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Abstract

The energy transfer rate between the lattice and electrons in strongly nonequilibrium electron-phonon system of
crystalline aluminum created by ultrashort femtosecond laser pulse is calculated in the frame of two-temperature model
for a wide range of electron temperature. It is shown that the energy, transmitted from electrons to the lattice per unit
volume of the crystal per unut time strongly increases when taking into account the umklapp processes in the

electron-phonon scattering.
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1. INTRODUCTION

Interaction of ultrashort laser pulses with solids leads to a
strong increase in the temperature of electrons, absorbing
the laser radiation (Anisimov et al., 1974). Electrons in this
case are not in the thermodynamic equilibrium with the
lattice. Strongly nonequilibrium electron-ion system as a
consequence of the short laser pulse duration can be pro-
duced in semiconductors (Stampfli & Bennemann, 1990;
Ashitkov et al., 2002), as well as in metals (Anisimov et al.,
1977; Schoenlein et al., 1992; Fal’kovskii & Mishchenko,
1997), and also in plasmas (Alouani Bibi er al., 2004a,
2004b). Heat balance in such electron-phonon system depends
to a great extent on the energy transfer rate between the
electrons and phonons. The energy relaxation between the
electrons and crystalline lattice was considered by Kaganov
etal. (1957), Allen (1987), and Rethfeld ez al. (2002). Since
the electron-electron and phonon-phonon relaxation times
are significantly shorter than the electron-phonon relaxation
time, electrons and the lattice can be characterized by their
own temperatures 7, and 7;. When considering the electron-
phonon scattering in the above cited works, it is proposed
that it takes place within one Brillouine zone. An important
role of the umklapp electron-phonon processes during the
photon absorption in metals was emphasized by Lugovskoy
and Bray (1999). But at this stage of the laser-metal inter-
action, the electron-phonon scattering in their work was
considered in quasielastic approximation. In our work, we
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consider the influence of the umklapp processes in the
electron-phonon interaction onto the electron-lattice energy
transfer rate.

2. MODEL

In a similar way as in the classical work by Kaganov et al.
(1957), we consider the local pseudopotential interaction
between the electron and crystalline lattice

U(r) =X v(r—a—u(a)).

a

(1)

Here a is the vectors of an ideal crystalline lattice (face-
centered cubic (fcc) for crystalline aluminum), u(a) is the
ion displacement from the site a due to the lattice vibration.
For a small deviations from the equilibrium positions

Ur) =D v(r—a)— > u(a)Vo(r — a). (2)
The perturbation potential, due to the ion oscillations,
U'(r) = =Y u(a) Vo(r — a). (3)

a

By expanding the ion displacements in terms of the
normal coordinates Q(q, ») with the unit polarization vector
of the corresponding plane wave £(q,»), where q is the
phonon wave vector, lying within the Brillouine zone, and
v = 1,2,3 corresponds to three acoustic phonons of the fcc
lattice, we obtain
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1 . .
AT 2 €(a.1)(Q(gq,v)e ™ + 0" (q,v)e ). (4)

Here M is the single atom mass in a monatomic crystal, N, is
a number of unit cells. Then

u(a) =

U'(r) = Ui(r) + Uy(r), )

where

QUVI(M %gf(q,y)Q(q,V)e’anv(r—a) (6)

We choose the wave functions of the electron with momen-
tum k as

Uy(r) = —

|
ih(r) = N ™, (7

with the energy eigenvalues e(k) = #2%k?/2m (V is the
crystal volume, m is the electron effective mass, which we
consider to be equal to the mass of a free electron). The
phonon states are denoted as ®. Pseudopotential function
v(r) is expressed in the form

2

Ze
v(r) = — - exp(—r/A), ®)

corresponding to the screened Coulomb interaction between
the electron and ion with the charge Z and the screening
length A. Then the matrix element for the potential energy
perturbation U, for two electron-phonon states, |k, ®) and
|K’, @), equals

(K, ®'|U, |k, ) = i\/N"E..f( )-(q+g)
> 1 ] - V Mqu qu q g
A 7e?

AN, (q)
) \/:(‘l) (g+g?*+a? Sk-w—q-g0- (9)

Analogously, for U/*

(K, @' U}k, D)
i [N,
= — | — V) +
v Mqpr(qV) (q+g)
47Ze?

h(N,(q) +1)
) /T(q) (qrg+ a2 wmaso (10

Here g is the reciprocal lattice vector.

