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ABSTRACT: Earth has been habitable through most of its history, but the anthropogenically

mediated greenhouse effect, if sufficiently strong, can threaten Earth’s long-standing equability.

This paper’s main aim is to determine the strength of the anthropogenic greenhouse effect (the

climate sensitivity) from observational data and basic physics alone, without recourse to the parameter-

isations of earth-system models and their inevitable uncertainties. A key finding is that the sensitivity

can be constrained by harmonising historical records of land and ocean temperatures with observations

of potential climate-change drivers in a non-steady state, energy-balance equation via a least-squares

optimisation. The global temperature increase, for a CO2 doubling, is found to lie (95 % confidence

limits) between 3.0oC and 6.3oC, with a best estimate of þ4oC. Under a business-as-usual scenario,

which assumes that there will be no significant change in people’s attitudes and priorities, Earth’s

surface temperature is forecast to rise by 7.9oC over the land, and by 3.6oC over the oceans, by the

year 2100. Global temperature rise has slowed in the last decade, leading some to question climate

predictions of substantial 21st-Century warming. A formal runs test, however, shows that the recent

slowdown is part of the normal behaviour of the climate system.

KEY WORDS: additive model, aerosols, bootstrap, CMIP5, energy balance, greenhouse effect,

heat capacity, non-steady state, radiative forcing, thermal response

Climate sensitivity lies at the heart of the scientific debate on

anthropogenic climate change. It conveniently encapsulates

the basic response of the Earth to changes in greenhouse-gas

concentration in terms of one simple number. Climate sensi-

tivity is defined as the equilibrium change in annual, mean,

global surface temperature following a doubling of the atmo-

spheric CO2 concentration. Although defined in terms of a

doubling of the CO2 content, the concept of climate sensitivity

can equally be applied to other forcing agents, such as changes

in solar radiation, volcanic dust or sulphate aerosols. Climate

sensitivity is not accurately known. It is thought, based pri-

marily on models, to lie in the range of 1.5�C to 4.5�C (IPCC

2001; Flato et al. 2013). However, ensemble model experi-

ments have shown that the possibility of much higher climate

sensitivities (>10�C) cannot be ruled out (Stainforth et al.

2005). Constraining climate sensitivity remains a top priority

for climate science (Stevenson 2015).

The increase in atmospheric CO2 over the past 250 years,

mainly arising from fossil-fuel combustion, is thought to have

already increased global temperatures (Manabe & Wetherald

1975; Hansen et al. 1984). The aim of this paper is to derive a

data-driven estimate of climate sensitivity based, in essence,

only on historical observations of temperature; on measure-

ments of the change in greenhouse-gas concentrations from

preindustrial levels; on the change in one other key anthro-

pogenic forcing, namely sulphate aerosols; and, to a lesser ex-

tent, on changes in volcanic dust and El Niño.

An important distinction needs to be made between the

equilibrium sensitivity – the temperature change reached after

allowing the climate system to equilibrate at doubled atmo-

spheric CO2 – and the response on shorter time scales (i.e.,

before the deep oceans have had time to equilibrate). The

latter, shorter-timescale response is often quantified in terms

of the transient climate response – the temperature rise at the

time of the doubling of the CO2 concentration. In this paper, a

thermal response term is used to characterise, and quantify,

the transient climate response. Taken together, these two

numbers (climate sensitivity and thermal response time) deter-

mine the time-dependent global temperature response of the

climate system to a radiative forcing perturbation. Constrain-

ing these coupled numbers is vital, not only for understanding

the physical process of climate change, but also for policy-

relevant analysis of the impacts of climate change and their

economic consequences.

The Principle of the Conservation of Energy (e.g., Mohr

1837) provides a basic, and yet very powerful, tool for explor-

ing physical systems. Here, this well-established Principle is

used to develop a simple, but practical, energy-balance model

of the Earth’s climate system. An additive (maximum likelihood-

based) energy-balance model is developed and forms the basis

of the method used to link air temperatures with changes in

radiative forcing and with the thermal response times of the

land and ocean. Such heat–balance relationships, in various

forms, have long been used in meteorology (Ångström 1915;

Budyko 1956).

There is a wide body of literature concerning climate sensi-

tivity. An excellent recent review (Myhre et al. 2013) is included

in The Fifth Assessment Report of the Intergovernmental Panel

on Climate Change, whilst insightful recent studies include the

work of Andronova & Schlesinger (2001), Forster & Gregory

(2006), Murphy et al. (2009), Urban & Keller (2009), Hansen

et al. (2011), Lambert et al. (2011), Andrews et al. (2012),

Wigley & Santer (2013), Masters (2014) and Shindell (2014).

