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Abstract

We study algorithms for computing stable models of logic programs and derive estimates on

their worst-case performance that are asymptotically better than the trivial bound of O(m2n),

where m is the size of an input program and n is the number of its atoms. For instance,

for programs whose clauses consist of at most two literals (counting the head) we design an

algorithm to compute stable models that works in time O(m× 1.44225n). We present similar

results for several broader classes of programs. Finally, we study the applicability of the

techniques developed in the paper to the analysis of the performance of smodels.
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1 Introduction

The stable-model semantics was introduced by Gelfond & Lifschitz (1988) to provide

an interpretation for the negation operator in logic programming. In this paper, we

study algorithms to compute stable models of propositional logic programs. Our

main goal is to design algorithms for which one can derive non-trivial worst-case

performance bounds.

Computing stable models is important. It allows us to use logic programming, with

the negation operator interpreted by the stable model semantics, as a computational

knowledge representation tool and as a declarative programming system (Marek &

Truszczyński, 1999; Niemelä, 1999). In most cases, when designing algorithms for

computing stable models we restrict the syntax to that of DATALOG with negation

(or DATALOG¬, for short), by eliminating function symbols from the language.

When function symbols are allowed, models can be infinite and highly complex,

and the general problem of existence of a stable model of a finite logic program is
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not even semi-decidable (Marek et al., 1994)1. On the other hand, when function

symbols are not used, stable models are guaranteed to be finite and can be computed.

Some recent results on the algorithmic aspects of the problem to compute stable

models of logic programs can be found in Lonc & Truszczyński (2001a, 2001b) and

Truszczyński (2001).

To compute stable models of finite DATALOG¬ programs we usually proceed

in two steps. In the first step, we ground an input program P and produce a

finite propositional program with the same stable models as P (the finiteness of

the resulting ground program is ensured by the finiteness of P and the absence of

function symbols). In the second step, we compute stable models of the ground

program by applying search. This general approach is used in smodels (Niemelä &

Simons, 2000) and dlv (Eiter et al., 2000), two most advanced systems to process

DATALOG¬ programs2.

It is this second step of the process – computing stable models of propositional

logic programs (in particular, programs obtained by grounding DATALOG¬ pro-

grams) – that is of central interest to us in the present paper. Stable models of a

propositional logic program P can be computed by a trivial brute-force algorithm

that generates all subsets of the set of atoms of P and, for each of these subsets,

checks the stability condition. This algorithm can be implemented to run in time

O(m2n), where m is the size of P and n is the number of atoms in P (we will use

m and n in this meaning consistently throughout the paper). The algorithms used

in smodels and dlv refine this brute-force algorithm by employing effective search-

space pruning techniques. Experiments show that their performance is significantly

better than that of the brute-force algorithm. However, at present, no non-trivial

upper bound on their worst-case running time is known. In fact, no algorithms

for computing stable models are known whose worst-case performance would be

provably better than that of the brute-force algorithm. Our main goal here is to

design such algorithms.

To this end, we propose a template for an algorithm to compute stable models

of propositional programs. This template involves an auxiliary procedure whose

particular instantiation determines the specific algorithm and its running time. We

propose concrete implementations of this procedure and show that the resulting

algorithms for computing stable models are asymptotically better than the straight-

forward algorithm described above. The performance analysis of our algorithms

is closely related to the question of how many stable models logic programs may

have. The template proposed in the paper can be instantiated to algorithms such as

smodels but also to algorithms that search for stable models over search trees that

are not, in general, binary.

Our main results concern propositional logic programs, called t-programs, in which

the number of literals in normal clauses (we give the definition later), including the

head, is bounded by a constant t. Despite their restricted syntax t-programs are

1 We note, however, that some progress on automated reasoning with logic programs that allow function
symbols have recently been obtained by Bonatti (2001, 2002).

2 In fact, dlv is designed to process programs from a broader class of disjunctive DATALOG¬ programs.
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of interest. Many logic programs that were proposed as encodings of problems in

planning, model checking and combinatorics become propositional 2- or 3-programs

after grounding. For instance, the ground versions of the programs given in Marek &

Truszczyński (1999) as encodings of the propositional satisfiability and the Hamilton

cycle problems are 3-programs. Similarly, the ground versions of the programs given

in Niemelä (1999) as encodings of the pigeonhole, the n-queens, the graph k-

colorability and the Schur number problems are 2-programs. In each case some

straightforward program simplifications must be applied (all these simplifications

are implemented in lparse, a grounding program developed for smodels (Syrjänen,

1999)). In general, programs obtained by grounding finite DATALOG¬ programs

are t-programs, for some fixed and usually small t that depends only on the problem

specification and not on a particular problem instance.

In the paper, for every t � 2, we construct an algorithm that computes all stable

models of a t-program P in time O(mαnt ), where αt is a constant such that αt < 2−1/2t.

For 2-programs we obtain stronger results. We construct an algorithm that

computes all stable models of a 2-program in time O(m3n/3) = O(m × 1.44225n).

We note that 1.44225 < α2 ≈ 1.61803. Thus, this algorithm is indeed a significant

improvement over the algorithm following from general considerations discussed

above. We design an even faster algorithm for a subclass of the class 2-programs

consisting of programs that are purely negative and do not contain dual clauses.

This algorithm runs in time O(m× 1.23651n).

We obtain significant improvements over the general results concerning t-programs

also in the case when t = 3. Namely, we describe an algorithm that computes

all stable models of a 3-program P in time O(m × 1.70711n). In contrast, since

α3 ≈ 1.83931, the algorithm implied by the general considerations runs in time

O(m× 1.83931n).

For programs in all the classes mentioned above, we obtain upper bounds on

the maximum number of stable models a program in a given class may have. As

mentioned earlier, these bounds are related to the worst-case performance estimates

for algorithms we proposed.

In the paper we also consider a general case where no bounds on the length of a

clause are imposed. We describe an algorithm to compute all stable models of such

programs. Its worst-case complexity is better by the factor of
√
n than that of the

brute-force algorithm.

Finally, in the paper we discuss some lower bounds for the worst-case estimate

of the time needed to compute all stable models. Since computing stable models

requires that all of them be output, the sum of the cardinalities of all stable models

of a program provides a lower bound on the worst-case performance estimate.

Thus, to obtain a good bound, one needs to construct programs with as many as

possible “large” stable models. We present two such constructions in the paper. In

some cases, they demonstrate optimality of our algorithms in the sense that the

exponential factor in the formula cannot be improved.

It is well known that, by introducing new atoms, every logic program P can be

transformed in polynomial time into a 3-program P ′ that is, essentially, equivalent

to P . Specifically, every stable model of P with the set of atoms At is of the form
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M ′ ∩ At, for some stable model M ′ of P ′ and, for every stable model M ′ of P ′,

the set M ′ ∩ At is a stable model of P . This observation might suggest that in

order to design fast algorithms to compute stable models, it is enough to focus on

the class of 3-programs. It is not the case. In the worst case, the number of new

atoms that need to be introduced is of the order of the size of the original program

P . Consequently, an algorithm to compute stable models that can be obtained

by combining the reduction described above with an algorithm to compute stable

models of 3-programs runs in time O(m× 2m) and is asymptotically slower than the

brute-force approach outlined earlier. Thus, it is necessary to study algorithms for

computing stable models designed explicitly for particular classes of programs.

2 Preliminaries

For a detailed account of logic programming and stable model semantics we refer the

reader to Gelfond & Lifschitz (1988), Apt (1990) and Marek & Truszczyński (1993).

In the paper, we consider only the propositional case. The language is determined

by some (infinite) set At of atoms. A literal is an atom or any expression of the form

not(a), where a is an atom. Literals b and not(b), where b is an atom, are dual to

each other. For a literal β, we denote its dual by not(β).

A clause is an expression c of the form p ← B or ← B, where p is an atom and

B is a list of literals. The atom p (if present) is called the head of c and is denoted

by h(c). The set of literals B is called the body of c. The set of all atoms appearing

as non-negated literals in B is the positive body of c, b+(c), in symbols. The set of

atoms appearing in negated literals of B is the negative body of c, b−(c), in symbols.

We emphasize that while the body of a rule consists of literals, positive and negative

bodies are defined to consist of atoms. We assume that no literals in B are repeated.

A clause of the form p← B is called a normal clause. A clause of the form← B is

called a constraint. A clause whose positive body is empty is called a purely negative

clause. A normal clause whose negative body is empty is called a Horn clause (thus,

in this paper, we require that a Horn clause has a non-empty head).

A logic program is a collection of clauses. If every clause of P is normal, P is a

normal logic program. If every clause in P is purely negative, P is a purely negative

program. If every clause in a logic program P is a Horn clause, P is a Horn program.

Finally, a logic program P is a t-program if every normal clause in P has no more

than t literals (counting the head). We note that the definition of t-programs does

not impose any restrictions on the length of constraints.

For a logic program P , by At(P ) we denote the set of all atoms appearing in P .

We define

Lit(P ) = At(P ) ∪ {not(a): a ∈ At(P )}.
A set of atoms M is a model of a clause of the form p ← B if: (i) p ∈ M, or

(ii) b /∈ M, for some atom b ∈ B, or (iii) b ∈ M, for some atom b such that

not(b) ∈ B. Similarly, M is a model of a clause of the form ← B if: (i) b /∈ M, for

some atom b ∈ B, or (ii) b ∈ M, for some atom b such that not(b) ∈ B. A set of

atoms M is a model of a logic program P if M is a model of every clause in P . It
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is well known that every Horn program P has a least model (with respect to set

inclusion). We will denote this model by lm(P ).

Given a normal logic program P and a set of atoms M ⊆ At(P ), we define the

reduct of P with respect to M (PM , in symbols) to be the logic program obtained

from P by

1. removing from P each clause c such that M ∩ b−(c) 
= � (we call such clauses

blocked by M),

2. removing all negated atoms from the bodies of all the rules that remain (that

is, those rules that are not blocked by M).

Since we assumed that the program P is normal, the reduct PM is a Horn program.

Thus, it has a least model. We say that M is a stable model of P if M = lm(PM).

Both the notion of the reduct and that of a stable model were introduced in Gelfond

& Lifschitz (1988).

The concept of a stable model can be extended to the case of arbitrary logic

programs (not necessarily normal). Let P be such a program. We define a set of

atoms M to be a stable model of P if (1) M is a stable model of the program

consisting of all normal clauses in P , and if (2) M is a model of the program

consisting of all constraints of P .

A clause c is a tautology if it is normal and h(c) ∈ b+(c), or if b+(c)∩b−(c) 
= �. A

clause c is a virtual constraint if it is normal and h(c) ∈ b−(c). We have the following

result (Dix, 1995).

Proposition 1

Let P be a logic program and let P ′ be the subprogram of P obtained by removing

from P all tautologies, constraints and virtual constraints. A set of atoms M is a

stable model of P if and only if M is a stable model of P ′ and satisfies all constraints

and virtual constraints of P .

Thanks to this proposition, when designing algorithms for computing stable

models we may restrict attention to normal programs without tautologies, constraints

and virtual constraints. Indeed, to compute stable models of P we simply compute

stable models for P ′ and, for each of them, check whether it satisfies all constraints

and virtual constraints of P . Those that ‘pass’ the check are stable models of P .

Moreover, every stable model of P can be found in this way.

For a set of literals L ⊆ Lit(P ), we define:

L+ = {a ∈ At(P ): a ∈ L} and L− = {a ∈ At(P ): not(a) ∈ L}.

We also define L0 = L+ ∪ L−. A set of literals L is consistent if L+ ∩ L− = �. A set

of atoms M ⊆ At(P ) is consistent with a set of literals L ⊆ Lit(P ), if L+ ⊆ M and

L− ∩M = �.

To characterize stable models of a program P that are consistent with a set of

literals L ⊆ Lit(P ), we denote by [P ]L the program obtained from P by removing:

1. every clause c such that b+(c) ∩ L− 
= �
2. every clause c such that b−(c) ∩ L+ 
= �
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3. every clause c such that h(c) ∈ L0

4. every occurrence of a literal in L from the bodies of the remaining clauses.

The program [P ]L contains all information necessary to reconstruct stable models

of P that are consistent with L. The following result was obtained in Dix (1995) (we

refer also to Subrahmanian et al. (1995) and Cholewiński & Truszczyński (1999)).

Proposition 2

Let P be a logic program and L be a set of literals of P . If M is a stable model of

P consistent with L, then M \ L+ is a stable model of [P ]L.

