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Abstract Zelditch’s proof of the Tian–Yau–Zelditch Theorem makes use of the Boutet de Monvel–
Sjöstrand results on the asymptotic properties of Szegő projectors for strictly pseudoconvex domains.
However, as we will show below, the theorem is also closely related to another theorem of Boutet de Mon-
vel’s, namely his wave trace formula for Toeplitz operators. Finally, we will derive, for the pseudoconvex
manifolds considered by Zelditch in his proof of the Tian–Yau–Zelditch Theorem, an analogue of another
result of Boutet de Monvel’s, the extendability theorem of Berndtsson for holomorphic functions on
Grauert tubes.
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1. Introduction

The topic of this paper is a beautiful theorem of Steve Zelditch [24] which refined and
generalized earlier results of Tian and Yau. Let (M, L) be a polarized Kähler manifold∗

of complex dimension n and let sk,i, i = 1, . . . , Nk, be an orthonormal basis of the space
of sections of L⊗k. Zelditch’s theorem asserts that as k → +∞, the expression

Nk∑
i−1

|sk,i(x)|2, x ∈ M, (1.1)

∗ That is, L is an ample line bundle equipped with an inner product 〈· , ·〉 and Kähler form ω =
i ddc log〈· , ·〉.
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has an asymptotic expansion in k:

∞∑
N=0

kn−NaN (x), (1.2)

with aN ∈ C∞(M). An application of this result is the following: let H be the set of
Kähler forms on M which are cohomologous to ω, that is, the Kähler forms of the form

ωφ = ω + i∂∂̄φ, φ ∈ C∞(M), (1.3)

and let Bk be the set of Hermitian inner products on H0(M, O(L⊗k)). Define a map

Hilbk : H → Bk (1.4)

by setting

Hilbk(ωφ)(s) =
∫

M

|s|2φ dµφ, (1.5)

where 〈· , ·〉φ := e−φ〈· , ·〉, and µφ := ωn
φ/n!, and define a map

FSk : Bk → H (1.6)

by setting
FSk(B) = ω + i∂∂̄φB , (1.7)

where

φB(x) = k−1 log
Nk∑
i=1

|sB
k,i(x)|2 (1.8)

and the sB
k,i are an orthonormal basis of H0(M, O(L⊗k)) with respect to B.∗

Define Rk = FSk ◦ Hilbk, so that if Rk(ωφ) = ωφk
, we have

φk = φ + log
Nk∑
i=1

|sk,i|2 + log
ωn

φ

ωn
, (1.9)

and therefore the asymptotics of (1.1) can be viewed as the asymptotics of the composite
map

Rk : H → H.

Using this map, Ruan [18], Berndtsson [1], Phong and Sturm [16], Song and Zelditch [21],
Chen and Sun [6], Rubinstein and Zelditch [19] and others have amassed a great deal of
corroborating evidence for a conjecture which roughly states that the Kähler geometry
of H with its natural metric [15] is well approximated by the Kähler geometry of the
symmetric spaces

Bk = GL(Nk, C)/ U(Nk).
∗ The form (1.7) is the Kähler form induced on M by pulling back the Fubini–Study form on CPNk−1

by the imbedding of M into CPNk−1 defined by the sk,i, hence the name FSk.
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While inspired by earlier work of Mabuchi [15], Semmes [20], Donaldson [8] and others,
such approximation goes back to [16]. The recent survey [17] and the sample references
above will help guide the reader through these very interesting developments.

As for the proof of (1.2) in [24], its main ingredients are the following. Let L∗ be the
line bundle dual to L, and 〈· , ·〉∗ the dual Hermitian metric. To derive the expansion
(1.2), Zelditch transforms (1.2) into an assertion about the geometry of the domain

D = {(p, �) | p ∈ M, � ∈ L∗
p, 〈�, �〉∗ � 1} (1.10)

and its boundary, the unit circle bundle

X = {(p, �) ∈ D | 〈�, �〉∗ = 1}. (1.11)

More explicitly, he shows that the expressions (1.1) are, up to a constant multiple, the
Fourier coefficients of Π, where Π : L2(X) → H2(X) is the Szegő projector, and observes
that if one interprets them this way, then (1.2) can be read off from the parametrix
construction of Π given by Boutet de Monvel and Sjöstrand in [4].