Tol & De Vos (1998) give a very readable account of a Bayesian

approach to generating a statistical relationship between tem-

perature and CO2 concentration.

Here, in order to derive an empirical evidence-based estimate

of climate sensitivity, historical changes in Earth’s (both land

and ocean) temperatures (since 1850 AD) are analysed. Inter-

estingly, following a rise of close to 0.5oC in the quarter century

since the mid-1970s, global temperatures are found to have risen

little, if at all, over the last decade and a half. In contrast, green-

house gas concentrations have continued their unremitting

year-on-year rise. The sustained rise in concentration has been
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so great that today’s CO2 concentrations (over 400 ppm) are

most probably the highest experienced by Earth since the Plio-

cene, over two million years ago (Raymo et al. 1996; Zhang et

al. 2013). An uncomplicated interpretation of the situation –

that global average temperatures have not continued rising in

concert with the sustained growth in greenhouse gases – has

led to many voices claiming that global warming has paused.

A wide range of scientific explanations (see review by Held

(2013)) have been proffered for the cause of the pause in warm-

ing since 1998. These include heat uptake by the ocean, espe-

cially the equatorial Pacific; change in the El Niño-Southern

Oscillation; change in the sunspot cycle; decline in solar energy

output; higher than expected volcanic activity; decline in stra-

tospheric water vapour content; problems with data collection;

problems with data analysis; through to failure of the whole

concept of greenhouse warming. This paper puts the question

of the pause into the context of climate variability over the

last 160 years. Along with an observationally-based diagnosis

of climate sensitivity, the newly developed additive energy-

balance model is used to propose an explanation for the recent

pause in global warming.

1. Method

1.1. Heat balance equation
Equation 1 sets out the familiar heat-balance equation.

C
dðDTÞ

dt
¼ DQ� �DT ð1Þ

The left-hand side is a heat-storage term which determines

how quickly the system, with heat capacity C (units W s m–2

K–1), approaches equilibrium. t is time (units s); DT is the tem-

perature change (units K) arising from a change in radiative

forcing DQ (units W m–2) over a horizontal area (units m2);

while the long-term equilibrium response is given by the

parameter l (the inverse of the climate sensitivity).

It is useful to define the radiative forcing (DQ) of Equation

1 carefully. The surface-troposphere system and the strato-

sphere of the Earth can respond more or less independently

of each other. This means that changes in the surface tempera-

ture are driven by changes in the net radiation at the tropo-

pause, not at the top of the atmosphere. Consequently, a com-

monly used formal definition of radiative forcing (Haigh 2002),

and that adopted here, is the change in net irradiance at the

tropopause. In particular, the change in net radiation before

any temperatures change occurs at the surface is called the

instantaneous radiative forcing.

A key aim of this work is to estimate the climate sensitivity

(l–1) of the Earth directly from observations. Thus in order to

proceed (section 1.2) we need to rewrite Equation 1 in such a

way as to include observations more explicitly.

1.2. Heat balance in terms of a time-series analysis

First, consider the steady-state solution of Equation 1; i.e.,

when the left-hand side is zero. In this situation a change in

forcing immediately generates a change in temperature, and

we can conveniently express the balance between temperature

and forcing in terms of a regression relationship (Equation 2).

Multiple forcings are handled by the multiple regression set-up

of Equation 2,

yi ¼ b0 þ
Xp

j¼1

bj xij þ ei ð2Þ

where yi is the temperature (oC) in year i, xij are radiative forc-

ings (Wm–2) and j ¼ 1, . . . , p are regressors; bo is the pre-

industrial temperature (oC) and bj are the sensitivities (oC /

(Wm–2)) of each forcing. ei are the residuals (oC).

Secondly, now consider Equation 1 in non-steady state.

Here, we need to allow for long-term thermal responses due

to heat capacities C in the system. The key to accommodating

this critical requirement is to turn Equation 2 into an additive

model (Equation 3):

yi ¼ b0 þ
Xp

j¼1

fjxij þ ei ð3Þ

Where fj represents unspecified smooth functions (commonly

natural cubic, or B-splines; see Hastie & Tibshirani (1986) for

examples). Here the well-known exponential smoothing tech-

nique, which assigns exponentially decreasing weights over

time, is used as the smoother.