Thus, to compute all stable models of P that are consistent with L, one can

first check if L is consistent. If not, there are no stable models consistent with L.

Otherwise, one can compute all stable models of [P ]L, for each such model M ′ check

whether M = M ′ ∪L+ is a stable model of P and, if so, output M. This approach is

the basis of the algorithm to compute stable models that we present in the following

section.

3 A high-level view of stable model computation

We now describe an algorithm stable(P , L) that, given a normal program P and a

set of literals L, outputs all stable models of P that are consistent with L. The

key concept we need is that of a complete collection. Let P be a logic program.

A non-empty collection A of non-empty subsets of Lit(P ) is complete for P if

every stable model of P is consistent with at least one set A ∈ A. The collection

A = {{a}, {not(a)}}, where a is an atom of P , is a simple example of a complete

collection for P .

In the description given below, we assume that complete(P ) is a procedure that,

for a program P , computes a collection of sets of literals that is complete for P :

stable(P , L)

(0) if L is consistent then

(1) if [P ]L = � then

(2) check whether L+ is a stable model of P and, if so, output it

(3) else

(4) A := complete([P ]L);

(5) for every A ∈ A do

(6) stable(P , L ∪ A)

(7) end of stable.

Proposition 3

Let P be a normal finite propositional logic program. For every L ⊆ Lit(P ),

stable(P , L) returns all stable models of P consistent with L.

Proof

We proceed by induction on |At([P ]L)|. To start, let us consider a call to stable(P , L)

in the case when |At([P ]L)| = 0 and let M be a set returned by stable(P , L). It follows

that L is consistent and that M is a stable model of P . Moreover, since M = L+,
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M is consistent with L. Conversely, let M be a stable model of P that is consistent

with L. By Proposition 2, M \L+ is a stable model of [P ]L. Since L is consistent (as

M is consistent with L) and [P ]L = �, M \ L+ = �. Since M is consistent with L,

M = L+. Thus, M is returned by stable(P , L).

For the inductive step, let us consider a call to stable(P , L), where |At([P ]L)| > 0.

Let M be a set returned by this call. Then M is returned by a call to stable(P , L∪A),

for some A ∈ A, where A is a complete family for [P ]L. Since elements of a

complete family are non-empty and consist of literals actually occurring in [P ]L,

|At([P ]L∪A)| < |At([P ]L)|. By the induction hypothesis it follows that M is a stable

model of P consistent with L ∪ A and, consequently, with L.

Conversely, let us assume that M is a stable model of P consistent with L. Then,

by Proposition 2, M \ L+ is a stable model of [P ]L. Since A (computed in line (4))

is a complete collection for [P ]L, there is A ∈ A such that M \L+ is consistent with

A. Since A ∩ L = � (as A ⊆ At([P ]L)), M is a stable model of P consistent with

L∪A. Since |At([P ]L∪A)| < |At([P ]L)|, by the induction hypothesis it follows that M

is output during the recursive call to stable(P , L ∪ A). �

Let us note that typically algorithms for computing stable models of logic

programs and models of CNF theories search over a binary tree. That is, at every

branch point a variable, say x, is chosen and the search splits into two paths: one

where x is assumed to be true and the other one where x is assumed to be false

(not necessarily in this order). The search tree traversed by our algorithm is not

necessarily binary. At each branch point, the search splits into as many different

paths as there are elements in the complete family returned by the call to procedure

complete. While algorithms searching over binary trees can be derived from our

template by specifying the procedure complete so that it always returns collections

consisting of at most two sets, the class of algorithms that can be derived from our

template is broader. We provide additional comments on this issue in section 7.

We now study the performance of the algorithm stable. In our discussion we

follow the notation used to describe it. Let P be a normal logic program and let

L ⊆ Lit(P ). Let us consider the following recurrence relation:

s(P , L) =

{
1 if [P ]L = � or L is not consistent∑

A∈A s(P , L ∪ A) otherwise.

As a corollary to Proposition 3 we obtain the following result.

Corollary 1

Let P be a finite normal logic program and let L ⊆ Lit(P ). Then, P has at most

s(P , L) stable models consistent with L. In particular, P has at most s(P ,�) stable

models.

Proof

It is easy to see that s(P , L) bounds the number of sets output by the algorithm

stable(P , L). By Proposition 3, all stable models consistent with L are output by a call

to stable(P , L). Thus, the first part of the assertion follows. Since each stable model

of P is consistent with the empty set of literals, the second part of the assertion

follows, as well. �
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We use the function s(P , L) to estimate not only the number of stable models in

normal logic programs but also the running time of the algorithm stable. Indeed, let

us observe that the total number of times we make a call to the algorithm stable

when executing stable(P , L) (including the ‘top-level’ call to stable(P , L)) is given by

s(P , L). We associate each execution of the instruction (i), where 0 � i � 5, with the

call in which the instruction is executed. Consequently, each of these instructions is

executed no more than s(P , L) times during the execution of stable(P , L).

There are linear-time algorithms to check whether a set of atoms is a stable model

of a program P . Thus, we obtain the following result concerning the performance

of the algorithm stable.

Theorem 1

If the procedure complete runs in time O(t(m)), where t is a function defined on the

set of positive integers and m is the size of an input program P , then executing the

call stable(P , L), where L ⊆ Lit(P ), requires O(s(P , L)(t(m) +m)) steps in the worst

case.

The specific bound depends upon the procedure complete, as it determines the

recurrence for s(P , L). It also depends upon the implementation of the procedure

complete, as the implementation determines the second factor in the running-time

formula derived above.

Throughout the paper (except for section 8, where a different approach is used), we

specify algorithms to compute stable models by describing particular versions of the

procedure complete. We obtain estimates on the running time of these algorithms

by analyzing the recurrence for s(P , L) implied by the procedure complete. As a

byproduct to these considerations, we obtain bounds on the maximum number of

stable models of a logic program with n atoms.

4 t-programs

In this section we will instantiate the general algorithm to compute stable models to

the case of t-programs, where t � 2. To this end, we will describe a procedure that,

given a normal t-program P , returns a complete collection for P . The assumption of

normality imposed on a t-program P implies that every clause in P has a non-empty

head and consists of at most t literals (including the head).

Let P be a normal t-program and let x ← β1, . . . , βk , where βi are literals and

k � t−1, be a clause in P . Let us define A0 = {x}. Further, for every i = 1, . . . , k, let

us define

Ai = {not(x), β1, . . . , βi−1, not(βi)}
(we recall that not(β) denotes the literal that is dual to the literal β). It is easy to

see that the family A = {A0, A1, . . . , Ak} is complete for P . The family A was first

used by Monien and Speckenmeyer (Monien & Speckenmeyer, 1985) in algorithms

to compute models of t-CNF propositional theories. It also appeared in the work

of Bonatti and Olivetti on sequent calculus for default logic (Bonatti & Olivetti,

2002). We will assume that this complete collection A is computed and returned by
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the procedure complete. Clearly, computing this collection A can be implemented

to run in time O(m).

To analyze the resulting algorithm stable, we use our general results from the

previous section. Let us define

cn =

{
Kt if 0 � n < t

cn−1 + . . . + cn−t otherwise,

where Kt is the maximum possible value of s(P , L) for a normal t-program P and

a set of literals L ⊆ Lit(P ) such that |At(P )|−|L| � t. It is easy to see that Kt is a

constant that depends neither on P nor on L. We will prove that if P is a normal

t-program, L ⊆ Lit(P ), and |At(P )|−|L| � n, then s(P , L) � cn. We proceed by

induction on n. If n < t, then the assertion follows by the definition of Kt. So, let us

assume that n � t. If L is not consistent or [P ]L = �, s(P , L) = 1 � cn. Otherwise,

s(P , L) =

k∑
i=0

s(P , L ∪ Ai) �
k+ 1∑
i=1

cn−i �
t∑
i=1

cn−i = cn.

The first equality follows from the recursive definition of s(P , L). The first inequality

follows by the induction hypothesis. Indeed, for every i = 0, 1, . . . , k,

|At(P )|−|L ∪ Ai| � |At(P )|−|L|−i− 1 � n−1.

The second inequality is straightforward and the second equality follows from the

definition of the sequence cn. Thus, the induction step is complete.

The characteristic equation of the recurrence relation cn = cn−1 + . . . + cn−t is

xt = xt−1 + . . . + x+ 1. Let αt be the largest real root of this equation. One can show

that for t� 2, 1<αt < 2− 1/2t. In particular, α2≈ 1.61803, α3≈ 1.83931, α4 ≈ 1.92757

and α5 ≈ 1.96595. Based on the discussion in section 3, we obtain the following two

theorems.

Theorem 2

Let t be an integer, t � 2. There is an algorithm to compute stable models of

t-programs that runs in time O(mαnt ), where n is the number of atoms and m is the

size of the input program.

Theorem 3

Let t be an integer, t � 2. There is a constant Ct such that every t-program P has

at most Ctα
n
t stable models, where n = |At(P )|.

Since for every t, αt < 2, we indeed obtain an improvement over the straightforward

approach. However, the scale of the improvement diminishes as t grows.

To establish lower bounds on the number of stable models and on the worst-case

performance of algorithms to compute them, we define P (n, t) to be a logic program

such that |At(P (n, t))| = n and P (n, t) consists of all clauses of the form

x← not(b1), . . . , not(bt),

where x ∈ At(P (n, t)) and {b1, . . . , bt} ⊆ At(P (n, t)) \ {x} consists of different atoms.

It is easy to see that P (n, t) is a (t+ 1)-program with n atoms and that stable models
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of P (n, t) are precisely those subsets of At(P (n, t)) that have n− t elements. Thus,

P (n, t) has exactly (n
t
) stable models.

Clearly, the program P (2t− 1, t− 1) is a t-program over the set of 2t− 1 atoms.

Moreover, it has (2t− 1
t−1

) ( = (2t− 1
t

)) stable models and each of these stable models has

t elements. Let kP (2t− 1, t− 1) be the logic program formed by the disjoint union

of k copies of P (2t− 1, t− 1) (sets of atoms of different copies of P (2t− 1, t− 1) are

disjoint). Let us denote this program by Q(k, t). It is easy to establish the following

properties of the program Q(k, t):

1. |At(Q(k, t))| = k(2t− 1)

2. The total length of all clauses in Q(k, t) (the size of Q(k, t)) is given by

kt(2t− 1) (2t− 2
t

)

3. Q(k, t) has (2t− 1
t

)k stable models, each of them of cardinality kt.

Let us define µt = (2t− 1
t

)1/2t− 1. These properties imply the following result.

Theorem 4

Let t be an integer, t � 2. There are positive constants dt and Dt such that for every

n � 2t− 1 there is a t-program P with n atoms and such that

1. The size of P , m, satisfies m � dtn

2. The sum of the cardinalities of all stable models of P is at least Dtnµ
n
t .

As a corollary to this theorem, we obtain the following result.

Corollary 2

Let t be an integer, t � 2.

1. Every algorithm computing all stable models of t-programs requires in the

worst case at least Ω(nµnt ) steps

2. Let 0 < α < µt. There is no algorithm for computing all stable models of

t-programs with worst-case performance bounded by O(f(m)αn), where f is a

polynomial and m is the size of the input program.

Proof

The first part of the assertion follows by Theorem 4(2). Indeed, any algorithm

computing all stable models of t-programs needs nµnt steps to output the results of

the computation when run on the programs discussed in Theorem 4.

For the second part of the assertion, let us assume that there is α, 0 < α < µt, and

an algorithm A computing all stable models of t-programs such that A runs in time

O(f(m)αn), for some polynomial f. For programs discussed in Theorem 4, m = O(n).

Thus, it follows from part (1) that nµnt = O(f(n)αn), a contradiction. �

The lower bound given by Corollary 2 specializes to (approximately) Ω(n ×
1.44224n), Ω(n × 1.58489n), Ω(n × 1.6618n) and Ω(n × 1.71149n), for t = 2, 3, 4, 5,

respectively.
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5 2-programs

Stronger results than those obtained in the previous section can be derived for more

restricted classes of programs. In this section we study the case of 2-programs and

prove the following two theorems.

Theorem 5

There is an algorithm to compute stable models of 2-programs that runs in time

O(m3n/3) = O(m× 1.44225n), where n is the number of atoms in P and m is the size

of P .

