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Abstract

We show a precise formula, in the form of a monomial, for certain families of parabolic Kazhdan–Lusztig
polynomials of the symmetric group. The proof stems from results of Lapid–Mı́nguez on irreducibility of
products in the Bernstein–Zelevinski ring. By quantizing those results into a statement on quantum groups
and their canonical bases, we obtain identities of coefficients of certain transition matrices that relate
Kazhdan–Lusztig polynomials to their parabolic analogues. This affirms some basic cases of conjectures
raised recently by Lapid.
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1. Introduction
Given a Coxeter group W and a standard parabolic subgroup WJ , the parabolic
Kazhdan–Lusztig polynomials {Pσ,ω(q)} are a collection of integer polynomials
attached to each pair of cosets σ,ω ∈ W/WJ . They were initially defined by Deodhar
[6] as a parabolic generalization of ordinary Kazhdan–Lusztig polynomials.

While the ubiquity of Kazhdan–Luzstig polynomials in representation theory is
well-established, the parabolic analogues attract a growing interest, fueled in part
by discoveries on their geometric nature [12, 18]. Yet, explicit values or bounds on
coefficients of the polynomials are not known in most cases (see, for example [4] for a
discussion of the state of those efforts).

In this note, we hope to stress a new approach towards the study of parabolic
Kazhdan–Lusztig polynomials, at least for computational purposes. We provide an
explicit monomial formula (Theorem 4.3) for some polynomials in the case of W = S n
(the symmetric group) and WJ = S m × · · · × S m, for a divisor m | n.

Our approach makes use of the dual canonical basis for the quantum group
Uv(sl∞)+. When comparing that basis with another PBW-type basis, it is known
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82 M. Gurevich [2]

from results of Lusztig [19] that the values of the transition matrix are given by
dimensions of intersection cohomology spaces of certain nilpotent varieties. It is
also known that those dimensions can be expressed through coefficients of Kazhdan–
Lusztig polynomials (see [10] for a survey).

We make an observation (similar to the one made in [5]) that the expressions
obtained by inverting this matrix (Equation (3.2)) can be thought of as a double-
coset analogue of parabolic Kazhdan–Lusztig polynomials. In particular, when the
relevant cosets of W/WJ happen to lie in the normalizer of WJ , we obtain the
parabolic Kazhdan–Lusztig polynomials in the form of transition coefficients (as done
in Proposition 3.1, for our case of interest).

In [15], Lapid–Mı́nguez worked on reducibility questions in the so-called
Bernstein–Zelevinski ring. They identified conditions under which an irreducible
representation π of the p-adic group GLN has the property that π × π is irreducible as
well. Such π was called a �-irreducible (square-irreducible) representation, a notion
intimately related to that of real modules, either for quantum affine algebras or KLR
algebras (see [11]).

They noted that their irreducibility results can be applied to compute values of
certain parabolic Kazhdan–Lusztig polynomials [15, Corollary 10.9] (pertaining to the
mentioned groups). Subsequently, Lapid engaged in a computer-assisted exploration
which culminated in surprisingly precise conjectures [13], that relate certain parabolic
Kazhdan–Lusztig polynomials to corresponding Kazhdan–Luzstig polynomials of the
symmetric group.

The above-mentioned Theorem 4.3 proves the basic cases of these conjectures.
More precisely, our formula covers a substantial part of those cases in which a
suitable ordinary Kazhdan–Lusztig polynomial is trivial. In other words, we show
that smoothness properties of Schubert varieties of type A imply simple formulas for
certain parabolic Kazhdan–Lusztig polynomials.

We show that the dual canonical basis approach is the missing link which would
push the Lapid–Mı́nguez irreducibility result into a quantized setting, that is extend
a statement on the value of the polynomials at q = 1 into a statement on the
full polynomial. The underlying reason for such connection is that the Bernstein–
Zelevinski ring can be viewed [8, 17] as a specialization at q = 1 of the quantum group
Uv(sl∞)+, with the dual canonical basis specializing to the basis of simple modules.