In the next section we will outline another proof of (1.2), using Fourier–Toeplitz opera-
tors, which has some advantages over that of [24] (it extends to a larger class of examples)
and a serious disadvantage (it does not give the pointwise Ck convergence for all k). In § 3,
we go back to [9] for a result on extension similar to Boutet de Monvel’s extension the-
orem, but for a strictly pseudoconvex domain, in preparation for § 4. In passing we note
that there is an interesting class of domains with a characterization of extension domains
in terms of iterated Fourier–Toeplitz operators. In § 4 we analyse again the domains
considered by Zelditch in [24] and apply the extension theorems of [9] and § 3 to these
domains. One gets more precision here than generally because the disk bundle domains
are invariant under a holomorphic circle action. Sections 3 and 4 end with open questions
and a comment on the limits of the extension theorem of [2].

2. Toeplitz operators

As above, let D be the unit disk bundle in L∗, and X its boundary. Let O(D̄) be the space
of holomorphic functions smooth on D̄, and H2(X) the L2-closure of O(D̄) ⊂ L2(X). Let
Π denote the Szegő projector L2(X) → H2(X). The algebra of Toeplitz operators is the
compression of the algebra of pseudodifferential operators to H2(X), that is, operators
of the form Π ◦ P ◦ Π, where P ∈ Ψ(X), the algebra of pseudodifferential operators on
X. Examples of such operators are given by

Q =
1√
−1

∂

∂θ

∣∣∣∣
H2(X)

, (2.1)

where ∂/∂θ is the infinitesimal generator of the holomorphic circle action on D and X,
as well as the example

Tφ = Π ◦ Mφ ◦ Π, φ ∈ C∞(X), (2.2)
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where Mφ : L2(X) → L2(X) is multiplication by φ. If φ ∈ C∞(M), i.e. in C∞(X)S1
, then

Mφ and Q commute, and Boutet de Monvel’s wave trace formula for Toeplitz operators
(see, for example, [3, § 13]) asserts that

trace(exp(itQ)) ◦ Tφ ∼
−∞∑
r=n

ar(φ)χr(t), (2.3)

where the χr are the periodic conormal distributions

χr(t) =
∞∑

k=1

kr−1 exp(ikt). (2.4)

On the other hand, letting Πk be the projection onto the k-eigenspace of Q, we get

trace(exp(itQ)) ◦ Tφ =
∑

exp(ikt)ΠkMφΠk, (2.5)

so, by comparing (2.3) and (2.5) one gets
∫

X

Πk(x, x)φ(x) dx =
∑

ar(φ)kr−1. (2.6)

Moreover, the functional φ 
→ ar(φ) is, as we will show below, just the pairing of φ with
a C∞ function ar, that is,

ar(φ) =
∫

X

ar(x)φ(x) dx, (2.7)

so (2.6) is an integrated form of an expansion of the form

Πk(x, x) ∼
−∞∑
r=n

ar(x)kr−1. (2.8)

To show that the ar(φ) can be expressed as integrals of the form (2.7) we will first
show that they can be interpreted as ‘residue traces’. More explicitly, from (2.6) one gets
for z ∈ C,

trace Πk ◦ Q−z ◦ Tφ ◦ Πk ∼
−∞∑
r=n

ar(φ)kr−1−z, (2.9)

and hence for Re(z) � 0 we have

trace Q−z ◦ Tφ ∼
−∞∑
r=n

ar(φ)ζ(z − r − 1), (2.10)

where ζ(z) is the Riemann zeta function.
Thus trace Q−z ◦Tφ is meromorphic with at worst simple poles at z = n−1, n−2, . . . ,

and the ar(φ) are the residues at these poles. To compute these residues, we note that
for every point x of X there exists a neighbourhood U of x so that locally on U the
Toeplitz algebra is isomorphic to the algebra Ψ(Rn) of pseudodifferential operators on
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Rn (see [3, § 2]). Hence to compute these residues for φ ∈ C∞
0 (U), it suffices to compute

them for the operators corresponding to Q and Tφ in Ψ(Rn). For those operators, however,
the residues are indeed given by integrals of the form (2.7) (cf. [10,23]).