Theorem 6

There is a constant C such that every 2-program P with n atoms, has at most

C × 3n/3 (≈ C × 1.44225n) stable models.

By Proposition 1, to prove these theorems it suffices to limit attention to the

case of normal programs not containing tautologies and virtual constraints. We will

adopt this assumption and derive both theorems from general results presented in

section 3.

Let P be a normal 2-program. We say that an atom b ∈ At(P ) is a neighbor of an

atom a ∈ At(P ) if P contains a clause containing both a and b (one of them as the

head, the other one appearing positively or negatively in the body). By n(a) we will

denote the number of neighbors of an atom a. Since we assume that our programs

contain neither tautologies nor virtual constraints, no atom a is its own neighbor.

We will now describe the procedure complete. The complete family returned by a

call to complete(P ) depends on the program P . We list below several cases that cover

all normal 2-programs without tautologies and virtual constraints. In each of these

cases, we specify a complete collection to be returned by the procedure complete.

Case 1. There is an atom, say x, such that P contains a clause with the head x

and with the empty body (in other words, x is a fact of P ). We define A = {{x}}.
Clearly, every stable model of P contains x. Thus, A is complete.

Case 2. There is an atom, say x, that does not appear in the head of any clause in

P . We define A = {{not(x)}}. It is well known that x does not belong to any stable

model of P . Thus, A is complete for P .

Case 3. There are atoms x and y, x 
= y, such that x ← y and at least one of

x ← not(y) and y ← not(x) is in P . In this case, we set A = {{x}}. Let M be a

stable model of P . If y ∈M, then x ∈M (due to the fact that the clause x← y is in

P ). Otherwise, y /∈ M. Since M satisfies x ← not(y) or y ← not(x), it again follows

that x ∈M. Thus, A is complete.

Case 4. There are atoms x and y such that x ← y and y ← x are both in P . We

define

A = {{x, y}, {not(x), not(y)}}.
If M is a stable model of P then, clearly, x ∈ M if and only if y ∈ M. It follows

that either {x, y} ⊆ M or {x, y} ∩M = �. Thus, A is complete for P . Moreover,
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since x 
= y (P does not contain clauses of the form w ← w), each set in A has at

least two elements.

Case 5. None of the Cases 1-4 holds and there is an atom, say x, with exactly one

neighbor, y. Since P does not contain clauses of the form w ← w and w ← not(w),

we have x 
= y. Moreover, x must be the head of at least one clause (since we assume

here that Case 2 does not hold).

Subcase 5a. P contains the clause x← y. We define

A = {{x, y}, {not(x), not(y)}}.

Let M be a stable model of P . If y ∈M then, clearly, x ∈M. Since we assume that

Case 3 does not hold, the clause x ← y is the only clause in P with x as the head.

Thus, if y /∈M, then we also have that x /∈M. Hence, A is complete.

Subcase 5b. P does not contain the clause x← y. We define

A = {{x, not(y)}, {not(x), y}}.

Let M be a stable model of P . Since x is the head of at least one clause in P , it

follows that the clause x ← not(y) belongs to P . Thus, if y /∈ M then x ∈ M. If

y ∈ M then, since x ← not(y) is the only clause in P with x as the head, x /∈ M.

Hence, A is complete.

Case 6. None of the Cases 1-5 holds. Let w ∈ At(P ) be an atom. By x1, . . . , xp we

denote all atoms x in P such that w ← not(x) or x ← not(w) is a clause in P .

Similarly, by y1, . . . , yq we denote all atoms y in P such that y ← w is a clause of P .

Finally, by z1, . . . , zr we denote all atoms z of P such that w ← z is a clause of P . By

our earlier discussion it follows that the sets {x1, . . . , xp}, {y1, . . . , yq} and {z1, . . . , zr},
are pairwise disjoint and cover all neighbors of w. That is, the number of neighbors

of w is given by p+ q+ r. Since we exclude Case 5 here, p+ q+ r � 2. Further, since

w is the head of at least one edge (Case 2 does not hold), it follows that p+ r � 1.

Subcase 6a. For some atom w, q � 1 or p+ q+ r � 3. Then, we define

A = {{w, y1, . . . , yq}, {not(w), x1, . . . , xp, not(z1), . . . , not(zr)}}.

It is easy to see that A is complete for P . Moreover, if q � 1 then, since p+ r � 1,

each of the two sets in A has at least two elements. If p+ q+ r � 3, then either

each set in A has at least two elements, or one of them has one element and the

other one at least four elements.

Subcase 6b. Every atom w has exactly two neighbors, and does not appear in the

body of any Horn clause of P . It follows that all clauses in P are purely negative.

Let w be an arbitrary atom in P . Let u and v be the two neighbors of w. The atoms

u and v also have two neighbors each, one of them being w. Let u′ and v′ be the

neighbors of u and v, respectively, that are different from w. We define

A = {{not(w), u, v}, {not(u), w, u′}, {not(v), w, v′}}.

Let M be a stable model of P . Let us assume that w /∈ M. Since w and u are

neighbors, there is a clause in P built of w and u. This clause is purely negative and
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it is satisfied by M. It follows that u ∈ M. A similar argument shows that v ∈ M,

as well. If w ∈ M then, since M is a stable model of P , there is a 2-clause C in

P with the head w and with the body satisfied by M. Since P consists of purely

negative clauses, and since u and v are the only neighbors of w, C = w ← not(u) or

C = w ← not(v). Let us assume the former. It is clear that u /∈ M (since M satisfies

the body of C). Let us recall that u′ is a neighbor of u. Consequently, u and u′ form

a purely negative clause of P . This clause is satisfied by M. Thus, u′ ∈ M and M

is consistent with {not(u), w, u′}. In the other case, when C = w ← not(v), a similar

argument shows that M is consistent with {not(v), w, v′}. Thus, every stable model

of P is consistent with one of the three sets in A. In other words, A is complete.

Clearly, given a normal 2-program P , deciding which of the cases described above

holds for P can be implemented to run in linear time. Once that is done, the output

collection can be constructed and returned in linear time, too.

This specification of the procedure complete yields a particular algorithm to

compute stable models of normal 2-programs without tautologies and virtual

constraints. To estimate its performance and obtain the bound on the number

of stable models, we define

cn =

{
K if 0 � n < 4

max{cn− 1, 2cn− 2, cn− 1 + cn− 4, 3cn− 3} otherwise,

where K is the maximum possible value of s(P , L), when P is a normal finite

propositional logic program, L ⊆ Lit(P ) and |At(P )| − |L| � 3. It is easy to see that

K is a constant that depends neither on P nor on L. We will prove that s(P , L) � cn,

where n = |At(P )| − |L|. If n � 3, then the assertion follows by the definition of K .

So, let us assume that n � 4. If L is not consistent or [P ]L = �, s(P , L) = 1 � cn.

Otherwise,

s(P , L) =
∑
A∈A

s(P , L ∪ A) � max{cn− 1, 2cn− 2, cn− 1 + cn− 4, 3cn− 3} = cn.

The inequality follows by the induction hypothesis, the properties of the complete

families returned by complete (the cardinalities of sets forming these complete

families) and the monotonicity of cn.

Using well-known properties of linear recurrence relations, it is easy to see that

cn = O(3n/3) = O(1.44225n). Thus, Theorems 5 and 6 follow.

As far as bounds on the number of stable models of a 2-program are concerned,

a stronger (exact) result can be derived. Let P be a 2-program that is normal, purely

negative and contains no facts. Let G(P ) be a graph such that At(P ) is the vertex set

of G(P ) and a and b are connected with an edge if they appear in the same clause

of P (if they are neighbors, in the terminology we used earlier). We recall that a

subset X of the vertex set of a graph G is independent if no two vertices of X are

connected in G with an edge. We have the following simple property.

Proposition 4

Let P be a normal purely-negative 2-program not containing facts. If M is a stable

model of P then At(P ) \M is a maximal independent set of G(P ).
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The problem of finding the maximum number of independent sets in a graph was

investigated in Moon & Moser (1965). For n � 1, let us define

gn =




3n/3 if n = 0 (mod 3)

4× 3(n− 4)/3 if n = 1 (mod 3), and n > 1

2× 3(n− 2)/3 if n = 2 (mod 3)

1 if n = 1

The following result is proved in Moon & Moser (1965).

Theorem 7

Let G be a graph with n vertices. Then G has no more than gn maximal independent

sets.

Proposition 4 and Theorem 7 imply the following corollary concerning the number

of stable models in 2-programs.

Corollary 3

Let P be a 2-program with n atoms. Then P has no more than gn stable models.

Proof

By Proposition 1, we may assume that P is a normal program not containing rules

of the form x ← x and x ← not(x). By Proposition 2 we may assume that P does

not contain facts. Lastly, we may assume that P contains no Horn clauses (Horn

clauses can be eliminated in the process of unfolding without introducing new atoms

and without changing the number of stable models (Bonatti & Eiter, 1996)). Due

to these assumptions, Proposition 4 applies. Thus, P has no more stable models as

there are maximal independent sets in the graph G(P ). By Theorem 7, this number

is at most gn. �

The bound of Corollary 3 cannot be improved as there are logic programs that

achieve it. Let P (p1, . . . , pk), where for every i, pi � 2, be a disjoint union of programs

P (p1, 1), . . . , P (pk, 1) (we discussed these programs in section 2). Each program P (pi, 1)

has pi stable models. Thus, the number of stable models of P (p1, . . . , pk) is p1p2 . . . pk .

Let P be a logic program with n � 2 atoms and of the form P (3, . . . , 3), P (2, 3, . . . , 3)

or P (4, 3, . . . , 3), depending on n(mod 3). It is easy to see that P has gn stable models.

It is also easy to see that our algorithm for computing all stable models of

2-programs is optimal. Indeed, Corollary 2 (for t = 2) implies the following result.

Corollary 4

Let 0 < α < 31/3 ≈ 1.44225. There is no algorithm for computing all stable models

of 2-programs with worst-case performance bounded by O(f(m)αn), where f is a

polynomial and m is the size of the input program.

Narrowing the class of programs leads to still better bounds and faster algorithms.

We discuss one specific subclass of the class of 2-programs here. Namely, we consider

normal purely negative 2-programs with no dual clauses (two clauses are called dual

if they are of the form a ← not(b) and b ← not(a)). We denote the class of these

programs by Pn2.

We obtain the following two theorems for this class.
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Theorem 8

There is an algorithm to compute stable models of 2-programs in the class Pn2 that

runs in time O(m× 1.23651n), where n is the number of atoms and m is the size of

an input program.

Theorem 9

There is a constant C such that every 2-program P ∈ Pn2 has at most C × 1.23651n

stable models.

As before, when discussing algorithms to compute stable models of programs in

this class, we restrict our attention even further by disallowing virtual constraints

(in this case, clauses of the form a ← not(a)). By Proposition 1, this additional

assumption does not affect the generality of our results.

To discuss this specific case, we need more notation. We say that an atom a ∈ At(P )

is an in-neighbor of an atom b ∈ At(P ) if P contains the clause b← not(a). In such

case we also say that b is an out-neighbor of a. By n−(a) and n+(a) we denote

the number of in-neighbors and out-neighbors of a, respectively. Thus, we have

n(a) = n−(a) + n+(a) (we recall that n(a) denotes the number of neighbors of a in

P ). We also define

N(a) = {not(a), b1, . . . , bk},
where bi, 1 � i � k, are all the neighbors of a. Clearly, if M is a stable model of

P and a /∈ M then M is consistent with N(a). Indeed, since P contains either the

clause a← not(bi) or bi ← not(a), and since M is a model of P , bi ∈M.

Let a ∈ At(P ) and let ci, 1 � i � p, be the in-neighbors of a enumerated so that

n(c1) � . . . � n(cp). It is easy to see that the following collections are complete:

A1(a) = {N(a), {a}}

and

A2(a) = {N(a), N(c1), N(c2) ∪ {c1}, . . . , N(cp) ∪ {c1, . . . , cp− 1}}.
To specify the procedure complete, we proceed along the same lines as before.

That is, we describe several cases that together cover all programs in the class of

interest and in each of them we specify a complete collection of sets to be returned

by the procedure complete. For each of these collections we will also specify its

signature. Let A = {A1, . . . , Ak} be a complete collection and let us assume that for

every i, 1 � i � k− 1, |Ai| � |Ai+ 1|. We call the sequence of cardinalities of sets Ai,

(|A1|, . . . , |Ak|), the signature of A. We denote it by sig(A). We say that a signature

(a1, . . . , ak) is bounded by a sequence (b1, . . . , bk) if ai � bi, for every i = 1, . . . k.