Thirdly, and lastly, we recast the basic regression approach

(Equations 2 & 3) in terms of a time-series analysis, by allow-

ing for correlations in the observations taken at times i and

i� 1. That is, in practical terms, the lack of statistical in-

dependence of the observations (autocorrelations) is allowed

for by modelling the residuals as an autoregressive (AR), or

moving-average (MA) process (as in Equation 4).

AR1ð�Þ ¼

1 � �2 � � � �n

� 1 � � � � ..
.

�2 � 1 � � � ..
.

..

. ..
. ..

. . .
. ..

.

�n � � � � � � � � � 1

2
66666664

3
77777775

ð4Þ

In practice the parameter(s) of the ARMA process (e.g.,

Equation 4, where r is the lag-1 autocorrelation, and n the

number of observations) can be estimated simultaneously to

the coefficients of Equation 2; or Equation 3, using the R-

function gnls() (see section 7 – Appendix), which fits a non-

linear model using generalised least squares whilst allowing

the errors to be correlated (Pinheiro & Bates 2000).

Finally, in a slightly more involved setup in which land and

ocean temperatures are analysed simultaneously, the main

gnls() function is repeated twice (once for land and once for

the ocean), and embedded within the optimisation algorithm

nlm() in order to minimise the total residual sum of squares.

In brief, all three required additions to ordinary simple

regression (namely multiple forcings, non-steady state and

autocorrelation) can be readily handled in R, specifically by

the flexible, easy-to-implement function gnls().

2. Data sources for radiative forcings and air
temperatures

Five forcings – greenhouse gases, sulphate aerosols, volcanic

aerosols, sunspot number and the El Niño-Southern Oscilla-

tion – are investigated.

2.1. Anthropogenic radiative forcings

2.1.1. Greenhouse gases. A range of gases have contributed,

in various amounts, to the anthropogenic build-up of green-

house gases. The main sources, due to human activity, have

included the burning of fossil fuels; land-use change and de-

forestation; agricultural activities, including livestock husbandry,

the use of fertilisers and rice/wetland management; the use of

chlorofluorocarbons (in refrigeration systems); and cement

production. Meinshausen et al (2011) have combined a com-

prehensive suite of atmospheric-concentration observations and

emissions estimates through the historical period with projec-
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tions of future greenhouse-gas emissions, as derived from Inte-

grated Assessment Models. Their multi-year work involved a

wide collaboration across scientific communities to obtain a

best-estimate of projections of future greenhouse gas build-up.

The Meinshausen et al (2011) concentration pathways lead to

radiative forcing values, which form the raw time-series data

analysed below.

Reliable direct measurements of the major greenhouse gas,

carbon dioxide, began in the International Geophysical Year

(1957–58) with the ground-breaking work of Keeling (1960).

The original network of two monitoring stations (South Pole

and Mauna Loa) has since expanded to over 225 stations

today. The CO2 concentrations are available from the World

Data Centre for Greenhouse Gases (http://ds.data.jma.go.jp/

gmd/wdcgg). Pre-1957 estimates of carbon dioxide concentra-

tion can be derived from the gas preserved within ice-core

bubbles (Etheridge et al. 1996). In a similar way, direct and

ice-core-based measurements of other greenhouse gases (espe-

cially methane and nitrous oxide) have been combined to

build up a history of their concentrations and forcings (Myhre

et al. 2001, 2013). In this present paper, the aggregated forc-

ings have been taken from the Intergovernmental Panel on

Climate Change Fifth Assessment Report (IPCC AR5) (Myhre

et al. 2013, chapter 8). The IPCC greenhouse-gas concentra-

tion time-series, specifically the Coupled Model Intercom-

parison Project phase 5 (CMIP5) Representative Concentration

Pathways (RCPs), were obtained from the multi-model data

archive, http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html, and

converted into a radiative forcing following the conversion rec-

ommended in Joos et al. (2001, appendix A2) before plotting in

Figure 1a.

2.1.2. Aerosols. The second atmospheric data set needed

here is the history of sulphate aerosols. Boucher & Pham

(2002) described how observations and regional inventories

(since 1850) can be used to uncover a global mean emission

history for sulphate aerosols. The crucial importance of sul-

phate aerosols in climate-change studies was first recognised

by Charlson et al. (1992) and elaborated upon by Mitchell

et al. (1995). Here, sulphate emissions, specifically the CMIP5

time-series as obtained from the multi-model data archive

(http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html) were con-

verted into a direct radiative forcing following the straight-

forward scaling used by Joos et al. (2001, appendix A3). The

emission estimates are plotted in Figure 1b. The reason that

emission data, rather than concentration observations, can be

used for aerosols is because aerosols are much shorter lived

than the main anthropogenic greenhouse gases. However, it is

worth bearing in mind that aerosol uncertainties are larger

than those of greenhouse gases.