We are unaware at the moment of a geometric explanation of the phenomena
indicated in this note. A somewhat different connection between the dual canonical
basis and parabolic Kazhdan–Lusztig polynomials was noted in [7]. It was also pointed
out by Bernard Leclerc that the form of our results bears a curious similarity to those
of [16]. A direct reason for this remains unclear.

Our hope is that future work with a similar approach can shed more light on the
nature of the double-coset sums involved in the transition matrices (3.2), and the
quantum group meaning of the formulas described by Lapid’s conjectures [13].
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[3] Identity of parabolic Kazhdan–Lusztig polynomials 83

2. Type A gadgets

2.1. Permutations and their associated polynomials. We will write S n for the
symmetric group of permutations on {1, . . . , n}, equipped with the Bruhat order ≤.
For x ∈ S n, we let `(x) denote its length and ε(x) = (−1)`(x) its parity. We denote by
ω0,n ∈ S n the longest permutation.

For each pair of permutations σ, ω ∈ S n with σ ≤ ω, we write Pσ,ω ∈ Z[q] for the
corresponding Kazhdan–Lusztig polynomial. It is convenient to write Pσ,ω = 0 as the
zero polynomial, when σ � ω.

Suppose that n = mk. The group Wm := S m × · · · × S m (product of length k) appears
as a standard parabolic subgroup of S n. Let Wm ⊆ S n be the set of minimal length
representatives of the cosets of S n/Wm.

For a coset π ∈ S n/Wm, we write π̃ ∈ Wm for its representative. We say that π ≤ τ
for a pair of cosets π, τ ∈ S n/Wm, when π̃ ≤ τ̃.

The quotient group NS n (Wm)/Wm is naturally identified with S k. We write rm : S k →

N(Wm)/Wm for the resulting isomorphism. For a permutation x ∈ S k, we will also write
tm(x) = r̃m(x) ∈ Wm.

In [6], Deodhar defined two polynomials P̂q
π,τ, P̂−1

π,τ ∈ Z[q], for every pair of cosets
π, τ ∈ S n/Wm with π ≤ τ. These are (a particular case of) parabolic Kazhdan–Lusztig
polynomials.

Although defined in a separate setting, the parabolic Kazhdan–Lusztig polynomials
are computationally related to the Kazhdan–Lusztig polynomials, due to the finiteness
of S n.

Proposition 2.1 [6], [4, Proposition 1]. For every π, τ ∈ S n/Wm with π ≤ τ, the
identities

P̂q
π,τ =

∑
x∈Wm

ε(x)Pπ̃x,τ̃, P̂−1
π,τ = Pπ̃ωm,τ̃ωm

hold, where ωm is the longest element of Wm.

2.2. Multisegments and bisequences. Let Seg denote the collection of segments of
integers, that is, formal pairs [a, b] of integers a, b, such that a ≤ b.

We say that a pair of segments [a1, b1], [a2, b2] ∈ Seg is in general position, if
a1 , a2, b1 , b2, a1 , b2 + 1 and a2 , b1 + 1.

We say that a segment [a1, b1] precedes a segment [a2, b2], if a1 < a2, b1 < b2 and
a2 ≤ b1 + 1. In this case we say that the pair [a1, b1], [a2, b2] is linked.

When ∆1 = [a1, b1] precedes ∆2 = [a2, b2], we naturally write ∆1 ∪ ∆2 := [a1, b2] ∈
Seg. If ∆1,∆2 are in addition in general position, we can also write ∆1 ∩ ∆2 := [a2,b1] ∈
Seg.

Let Mult = Z≥0(Seg) denote the commutative monoid of multisegments of integers,
that is, multisets of segments, or more precisely, maps from Seg to Z≥0 with finite
support.