Case 1 and Case 2 are as in the general case considered above. In each case, the

complete family A returned by the procedure complete consists of exactly one set

that contains exactly one element. Thus, sig(A) = (1).

Case 3. There is an atom, say x, with at least seven neighbors, say y1, . . . , yk , where

k � 7. The procedure complete returns in this case the collectionA =A1(x). Clearly,

sig(A) = (8, 1).
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From now on we assume that Cases 1–3 do not hold. That is, we adopt the

following assumption:

(A1) For every atom x ∈ At(P ), n(x) � 6 and 1 � n−(x).

Case 4. There is an atom x such that n(x) � 3 and n−(x) = 1. Let us assume that y

is the only in-neighbor of x. By (A1), n−(y) � 1 and, since x is an out-neighbor of

y, n+(y) � 1. Thus, n(y) � 2. The procedure complete returns

A = {N(x), N(y)}.

Let M be a stable model of P . If x /∈ M then M is consistent with N(x). If x ∈ M
then y /∈ M (due to the fact that x ← not(y) is the only rule in P with the head

x). Thus, M is consistent with N(y). It follows that A is complete and sig(A) is

bounded by (4, 3).

Case 5. There is an atom x such that n(x) = 2 and n+(x) � 1. By (A1), it follows that

n−(x) = n+(x) = 1. Let us define x0 = x. Let us assume that the atoms x0, . . . , xk ,

0 � k, have been defined and that for every i, 0 � i � k− 1, n(xi) = 2 and xi+ 1 is the

(only) in-neighbor of xi. If n(xk) = 2 and xk 
= x0, we define xk+ 1 to be the unique

in-neighbor of xk . If n(xk) � 3, or n(xk) = 2 and xk = x0, the procedure terminates.

Let us assume that the procedure terminated after xk had been defined. We have

the following possibilities.

Subcase 5a. n(xk) � 3. We define

A = {N(xk), N(xk− 1)}.

Obviously A is complete. Since n(xk) � 3 and n(xk− 1) � 2, the signature of A is

bounded by (4, 3).

Subcase 5b. xk = x0. In this case, the atoms x0, . . . , xk− 1 form a cycle component of

P . That is, P = Q ∪ {xi ← not(xi+ 1): i = 0, 1, . . . , k− 1}, where no rule in Q contains

any atom xi.

If k is odd, we define

A = {At(P )}.
In this case, P has no stable models (programs forming “odd cycles” do not have

stable models and atoms x0, . . . , xk− 1 do not appear in any other clauses of P but

those that form the cycle). Thus, A is trivially complete. Clearly, sig(A) = (|At(P )|)
and it is bounded by (1).

If k is even, we define

A = {{x0, x2, . . . , xk− 2, not(x1), not(x3), . . . , not(xk− 1)},
{not(x0), not(x2), . . . , not(xk− 2), x1, x3, . . . , xk− 1}}.

If M is a stable model of P then M is consistent with one of the sets in A. Since P

has no dual clauses, each set inA has at least 4 elements. That is, sig(A) is bounded

by (4, 4).

Case 6. There is an atom, say x, with in-neighbors y1, . . . , yk and out-neighbors

z1, . . . , zm, and such that k < m. Moreover, we assume that Cases 1–5 do not hold.
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If k = 1 then m � 2. This possibility is excluded as it is covered by Case 4. Since

k+m � 6, k+m = 5 or 6 and k = 2. Let the two in-neighbors of x be y1 and y2.

Without loss of generality we will assume that n(y1) � n(y2). By (A1), n(y2) � 2.

Since n+(y2) � 1 (x is an out-neighbor of y2) and since Case 5 is excluded, it follows

that n(y2) � 3.

Subcase 6a. n(y1) � 4, n(y2) � 4. In this case, the procedure complete returns the

family A2(x). It is easy to see that its signature is bounded by (6, 5, 5).

Subcase 6b. n(y1) � 4, n(y2) = 3 and y1 /∈ N(y2). The procedure again returnsA2(x).

Since y1 /∈ N(y2), the signature of A2(x) is bounded by (6, 5, 5).

Subcase 6c. n(y1) � 4, n(y2) = 3 and y1 ∈ N(y2). Let z denote the third neighbor

of y2 (the other two are x and y1). Since Case 4 is excluded and since x is an

out-neighbor of y2, y1 and z are in-neighbors of y2. We define

A = {N(x) ∪ {not(z)}, N(y1), N(y2)}.

Let M be a stable model of P . If it is consistent with neither N(y1) nor N(y2), then

it is consistent with N(x). In this case, y1, y2 ∈ M. Since y2 ∈ M, there is a rule

in P with the head y2 and with the body satisfied by M. Since y2 has exactly two

in-neighbors, y1 and z and since y1 ∈M, it follows that z /∈M. Thus,A is complete.

Moreover, it is easy to check that not(z) 
∈ N(x) so the signature of A is (7, 5, 4).

Subcase 6d. n(x) = 6 and n(y1) = n(y2) = 3. The procedure complete returns

A =A2(x). Since y1 and y2 are not neighbors (otherwise, there would be an atom

in P with 3 neighbors, exactly one of which is an in-neighbor), its signature is,

clearly, (7, 5, 4).

Let us assume that none of cases 1–6 applies. We denote by X the set of all

those atoms x in P for which n−(x) < n+(x). It follows from the considerations in

Case 6 that every x ∈ X has exactly five neighbors. Moreover, exactly two of these

neighbors, say yx1 and yx2 , are in-neighbors and n(yx1 ) = n(yx2 ) = 3 (this is the only

possibility not covered by Case 6). We denote by Y the set of all atoms yxi , i = 1, 2,

where x ∈ X. Clearly, X ∩ Y = � and 2|X| = |Y | (indeed, let us note that since

Case 3 is excluded, yx1

i 
= yx2

j , for 1 � i, j � 2 and x1 
= x2). Finally, let us define

Z = At(P ) \ (X ∪ Y ). We have the following identities:∑
a∈At(P )

n−(a) =
∑

a∈At(P )

n+(a),

∑
z∈Z

n−(z) �
∑
z∈Z

n+(z),

∑
a∈At(P )

n−(a) = 6|X|+
∑
z∈Z

n−(z),

∑
a∈At(P )

n+(a) = 5|X|+
∑
z∈Z

n+(z).

These identities imply that |X| = 0. In other words, for every atom a, n+(a) � n−(a).

Since
∑

a∈At(P ) n
−(a) =

∑
a∈At(P ) n

+(a), it follows that for every atom a, n+(a) =

n−(a).
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Since the case n+(a) = n−(a) = 1 is excluded (Case 5), it follows that for every

atom a in P , n(a) = 4 or 6. For i = 4, 6, we define Xi = {x ∈ At(P ): n(x) = i}. Let p

be the number of clauses in P built only of atoms from X4, let q be the number of

clauses of the form a ← not(b), where a ∈ X6 and b ∈ X4, and finally, let r be the

number of clauses in P of the form a← not(b), where a ∈ X4 and b ∈ X6. Then,

p+ r =
∑
a∈X4

n−(a) = 2|X4| =
∑
a∈X4

n+(a) = p+ q.

Thus, q = r.

Case 7. r > 0. There is an atom x with four neighbors and such that one of its

in-neighbors has six neighbors. The procedure returns A2(x). Since the other in-

neighbor of x (we observe that n−(x) = 2) has at least four neighbors, the signature

of A2(x) is bounded by (7, 5, 5).

Case 8. r = 0 and there is an atom, say x, with six neighbors. Let the three in-

neighbors of x be y1, y2 and y3. Since r = 0, q = 0. Thus, for every rule a← not(b)

in P either a, b ∈ X4 or a, b ∈ X6. Consequently, each yi, i = 1, 2, 3, has 6 neighbors.

The procedure returns A2(x). It is easy to see that sig(A2(x)) = (7, 7, 7, 7).

Case 9. r = 0 and there is no atom in P with six neighbors. It follows that every

atom in P has four neighbors. Moreover, exactly two of them are in-neighbors and

two are out-neighbors. Let y1 and y2 be the two in-neighbors of x.

Subcase 9a. y1 and y2 are not neighbors (do not appear in the same clause). The

procedure returns A2(x). Clearly, its signature is (6, 5, 5).

Subcase 9b. y1 and y2 are neighbors. Without loss of generality we may assume

that y1 ← not(y2) is a clause of P . Let z be the other in-neighbor of y1. If z is an

out-neighbor of x, the procedure returns

A = {{x}}.

Let M be a stable model of P . If x /∈ M then y2 ∈ M, y1 ∈ M and z ∈ M. Since

both in-neighbors of y1 are in M, y1 /∈ M, a contradiction. Thus, x ∈ M. It follows

that every stable model of P is consistent with {x}.
Otherwise, we define

A = {N(x) ∪ {not(z)}, N(y1), N(y2)}.

Let M be a stable model of P . If y1 or y2 are not in M, M is consistent with N(y1)

or N(y2), respectively. Otherwise, y1, y2 ∈ M. Consequently, x /∈ M. Further z /∈ M
(the other in-neighbor of y1, y2, is in M). Thus, M is consistent with N(x)∪{not(z)}.
It follows that A is complete and that its signature is (6, 5, 5).

It is clear that the procedure complete is correct. Indeed, the cases cover all

possible normal purely negative 2-programs without virtual constraints. Taking into

account other comments made in each case, we see that the following property of

the procedures complete is true. Let P be a 2-program from Pn2 and letA be a
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complete collection produced by the call complete(P ). Then |A| � 4 and

1. if A = {A}, then the signature of A is (1);

2. if |A| = 2, then the signature of A is bounded by (8, 1) or (4, 3);

3. if |A| = 3, then the signature of A is bounded by (6, 5, 5) or (7, 5, 4);

4. if |A| = 4, then the signature of A is (7, 7, 7, 7).

Let us define

cn =

{
K if 0 � n < 8

max{cin : i = 1, . . . , 6} otherwise,

where K is the maximum possible value of s(P , L) for a program P in Pn2 and a

set of literals L ⊆ Lit(P ) such that |At(P )| − |L| � 8, and where cin are defined as

follows (for n � 8):

c1
n = c1

n− 1,

c2
n = c2

n− 1 + c2
n− 8,

c3
n = c3

n− 3 + c3
n− 4,

c4
n = 2c4

n− 5 + c4
n− 6,

c5
n = c5

n− 4 + c5
n− 5 + c5

n− 7,

c6
n = 4c6

n− 7.

It is easy to see that K is a constant that does not depend upon P nor L.

Reasoning as before, one can show that

s(P , L) � cn,

where n = |At(P )| − |L|.
Using the properties of linear recurrence relations discussed in the appendix, it

is easy to see that cn = O(αn), where α is the only root in the interval [1, 2] of the

equation x7 = x3 + x2 + 1. Since α � 1.23651, cn = O(1.23651n).

Theorem 9 gives an upper bound on the number of stable models of a program

in the class Pn2. To establish a lower bound, we reason as before but use a different

collection of programs. namely, we define S6 to be a program over the set of atoms

a0, . . . , a5 and containing the rules (the arithmetic of indices is performed modulo

6): ai+ 1 ← not(ai) and ai+ 2 ← not(ai), i = 0, 1, 2, 3, 4, 5. The program S6 has three

stable models: {a0, a1, a3, a4}, {a1, a2, a4, a5} and {a2, a3, a5, a0}.
Let P be the program consisting of k copies of S6, with mutually disjoint sets of

atoms. Clearly, P has 3k stable models, each of them with 4k elements. Thus, there

is a constant D such that for every n � 1 there is a program P with n atoms and

with the total length of all its stable models at least Dn(31/6)n. Reasoning as in the

proof of Corollary 4, we obtain the following result.

Corollary 5

Let 0 < α < 31/6 ≈ 1.20094. There is no algorithm for computing all stable models

of 2-programs with worst-case performance bounded by O(f(m)αn), where f is a

polynomial and m is the size of the input program.
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6 3-programs

In this section we present our results for the class of 3-programs. Using similar

techniques as those presented in the previous section, we prove the following two

theorems.

Theorem 10

There is an algorithm to compute stable models of 3-programs that runs in time

O(m× 1.70711n), where m is the size of the input.

Theorem 11

There is a constant C such that every 3-program P has at most C × 1.70711n stable

models.