The results we have just described can be extended to a much larger class of opera-
tors. If X is a compact manifold and Σ ⊂ T ∗X a symplectic cone, one can define on
X a generalized Szegő projector of Hermite type having micro-support on the diagonal
of Σ × Σ. One can use this projector to define an algebra of generalized Toeplitz oper-
ators ΠΨ(X)Π with many of the same properties as the ‘classical’ Toeplitz operators
considered above. For example, to take an extreme case, let Σ = T ∗X \ 0, Π = I and
ΠΨ(X)Π = Ψ(X). Then if Q ∈ Ψ1(X) is a positive, self-adjoint elliptic operator whose
spectrum is the non-negative integers, and A ∈ Ψ0(X), then

trace(itQA) ∼
−∞∑
r=n

ar(A)χr(t), (2.11)

and if Q commutes with A, this translates into a formula of type (2.6). Colin de Verdière
[7] and others have used this formula to analyse clustering phenomena for the spectrum
of the Laplacian on Zoll manifolds, i.e. Riemannian manifolds for which the geodesic flow
on T ∗X \ 0 is periodic and gives a free R/2πZ action.

3. Toeplitz operators and extendability theorems

One of the most widely quoted of Boutet de Monvel’s results is the note [2]. In this note
he considers the following extension problem. Let Y n be an n-dimensional real analytic
manifold and W a complex ‘thickening’ of Y , i.e. a complex manifold in which Y sits as a
maximal totally real submanifold. Given a real analytic metric g on Y , one gets, for each
p ∈ Y , an exponential map expp : TpY → Y which can be extended holomorphically to
a map γp : Up → W of a neighbourhood Up of the origin in Tp ⊗ C into W . Let U be a
neighbourhood of the zero section in TY with the property that for every p ∈ Y , and
(p, v) ∈ U implies

√
−1v ∈ Up. Then, shrinking the neighbourhood U if necessary, we can

arrange that the map
γ : U → W, (p, v) → γp(v), (3.1)

is a diffeomorphism of U onto a neighbourhood of Y in W . For ε > 0 let TεY = {(p, v) ∈
TY | gp(v, v) < ε2} be the tangent ball bundle of radius ε, and for ε small, let Ωε be the
diffeomorphic image γ(TεY ) of TεY in W by γ. The Ωε are known as Grauert tubes [11],
or adapted domains [14], and are strictly pseudoconvex for ε sufficiently small. The push-
forward under γ of r =

√
gp(v, v) on Ωε is a smooth solution of the homogeneous complex

Monge–Ampère equation (HCMA) outside the image of the zero section Y ⊂ TεY [11,14].
Boutet de Monvel’s theorem is that a function f on Y extends holomorphically to the
tube {r < ε} if and only if f is in the domain of the operators exp(t

√
) for all t ∈ (0, ε),

or equivalently, if f is in the image of exp(−t
√

), for all t ∈ (0, ε).
We will be concerned in this section with a variant of this last result on the HCMA

equation. Let Wn be, as above, an n-dimensional complex manifold and Ω ⊂⊂ W a
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strictly pseudoconvex domain in W with Cω boundary X. Let N∗X be the conormal
bundle to X, and N∗

+X the outward pointing non-zero conormals, a component of N∗X \
{0}. We recall the following initial value theorem of Jack Lee for HCMA (see [9]).

Theorem 3.1. Let u be a Cω section of N∗
+X. Then there exists a neighbourhood

U = U(φ) of X in W , and a solution φ ∈ Cω(U) of the following problem

φ = 0 on X,

dφ = u on X,

(i∂∂̄φ)n ≡ 0 on Ω.

⎫⎪⎬
⎪⎭ (3.2)

Furthermore, if (φi,Ui), i = 1, 2, are two such solutions, then φ1 ≡ φ2 on the connected
component of U1 ∩ U2 containing X.