Energy transfer from the electrons to lattice per unit
volume and unit time can be presented as a sum of energies,
transmitted to phonons of different branches:

dq
an (11)

dE .
G eSow=3 [ Mawniow
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Integration in (11) is performed within the Brillouine zone
(BZ) and

N,(q.g) = fwy(k,k’,g)

X [(N,(q) + 1) f(k")(1 — f(k)
= N,(q)f (k) (1 —f(k)")]

2dk’

X 6(e(k) + fiw,(q) — e(K')) oy

(12)

is the change in number of phonons of v-branch per unit
volume and unit time due to the process k' >k —q — g.
Assuming, as in the works by Kaganov et al. (1957) and
Allen (1987), that electron-electron and phonon-phonon
collisions lead to the fast equilibrium establishment sepa-
rately in the electron and phonon subsystems with the tem-
peratures T, and 7; respectively, we have for the equilibrium
distribution functions f (k) for electrons and N, (q) for phonons:

1

exp(—s(k)T_ M) +1

1
exp<ﬁwu(q)) o
T,

Here w is the electron chemical potential.

For the phonons in the fcc lattice with one atom per unit
cell, having only acoustical modes, we suppose the Debye
dispersion law, w,(q) = s, ¢, where s; = s; is the speed of
longitudinal acoustical phonons, s, 3 = s7 is the speed of
transverse acoustical phonons. For aluminum at 7, = T, = 0
K sound speeds are connected by the relation s; = ys; with
y=2.

The quantity w,,(k,k’,g) in (12) is equal to

f(k) = (13)

N, (q) = (14)

Wu(kv k,’ g) =

T <47Tn62§~(q+g)>2 (15)

pVo, (@ \ (q+g?*+A72

where 7 is the atom number density, n = 4/a>, with a being
the size of the cubic cell of the fcc crystal, p is the mass
density (p = Mn).

Taking into account only eight nearest-neighbor to the
Brillouine zone g = 0 reciprocal lattice vectors and intro-
ducing in the Debye approach longitudinal (L) phonons
with » = 1 and transversal (T') phonons with » = 2,3, we
obtain:

dE

E = 0,(0) + 80,(g;) + 160+(g)). (16)
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Here g, = 27/a(—1;1;1) is the nearest-neighbor reciprocal
lattice vector. Taking into account (13) and (14), we can
write

(N, (@) + Df(K) (1~ f(k)) = N,(q@)f(k)(1 = f(k"))
exp<ﬁw”> exp<@> exp(sy_'u>
T; T, T.
exp(ﬁ;jy>—l exp(S’;eM)-H
hw,
exp(— T )
X . (17)

g —u—ho,
WEETE

The Debye approach corresponds to the change of the
Brillouine zone of fcc lattice to the Debye sphere of radius
kp = (2472)"3/a. The sound speed s, at T, = 0 K, averaged
as

37 1+272y3+1 (18)
53 320 S%o Szo '

is equal to sy = 5,0(3/(2y> + 1))'/? and defines the Debye
temperature ®pg at 7, = 0 K

3 1/3
— ) & 19
2y3+1> L (19)

Opo = hSLo(

For aluminum, longitudinal phonon frequencies w;(g)

can be well found from the “jellium” model. Taking into
account the screened electron-ion interaction, we have

47r7Z%ne?
wro(q) = Aogq BETER (20)

Here A is the screening length at 7, = 0 K. Then the Debye
temperature at 7, = 0 K is given by:

2 1/3 m
DO=Z”"<WH> (n'3ag)e, m (21)

(ap="1?/me? is the Bohr radius, &, = e*/az =27.2 eV is the
atomic unit of energy). For aluminum with Z = 3 it gives
®p0 = 350 K (experimental value corresponds to @, =
380 — 400 K (Girifalco, 1973; Landau & Lifshits, 1980)).
As it is shown by Medvedev and Petrov (1999), when the
electron temperature increases up to T, ~ Ty (T is the Fermi
temperature), longitudinal phonon frequencies increase up
to several times, whereas transverse phonon frequencies do
not depend practically on the electron temperature. Depen-
dence of the longitudinal vibrational frequencies on the
electron temperature is determined by the increase of screen-
ing length:
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A(T,)

o (q) = 510 WS (22)
0

At the same time independent on the electron temperature
transverse phonon frequencies are

SLo

wr(q) = —q. (23)
Y

We calculate the screening length A(7,) in Thomas-Fermi
approach as

-2 — Eﬁ '\/]/’,L_T'e'3 ,LL(n,T;,)
ST T

The electron chemical potential is equal to

A \3
M_M(H’T“)_T“I”%ZW\/%(\/;”_TZ) ) (25)