To construct a desired algorithm, we design a particular implementation of the

procedure complete. Due to Proposition 1, we will restrict our attention to normal

3-programs without tautologies (that is, rules of the form x ← x, x ← x, y, x ←
x, not(y), and x ← y, not(y)) and virtual constraints. To describe the procedure

complete, we will consider several cases covering the class of all such 3-programs.

In each of these cases, we construct a complete collection A (one of 18 collections

{A1,A2 . . .A18}).
With each collection A we associate a sequence (cAn )n=1,2,.... To define it, we set

p = max{|A|:A ∈ A} and k(t) = |{A ∈ A : |A| = t}|, for t = 1, 2, . . . , p. We denote

by K the maximum possible value of s(P , L), when P is a normal 3-program without

tautologies and virtual constraints, L ⊆ Lit(P ) and |At(P )|−|L| � 12. It is easy to

see that K is a constant that does not depend on P nor L. We define

cAn =

{
K if 0 � n � 12∑p

t=1 k(t)c
A
n− t otherwise.

Finally, we define cn = max{cAn :A ∈ {A1,A2 . . .A18}}. We will show that

s(P , L) � cn,

where n = |At(P )| − |L|.
We proceed by induction on n. If n � 12, then the assertion follows by the

definition of K . So, let us assume that n � 13. Then, by the induction hypothesis,

s(P , L) =
∑
A∈A

s(P , L ∪ A) � max

{
p∑
t=1

k(t)cAn− t :A ∈ {A1,A2 . . .A18}
}

= cn.

Using properties of linear recurrence relations discussed in the appendix, one can

show that cn = O(1.70711n).

Thus, to complete the proofs of Theorems 10 and 11, we need to describe complete.

According to our earlier statements, we restrict our discussion to normal 3-programs

without tautologies and virtual constraints. To describe complete families of sets

we introduce the following notation. Let A and L be sets of literals based on two

disjoint sets of atoms (A0 ∩ L0 = �). We define

AL = {A ∪ B:B ⊆ L},
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where B = B ∪ {not(β): β ∈ L \ B} (we recall again that not(β) denotes the literal

that is dual to β). For example, if A = {not(a)} and L = {b, not(c)}, then

AL = {{not(a), not(b), c}, {not(a), not(b), not(c)},
{not(a), b, c}, {not(a), b, not(c)}}.

When L = {β1, . . . , βk}, to simplify this notation we write Aβ1 ,...,βk instead of A{β1 ,...,βk}.

When describing the procedure complete and arguing its correctness, we will take

advantage of the following simple observation (its proof is evident and we omit it).

Proposition 5

Let A be a complete collection for P , let A ∈ A and let B be a set of literals. If

for every stable model M of P that is consistent with A, M is also consistent with

B then the collection (A\ {A}) ∪ {A ∪ B} is also complete for P .

Speaking informally, under the assumptions of this proposition, we can replace in

A its element A with A ∪ B and the resulting family is also complete for P .

Throughout this argument, we often construct a complete collection for a program

P in two steps. We will start with some simple complete collection A. Then, we

close each element A of A by expanding it with some additional literals that are

consistent with all stable models consistent with A (the validity of this step is ensured

by Proposition 5). We refer to the resulting complete collection as a closure of A
(A may have several closures as we do not require that its elements are ‘maximally’

closed).

Case 1. There is an atom x in P which is not the head of any rule. Clearly, no stable

model of P contains x. Thus, the family

A1 = {{not(x)}}.

is complete for P . It is also easy to see that

cA1
n = cA1

n− 1,

for n � 13.

Case 2. There is a rule in P of the form x←. We define

A2 = {{x}}.

Clearly every stable model of P contains x so A2 is complete for P . Moreover, we

have

cA2
n = cA2

n− 1,

for n � 13.

Case 3. There is a rule in P of the form x← β, where β = y or β = not(y), for some

atom y 
= x. Clearly, the family A = {{x}, {not(x)}} is complete for P . We observe

that every stable model of P consistent with not(x) is also consistent with not(β) (as

it is a model of the clause x← β). Hence, by Proposition 5, the family

A3 = {{x}, {not(x), not(β)}}
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(the closure of A with respect to β) is complete for P . Since x and y are different

(P contains neither tautologies nor virtual constraints), we have

cA3
n = cA3

n− 1 + cA3

n− 2,

for n � 13.

We can assume from now on that every atom is the head of some rule in P , all

rules in P have exactly two literals in the body, and the atoms occurring in each

rule are pairwise different.

Case 4. There is a pair of rules of the form

x← y, γ,

x← not(y), δ,

where y is an atom, and γ and δ are literals. Let u and v be the atoms occurring in

γ and δ, respectively. Since P contains neither tautologies nor virtual constraints, it

follows that {u, v} ∩ {x, y} = � and x 
= y. Let us observe that every stable model

M of P that is consistent with not(x) and y is also consistent with not(γ) (it follows

from the fact that M is a model of the rule x← y, γ). Similarly, every stable model

M consistent with not(x) and not(y) is consistent with not(δ). Clearly, the family

A = {{x}} ∪ {not(x)}y = {{x}, {not(x), y}, {not(x), not(y)}}

is complete for P . Closing A with respect to literals γ and δ yields the family

A4 = {{x}, {not(x), y, not(γ)}, {not(x), not(y), not(δ)}}.

By Proposition 5, A4 is complete for P . Since atoms appearing in literals forming

each set in A are pairwise distinct, we also have

cA4
n = cA4

n− 1 + 2cA4

n− 3,

for n � 13.

For an atom x ∈ At(P ), let us denote by Γ(x) an undirected graph whose vertices

are literals occurring in the bodies of rules with the head x. A pair of literals {β, γ}
is an edge in Γ(x) if there is a rule with the head x and the body containing literals

β and γ. We will assume no graph Γ(x) contains as vertices a pair of dual literals,

as that possibility has been already covered by Case 4.

Next, we consider a number of cases that reflect different possible structures of

the graphs Γ(x). We use the following graph-theoretic notation. By Pk and Ck we

denote a path and a cycle with k vertices, respectively. By the disjoint union of two

graphs G and H , denoted G
.
∪ H , we mean the graph with two disjoint components

that are isomorphic to G and H , respectively. We denote by kG the disjoint union

of k copies of a graph G.

Case 5. There is an atom x such that Γ(x) contains a vertex of degree at least 3. In

this case there are three rules with the head x which contain a common literal, say

β, in the body. Let γ, δ, and ε be the remaining three literals in the bodies of these
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three rules. Let M be a stable model of P . If M is consistent with not(x) and β then,

since M satisfies all clauses in P , M is consistent with not(γ), not(δ), and not(ε).

The family A = {{x}, {not(x)}β} is complete3. Hence, the family

A5 = {{x}, {not(x), not(β)}, {not(x), β, not(γ), not(δ), not(ε)}}

(which is the closure of A with respect to γ, δ and ε) is complete for P . Moreover,

all literals in each set are pairwise distinct and are not duals of each other. Thus,

cA5
n = cA5

n− 1 + cA5

n− 2 + cA5

n− 5,

for n � 13.

Case 6. There is an atom x such that Γ(x) contains one of the graphs: P3

.
∪ 2P2,

P4

.
∪ P2, C3

.
∪ P2. Let F be a subgraph of Γ(x) isomorphic to one of the graphs

listed above. Let us denote by β1 any vertex of degree 2 in F and by β2 any vertex

in P2. The graph Γ(x) contains a vertex different from β1 and β2, and adjacent to a

vertex different from β1 and β2. Let us denote one such vertex by β3.

The literals β2 and β3 have two different neighbors in F , say γ2, γ3, such that

γ2, γ3 
∈ {β1, β2, β3}. By the definition of β2 and β3, γ2 
= γ3. It follows that P contains

rules x← βi, γi, i = 2, 3.

We observe that the family

A = {{x}, {not(x), β1}β2
, {not(x), not(β1)}β2 ,β3

}

is complete for P .

We also observe that every stable model M of P consistent with literals not(x)

and βi (where i = 2, 3) is also consistent with not(γi) (as M is a model of x← βi, γi).

Let us denote by γ1 and δ1 the neighbors of β1 in F . By the definition of β2, we

have γ1, δ1 
∈ {β1, β2} and γ2 /∈ {γ1, δ1}.
Let M be a stable model consistent with not(x) and β1. Since P contains the rules

x← β1, γ1 and x← β1, δ1, M is consistent with not(γ1) and not(δ1).

Let A6 be the closure of A with respect to literals δ1 and γi, 1, 2, 3. By

Proposition 5, A6 is complete for P . Moreover, one can easily verify that

cA6
n = cA6

n− 1 + cA6

n− 4 + 3cA6

n− 5 + 2cA6

n− 6,

for n � 13.

Case 7. There is an atom x such that Γ(x) contains one of the graphs: 2P3, P5, C4, C5.

Let F be a subgraph of Γ(x) isomorphic to one of the graphs listed above. We

will denote by β1 and β2 some two nonadjacent vertices of degree 2 in F .

Clearly, the family

A = {{x}, {not(x), β1}, {not(x), not(β1)}β2
}

is complete for P . Let γi and δi be the neighbors of βi, i = 1, 2 in F . That is, P

contains the rules x← βi, γi and x← βi, δi, i = 1, 2. Thus, if a stable model M of P is

3 Throughout the paper we will be listing basic parts of A, rather than formally define it as the union
of these parts. Here, for instance, we write {{x}, {not(x)}β} rather than {{x}} ∪ {{not(x)}β}.
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consistent with not(x) and βi, i = 1, 2, it is also consistent with not(γi) and not(δi). Let

A7 be the closure of A with respect to literals γi and δi, i = 1, 2. By Proposition 5,

A7 is complete for P . Moreover, since β1, β2 
∈ {γ1, γ2, δ1, δ2} and γi 
= δi, i = 1, 2, it

follows that

cA7
n = cA7

n− 1 + cA7

n− 3 + cA7

n− 4 + cA7

n− 5,

for n � 13.

Case 8. There is an atom x such that Γ(x) is isomorphic to one of the graphs:

P3

.
∪ P2, P4, C3. Let β1 be a vertex of degree 2 in Γ(x) and let β2 be any vertex

which has a neighbor in Γ(x) different from β1. Further, let γ2 be a neighbor of β2

in Γ(x) different from β1.

Let M be a stable model consistent with x and not(β1). Since x ∈M and the rule

x← β2, γ2 is the only rule with head x in P that does not contain β1 in the body, it

follows that M is consistent with β2, and γ2.

Next, we consider the case of a stable model M consistent with not(x) and β1. In

this case, since M is a model of the two rules with the head x and β1 in the body,

say x← β1, γ1 and x← β1, δ1, M is also consistent with not(γ1), not(δ1).

Finally, if M is a stable model consistent with not(x) and β2 then, since M satisfies

the rule x← β2, γ2, it follows that M is also consistent with not(γ2).

Now, we observe that the family

A = {{x}β1
, {not(x), β1}, {not(x), not(β1)}β2

}

is complete for P . By closing its elements by means of observations listed earlier, we

get a family A8, which is also complete for P . Moreover, one can show that

cA8
n = cA8

n− 2 + cA8

n− 3 + 3cA8

n− 4,

for n � 13.

Case 9. There is an atom x such that Γ(x) is isomorphic to the graph 2P2. We denote

by β1 and β2 any two nonadjacent vertices in Γ(x). Let γi, i = 1, 2, be the (unique)

neighbor of βi in Γ(x).

Let M be a stable model of P consistent with x and not(β1). Since x ← β2, γ2 is

the only rule in P with head x that does not contain β1, and since x ∈M, it follows

that M is consistent with β2 and γ2.

Similarly, if M is a stable model of P consistent with x and not(β2), then it is

consistent with β1 and γ1.

Finally, every stable model consistent with not(x) and βi, i = 1, 2, is consistent

with not(γi).

Clearly, the familyA = {{x, not(β1)}, {x, β1}β2
, {not(x)}β1 ,β2

} is complete for P . Let

A9 be the closure of A by means of the three observations discussed in this case.

By Proposition 5, A9 is complete for P . Moreover, one can verify that

cA9
n = 2cA9

n− 3 + 4cA9

n− 4 + cA9

n− 5,

for n � 13.