There is a natural embedding of Seg into Mult which sends a segment to its indicator
function. Thus, we will sometimes treat segments as elements in Mult.
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84 M. Gurevich [4]

For example, a multisegment m ∈Mult can be given as

m = [1, 2] + [1, 2] + [0, 4] + [5, 5].

We will say that a segment appears in m ∈ Mult, if it is in the support of m (as a
function on Seg).

Let us recall the notation which was introduced in [15].
A pair

A =

(
a1 · · · ak

b1 · · · bk

)
of two sequences of integers satisfying a1 ≤ · · · ≤ ak, b1 ≥ · · · ≥ bk and ai ≤ bk+1−i + 1,
for all 1 ≤ i ≤ k, will be called a bisequence of length k.

A bisequence A as above defines two standard parabolic subgroups of the group
S k, in the following manner. Let P1(A) < S k (respectively, P2(A)) be the subgroup
generated by transpositions (i i + 1), for which bi = bi+1 (respectively, ai = ai+1) holds.

We write D(A) = P1(A) \ S k/P2(A) for the set of double-cosets related to A. For
σ ∈ D(A), we will write σ̃ ∈ S k for the shortest representative of σ.

We say that a bisequence A is regular, if P1(A) and P2(A) are trivial groups.
We say that A as above is strongly regular, if it is regular and {a1, . . . , ak} ∩ {b1 +

1, . . . , bk + 1} = ∅ holds.
Recall that the permutation σ0 = σ0(A) is defined for each bisequence A by the

following recursion. Given σ−1
0 (k), . . . , σ−1

0 (i + 1), we set

σ−1
0 (i) = max{ j < σ−1

0 ({i + 1, . . . , k}) : a j ≤ bi + 1}.

By [15, Section 6.1], for any permutation σ ∈ S k, the inequality σ0 ≤ σ holds, if and
only if, ai ≤ bσ(i) + 1, for all i.

Given a bisequenceA of length k as above and a permutation σ0(A) ≤ σ ∈ S k, we
can construct a multisegment

mσ(A) =

k∑
i=1

[ai, bσ(i)],

by considering expressions of the form [b + 1, b] as empty segments.
Note that mσ′(A) = mσ(A), for any σ′ ∈ P1(A)σP2(A). Thus, we can also write

mσ(A) by specifying a double-coset σ ∈ D(A).
In fact, it can be easily seen that every element of Mult can be written in the form

mσ(A), for some (nonunique) σ andA.
When A is strongly regular, it is clear that any pair of distinct segments which

appears in mσ(A) must be in general position.
Given a bisequence of length k and an integer m ≥ 1, we denote by Am the

bisequence of length n := mk which results in replicating m times each entry ofA.
For example,

A =

(
1 2 3
8 7 6

)
, A3 =

(
1 1 1 2 2 2 3 3 3
8 8 8 7 7 7 6 6 6

)
.
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[5] Identity of parabolic Kazhdan–Lusztig polynomials 85

Note that when A is a regular bisequence, we have P1(Am) = P2(Am) = Wm, as
subgroups of S n. It is easily seen that in the monoid Mult

m ·mσ(A) = mrm(σ)(Am), (2.1)

for all σ0(A) ≤ σ ∈ S k.

Lemma 2.2. Suppose that σ ∈ S k is a 213-avoiding permutation, that is, there are no
1 ≤ i1 < i2 < i3 ≤ k, for which σ(i2) < σ(i1) < σ(i3) holds.

Then there exists a strongly regular bisequenceA, such that σ = σ0(A).

Proof. Let us choose a sequence of integers a1 � · · · � ak � ak+1 with large enough
gaps. Next, we define bk, . . . , b1 recursively. Let bk be an integer satisfying aσ−1(k) <
bk + 1 < aσ−1(k)+1.

Supposing bk < · · · < bi+1 were defined, we set bi to be an integer, such that bi+1 < bi
and a j < bi + 1� a j+1 are satisfied, for

j = min{σ−1(i) ≤ j′ : bi+1 + 1 < a j′+1}.