2.2. Natural effects
Time-series of volcanic aerosols, sunspot numbers and the El

Niño-Southern Oscillation (ENSO) were also tested as regres-

sors in the likelihood-based energy-balance model. Volcanic

reconstructions of aerosol optical depth, sourced from IPCC

AR5 Chapter 8 (Myhre et al. 2013), were used for the volcanic

aerosol time-series (Fig. 1c). Wolff sunspot numbers (yearly,

mean, total-sunspot number) were sourced from WDC-SILSO,

Royal Observatory of Belgium, Brussels. The JISAO-Global-

SST-ENSO index, available from http://jisao.washington.edu/

data/globalsstenso, was chosen as a measure of the El Niño-

Southern Oscillation (Fig 1d). The indices were used in a raw

form, and not converted into forcings, as the maximum-likeli-

hood approach used here is able to calculate its own scaling

factors automatically.

2.3. Air temperature observations
Following Callendar’s (1949) early analyses and the detailed

and painstaking work of Jones et al. (1982), many data sets

of historical air-temperature changes have been developed.

For example, 36 data sets (time-series) as created at the Climate

Research Unit at the University of East Anglia (in conjunc-

tion with the Hadley Centre), the British Meteorological

Office, NASA’s Goddard Institute for Space Studies (GISS),

the National Climatic Data Centre (NCDC) of the National

Oceanic and Atmospheric Administration, the University of

Figure 1 Historical forcings: (a) well-mixed greenhouse gases; (b) aerosols; (c) volcanic aerosols; (d) El Niño-
Southern Oscillation.
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Alabama (UAH) and Remote Sensing Systems (RSS) can

all be sourced at http://www.climatedata.info/Temperature/

reconstructions.html. Out of the 36 data sets, the GISS, and

especially the CRUTEM4 and HadCRUT4 data sets (Figs 2,

3a), were selected (on the basis of a principal-component anal-

ysis) for more detailed study. Feulner et al. (2013) discuss his-

torical differences in temperature and rates of warming over

land as compared to the oceans.

2.4. Modelled air temperatures
Recently, an excellent set of simulated (as opposed to observed)

historical temperatures has become available as part of a new

era in climate-change research, namely the Climate Model

Intercomparison Project (Meehl et al. 2007). The most recent

(fifth phase) of the Intercomparison Project (CMIP5) has

generated a freely available state-of-the-art multimodel dataset

of climate variability and climate change (Taylor et al. 2012).

The CMIP modelling strategy includes climate-change model-

ling experiments which involve long-term (century time-scale)

integrations starting from a preindustrial (quasi equilibrium)

state and going on to span a period from the mid-nineteenth

century through the twenty-first century and beyond. Nineteen

temperature data-sets were sourced from the historical CMIP5

data portal (http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html)

and form the basis of the validation study described below.

3. Results

The main results of this paper all basically derive from using

the additive energy-balance model (of Equations 3 & 4) to

generate good, parsimonious fits to the historical temperature

data of Figures 2 and 3a, using solely measurement-based

assessments of anthropogenic radiative forcings (Fig 1) as the

regressors.

3.1. Historical temperature time-series
Figure 3a shows a typical example of an additive energy-

balance model fit to an historical temperature series. In this

example, GISS temperatures (global, mean, land–ocean, tem-

perature index), are regressed against the four forcings of

Figure 1. Visually, the fit looks reasonable, with no obvious

discrepancies (Fig. 3a). Figure 3b plots the residuals as a

time-series. An important part of all statistical model building

involves a careful examination of residuals. The much discussed

recent slowdown, or hiatus, in Earth’s surface-temperature rise

over the last 15 years is seen as a short run of negative residuals

at the far right-hand edge of Figure 3b. Interestingly, this recent

period does not stand out as being particularly unusual, with

equally long runs of same-signed residuals occurring at other

times in the past; for example, through the late 1930s and early

1940s.