Case 10. There is an atom x such that Γ(x) is isomorphic to the graph P3. Let β

be the vertex of degree 2 in Γ(x). Every stable model consistent with x is consistent
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with β too because otherwise every rule with the head x is blocked. Thus, the family

A10 = {{not(x)}, {x, β}} is complete for P . Moreover,

cA10
n = cA10

n− 1 + cA10

n− 2,

for n � 13.

Case 11. There is an atom x such that Γ(x) is isomorphic to the graph P2. Let

x ← β, γ be the only rule with the head x. Every stable model consistent with x

must be consistent with β and γ, too (because x ← β, γ is the only rule that can

justify the membership of x in M). Hence, the family A12 = {{not(x)}, {x, β, γ}} is

complete for P . Moreover,

cA11
n = cA11

n− 1 + cA11

n− 3,

for n � 13.

It is a routine task to check that if a graph has no vertices of degree larger than 2,

does not contain any of the graphs P3

.
∪ 2P2, P4

.
∪ P2, C3

.
∪ P2, 2P3, P5, C4, C5 and is

not isomorphic to any of the graphs P3

.
∪ P2, P4, C3, 2P2, P3, P2 then it is a matching

of size at least 3.

Therefore, we assume from now on that for all atoms x in P , the graphs Γ(x) are

matchings of size at least 3.

Case 12. For all atoms x in P , the graphs Γ(x) are matchings of size at least 3 and

P contains a rule with a positive occurrence of an atom in the body. Let us assume

that P contains a rule b ← x, δ, where x 
= b is an atom. Let b ← γ, ε be another

rule in P with the head b. Clearly, the atoms appearing in the literals x, γ, δ, ε are

pairwise different (all these literals are vertices of the graph Γ(b) and, by Case 4, no

two vertices of Γ(b) are dual to each other). Let us denote by β1, β2, β3 any three

literals in Γ(x) which are pairwise nonadjacent in Γ(x).

If a stable model M is consistent with not(b) and x then M is consistent with

not(δ) (since M is a model of the rule b ← x, δ). For a similar reason every stable

model consistent with not(b), and γ is consistent with not(ε).

Let γi, i = 1, 2, 3, be the neighbor of βi in Γ(x). It is easy to see that every stable

model consistent with not(x) and βi (i = 1, 2, 3) is consistent with not(γi) as M is a

model of the rule a← βi, γi.

Clearly, the family

A =
{
{x, b}, {x, not(b)}γ, {not(x)}β1 ,β2 ,β3

}
is complete for P . Let A12 be the result of closing elements of A by means of the

observations listed above. Then A12 is complete for P and one can show that

cA12
n = cA12

n− 2 + 2cA12

n− 4 + 4cA12

n− 5 + 3cA12

n− 6 + cA12

n− 7,

for n � 13.

Case 13. For every atom x in P , the graph Γ(x) is a matching of size at least 3,

P is a purely negative program, and there is a pair of rules in P with exactly two

common atoms. Let us denote by {x, y, u} and {x, y, v} the sets of atoms of some

two such rules. Since Γ(x) is a matching of size at least 3, P contains rules of the
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form x ← not(b1), not(c1), x ← not(b2), not(c2), and x ← not(b3), not(c3), such that

b1, b2, b3, c1, c2, c3 are pairwise different atoms.

Subcase 13a. For some i, 1 � i � 3, y, u, v 
∈ {bi, ci}. Without loss of generality,

we may assume that y, u, v 
∈ {b1, c1}. Clearly for some i = 2, 3, y 
∈ {bi, ci}. Again

without loss of generality, we assume that y 
∈ {b2, c2}.
It follows that every stable model consistent with not(x) and not(bi), i = 1, 2, is

also consistent with ci. Moreover, every stable model consistent with not(x) and

not(y) is consistent with u and v. Indeed, {x, y, u} and {x, y, v} are sets of atoms

of two rules in a purely negative program P . Thus, every stable model of P must

contain at least one atom from each of the rules. Using these observations, we now

close the family

A = {{x}, {not(x), y}b1 ,b2
, {not(x), not(y)}b1

}
(which, clearly, is complete for P ). In this way we obtain another family complete

for P , say A13. Since y, u, v 
∈ {b1, c1} and y 
∈ {b2, c2}, the literals in each of the sets

of A13 are pairwise different and so are their atoms. Thus,

cA13
n = cA13

n− 1 + cA13

n− 4 + 3cA13

n− 5 + 2cA13

n− 6,

for n � 13.

Subcase 13b. For each rule x← not(bi), not(ci), i = 1, 2, 3, we have {y, u, v}∩{bi, ci} 
=
�. Since the sets {b1, c1}, {b2, c2}, and {b3, c3} are pairwise disjoint, for some i = 1, 2, 3

(say, for i = 1), y ∈ {bi, ci}. Let us assume, without loss of generality, that y = c1.

Then b1 /∈ {u, v} (otherwise, for i = 2 or i = 3 we would have {y, u, v} ∩ {bi, ci} = �,

contrary to our assumption for this subcase).

Our program P contains two rules with the sets of atoms {x, y, u} and {x, y, v},
respectively. It also contains the rule x ← not(y), not(b1) (as y = c1). Since all these

rules are purely negative, every stable model of P contains at least one (unnegated)

atom from each of them. Thus, each stable model of P that is consistent with not(x)

and not(y) is also consistent with u, v, and b1. We apply this observation to the family

A = {{x}, {not(x)}y}, which is complete for P . Its closure, A14 is also complete for

P . Moreover, since y /∈ {u, v}, b1 /∈ {u, v}, and y = c1 
= b1, literals appearing in all

sets of A14 are pairwise distinct and so are their atoms. Thus,

cA14
n = cA14

n− 1 + cA14

n− 2 + cA14

n− 5,

for n � 13.

From now on we assume that there is no pair of rules in P with exactly two

common atoms. We also reiterate that at this point we are already assuming that P

is purely negative and that for every atom x, Γ(x) is a matching of size at least 3.

Case 14. There is an atom x in P such that Γ(x) is a matching of size at least 4. Let

{β1, γ1}, {β2, γ2}, {β3, γ3}, and {β4, γ4} be any pairwise different edges in Γ(x). Let M

be a stable model of P consistent with not(x) and βj (where j = 1, 2, 3, 4). Then,

since M is a model of the rule x← βj, γj , M is consistent with not(γj). We will make

use of this observation several times in the course of the proof to close collections

complete for P .
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Subcase 14a. There is a rule b1 ← not(b2), not(b3) in P such that the literals not(b1),

not(b2), and not(b3) are all vertices of Γ(x).

Since no two clauses in P have exactly two common atoms, the literals not(b1),

not(b2), not(b3) are nonadjacent in Γ(x). Therefore we can assume that βj = not(bj),

for j = 1, 2, 3.

Let is note that the family

A′ = {{x}, {not(x), not(β1)}β2 ,β3 ,β4
, {not(x), β1, not(β2)}β3 ,β4

,

{not(x), β1, β2, not(β3)}β4
, {not(x), β1, β2, β3}}

is complete for P . Let M be a stable model of P . Since M satisfies the rule

b1 ← not(b2), not(b3) and since βj = not(bj), for j = 1, 2, 3, it follows that M

is not consistent with all three literals β1, β2, β3. Thus, the family A = A′ \
{{not(x), β1, β2, β3}} is also complete for P .

Let A15 be the closure of A by means of the observation that we made earlier

that any stable model consistent with not(x) and the literal βi, i = 1, 2, 3, 4, is also

consistent with the corresponding literal not(γi). It is easy to verify that

cA15
n = cA15

n− 1 + cA15

n− 5 + 4cA15

n− 6 + 6cA15

n− 7 + 3cA15

n− 8.

Subcase 14b. There is a rule b1 ← not(b2), not(b3) in P such that exactly two of the

literals not(b1), not(b2), and not(b3) are vertices of Γ(x) and x 
∈ {b1, b2, b3}.
Since x 
∈ {b1, b2, b3} and no two clauses in P have exactly two common

atoms, the two literals of Γ(x) ∩ {not(b1), not(b2), not(b3)} are nonadjacent in Γ(x).

Therefore, we can assume without loss of generality that the two literals in

Γ(x) ∩ {not(b1), not(b2), not(b3)} are β1 and β2. Let us denote the third literal of

{not(b1), not(b2), not(b3)} by δ.

Since b1, b2, b3 are atoms of a purely negative rule, every stable model M of P

must contain at least one bi, i = 1, 2, 3. In other words, M must be consistent

with at least one of the literals not(β1), not(β2), not(δ). Moreover, as in subcase 14a,

stable models consistent with not(x) and βi, i = 1, 2, 3, 4, must be consistent with the

corresponding literal not(γi).

The family

A =
{
{x}, {not(x)}β1 ,β2 ,β3 ,β4

}
is complete for P . LetA16 be the closure ofA with respect to these two observations.

Clearly, A16 is complete for P and, moreover,

cA16
n = cA16

n− 1 + cA16

n− 5 + 4cA16

n− 6 + 5cA16

n− 7 + 3cA16

n− 8 + 2cA16

n− 9 + cA16

n− 10,

for n � 13.

Subcase 14c. None of the conditions defining the subcases 14a and 14b holds. Let

βj = not(bj), for j = 1, 2, 3, 4. Since we assume that conditions defining subcases

14a and 14b do not hold, it follows that if b1 ← β, γ is a rule in P then either

{β, γ} = {not(x), γ} or β, γ 
∈ Γ(x) ∪ {x}, as there are no rules in P with exactly two

common atoms. The graph Γ(b1) is a matching of size at least three. Thus, there

are two rules with the head b1, say b1 ← β5, γ5 and b1 ← β6, γ6, whose bodies are
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disjoint from Γ(x) and do not contain the atom x. It follows from our discussion

that the literals β1, β2, β3, β4, β5, β6, γ1, γ2, γ3, γ4, γ5, γ6 are pairwise different.

Clearly, the family

A =
{
{x}, {not(x), not(β1)}β2 ,β3 ,β4

, {not(x), β1}β2 ,β3 ,β4 ,β5 ,β6

}
is complete for P . We recall that every stable model consistent with not(x) and βi,

i = 1, 2, 3, 4, is consistent with not(γi). Similarly, every stable model consistent with

β1 = not(b1) and βi, i = 5, 6, is consistent with not(γi) (because it has to satisfy

the rule b1 ← βi, γi). Closing A by means of these two observations yields another

complete collection for P , say A17. One can verify that

cA17
n = cA17

n− 1 + cA17

n− 5 + 3cA17

n− 6 + 3cA17

n− 7 + 2cA17

n− 8 + 5cA17

n− 9 + 10cA17

n− 10

+ 10cA17

n− 11 + 5cA17

n− 12 + cA17

n− 13,

for n � 13.

Case 15. For every atom x in P (which is, we recall, purely negative), the graph Γ(x)

is a matching of size exactly three. Let x← β1, γ1, x← β2, γ2, and x← β3, γ3 be the

rules with the head x. Let βi = not(bi), i = 1, 2, 3, for some atoms b1, b2, b3 ∈ At(P ).

Since Case 13 is excluded and x← βi, γi is in P , a rule in P with the head bi contains

either both not(x) and γi in its body or none of them. Thus, for each i = 1, 2, 3, at

least two rules with the head bi have bodies containing neither not(x) nor γi. Let, for

i = 1, 2, 3, bi ← δi, εi and bi ← ϕi, ψi be these two rules.

Every stable model M of P that is consistent with x is consistent with at least

one of the literals β1, β2, β3 because at least one of the rules x ← β1, γ1, x ← β2, γ2,

and x← β3, γ3 has its body satisfied in M (provides a justification for x). Therefore,

the family A = {{not(x)}β1 ,β2 ,β3
, {x, β1}δ1 ,ϕ1

, {x, β2}δ2 ,ϕ2
, {x, β3}δ3 ,ϕ3

} is complete for P .

Every stable model consistent with not(x) and βi, i = 1, 2, 3, is consistent with

not(γi) (as it satisfies the rule x← βi, γi). Similarly, every stable model consistent with

βi = not(bi) and δi (respectively, ϕi), i = 1, 2, 3, is consistent with not(εi) (respectively,

not(ψi)). These observations allow us to close the collection A and obtain another

collection complete for P , say A18. Moreover,

cA18
n = cA18

n− 4 + 6cA18

n− 5 + 9cA18

n− 6 + 4cA18

n− 7,

for n � 13.