Since X is strictly pseudoconvex, we have the non-degeneracy condition

∂φ ∧ ∂̄φ ∧ (∂∂̄φ)n−1 �= 0 on U (3.3)

if U is small enough about X. Let α be the restriction to X of

β = 2 Im(∂̄φ) = J · dφ = J · u. (3.4)

Then α is a contact form on X and hence there exists a Reeb vector field ξ on X with
the defining properties

i(ξ)α = 1 (3.5)

and
i(ξ) dα = 0. (3.6)

As in § 2 above, let H2(X) be the L2 closure of the space of functions {f |X | f ∈ O(Ω̄)},
and let Tξ be the first order Toeplitz operator on H2(X) given by Π ◦ (1/i)Lξ ◦ Π.
From [9] we have the following theorem.

Theorem 3.2. For ε > 0 sufficiently small, and f ∈ H2(X) ∩ Cω, the following are
equivalent.

(i) The equation
∂u

∂t
(x, t) = Tξu, u(x, 0) = f(x), x ∈ X, (3.7)

can be solved backwards over the interval −ε < t � 0.

(ii) f can be extended holomorphically to the domain

Ωε := {p ∈ W | φ(p) < ε}. (3.8)

Remark 3.3. It is not immediately clear that this result is related to Boutet de Monvel’s
result [2]. To see that it is, we note that if the Ωε are Grauert tubes, and Xε = ∂Ωε

are the corresponding boundaries, then there exists a function φ on Ωε with φ = ε on

https://doi.org/10.1017/S1474748011000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000016


The Tian–Yau–Zelditch Theorem and Toeplitz operators 455

Xε and 0 on Y , and (∂∂̄φ)n = 0 outside Y . This is the same as the function
√

gp(v, v)
transported by γ to Ωε above (see [11,12,14]). From the diffeomorphism γ−1 : Ωε → TεY

one gets a fibration ρ : Xε → Y , and hence a fibre integration operator,

ρ∗ : C∞(Xε) → C∞(Y ), (3.9)

and one can show that its restriction to the intersection C∞(Xε) ∩ H2(Xε) is an elliptic
Fourier integral operator of Toeplitz type, and that for ε small, it is bijective and satisfies

ρ∗ ◦ Tξ = (
√

 + Qε) ◦ ρ∗, (3.10)

for a Qε ∈ Ψ0(Y ). Hence, the extendability criterion of [2] is intertwined by ρ∗ with the
extendability criterion in Theorem 3.2.

We remark further that the condition of small ε is necessary in these theorems (see
Remark 4.6).

Theorem 3.2 is a corollary of a sharper result involving an analogue of the intertwining
identity (3.10). Let Xε be the boundary of the domain (3.8), let Wε be the annulus
{0 � φ � ε} and let v be the vector field on this annulus defined by the identities

i(v) dφ = 1, (3.11)

i(v)β = 0, (3.12)

i(v) dβ = 0, (3.13)

where β = J · dφ, as in (3.4), and the equations (3.11)–(3.13) have a unique solution
because of the non-degeneracy condition (3.3). By (3.11), exp(εv) maps X onto Xε and
by (3.12), (3.13), it is a contact isomorphism. Thus, if we let Πε be the Szegő projector
on Xε, we get an operator

Fε = Π ◦ (exp εv)∗ ◦ Πε (3.14)

mapping H2(Xε) into H2(X) and one can show the following theorem (see [9, Proposi-
tion B, § 5] and also [3]).

Theorem 3.4. Fε is an elliptic Fourier–Toeplitz operator of order 0 quantizing the
canonical transformation exp(−εv). Moreover, for ε small enough it is invertible.

The sharpened version of Theorem 3.2 makes the following assertion [9, Theorem 4].