3.2. Climate sensitivity
Can a useful estimate of climate sensitivity be extracted from

the regression model of Figure 3? The model uses four forc-

ings – well-mixed greenhouses gases, aerosols, volcanoes and

ENSO. The constant, as determined at �0.38oC, represents

an estimate of the preindustrial temperature in 1750, when

the forcings were zero. As would be expected it is negative;

Figure 2 Global land–ocean historical temperatures: (a) temperature
over land (CRUTEM4); (b) temperature over oceans (HadCRUT4).
Both time-series plotted as monthly anomalies. Although the broad
trends of the two time-series are similar, note how the temperature
range of the land record is twice that of the ocean and how its high-
frequency variation is also greater. The ocean record, in contrast,
shows more medium-term fluctuations, with durations typically of 2–
10 years.

Figure 3 Fit of historical temperatures and model. In this example,
GISS temperatures and a seven-parameter model are used: (a) open
circles observations. Solid line energy balance model; (b) open circles
residuals. Solid line LOESS (locally weighted scatterplot smoother) fit
drawn to help emphasise runs of residuals of the same sign.
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i.e., below that of the reference period (1961–1990). The

model also calculates an estimate of the exponential smooth-

ing constant of 0.72, and an autocorrelation estimate of 0.65.

Concentrating on the forcings, the most significant is found to

be that of the well-mixed greenhouse gases. The value of its re-

gression coefficient (once multiplied by a typical estimate (3.71

W m–2) for the radiative forcing for a CO2 doubling) would

appear to be that of the sought-after climate sensitivity.

3.3. The aerosol dilemma
Closer inspection of the model, however, reveals a profound

difficulty. Whilst many aspects are very satisfactory – the fit

is reasonably good; there are few parameters to be deter-

mined; the errors associated with many of the individual re-

gressors are small; the model behaves stably; the residuals are

largely structureless – one problem nevertheless is evident

(Fig. 4). The correlation between the regression parameters

for the well-mixed greenhouse gases and the aerosols is worry-

ingly large (0.97). This simple statistical result (strong correla-

tion between regressors) flags up a potentially profound un-

derlying problem. That is, when two variables are very

strongly correlated, the regression is able to infer very pre-

cisely the sum of their two effects; but is unable to infer their

individual effects. The 95 % confidence ellipse in Figure 4

illustrates this dichotomy whereby high climate sensitivity is

associated with large (positive) aerosol scaling factors, whilst

low GHG sensitivities (a factor of five lower) arise in conjunc-

tion with negative aerosol scaling factors. Wigley & Santer

(2013) have similarly drawn attention to this situation, where-

by aerosol cooling offsets GHG-induced warming. In order

to make progress with the regression modelling, the between-

parameter correlation needs to be pared down.

A visual examination of the predictors of Figure 1 suggests

that the most likely cause of the unwanted between-parameter

correlation is the statistical problem of collinearity. In brief,

the ‘shapes’ of the well-mixed greenhouse gases and aerosols

time-series (of Figs 1a and 1b) are close to being mirror im-

ages of each other. Both time-series change slowly at first and

then, after the mid-1900s, more rapidly. Thus the model in-

cludes factors which are correlated not just with the response

variable, but also with each other.

When using linear regression for building a purely empirical

model, the solution to such multicollinearity problems can

be relatively simple. For example, the removal of one of the

highly correlated predictors from the model by using stepwise

regression, or cutting down on the number of predictors using

principal components regression, are widely adopted tactics.

Here, however, as there are physical reasons for believing

that the relationship between the response and the predictors

follows a particular functional form, another approach is de-

sirable. Consequently, instead of the above tactic of modifying

the right-hand side of the regression equation, by improving

the x-values, betterment is sought by enhancing the y-values

on the left-hand side.

3.4. An expanded model
An upgraded model is next tried, in which land and ocean

temperatures, rather than just global temperatures, are used

as the model response (i.e., as the y-values). The lifetimes of

most aerosols are short and therefore their geographical distri-

bution is strongly related to their sources. As a consequence,

aerosol optical depth is greater over the northern hemisphere

than over the southern hemisphere, and greater over the land

than over the oceans. It is this geographical difference which

lies at the heart of how an improved model can be constructed

to confront the collinearity dilemma. In addition, in the up-

graded model, a second thermal time-constant is added, in

order to allow the land and ocean temperatures to evolve indi-

vidually. In short, the idea is to model the difference between

the land and ocean temperatures, over the late-nineteenth and

twentieth centuries (contrast Figs 1a and 1b), by allowing

distinct thermal time-constants and aerosol optical depths.

The expanded model, along with its confidence intervals, is

most straightforwardly derived from bootstrap prediction.

