pat-
tern. Additionally, flood-control management reservoirs
caused anthropogenic floods—for example, the overflow of
Suchedniéw Lake in 2010. Those floods caused the coarse
grain size of present-day bars and sediments, fining with
distance from the dam.

In recent decades, with the decline of industrial activity,
renaturalisation processes have begun in the valleys and riv-
erbeds. This includes the reintroduction of beavers and the
rebuilding of natural small retention ponds by these animals.

CONCLUSIONS

There are various terraces from the Oder and Vistulian gla-
ciations in the valleys of the Holy Cross Mountains, as well
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as complex Holocene floodplains made up of alluvial sedi-
ment bodies of different ages. From both morphological and
sedimentologic evidence, there are clear traces of phases of
increased fluvial activity during the Holocene. Intensive
human impact, increasing since the Middle Ages, has been
recorded in numerous anthropogenic landforms as well as in
sediments. The development of the ASWRS, associated
with forges and mills on the watercourses, resulted in
changes in river pattern (anthropogenic channel multi-
plication) and reduction of flood stage maximum during the
Little Ice Age. Following the disappearance of the ASWRS
in the twentieth century, several major events took place in
the Kamionka and Czarna Konecka Rivers. These events,
previously unknown in the Holocene, were caused by
hydrotechnical failures, leading to catastrophic flash floods,
with geomorphic effects significantly exceeding those of
natural processes.
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