Theorem 3.5. Let Rε be the restriction map

Rε : H2(Xε) → O(Ωε) → H2(X),

where the first arrow denotes holomorphic extension. Then there exists an invertible
Toeplitz operator of order 0,

Gε : H2(X) → H2(X),

such that
Rε = exp(−εTξ) ◦ Gε ◦ Fε, (3.15)

where Tξ is the operator in Theorem 3.2 above.
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Using this result we will prove an extendibility theorem for holomorphic functions on
X to a larger class of domains, by concatenating extensions as above via Monge–Ampère
solutions. For convenience, we will set Gε ◦Fε in the theorem equal to F̃ε. Setting ε = ε1,
let u2 be a real analytic section of N∗

+Xε1 and let φ2 ∈ Cω(U2), Xε1 ⊂ U2, a solution of
the HCMA satisfying φ2|Xε1

= 0, dφ2|Xε1
= u2, and let us denote by Ωε1,ε2 the domain

φ2 < ε2, with boundary Xε1,ε2 . By Theorem 3.5 there exists a zeroth-order invertible
Fourier–Toeplitz operator

F̃ε2 : H2(Xε1,ε2) → H2(Xε1)

such that
Rε2 = exp(−ε2Tξ2) ◦ F̃ε2 , (3.16)

where Rε2 is the restriction map

H2(Xε1,ε2) → O(Ωε1,ε2) → H2(Xε1),

and ξ2 is a real analytic vector field on Xε1 satisfying

i(ξ2)2 Im(∂̄φ2) = 1

and

i(ξ2)∂∂̄φ2 = 0.

Hence, with T1 = Tξ, as in Theorem 3.5, we obtain

Rε1 ◦ Rε2 = exp(−ε1T1) ◦ F̃ε1 ◦ exp(−ε2Tξ2) ◦ F̃ε2 . (3.17)

However, F̃ε1 ◦ Tξ2 ◦ F̃−1
ε1 is a first-order Toeplitz operator on X of the form

T2 = Tw2 + A(ε1),

where w2 = (exp(ε1v))∗ξ2 and A(ε1) is a zeroth-order Toeplitz operator which depends
analytically on ε1, and vanishes at ε1 = 0. Thus,

Rε1 ◦ Rε2 = exp(−ε1T1) ◦ exp(−ε2T2) ◦ F̃ε1 ◦ F̃ε2 . (3.18)

Iterating this procedure one can construct sequences of domains Ωε1,...,εk
with

Ωε1,...,εk−1 ⊂ Ωε1,...,εk
such that the extendibility problem for Ω relative to Ωε1,...,εk

is controlled by a sequence of Toeplitz semi-groups

exp(−ε1T1) ◦ · · · ◦ exp(−εkTk),

where Tk(ε1, . . . , εk−1) depends analytically on the epsilons and at ε = 0 is of the form
Tk(0) = Tξk

, where ξk is a Cω vector field on X satisfying α(ξk) > 0, which is the
condition in Toeplitz theory for Tξk

to be elliptic and positive. To summarize, we have
shown the following theorem.
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Theorem 3.6. Let Ωε1,...,εk
be an iterated extension domain as above, where the

ε1, . . . , εk are sufficiently small that Theorem 3.5 holds for each extension Ωε1,...,εi−1

to Ωε1,...,εi
, for i = 2, . . . , k (as well as Ω to Ωε1), and let Xε1,...,εk

= ∂Ωε1,...,εk
. Then

there exist positive, analytic, elliptic Toeplitz operators of order 1, T1, . . . , Tk, on X such
that the image of the restriction map

R : H2(Xε1,...,εk
) → H2(X)

is equal to the range of exp(−ε1T1) ◦ · · · ◦ exp(−εkTk) in H2(X).

Remark 3.7. Given any domain Ω̃ ⊃⊃ Ω, it is clear that one can construct a sequence
of domains

Ω = Ω0 � Ω1 � Ω2 � · · · ⊂ Ω̃

defined successively by sub-level sets of Cω solutions of the HCMA as above. If Ω is real
analytic and Ck close for large enough k, is it possible to exhaust Ω̃, i.e. achieve

⋃
i

Ωi = Ω̃? (3.19)

4. We come full circle

To come full circle we will apply the extendibility results in § 3 to the domain considered
by Zelditch in his proof of the Tian–Yau–Zelditch Theorem. As in that proof, let D be
the domain

D = {(p, �) ∈ L∗ | 〈�, �〉 � 1}. (4.1)

To apply those results to D, assume that X = ∂D is real analytic, i.e. that the metric
in (4.1) is Cω. Then uniqueness in the Cauchy–Kowalevski Theorem gives the following
lemma.