Care was taken to use a moving (circular) block bootstrap

(Efron & Tibshirani 1994) in order to preserve the temporal

autocorrelation structure. Figure 5 plots the bootstrap esti-

mates for the temperature sensitivity to a doubling of CO2

against the aerosol scaling factor, along with their histograms.

The bootstrap still finds a strong correlation between the two

predictors, as shown in Figure 5 by the diagonal (lower left to

upper right) spread of estimates. But now, the aerosol scaling

factor (which includes both direct and indirect effects) is

significantly different from zero. A best (‘data driven’) estimate

of the climate sensitivity is þ4oC, with 95 % confidence intervals

of 3.0oC to 6.3oC. The top histogram shows the spread of

climate sensitivities, with a long low tail stretching out to high

values. The time-constants found by the model (in terms of

half-lives) are 48 years (oceans) and 1.2 years (land). The model

assessment of the relative importance of the aerosol effect over

land as compared to over the ocean is 79 % (land) and 21 %

(ocean).

Figure 6, in addition to the model fit, plots future tempera-

ture projections. Land temperatures are predicted, by 2100, to

rise by almost 8oC above preindustrial; ocean temperatures

by roughly half that. The projections are obtained as follows.

First the land- and ocean-temperature observations are fitted

simultaneously using the expanded energy-balance model.

Then, the resulting regression parameters are used to estimate

future temperature change based on the radiative forcings of

the Representative Concentration Pathway scenario RCP8.5.

RCP8.5 is a ‘business-as-usual’ climate change scenario (cur-

rently emissions are tracking slightly above RCP8.5; see Peters

et al. 2013). Confidence bands are also included in Figure 6.

The bands are estimated using the bootstrap procedure, which

can be seen to generate asymmetrical confidence intervals.

Figure 4 95 % confidence ellipse. The elongated ellipse results from
the high correlations between regression parameters of the underlying
model. NB: the CMIP5 aerosol forcing is negative through the his-
torical period; hence, positive aerosol scaling factors correspond to
cooling.
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Figure 5 Using the bootstrap as an analytical tool. Scatterplot and histograms of the temperature change due to
a doubling of CO2 and of the aerosol scaling factor.

Figure 6 Model fit to historical land (a) and ocean (b) temperature records (open circles), and temperature
forecast to the year 2100 as based on RCP8.5. Note how both time-series work out to have similar (i.e., not
significantly different) pre-industrial temperatures; and how land temperatures are predicted to rise by almost 8oC
above preindustrial levels, and ocean temperatures by 4oC, by the year 2100. Confidence region plotted in grey.
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3.5. Validation
Full verification and validation of numerical models of natural

systems is impossible: we only have one Earth. Nevertheless,

their underlying mathematics, coding, bias and applicability

can, to a certain extent, be checked (see for example Foster

et al.’s (2008) and Knutti et al.’s (2008) appraisals of

Schwartz’s (2007) proposed climate model). For simple climate

models, a useful approach is to test the modelling methodology

proposed for the real Earth on computer-based simulations of

the twentieth-century climate, as generated by ‘state-of-the-art’

three-dimensional, coupled atmosphere–ocean, general circula-

tion models (AOGCMs). Figure 7 illustrates the outcome of

this approach to validation. In it, climate sensitivities from

nineteen ‘state-of-the-art’ models are compared to those ob-

tained by the simple energy-balance model as developed in this

paper.

The nineteen models are all taken from phase 5 of the recent

World Climate Research Programme’s (WCRP’s) Coupled

Model Intercomparison Project (CMIP5). Each model is

from a different modelling group. For each model, the equilib-

rium climate sensitivity was obtained from the CMIP5 abrupt

CO2 quadrupling experiments (Taylor et al. 2012). (See

Gregory et al. (2004), Andrews et al. (2012) and Forster et al.

(2013) for further details.)

Next, land and ocean temperatures from the AOGC model

output, from each modelling group, were obtained for the

historical period and then analysed using the improved energy-

balance model of section 3.4. Figure 7 plots the CMIP5 quad-

rupling experiment sensitivities against the sensitivities esti-

mated by the energy-balance approach. Agreement between

the two approaches is seen to be generally very reasonable. In

particular, the sensitivities are seen to cluster well about the

diagonal line, which denotes the trend for complete agreement.

4. Discussion

Climate models of varying complexity exist. They range

from simple empirical models, through more sophisticated

intermediate-complexity models, to comprehensive, physically

based, coupled, general circulation models of the atmosphere

and the ocean, which incorporate processes including bio-

geochemical cycles. All models have their own individual

strengths and weaknesses. The principal advantage of the

regression approach used here is its simplicity and interpreta-

bility, and the transparency of the model formulation. Never-

theless, it is important to be cautious about results obtained

from a regression analysis and to remain alert to potential

flaws, problems and pitfalls.