The pattern avoidance property clearly assures that the algorithm for σ0(A), when
A =

(a1 ... ak
b1 ... bk

)
, produces back the permutation σ. �

2.3. Graded nilpotent varieties. Let us briefly recall a geometric interpretation of
the elements of Mult. For more details the reader can refer, for example, to [17, Section
2.3].

Consider a (complex) graded vector space Vd =
⊕

k∈Z Vk, with dim Vk = dk, where
d = (dk)k∈Z≥0 is such that dk = 0 except for finitely many values of k. Let EVd be the
space of endomorphisms x of Vd, which satisfy xVk ⊆ Vk−1, for all k.

The group
∏

k∈Z GL(Vk) acts on EVd by conjugation. The (finite) collection of orbits
of that action are in natural correspondence with a certain set of multisegments in Mult.
Hence, we write each orbit O ⊆ EVd as O = Om, for a unique m ∈Mult.

Going over all possible spaces Vd (that is varying d) we obtain a bijection between
Mult and the collection of above described orbits in {EVd }d. Thus, for each m ∈Mult,
Om is a well-defined variety of graded nilpotent operators.

According to [20] (when taken together with the combinatorial cancellations
described in [10]), given a multisegment mσ(A) ∈ Mult, for a bisequence A and
(a double-coset of) a permutation σ ∈ D(A), the closure of the corresponding variety
Omσ(A) decomposes as

Omσ(A) =
⊔

ω∈D(A),
σ̃≤ω̃

Omω(A).

Moreover, a Kazhdan–Lusztig polynomial, which is attached to a pair of
permutations, is in fact encoded in the singularities of any nilpotent variety that is
defined by the pair.

For any m, n ∈Mult satisfying the inclusion On ⊆ Om, it makes sense to denote by
H i(Om)n the stalk at a point of On of the ith intersection cohomology sheaf of the
variety Om.
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Theorem 2.3 [10, 21]. For any bisequence A and σ, ω ∈ D(A) with σ0(A) ≤ σ̃ ≤ ω̃,
we have ∑

i

qi/2 dim(H i(Omσ(A))mω(A)) = Pω̃ω0,σ̃ω0 (q).

Given a bisequenceA and permutationsσ0(A) ≤ σ ≤ ω, let us denote the parameter

c(σ,ω,A) = dim(Omσ(A)) − dim(Omω(A)).

Lemma 2.4. For a strongly regular bisequence A, permutations σ0(A) ≤ σ ≤ ω ∈ S k

and any integer m ≥ 1, we have

c(rm(σ), rm(ω),Am) = m2(`(ω) − `(σ)).

Proof. Let us apply the formula in [1, Lemma 3.2]. It can be used to compute the
dimensions of the stabilizers Stab(x,m) of the action (of the same group) on the orbits
Omrm(x)(Am), for x ∈ S k.

More precisely, it follows easily from the above-mentioned formula and Equation
(2.1) that dim Stab(x,m) = m2(p(x) + `(xω0)), where p(x) here stands for the number
of segments in mx(A).

Since A is strongly regular, p(x) = k, for all x ∈ S k. The result then follows by
`(ω) − `(σ) = `(σω0,k) − `(ωω0,k). �

3. Quantum groups

We recall some basic constructions in the theory of quantum groups for the cases
that we will require. We will largely follow [17].

Let us fix a number q = v−2 ∈ C× that is not a root of unity.
We set Uv = Uv(sl∞)+ to be the Q(v)-algebra generated by a sequence of elements

{Ei}i∈Z, subject to the (quantum Serre) relations

EiE j = E jEi |i − j| > 1,
E2

i E j − (v + v−1)EiE jEi + E jE2
i = 0 |i − j| = 1.

3.1. Bases and their transition matrices. The algebra Uv comes equipped with the
dual canonical basis (or, Kashiwara’s upper global crystal basis) B∗ = {G∗(m)}m∈Mult,
which is indexed by the elements of Mult.