Here I7,5(x) is a function, inverse to the Fermi integral

; ( ) B 2 foo 11/2 dt (26)
= o exp(t—x)+1’
so that I7,3(1; »(x)) = x.
At T, = 0 K the screening length is
Ao L(m A\ 1/3 1/2
== Sag) V2. 27
) 2<3Z> (n'>ag) (27)
Then the quantities in (16) are:
0.(0) = A(n,T,)
exp < o M) +1
f‘ | o T,
X — —1In
o G(0) T, <80—/J,—ﬁwL)
exp 1
T,
ho, hoy
exp T exp T
(28)

ool

Only longitudinal phonons contribute to the electron-
phonon collisions when g = 0 (Eq. (28)).
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1 2

1 T
0.(5) = —A(n,n,)f sinodof
2 0 0

G(g1)
e —
exp( L M>+1
th Te
T*ln p
e & — — hw
exp< = 'U} L>+l

X , (29)

1 1\?
0:(g1) = 5A<n,Te><£>

kp
T 1 xZ
Xf sin30dt9f
0 o G(g1)
exp< _M>+1
ﬁ e
X ﬂ—1r1
T, (er—,u—ﬁwr)
exp T 1

X . (30)
2
\/x2+2x&cosﬁ+ &
kq kp

For collisions with g # 0 (egs. (29) and (30)) transverse
phonons as well as longitudinal phonons are taken into
account. Equations (28)—(30) contain the following func-
tions of the modulus of the phonon wave number g normal-
ized by the Debye wave number (x = g/qp):

longitudinal phonon frequencies at the electron tempera-
ture 7,

w, =B — —/x, (31)

transverse phonon frequencies

= ™

0
% x. (32)

wr =
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In addition,
2 2/3 Z 2/3 )\ @ 2
CHET TR o
o Mo
2 2/3 2
sL—& = x2+2x&cos0+ &
4 \z kp kp

x 1+B<Z>m A Ooo
2 A 2
0 Ho x2+2x§cos¢9+<&>

X 2

D kD
(34)
2 2/3 2
eT=ﬂ = x2+2x&c030+ &
4 \zZ kp kp
e x :
2 2|
4 Ho x2+2x&c050+ &
kp kp
(35)
Y PO ey P
81 4 T P
1—1/2 i
2
2
X x2+2x&cos0+ & . (36)
kp kp

The coefficient A(n, T,) in Egs. (28)—(30), having the dimen-
sion of the energy per unit volume per unit time, is equal to

372ZN\*3 m A\ w,,
AnT,)=m —(n'Pap)’| —) < T.. (37)
2 M Ao/ ap

Here w,, = &,/h = 4.1 % 10'%s~! is the atomic frequency
unit, B=(2y° +1)/3)', o= (e4,/2) 37*Z2)*7 (n'Pap)?
is the electron chemical potential at 7, = 0 K.

The change of the screening length can be performed as

(i)Z — (377_2)1/3\/ZM & (38)
)\0 a M T(,
o)

The Debye temperature and the electron chemical potential
at 7= 0 K ratio in Egs. (33)—(35) is equal to

Opo _ 2 e /Z
" = 3B 42) " (39)

3. RESULTS

In Fig. 1 the results of the calculation of the energy transfer
from the electrons to the crystalline lattice per unit volume
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Fig. 1. Energy transferred from electrons to the lattice in aluminum crystal
per unit volume per unit time as a function of the electron temperature.
Lattice temperature is chosen to be 7; = 300 K. 1—in the absence of the
umklapp processes in the electron-phonon scattering when considering
only longitudinal phonons and reciprocal lattice vector g = 0; 2—contribution
of longitudinal phonons with g # 0; 3—contribution of the transversal
phonons (for them g # 0) into the electron-lattice energy relaxation;
4—electron-lattice energy transfer when all umklapp processes are taken
into account.