Figure 7 CMIP5 multi-model ensemble. Comparison of the additive model (Equations 3 & 4) approach with
Gregory et al.’s. (2004) method (using an abrupt 4� CO2 change) for diagnosing climate sensitivity (see Andrews
et al. 2012). The lettering is the ‘official’ model name for each modelling group.

CLIMATE SENSITIVITY 7

https://doi.org/10.1017/S1755691015000213 Published online by Cambridge University Press

https://doi.org/10.1017/S1755691015000213


Regression is a vast topic. In linear regression, commonly

encountered difficulties include: the data used in fitting the

model are not fully representative; the drawback that in reality

most systems are not linear; the inclusion of too many inde-

pendent variables which can cause serious difficulties; depen-

dence among variables which can lead to unsound predictions;

poor selection of the independent variables which may un-

cover spurious relationships that only happen to be there by

chance; overlooking hidden variables; forgetting uncertainty

(noise) in the independent variables, thereby obscuring the

exact relationship between the dependent and independent

variables; the residuals are not independent; and the problem

of outliers. Fortunately, once one is aware of potential diffi-

culties, there are many well-known checks and techniques

available to help guard against the problems.

Here, in order to avoid gross model misspecification, the

functional relationships between the variables were carefully

considered. In particular, the modelling started simply, and

was only made more complex when needed. Moreover, prior

studies (GCMs) were used to help determine which variables

to try in the regression model. In addition, wherever possible,

large numbers of trustworthy data and a small number of pre-

dictors were selected. Stepwise-type calculations demonstrated

that the inclusion of non-linear amalgamations of model

parameters was not necessary. Finally, residual analysis was

used to guard against unusual observations, autocorrelation, un-

equal variances (heteroscedasticity) and model misspecification.

The Sun has an obvious effect on climate, since it is the

main energy source for the radiative budget of the Earth. Never-

theless, solar variation was not found, in any of the models

examined here, to be an effective regressor for temperature

change. It is worth commenting at the outset that in this paper,

solar variation was restricted to the sunspot cycle. A solar varia-

tion in irradiance which includes an additional hypothetical

long-term trend, as often used in climate-change studies (e.g.,

reconstruction of total irradiance by Lean et al. (1995)), will

inevitably, in a simple regression analysis, be difficult to dis-

entangle from other regressors with a largely monotonic trend.

Here, the strong preference is for regressors with solid, obser-

vational evidence (e.g. Wolff sunspot numbers), rather than

those based on calculation, or on fragmentary datasets.

Volcanic and El Niño effects were found to be of conse-

quence. These were discerned to be significant, albeit modest,

regressors. Their inclusion in the models improved the fit,

increased the adjusted R-squared, and slightly improved the

confidence limits of the regressor coefficients. Any future changes

in these two natural forcings are obviously unknowable, so their

average value, through the historical time period, was used in

the future scenario calculations.

Next, in order of importance, come the atmospheric (sul-

phate) aerosols. These turned out to be crucial in the regression

models. The aerosol regression coefficient, of course, incor-

porates everything that is linearly related to the aerosol forcing

(all indirect aerosol effects including those associated with

cloud condensation effects, cloud amount, liquid-water content

and ice effects) as well as the direct effect of the aerosols them-

selves. The total (direct plus indirect) effect was found to be

significant (Fig. 6). Its sign shows that the net effect of aerosols,

throughout the historical period, has been to generate a notice-

able cooling.

Finally, the most important regressor is that of well-mixed

greenhouse gases with a climate sensitivity of þ4oC, for a

CO2 (equivalent) doubling. This is the change CO2 is predicted

to make in temperature, when all the other regressors are held

constant (Fig. 6). As has often been pointed out, CO2 is a key

determinant of future climate, not only because it is a strong

greenhouse gas (as seen in the regression model), but also be-

cause it is a long-lived gas. Thus, millennial-lived gases, such

as CO2, are likely to be by far the most important mediators

of anthropogenic climate disruption (Eby et al. 2009; Pierre-

humbert 2014). Eby et al.’s (2009) modelling of the release of

carbon dioxide by combustion, its equilibration in the atmo-

sphere, ocean and terrestrial biosphere and very slow return

to solid Earth suggests that the lifetime of the ensuing surface

air-temperature anomaly will be longer than the lifetime of

anthropogenic CO2. That is, slow oceanic and weathering pro-

cesses cause the anthropogenic temperature anomaly to persist

for many millennia. As Eby et al. (2009) point out, ‘‘it is sober-

ing to ponder the notion that the carbon we emit over a handful

of human lifetimes may significantly affect the earth’s climate

over tens of thousands of years’’.