It is dual to the canonical basis relative to an inner product on the algebra. We will
not require these details which can be found in [17] and the references therein.

We can also choose another basis E∗ on Uv which serves the role of a dual PBW
basis. The elements of E∗ = {E∗(m)}m∈Mult are naturally indexed by multisegments
as well as B∗, and are constructed through the following induction process (see [17,
Sections 3.2 and 3.5]).

We first set T∆ = E∗(∆) := G∗(∆), for each single segment ∆ ∈ Seg.
Now, suppose that m ∈Mult is given as

m = m1 · ∆1 + · · · + mk · ∆k,
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[7] Identity of parabolic Kazhdan–Lusztig polynomials 87

where m1, . . . ,mk ∈ Z>0 are multiplicities and ∆1 < · · · < ∆k are segments ordered
according to the relation < defined on Seg as

[a, b] < [c, d] ⇔ b < d or
{

b = d
a < c.

We then set
E∗(m) := v

∑k
i=1 (mi

2 )T m1
∆1
· . . . · T mk

∆k
.

It was shown in [19] (see [17, Theorem 9]) that the transition matrix between the
bases E∗ and B∗ is given as

E∗(mω(A)) =
∑

σ∈D(A),
σ0(A)≤σ̃≤ω̃

(
vc(σ,ω,A)

∑
i

v−i dim(H i(Omσ(A))mω(A))
)
G∗(mσ(A)),

for any bisequenceA and ω ∈ D(A) with σ0(A) ≤ ω̃.
Using Theorem 2.3, this is also equivalent to

E∗(mω(A)) =
∑

σ∈D(A),
σ0(A)≤σ̃≤ω̃

q−c(σ,ω,A)/2Pω̃ω0,σ̃ω0 (q)G∗(mσ(A)), (3.1)

which is where we see the appearance of Kazhdan–Lusztig polynomials in the
quantum group setting.

By using the inversion formulas for Kazhdan–Lusztig polynomials (see for example
[10, Equation (2.11), (2.12)]) we can invert the transition matrix to obtain

G∗(mω(A)) =
∑

σ∈D(A),
σ0(A)≤σ̃≤ω̃

(
q−c(σ,ω,A)/2ε(ω̃)

∑
x∈σ

ε(x)Px,ω̃(q)
)
E∗(mσ(A)). (3.2)

Note that the coefficients in (3.2) closely resemble the formulas for the parabolic
Kazhdan–Lusztig polynomials P̂q, as in Proposition 2.1. Indeed, let us make that
statement precise in our cases of interest.

Let A be a regular bisequence of length k, and m ≥ 1 an integer. Then, elements
of NS km (Wm)/Wm can be viewed as double-cosets in D(Am). Consequently, we deduce
the following.

Proposition 3.1. Given a regular bisequence A, permutations σ0(A) ≤ σ ≤ ω ∈ S k
and an integer m ≥ 1,

(1) The coefficient of the basis element G∗(mrm(σ)(Am)) in the B∗-expansion of
E∗(mrm(ω)(Am)) is given by

q−(m2/2)(`(ω)−`(σ))P̂−1
rm(ωω0,k),rm(σω0)(q).

(2) The coefficient of the basis element E∗(mrm(σ)(Am)) in the E∗-expansion of
G∗(mrm(ω)(Am)) is given by

ε(σ)mε(ω)mq−(m2/2)(`(ω)−`(σ))P̂q
rm(σ),rm(ω)(q).

https://doi.org/10.1017/S144678871900017X Published online by Cambridge University Press

https://doi.org/10.1017/S144678871900017X


88 M. Gurevich [8]

Proof. The first item follows from (3.1), Proposition 2.1 and Lemma 2.4, after noting
that, for all τ ∈ S k,

tm(τω0,k) = tm(τ)tm(ω0,k) and tm(ω0,k)ωm = ω0,mk.