Lemma 4.1. Let u be a Cω section of N∗
+X and let ψ be a real analytic solution of the

homogenous complex Monge–Ampère equation which vanishes on X and has dψ = u on
X. Then if u is S1-invariant, so is ψ.

Let r be the function r(p, �) =
√

〈�, �〉p, and let φ ∈ Cω(X) be the function given by

φ(x) =
(

d log r

u

)
(x) > 0. (4.2)

We will show that for the domain D the extendibility criterion in Theorem 3.2 can be
formulated in terms of the operators

Q = Π ◦ 1
i

∂

∂θ
◦ Π

and Tφ in (2.2) figuring in the proof we sketched of the Tian–Yau–Zelditch Theorem
in § 2. Let u be an S1-invariant section of N∗

+, and let ψ be the S1-invariant solution of
HCMA with ψ = 0 and dψ = u on X. Finally, let Dε = {ψ < ε}.
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Theorem 4.2. A function f ∈ Cω ∩ H2(X) extends holomorphically to Dε if and only
if f is in the range of the operator

exp(−tTφ ◦ Q) : H2(X) → H2(X) ∩ Cω(X) (4.3)

for all t < ε.

This theorem may be viewed as an extension result to disk bundles with respect to
deformations of the Hermitian metric 〈�, �〉.

Proof. Let
α = dc log r|X (4.4)

be the connection form for the canonical connection on the circle bundle π : X → M

associated to the Kähler form ω on M , i.e. i(∂/∂θ)α = 1, and dα = π∗ω.

Lemma 4.3. If w is a vector field on X, the associated Toeplitz operator

Tw = Π ◦ 1
i
Lw ◦ Π

is a Toeplitz operator of order 0 if and only if i(w)α = 0.

Proof of Lemma 4.3. It suffices by [3, Proposition 2.12] to show that the principal
symbol of Tw is zero. Let Σ ⊂ T ∗X be the symplectic cone

Σ = {(p, ξ) | p ∈ X; ξ = λαp, λ > 0}.

Then the symbol of Tw is just the restriction to Σ of the symbol of the differential
operator (1/i)Lw, and hence at (p, ξ), ξ = λαp, λ > 0 is just λ · i(w)αp. �

Corollary 4.4. Let φ = i(w)α and as above let

Qφ = Π ◦ 1
i
φ

∂

∂θ
◦ Π.

Then Tw − Qφ is a zeroth-order Toeplitz operator.

To exploit this result we will need the following theorem, a proof of which may be
found in § 6 of [9]. (This theorem is due to Boutet de Monvel, and is a key ingredient in
the proof of his extendibility theorem.)

Proposition 4.5. Let P be a real analytic elliptic Toeplitz operator on X with the same
symbol as Qφ. Then there exists a smooth zeroth-order Toeplitz operator U(t) which is
invertible and depends real analytically on t such that

exp(−tP ) = exp(−tQφ) ◦ U(t). (4.5)
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To prove Theorem 4.2 we apply Theorem 3.1 to the section u of N∗
+X. Since the

vector field ξ in Theorem 3.2 has the defining properties i(ξ)β = 1, i(ξ) dβ = 0, for
β = 2 Im(∂̄ψ) = J dψ and

J dψ = Ju by the initial condition

= φ−1J
dt

t
by (4.2)

= φ−1α by (4.4),

the interior product i(ξ)α is equal to φ and hence

i(ξ)α = i
(

φ
∂

∂θ

)
α.

Therefore, in view of Corollary 4.4 and Proposition 4.5, we can replace Tξ by Qφ in
Theorem 3.2. �

Remark 4.6. We close by noting that a question remains in Theorems 3.5 and 4.2
concerning the globalization, or long-term behaviour, of the problem. That is, suppose
we have a complex manifold Ω̃ ⊃ M , where M is a compact strongly pseudoconvex
manifold with boundary ∂M = X, and that the Cω solution ψ of HCMA in Theorem 4.2
is defined and proper

ψ : Ω̃ \ M → [0, +∞).