The recent slowdown in Earth’s surface-temperature rise

has been rationalised by a wide range of scientific explana-

tions. Recently, Roberts et al (2015), using an observationally

constrained ensemble of GCMs and a statistical approach,

have provided further robust evidence that the slowdown is

an integral component of current climate models and so

deserves explanation. Most discussions revolve around ex-

plaining why temperatures have been low. Here, however, the

anomaly is seen to relate equally to higher-than-expected

temperatures during the early part of the slowdown (a run of

positive residuals) as to lower-than-expected temperatures

during the later stages. An alternative underlying cause for

the slowdown could then involve heat initially moving from

deep waters to the surface, rather than vice-versa.

The new energy-balance equation can easily be extended to

test other potential forcings. For example, black carbon (Bond

et al. 2013) was added, but found to have sensitivities ranging

from �1.5 W m–2 to þ0.5 W m–2 (very similar to Bond et al.’s

(2013) large range), and so was not investigated further. In the

same way, a heat transport term, based on the land–ocean

temperature difference, was tested but found to be unneces-

sary. The energy-balance equation can also be used to generate

hind casts (also called historical re-forecasts) starting from any

date. For example, hind cast ensembles through the period of

the recent temperature slowdown were obtained for start dates

ranging from 1997 through to 2013. The hind casts were found

to be robust to start date. The early years of the temperature

slowdown were always re-forecast at very similar levels (i.e.,

around 0.1oC lower than observed).

5. Conclusions

Well-mixed greenhouse gases (WMGHG), aerosols, volcanoes

and ENSO are all found to be significant forcings of global

temperature during the historical time period.

e No significant hiatus in temperature rise, over the last de-

cade and a half, is revealed by formal residual analysis or

run tests. The recent temperature slowdown is not unusual.

Similar slowdowns are found in simulated historical tem-

peratures produced in the Climate Model Intercomparison

Project, and in observed temperatures in the late-nineteenth

and mid-twentieth centuries.
e The recent slowdown in temperature rise can be explained

by warmer-than-expected years in the early 2000s.
e A heat-balance model has been coded as a simple function

in R. When applying the heat-balance model to historical

temperatures, F-tests demonstrate the need for thermal

time-constants and for AR1-type errors.
e F-tests demonstrate no need for inclusion of the sunspot cycle,

nor for non-linear combinations of the model parameters.
e Whilst the sum of the anthropogenic-forcings sensitivity

(aerosolsþWMGHG) is well determined, the individual
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sensitivities remain highly correlated, and so cannot easily

be disentangled.
e The basic heat-balance method has been validated on ‘state-

of-the-art’ GCMs, with independently determined sensitivities.
e A ‘data-driven’ estimate of equilibrium climate sensitivity is

þ4oC, with 95 % confidence intervals of 3oC to 6.3oC.
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7. Appendix. R-code for a 2-regressor version of the
heat balance model of Equations 3 and 4.

A nonlinear model fit is accomplished by gnls() using gener-

alised least squares. HoltWinters() performs an exponential

smoothing. The smoothing constant (alpha) is constrained

to lie within the range 0 to 1 by the inverse logit transform,

plogis(). The model is non-linear, but nevertheless robust

(relatively insensitive) to the choice of starting values; as the

non-linearity is, in essence, only needed to accommodate the

temporal autocorrelation within the data. Here, the parameters

of the four models (b0, b1, b2, b3) are simply initialised at 1.

library(nlme)

library(stats)

gnls(y ~ HoltWinters(b0 + b1*x1 + b2*x2, alpha =

plogis(b3)),

start = list(b0 = 1, b1 = 1, b2 = 1, b3 = 1),

corr ¼ corAR1()

)

Variables used in the model

x1 The time-series of greenhouse gas forcings

x2 The time-series of aerosol forcings

y The time-series of temperatures

Initial values for the parameters in the model

b0 Preindustrial temperature

b1 Well mixed greenhouse gases (sensitivity)

b2 Aerosols (scaling factor)

b3 Exponential smoothing factor

Within-group correlation structure

corAR1 Autoregressive order 1 correlation

structure
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