As for the second item, by (3.2), this coefficient can be expressed as

ε(tm(σ))ε(tm(ω))q−c(σ,ω,A)/2
∑
x∈Wm

ε(x)Ptm(σ)x,tm(ω)(q).

The statement now follows from Proposition 2.1, Lemma 2.4 and the fact that
ε(tm(τ)) = (−1)m2`(τ) = ε(τ)m, for all τ ∈ S k. �

Remark 3.2. One can give a more general statement from a similar application of (3.2)
and an analogue of Proposition 2.1. For any standard parabolic subgroup P < S n, and
elements σ, τ ∈ NS n (P)/P, the corresponding parabolic Kazhdan–Lusztig polynomial
P̂q
σ,τ can be read off from a suitable coefficient in the transition matrix from B∗ to E∗.

3.2. Products of basis elements. While the multiplicative properties of the elements
of B∗ are not trivial and the subject of ongoing research, multiplication of elements of
E∗ is easily computable using the commutation relations described in [3, Proposition
3.11].

Let us mention here only the relations for the cases we will require in this note.
Namely, suppose that ∆1,∆2 ∈ Seg are segments in general position, with ∆1 < ∆2.
Then,

T∆2 T∆1 =

{
T∆1 T∆2 ∆1,∆2 are not linked,
T∆1 T∆2 + (v−1 − v)T∆1∩∆2 T∆1∪∆2 ∆1,∆2 are linked. (3.3)

Proposition 3.3. Let A be a strongly regular bisequence. Suppose that permutations
σ0(A) ≤ σ,ω ∈ S k, a basis element E ∈ E∗ and an integer m > 1 are given.

Let c(v) be the coefficient of E∗(mrm(σ)(Am)) in the expansion of E · E∗(mω(A)) on
the basis E∗.

Then, c(v) = 0, unless E = E∗(mrm−1(σ)(Am−1)) and ω = σ.
In the latter case, we have c(v) = v f , where f = f (k,m) is a number depending only

on k and m.

Proof. Suppose that E = E∗(m), for m =
∑s

i=1 ∆i ∈Mult, with ∆1 ≤ · · · ≤ ∆s. Then,

EE∗(mω(A)) = vtT∆1 · · · T∆s · T[aω−1(k),bk] · · · T[aω−1(1),b1], (3.4)

for an integer t.
We can use the straightening rules of (3.3) to expand EE∗(mω(A)) on the basis E∗.
Suppose that c(v) , 0. Therefore, E∗(mrm(σ)(Am)) is produced through a chain

of exchanges from the product (3.4), in which a pair T∆ j T[a,bi] with [a, bi] < ∆ j is
transformed into T∆ j∩[a,bi]T∆ j∪[a,bi]. In particular, ∆ j ∩ [a, bi] = [a′, bi], for some a < a′.

Ultimately, this chain of exchanges shows that mrm(σ)(Am) must contain the
segments [a′1, b1], . . . , [a′k, bk], for some numbers aω−1(i) ≤ a′i . Yet, for all 1 ≤ i ≤ k, the
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[9] Identity of parabolic Kazhdan–Lusztig polynomials 89

only segments in mrm(σ)(Am) whose end-point is bi are [aσ−1(i), bi]. Hence, a′i = aσ−1(i),
for all i.

In particular, the inequalities aω−1(i) ≤ aσ−1(i) impose the equality ω = σ. Now, the
equalities aω−1(i) = a′i imply that no transposition was performed.

Thus, mrm(σ)(Am) = m +mω(A), which clearly gives

m = mrm−1(σ)(Am−1).

The last statement follows from noting the commutation in (3.3) and the formula in
the definition of E∗(m). We see that c(v) is given by v f , where f = k

(( m−1
2

)
−

( m
2
))

. �

4. Specialization

Let Uv,Z be the Z[v, v−1]-algebra spanned by E∗ in Uv. By considering C as a
Z[v, v−1]-module via v 7→ 1, we are able to construct the specialization algebra

A := C ⊗Z[v,v−1] Uv,Z.