and unit time, as a function of the electron temperature for
aluminum are presented within a wide range of electron
temperatures. All quantities under consideration are mea-
sured in atomic units: v, = az>, t,, = #3 /me*=2.4%10""s.
The lattice temperature in Figure 1 is taken to be 7; = 300 K.
Curve 1 shows the energy transfer in the absence of the
umklapp processes (g = 0) in the electron-phonon scatter-
ing. In this case only the longitudinal phonons take part in
the energy transfer. Even the longitudinal phonons with g #
0 only in addition to the longitudinal phonons with g = 0
nearly redouble the energy transfer rate when taking into
account umklapp processes (curve 2). Curve 3 shows the
contribution of the transverse phonons to the electron-
lattice energy transfer. It takes place only for g # 0 and
exceeds the contribution of longitudinal phonons (curve 2)
even when the number of the transverse vibrational modes is
greater than the number of longitudinal modes. Curve 4 is
obtained when all contributions with g = 0 and g # 0,
including longitudinal and transverse phonons, are taken
into account and presents in our approximation, the total
energy transfer from the electrons to the lattice per unit
volume and unit time when the lattice is at room tempera-
ture. Total energy transfer is several times greater than that
in the case when only longitudinal phonons with g = 0
(curve 1) are taken into account.
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Then we can obtain the electron-lattice energy transfer
rate «, defined by the equation

E - 40
5 L) (40)

Energy transfer rate « as a function of the electron temper-
ature is presented in Figure 2. Curve 1 corresponds to the
energy transfer in the absence of the umklapp processes and
curve 2 takes into account the electron-phonon scattering
with g # 0.

When the energy transfer between the electrons and crys-
talline lattice is known, the system of equations governing
the change of electron and lattice temperatures can be writ-
ten. Neglecting the spatial change of crystal during the short
time of the electron-lattice energy exchange, for the electron
temperatures not exceeding the Fermi temperature, this
system of equations can be written as

LA L 41
2nl-L()d[_ a(e i)~ ( )
3ﬁ— T, — T, 42
ndt_a(e i)' ( )
2
& 4
S
R
2
-“-\
24
1
(__
; 2 3
o
Te, 107K

Fig. 2. Electron-lattice energy transfer rate « as a function of the electron
temperature. 1—electron-phonon scattering with g = 0 only; 2—the umklapp
processes are taken into account.
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Introducing the designation

p=-"" 2 )
4 po’
these equations can be written in the form
daT, @
28T, — = ——(I. = T). (44)
dt n
-1 (45)
d n ¢

As it is shown in Figure 2, a can be considered as a constant
value. Combining Eqgs. (44) and (45) we obtain the energy
integral

BT? + 3T, = e = BT + 3T}. (46)

Here € is the thermal part of initial crystal energy after the
laser pulse, when the electron temperature is equal to 7,5 and
the lattice temperature stays at the room value, 7;, = 300 K.
Substituting 7; from (46) to (44) and integrating equation
obtained, we can write temporal dependence of the electron
temperature 7, and lattice temperature 7; in the form of
equations:

2BT,y+3—¢

L[ 2BTF3+E
<2Bz,0+3+§

‘ 23];.,.3_5 ’1(3/§)

1+(3/€)
= e (47)

1-(3/8€)

2YB(e —3T) +3 ¢

2BT,, +3—¢

— a7 1+(3/¢)
o (2NBe=3T) +3+¢ Z o (4g)
2BT,o+3+&

Here we denote ¢ = V(9 + 4B¢). Now we can obtain from
Egs. (47) and (48) the time 7 needed to heat the crystalline
lattice from the initial room temperature Tj, to the melting
temperature 7, (for aluminum 7,, = 933 K). This time
interval 7 as a function of the initial electron temperature
just after the laser pulse, 7, is presented in Figure 3 for the
case when umklapp processes in the electron-phonon scat-
tering are excluded (curve 1) as well as for the case when
they are taken into account (curve 2). While taking into
consideration umklapp processes, 7 become significantly
shorter.

Assuming in Eqs. (47) and (48), T, =T, = T,, at t — oo, we
obtain the threshold value of the initial electron temperature
T,. for the heating the lattice up to the melting temperature 7,,:

12(7,, — Ti())/-LO
T.=T, |1+ ———— 49
e \/ WZT,,%Z ( )
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Fig. 3. Time interval 7 for heating the lattice from the room temperature to
the melting temperature. 1—in the absence of the umklapp processes;
2—the umklapp processes are taken into account.

For aluminum 7, is equal to 0.01885 a.u. = 5950 K.

To estimate a threshold value of laser fluence J,., which is
necessary to heat the lattice up to the melting temperature,
suppose that the energy of laser pulse is absorbed by elec-
trons within a thin layer 4. Thus we can write the equation:

2 T.. \?
(1 —R)J*—nhZT/.L()(M—). (50)
0

Here R = 0.3 is a reflectivity of aluminum if the laser
wavelength is equal to 620 nm. Assuming 47 = 10 nm, we
obtain J, = 5 mJ/cm?
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