Cases 1–15 exhaust all possibilities for normal 3-programs without tautologies

nor virtual constraints. Moreover, one can verify that for each i, i = 1, . . . , 18, the

maximum root of the characteristic equation of the recurrence relation defining cAi
n

is less than or equal to 1.70711. Thus, Theorems 10 and 11 follow.

The lower bound in this case follows from general observations made in section

4. Namely, Corollary 2 implies the following result.

Corollary 6

Let 0 < α < µ3 ≈ 1.58489. There is no algorithm for computing all stable models

of 3-programs with worst-case performance bounded by O(f(m)αn), where f is a

polynomial and m is the size of the input program.
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7 Performance of smodels on 2-programs

In this section, we briefly discuss applicability of the approach proposed in section 3

to the analysis of the performance of the algorithm of smodels (Niemelä & Simons,

2000). To this end, we first describe a version of the procedure complete that yields

an algorithm for computing stable models whose performance estimate provides an

upper bound on the running time of smodels. In the description, we will refer to

the procedure expand(P , A) that is used by smodels. Given a logic program P and a

set of literals A ⊆ Lit(P ), expand(P , A) returns a set of literals B such that A ⊆ B

and every stable model of P consistent with A is also consistent with B. Informally,

expand(P , A) serves as a unit propagation engine in smodels (it propagates the literals

in A to establish additional literals implied by P and A).

The specific implementation of the procedure expand that is used by smodels

generalizes ideas underlying the notion of the well-founded semantics. We will not

discuss this procedure in detail. We will only mention some of its propagation rules

that are of importance in our arguments here. Namely, given a normal logic program

P and a set of literals A, the set of literals B = expand(P , A) is closed under the

following rules:

1. If p is a fact in P or p ∈ A, p ∈ B
2. If p is not in the head of any clause in P , not(p) ∈ B
3. If p ← α1, . . . , αk is a rule in P (p ∈ At(P ), αi ∈ Lit(P )) and αi ∈ B, 1 � i � k,

then p ∈ B
4. If p← α1, . . . , αk is a rule in P (p ∈ At(P ), αi ∈ Lit(P )), not(p) ∈ B and αj ∈ B,

for j = 1, . . . , i− 1, i+ 1, . . . , k, then not(αi) ∈ B
5. If p ← α1, . . . , αk is a rule in P (p ∈ At(P ), αi ∈ Lit(P )), no other rule in P has

head p, and if not(αi) ∈ B, for some i, 1 � i � k, then not(p) ∈ B.

Let P be a non-empty logic program and let α ∈ Lit(P ). We define E(α) =

expand(P , {α}). Using the properties listed above, it is easy to show that every stable

model of P that is consistent with α is also consistent with E(α). In particular, it

follows that for every atom x ∈ At(P ), {E(x), E(not(x))} is a complete collection

for P .

We now define a procedure that, for a given non-empty normal program P returns

a collection of sets that is complete for P . The procedure looks for the first case

whose assumption holds, returns the corresponding collection of sets and terminates.

The four cases that are considered are:

1. If there is x ∈ At(P ) such that both x ∈ E(not(x)) and not(x) ∈ E(x), then

return A = {At(P )}
2. If there is x ∈ At(P ) such that x ∈ E(not(x)), then return A = {E(x)}
3. If there is x ∈ At(P ) such that not(x) ∈ E(x), then return A = {E(not(x))}
4. Otherwise, return this collection A = {E(x), E(not(x))} for which

min{|E(x)|, |E(not(x))|}

is maximized. If there is more than one atom x with the same maximum value,

choose the one that maximizes |E(x)|+ |E(not(x))|.
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It follows from our earlier discussion that, given a non-empty logic program P ,

this procedure returns a complete collection A for P . We denote this procedure

by completesm. The procedure completesm determines a specific instantiation of the

algorithm stable for computing all stable models of P . We will denote this algorithm

by stablesm. In the case when we restrict to 2-programs, we can analyze the worst-case

performance of this algorithm using the techniques developed and used earlier in

the paper. Namely, we have the following two results. The proofs closely resemble

those presented earlier. Therefore, we provide only their outlines.

Theorem 12

The algorithm stablesm when used on 2-programs runs in time O(m × 1.46558n),

where n is the number of atoms in P and m is the size of P .

Proof

(Sketch) We follow the same case analysis as in the proof of Theorem 5. It is easy

to see that in Cases 1 and 3, we have x ∈ E(not(x)), while in Case 2 we have

not(x) ∈ E(x). Thus, in each of these cases, the procedure completesm returns a

complete collection with the signature bounded by (1).

So, let us assume that Case 4 of the proof of Theorem 5 holds. It is easy to

see using the properties of the procedure expand, given above, that {x, y} ⊆ E(x)

and {not(x), not(y)} ⊆ E(not(x)). Thus, the signature of the collection completesm is

bounded by (1) or (2,2). The same claim holds for the complete collection returned

in Case 5.

In Case 6 we assume that none of the Cases 1–5 holds. Under the notation

introduced in the analysis of Case 6 in the proof of Theorem 5,

{w, y1, . . . , yq} ⊆ E(w)

and

{not(w), x1, . . . , xp, not(z1), . . . , not(zr)} ⊆ E(not(w)).

Since p+ q+ r � 2 and p+ r � 1, it follows that the collection {E(w), E(not(w))}
has the signature bounded by (1,3) or (2,2).

Thus, in each of the cases, the complete collection returned by the procedure

completesm has the signature bounded by (1), (2,2) or (1,3). The corresponding

recurrence relations are

c1
n = c1

n− 1, c2
n = 2c2

n− 2, and c3
n = c3

n− 1 + c3
n− 3.

The characteristic root of the third recurrence relation is (approximately) 1.46558

and is larger then the characteristic roots of the two remaining relations. Thus, the

assertion of Theorem 12 follows by the same argument as in other cases. �

Theorem 13

The algorithm stablesm when used on purely-negative 2-programs without dual

clauses runs in time O(m× 1.32472n), where n is the number of atoms and m is the

size of an input program.
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Proof

(Sketch) We consider several cases that cover the class of all purely negative 2-

programs without dual clauses. We assume in each case that all earlier ones are

excluded.

Case 1. Program P contains an atom that is not the head of any clause in P . In

this case, the procedure completesm returns a complete collection consisting of one

non-empty set. Thus, its signature is bounded by (1).

Case 2. There is an atom x in P that is the head of exactly one clause, say x← not(y).

Since P has no dual clauses and since y is the head of at least one clause, there

is an atom z such that z 
= x and y ← not(z) is a clause of P . Let us observe

that |E(y)| � 2. Indeed, y ∈ E(y) (by rule 1) and, by rule 5, not(x) ∈ E(y), as well.

Furthermore, y has at least two neighbors, x, and another one, say z. By rules 1,

3 and 4, not(y), x, z ∈ E(not(y)). Thus, the procedure completesm returns either a

complete collection with the signature bounded by (1) or, if it gets to the branch

case, a two-element complete collection with the signature bounded by (2, 3).

From now on, we assume that every atom of P is the head of at least two clauses.

In particular, for every atom x of P , |E(not(x))| � 3. Moreover, it follows also that

there is an atom with at least four neighbors (otherwise, for every atom in P the

number of its occurrences in the bodies of rules would be smaller than the number

of its occurrences as the head, a contradiction).

Case 3. There is an atom x in P such that |E(x)| � 2. Since x has at least two

neighbors, the signature of {E(x), E(not(x))} is bounded by (2, 3). It follows that the

procedure completesm returns a complete collection with the signature bounded by

(1) or (2, 3).

Case 4. For every atom x, |E(x)| = 1. Let y be an atom in P such that y has at least

four neighbors (we noted that such an atom exists). It follows by rules 1, 3 and 4

that |E(not(y))| � 5. Thus, the procedure completesm returns a complete collection

with the signature bounded by (1) or (1, 5).

Thus, in each of the cases, the complete collection returned by the procedure

completesm has the signature bounded by (1), (2,3) or (1,5). The corresponding

recurrence relations are

c1
n = c1

n− 1, c2
n = c2

n− 2 + c2
n− 3, and c3

n = c3
n− 1 + c3

n− 5.

The characteristic roots of the second and third recurrence relations are the same and

are (approximately) equal 1.32472. This quantity is greater than the characteristic

root of the first relation (which equals 1). Thus, we obtain the assertion. �

The algorithm stablesm follows closely the way in which smodels works. There

are however, some differences. If, during the search, the case (1) of the procedure

completesm applies, there are no stable models on this search path. Smodels recognizes

that and backtracks immediately. Our algorithm backtracks from the next recursive
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call to stablesm. This difference is minor and has no effect on the asymptotic

performance analysis.

Secondly, smodels, when looking for the first case that applies during the execution

of the procedure completesm, checks whether E(α) is consistent not only with α but

also with all literals whose values where set earlier in the search. In this way,

smodels increases a possibility that the procedure completesm will not enter the

branch case, the only case when the search splits into two branches. It follows

that the worst-case performance estimate of smodels is bounded from above by the

worst-case performance of the algorithm stablesm described here. Consequently, the

performance bounds of Theorems 12 and 13 apply to smodels, as well.

The techniques we developed in this paper seem to have only limited applicability

in the analysis of the performance of smodels. First, it is not clear whether it can

be applied to obtain non-trivial performance bounds for smodels on programs with

longer clauses, for instance, for 3-programs. Secondly, the bounds they imply in the

case of 2-programs are weaker than those we derived in section 5. We stressed in

several places that smodels uses stronger propagation techniques than those needed

by our analysis. It is possible that the performance bounds we obtained can be

improved. However, there is most likely no simple way to do so. The algorithms

and performance bounds we derived in sections 5 and 6 strongly depend on the

ability of the search to split in each branch point into more than two search paths,

a property that smodels does not have.

8 The general case

In this section we present an algorithm that computes all stable models of arbitrary

propositional logic programs. It runs in time O(m2n/
√
n) and so, provides an

improvement over the trivial bound O(m2n). However, our approach is quite different

from that used in the preceding sections. The key component of the algorithm

is an auxiliary procedure stable aux(P , π). Let P be a logic program and let

At(P ) = {x1, x2, . . . , xn}. Given P and a permutation π of {1, 2, . . . , n}, the procedure

stable aux(P , π) looks for an index j, 1 � j � n, such that the set {xπ(j), . . . , xπ(n)}
is a stable model of P . Since no stable model of P is a proper subset of another

stable model of P , for any permutation π there is at most one such index j. If such

j exists, the procedure outputs the set {xπ(j), . . . , xπ(n)}.
In the description of the algorithm stable aux, we use the following notation. For

every atom a, by pos(a) we denote the list of all clauses which contain a (as a

non-negated atom) in their bodies, and by neg(a) a list of all clauses that contain

not(a) in their bodies. Given a standard linked-list representation of logic programs,

all these lists can be computed in time linear in m.

Further, for each clause C , we introduce counters p(C) and n(C). We initialize p(C)

to be the number of positive literals (atoms) in the body of C . Similarly, we initialize

n(C) to be the number of negative literals in the body of C . These counters are

used to decide whether a clause belongs to the reduct of the program and whether

it ‘fires’ when computing the least model of the reduct.
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stable aux(P , π)

(1) M = At(P );

(2) Q := set of clauses C such that p(C) = n(C) = 0;

(3) lm := �;

(4) for j = 1 to n do

(5) while Q 
= � do

(6) C0 := any clause in Q;

(7) mark C0 as used and remove it from Q;

(8) if h(C0) /∈ lm then

(9) lm := lm ∪ {h(C0)};
(10) for C ∈ pos(h(C0)) do

(11) p(C) := p(C)− 1;

(12) if p(C) = 0 & n(C) = 0 & C not used then add C to Q;

(13) if lm = M then output M and stop;

(14) M := M \ {xπ(j)};
(15) for C ∈ neg(xπ(j)) do

(16) n(C) := n(C)− 1;

(17) if n(C) = 0 & p(C) = 0 & C not used then add C to Q.

Let us define Mj = {xπ(j), . . . , xπ(n)}. Intuitively, the algorithm stable aux works as

follows. In the iteration j of the for loop (4) it computes the least model of the

reduct PMj (lines (5)–(12)). Then it tests whether Mj = lm(PMj ) (line (13)). If so, it

outputs Mj (it is a stable model of P ) and terminates. Otherwise, it computes the

reduct PMj+ 1 . In fact, the reduct is not explicitly computed. Rather, the number of

negated literals in the body of each rule is updated to reflect the fact that we shift

attention from the set Mj to the set Mj+ 1 and one more negated literal is satisfied

with respect to Mj+ 1 (lines (14)–(17)). The key to the algorithm is the fact that it

computes reducts PMj and least models lm(PMj ) in an incremental way and, so, tests

n candidates Mj for stability in time O(m) (where m is the size of the program). We

make these comments and claims more precise in the statement and proof of the

next result.