The set of elements B = {b∗(m) := 1 ⊗ B∗(m)}m∈Mult forms a basis to A, which serves
as a specialization of the dual canonical basis.

The algebra A together with its basis B have a natural categorification in the setting
of representations of affine Hecke algebras or p-adic groups.

Let us consider the complex affine Hecke algebra Hn,q attached to the root data of
GLn and the parameter q.

Let R̂n be the complexified Grothendieck group of the category of finite-
dimensional modules over Hn,q. Then,

R̂ :=
⊕
n≥0

R̂n

has a ring structure, coming from the so-called Bernstein–Zelevinsky product.
Namely, given modules π1, π2 over Hn1,q,Hn2,q, respectively, the product π1 × π2 is set
to be the induction of π1 ⊗ π2 into a module over Hn1+n2,q using a canonical embedding
of algebras Hn1,q ⊗ Hn2,q ⊆ Hn1+n2,q.

In R̂, we simply define [π1] · [π2] := [π1 × π2].
Furthermore, one can work more generally (as Bernstein–Zelevinsky originally did

[2]) in the setting of smooth complex representations of the groups GLn(F), where
F is a p-adic field of residue characteristic q (in case q happens to be an integer
prime power). When Rn is set to be the Grothendieck group of this category of
representations, we similarly obtain a product structure on

R =
⊕
n≥0

Rn

coming from the parabolic induction functor.
It is well known (see discussion in [9, Section 3.1], for example) that there is a

natural embedding Ψ : R̂ ↪→ R coming from an identification of the Iwahori-invariant
block of representations a p-adic group with modules over an affine Hecke algebra.
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Let Irr ⊆ R (respectively, ˆIrr ⊆ R̂) denote the collection of classes of irreducible
objects. Clearly, Ψ( ˆIrr) ⊆ Irr. The collection Irr can be classified in combinatorial
terms, through what is known as the Zelevinsky classification. In particular, we have
an embedding

Z : Mult ↪→ Irr .

(Note that most sources would describe Z as a bijection, yet our definition of
multisegments in this note was taken to be very restrictive.)

By [17, Proposition 7, Theorem 12], we have a natural algebra embedding

Φ : A ↪→ R̂,

such that Φ(B) ⊆ Irr.
Moreover,

Ψ ◦ Φ(b∗(m)) = Z(m)

holds, for all m ∈Mult.
(To be precise, one may need to twist Z by what is known as the Zelevinski

involution, depending on chosen conventions. This bears no consequences on our
application of results from [15]. See further the discussion in [9, Section 3.2].)

4.1. Square-irreducible modules. We say that an element a ∈ Irr is square-
irreducible, if a2 ∈ Irr.

By [15, Corollary 2.7], [11, Corollary 3.4], when a ∈ Irr is square-irreducible,
am ∈ Irr, for all m ≥ 1.

It is well known (see [14, Proposition 2.5(5)]) that when Z(m)Z(n) ∈ Irr, for
m, n ∈Mult, we must have Z(m)Z(n) = Z(m + n). Hence, by (2.1), for a bisequenceA
and a permutation σ0(A) ≤ σ, such that Z(mσ(A)) is square-irreducible, we have

Z(mσ(A))m = Z(mrm(σ)(Am)),

for all m ≥ 1.
The work of Lapid–Mı́nguez in [15] established a characterization of the square-

irreducible representations in a certain subset of Irr in terms of bisequences and
permutations.

Theorem 4.1 [15, Theorem 1.2]. Let A be a regular bisequence, and σ0(A) ≤ σ a
permutation.

Then, Z(mσ(A)) is square-irreducible, if and only if, the polynomial Pσ0(A),σ is
trivial, that is equal to the constant 1.