Suppose also that ψ is non-degenerate on Ω̃ \ M , that is, ∂ψ ∧ ∂̄ ∧ (∂∂̄ψ)n−1 �= 0 there.
Let Xs = ψ−1(s). Then one has a restriction operator Rs : H2(Xs) → H2(X). Is the
characterization of the image of Rs in Theorem 4.2 valid for all values of s ∈ [0, +∞)?
To illustrate, if Ω̃ = L∗ as above, and ψ = log r(p, �), these conditions are satisfied. In
this case the vector field v generates a holomorphic flow � 
→ exp(it) · �. Let δt : L∗ → L∗

be this flow in the imaginary direction, i.e.

Ft = δ∗
t : H2(Xt) → H2(X),

and one sees by checking term-by-term the effect on the Fourier expansion of a function
in H2(Xt) that one has an equality

Rt = exp(−tQ) ◦ δ∗
t : H2(Xt) → H2(X) (4.6)

for all t > 0. In particular, there is no need here for the correction operator Gt as
in Theorem 3.5. The same reasoning works for Ω̃ = Cn and M a Cω circled strictly
pseudoconvex domain ⊂⊂ Cn containing the origin. Here we take ψ = log G(z), where
G is the gauge function of M .

A more complex example is to take a Riemannian symmetric space Y = G/K, where
G, K are a compact Cartan pair, and let GC, KC denote the corresponding complex
groups. Then Lassalle [13], which was an inspiration for [2], determined the extendibility
properties of functions on G/K to GC/KC using the representation theory of G. This can
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be cast into the framework of [2] and this paper by means of a theorem of Szőke’s [22,
Theorem 2.5] and is valid for all levels of the Monge–Ampère solution on GC/KC.

Finally, however, for some examples of non-symmetric metrics on S2, also due to
Szőke [22], the extendibility theorems are not valid for all levels Xt of the Monge–Ampère
exhaustion ψ [5].
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Scientifiques and the Université de Paris-Sud for support during the preparation of this
paper. The authors thank an anonymous referee for several suggestions which improved
this paper considerably.

References

1. B. Berndtsson, Bergman kernels related to Hermitian line bundles over compact com-
plex manifolds, in Explorations in complex and Riemannian geometry, pp. 1–17, Con-
temporary Mathematics, Volume 332 (American Mathematical Society, Providence, RI,
2003).

2. L. Boutet de Monvel, Convergence dans le domaine complexe des séries de fonctions
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14. L. Lempert and R. Szőke, Global solutions of the homogeneous Monge–Ampère equa-
tion and complex structures on the tangent bundle of Riemannian manifolds, Math.
Annalen 290 (1991), 689–712.

15. T. Mabuchi, Some symplectic geometry on compact Kähler manifolds, I, Osaka J. Math.
24 (1987), 227–252.

16. D. Phong and J. Sturm, The Monge–Ampère operator and geodesics in the space of
Kähler potentials, Invent. Math. 166 (2006), 125–149.

https://doi.org/10.1017/S1474748011000016 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000016


The Tian–Yau–Zelditch Theorem and Toeplitz operators 461

17. D. Phong and J. Sturm, Lectures on stability and constant scalar curvature, in Current
developments in mathematics, 2007, pp. 101–176 (International Press, Somerville, MA,
2009).

18. W.-D. Ruan, Canonical coordinates and Bergman metrics, Commun. Analysis Geom. 6
(1998), 589–631.

19. Y. Rubinstein and S. Zelditch, The Cauchy problem for the homogeneous Monge–
Ampère equation, I, Toeplitz quantization, preprint (arXiv:1008.3577 [math.DG]).

20. S. Semmes, Complex Monge–Ampère and symplectic manifolds, Am. J. Math. 114 (1990),
495–550.

21. J. Song and S. Zelditch, Convergence of Bergman geodesics on CP
1, Annales Inst.

Fourier 57 (2007), 2209–2237 (Special Issue: Festival Yves Colin de Verdière).
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