Proposition 6

Let P be a logic program and let At(P ) = {x1, . . . , xn}. For every permutation π of

{1, . . . , n}, if M = {xπ(j), . . . , xπ(n)} then the procedure stable aux(P , π) outputs M if

and only if M is a stable model of P . Moreover, the procedure stable aux runs in

O(m) steps, where m is the size of P .

Proof

We first observe that during the execution of the algorithm, each time when the

while loop in the lines (5)–(12) terminates we have the following property.

(I1) For every clause C , p(C) is the number of atoms in b+(C) that are not in lm.

Indeed, p(C) is initialized so that (I1) holds at the start of the algorithm stable.

Then, each time a new atom, say a, is added to lm in line (9), the counter p(C) is

decreased by 1, in line (11), for every clause C such that a ∈ b+(C).
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It is also easy to see that for every iteration j, 1 � j � n, at any time during the

execution of the while loop the following property holds:

(I2) For every clause C , n(C) = 0 if and only if b−(C) ∩Mj = �.

Let us denote by lmj the value of lm when the jth iteration of the for loop

terminates. To complete the proof of the correctness of the algorithm stable, we

will now argue that for every iteration j, 1 � j � n, we have the following two

properties:

(I3) After every iteration of the while loop, lm is a subset of lm(PMj ), and

(I4) lmj = lm(PMj ).

We prove (I3) and (I4) simultaneously by double induction with respect to j and,

for each j, with respect to the number of iterations of the while loop within the jth

iteration of the for loop. We will provide the reasoning for the inductive step for the

outermost induction (the one with respect to j). The argument to establish the basis

of this induction is similar and we omit it.

Thus, let us consider the iteration j+ 1, where j � 1, and let us assume that (I3)

and (I4) hold just before it starts. We will prove that (I3) and (I4) hold after the

iteration j+ 1 is completed. To this end, we proceed by induction on the number

of iterations of the while loop. We start by establishing the basis of this induction.

By the induction hypothesis (for the outermost induction), lmj = lm(PMj ). Since

Mj+ 1 ⊆ Mj , lm(PMj ) ⊆ lm(PMj+ 1 ). Hence, at the start of the while loop during the

(j+ 1)st iteration of the for loop, the set lm (which is the same at that time as lmj)

is contained in lm(PMj+ 1 ). Thus, the basis of the inner induction holds.

For the inductive step, let us consider a particular iteration of the while loop. In

this iteration, we consider a clause C0 such that p(C0) = 0 and n(C0) = 0. By (I1) it

follows that b+(C0) ⊆ lm (as computed up to that point, that is, at the end of the

previous iteration of the while loop). By the induction hypothesis, lm ⊆ lm(PMj+ 1 ).

Further, by (I2), the reduced rule C0 (that is, the rule obtained from C0 by removing

all its negated literals) belongs to PMj+ 1 . Thus, it follows that h(C0) belongs to

lm(PMj+ 1 ). When line (9) of this iteration of the while loop is completed, lm is either

as it was during the previous iteration or it is expanded by the addition of h(C0). In

either case, the set lm at the end of the present iteration satisfies lm ⊆ lm(PMj+ 1 ).

In particular, it follows that lmj+ 1 ⊆ lm(PMj+ 1 ) (as lmj+ 1 is the set lm after the last

iteration of the while loop in the (j+ 1)st iteration of the for loop). We will show that

lmj+ 1 is a model of PMj+ 1 . Let C ∈ PMj+ 1 and let C ′ be a clause in P such that C is

the result of removing all negated literals from C ′. By (I2) it follows that n(C ′) = 0.

If p(C ′) = 0 when the while loop (within the (j+ 1)st iteration of the for loop) ends,

C ′ was placed on the Q during the execution of this while loop and then removed at

some point later during the execution of this loop. Thus, h(C ′) = h(C) ∈ lmj+ 1. On

the other hand, if p(C ′) > 0 then, by (I1), there is an atom a in the body of C such

that a /∈ lmj+ 1. In either case, lmj+ 1 satisfies C . Since lmj+ 1 is a model of PMj+ 1 ,

lm(PMj+ 1 ) ⊆ lmj+ 1 and, consequently, lmj+ 1 = lm(PMj+ 1 ).

It is clear that the first part of the assertion follows directly from (I4). To complete

the proof of the proposition, we note that each clause of the program P is processed
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by the while loop (5) at most once. Thus, the time needed for steps (6)–(9), over all

iterations of the for loop (4), is O(|P |) = O(m). Moreover, the total time needed for

all iterations of for loop (10), over all iterations of the for loop (4), is bounded by

the total number of positive occurrences of atoms in the program (there is at most

one iteration for each such occurrence), that is, it is O(m). Similarly, the total time

needed for steps (13)–(17) over all iterations of the for loop (4) is O(m). �

We now describe how to use the procedure stable aux in an algorithm to compute

stable models of a logic program. A collection S of permutations of {1, 2, . . . , n} is

full if every subset S of {1, 2, . . . , n} is a final segment (suffix) of a permutation in S
or, more precisely, if for every subset S of {1, 2, . . . , n} there is a permutation π ∈ S
such that S = {π(n− |S |+ 1), . . . , π(n)}.

If S1 and S2 are of the same cardinality then they cannot occur as suffixes of the

same permutation. Since there are ( n
�n/2�) subsets of {1, 2, . . . , n} of cardinality �n/2�,

every full family of permutations must contain at least ( n
�n/2�) elements. An important

property is that for every n � 0 there is a full family of permutations of cardinality

( n
�n/2�). An algorithm to compute such a minimal full set of permutations, say Smin,

is described in Knuth (1998, 3:579, 743–744). We refer to this algorithm as perm(n).

The algorithm perm(n) enumerates all permutations in Smin by generating each next

permutation entirely on the basis of the previous one. The algorithm perm(n) takes

O(n) steps to generate a permutation and each permutation is generated only once.

We modify the algorithm perm(n) to obtain an algorithm to compute all stable

models of a logic program P . Namely, each time a new permutation, say π, is

generated, we make a call to stable aux(P , π). We call this algorithm stablep. Since

( n
�n/2�) = Θ(2n/

√
n) we have the following result.

Proposition 7

The algorithm stablep is correct and runs in time O(m2n/
√
n).

Proof

Let M = {xi1 , . . . , xik}, where k = |M|, be a stable model of P . SinceSmin is complete,

there is a permutation π in Smin such that {π(n− k+ 1), . . . , π(n)} = {i1, . . . , ik} or,

equivalently, {xπ(n− k+ 1), . . . , xπ(n)} = {xi1 , . . . , xik} = M. Since π ∈ Smin, π will be

generated during the execution of perm stable(P ). Thus, by Proposition 6, the call

to stable(P , π), made right after π is generated, outputs M as a stable model of P .

Conversely, every set M output by perm stable is, clearly, a stable model of P . Thus,

sets output by perm stable are precisely the stable models of P (we note, however,

that some sets M may be suffixes of several permutations and, consequently, will be

output more than once).

As for the running time, the procedure stable(P , π) is called ( n
�n/2�) times during the

execution of perm stable(P ). Since ( n
�n/2�) = O(2n/

√
n), the total time needed for all

these calls is O(m2n/
√
n). The running time of the algorithm perm(n) is O(n2n/

√
n).

Thus, the algorithm perm stable(P ) runs in time O(m2n/
√
n). �

Since the program P (n, �n/2�) has exactly ( n
�n/2�) stable models and each of these

models has Θ(n) elements, every algorithm to compute all stable models of a logic
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program must take at least Ω(
√
n2n) steps. Whether in this case, there is α < 2, a

polynomial f and an algorithm computing all stable models of an arbitrary logic

program P in time O(f(m)αn) is an open problem. Since the size of the program

P (n, �n/2�) is not O(n), the methods used in the proof of Corollary 2 do not work

here.

9 Discussion and conclusions

We have presented algorithms for computing stable models of logic programs with

worst-case performance bounds asymptotically better than the trivial bound of

O(m2n). These are the first results of that type in the literature. In the general case,

we proposed an algorithm that runs in time O(m2n/
√
n) improving the performance

over the brute-force approach by the factor of
√
n. Most of our work, however, was

concerned with algorithms for computing stable models of t-programs. We proposed

an algorithm that computes stable models of t-programs in time O(mαnt ), where

αt < 2− 1/2t. We strengthened these results in the case of 2- and 3 - programs. In the

first case, we presented an algorithm that runs in time O(m3n/3) (≈ O(m×1.44225n)).

For the case of 3-programs, we presented an algorithm running in the worst case in

time O(m× 1.70711n).

In addition to these contributions, our work leads to several interesting questions.

A foremost among them is whether our results can be further improved. First, we

observe that in the case when the task is to compute all stable models, we already

have proved optimality (up to a polynomial factor) of the algorithms developed for

the class of all programs and the class of all 2-programs. However, in all other cases

there is still room for improvement – our lower and upper bounds do not coincide.

The situation gets even more interesting when we want to compute one stable

model (if stable models exist) rather than all of them. The algorithms we presented

here can, of course, be adapted to this case (by terminating them as soon as the

first model is found). Thus, the upper bounds derived in this paper remain valid.

But the lower bounds, which we derive on the basis of the number of stable models

input programs may have, do not. In particular, it is no longer clear whether the

algorithm we developed for the case of 2-programs remains optimal. One cannot

exclude existence of pruning techniques that, in the case when the input program

has stable models, would on occasion eliminate from considerations parts of the

search space possibly containing some stable models, recognizing that the remaining

portion of the search space still contains some.

Such search space pruning techniques are possible in the case of satisfiability

testing. For instance, the pure literal rule, sometimes used by implementations of

the Davis–Putnam procedure, eliminates from considerations parts of search space

that may contain stable models (Monien & Speckenmeyer, 1985; Kullmann, 1999).

However, the part that remains is guaranteed to contain a model as long as the

input theory has one. No examples of analogous search space pruning methods are

known in the case of stable model computation. We feel that nonmonotonicity of

the stable model semantics is the reason for that but a formal account of this issue

remains an open problem.
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Finally, we note that we obtained, to the best of our knowledge, first non-trivial

worst-case performance bounds for smodels. While our bounds apply only to the case

when input programs are restricted to be 2-programs and our techniques do not seem

to be best suited for the analysis of smodels, the results we presented demonstrate

that the worst-case analysis of algorithms such as smodels may be possible.

Appendix: linear recurrence relations

In the paper we use some basic properties of linear recurrence relations of the form:

an =

{
ka if 0 � n < p

α1an− 1 + . . . + αpan− p otherwise,
(1)

where for every i, 1 � i � p, αi � 0.

We denote by ra the maximum root of the characteristic equation of the recurrence

defining

xp− α1x
p− 1− . . . − αp− 1x− αp = 0.

If ra � 1 then it is easy to prove by induction that for every n � 0,

an � kar
n
a .

In addition, for every r > ra,

α1r
p− 1 + . . . + αp− 1r+ αp < rp. (2)

Indeed, the inequality holds for every sufficiently large r. If it fails for some r >

ra, then there is a root of the characteristic equation in the interval [r,∞), a

contradiction.

Let us consider another relation of the form (1):

bn =

{
kb if 0 � n < q

β1bn− 1 + . . . + βqbn− q otherwise.

Let us assume that rb � ra � 1, where ra and rb are the maximum roots of the

characteristic equations of the respective recurrence relations. Let us define

cn =




kc if 0 � n < max{p, q}
max{α1cn− 1 + . . . + αpcn− p,

β1cn− 1 + . . . + βqcn− q} otherwise.

It is easy to show by induction and using property (2) that for every n � 0,

cn � max{ka, kb, kc}rnb .

Moreover, the property can be easily generalized to the case when cn is defined in

terms of more than two recurrence relations of type (1).
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K. Apt, W. Marek, M. Truszczyński and D. Warren (eds.), Springer-Verlag, pp. 375–

398.

Marek, W., Nerode, A. and Remmel, J. B. (1994) The stable models of predicate logic

programs. Journal of Logic Programming 21(3), 129–154.
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