4.2. Quantum group consequences.

Proposition 4.2. For a multisegment m ∈Mult, such that Z(m) is square-irreducible,

G∗(m)m = ve(m,m)G∗(m ·m),

for all m ≥ 1, and an integer e(m,m).
If, in addition, m = mσ(A), for a strongly regular bisequence A, then e(m,m) =

e(k,m) depends only on m and the length k ofA.
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Proof. Using the embedding Ψ ◦ Φ, we see that b∗(m)m = b∗(m · m). The first
statement follows from [17, Proposition 15].

For the second statement, note that e(m,m) can be computed explicitly using
[17, 4.2(9)]. In particular, we can see from the mentioned formula that when the
segments in m all appear with multiplicity 1 and in general position, e(m,m) depends
only on m and the number of segments in m. These conditions are satisfied in mσ(A),
whenA is strongly regular. Moreover, the number of segments in such mσ(A) always
equals the length ofA. �

Theorem 4.3. Suppose that Pσ0,ω(q) ≡ 1, for some permutationsσ0 ≤ ω ∈ S k, such that
σ0 is 213-avoiding (in the sense of Lemma 2.2).

Then, for every σ0 ≤ σ ≤ ω and every integer m > 1,

P̂q
rm(σ),rm(ω)(q) = q(m

2)(`(ω)−`(σ))

holds.

Proof. LetA be a strongly regular bisequence, such that σ0 = σ0(A), which exists by
Lemma 2.2.

By Theorem 4.1 and Proposition 4.2, we have

qeG∗(mrm(ω)(Am)) = G∗(mω(A))m, (4.1)

for a number e = e(k,m).
Let us compute the coefficient of E∗(mrm(σ)(Am)) in the E∗-expansion of both sides

of (4.1).
On the left-hand side, Proposition 3.1(2) gives the value

ε(σ)mε(ω)mqe−(m2/2)(`(ω)−`(σ))P̂q
rm(σ),rm(ω)(q) (4.2)

for that coefficient.
In order to compute the expansion of the right-hand side, we note that by (3.2),

G∗(mω(A))m

= ε(ω)m
∑

σ0(A)≤σ1,...,σm≤ω

q−(1/2)
∑m

i=1 c(σi,ω,A)ε(σ1 · · ·σm)E∗(mσ1 (A)) · · · E∗(mσm (A)).

An inductive application of Proposition 3.3 shows that the only summand in the
sum above which contributes to the E∗(mrm(σ)(Am))-coefficient of the E∗-expansion
of G∗(mω(A))m is

q−(m/2)c(σ,ω,A)ε(ω)mε(σ)mE∗(mσ(A))m.

Recall that E∗(m) appears with coefficient 1 in G∗(m) and vice versa, for all
m ∈ Mult. Thus, (4.1) also implies that E∗(mrm(ω)(Am)) appears with coefficient
qe in the E∗-expansion of E∗(mω(A))m. Yet, by Proposition 3.3, the value of the
last-mentioned coefficient is independent of ω. Hence, we see that qe is also the
E∗(mrm(σ)(Am))-coefficient in the E∗-expansion of E∗(mσ(A))m.
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Thus, the coefficient in the right-hand side of (4.1) is given as

qe−(m/2)c(σ,ω,A)ε(ω)mε(σ)m. (4.3)

Finally, since c(σ, ω,A) = `(ω) − `(σ) (Lemma 2.4), a comparison of (4.3) with
(4.2) gives the desired result. �

Corollary 4.4. Let ω ∈ S k be a permutation. Let Xω be the Schubert variety attached
to ω, when S k is viewed as the Weyl group of SLk.

If Xω is a smooth variety, then

P̂q
rm(σ),rm(ω)(q) = q(m

2)(`(ω)−`(σ))

holds, for all σ ≤ ω and integer m > 1.

Proof. Smoothness of Xω implies that σ0 can be taken as the identity permutation in
Theorem 4.3. �
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