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SUMMARY
In parametric excitation walking, up-and-down motion
of the center of mass restores mechanical energy and
sustainable gait is generated. Not only walking performance
but also walking ability strongly depends on the reference
trajectory of the center of mass. In this paper, we propose an
optimization method for the reference trajectory, in which
the reference trajectory is confined to the quartic spline
curves and the parameters of spline curves are optimized
by a local search method usually used in combinatorial
optimization. We apply the proposed method to a kneed
biped robot and find some remarkably interesting results by
numerical simulations.
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1. Introduction
Parametric excitation is a method to increase mechanical
energy of a system by up-and-down movement of the
center of mass (CoM). A children’s swing is an example
using parametric excitation principle. Parametric excitation
walking was first proposed by Asano et al.1 They applied
the parametric excitation principle to the biped robot with
telescopic legs and showed that the robot walked sustainably
by making CoM of swing leg up-and-down by telescopic
mechanism. Harata et al.2,3 applied the parametric excitation
method to a kneed biped robot, in which the up-and-down
motion of the CoM was realized by bending and stretching
a knee, and showed that sustainable gait was generated by
knee torque only. Harata et al.4,5 also proposed parametric
excitation-based inverse bending walking in which a swing-
leg knee was bent in the inverse direction to human.

The most important thing to apply the parametric
excitation principle is to move CoM along an appropriate
trajectory. For a pendulum, Lavrovskii and Formal’skii6

proved the optimal trajectory, A→B→C→D→E, shown
in Fig. 1, along which the increase of total mechanical
energy was maximized, supposed that the length of a
pendulum l was changed instantaneously. The optimal
trajectory shown in Fig. 1 has nothing but theoretical meaning
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because CoM cannot be moved instantaneously in real
machines. Moreover, there is a significant difference between
a pendulum and a biped robot in that the hip joint of a biped
robot is movable while the supporting point of a pendulum
is fixed at a ceiling and, hence, the trajectory of Fig. 1 may
not be optimal for biped robots.

In spite of this, Asano et al.1 adopted the smoothing
approximate reference trajectory of that depicted in Fig. 1 by
using the cubic sinusoid, and realized sustainable walking on
a level ground. Harata et al.2,3 also used the cubic sinusoid
for the reference trajectory of the swing-leg knee angle.

In this paper, we propose an optimization method for the
reference trajectory of the kneed biped robot proposed by
Harata et al.2,3 In this model, knee torque is designed to
track completely a reference trajectory for the knee angle
of swing leg. Hence, not only walking performance but
also walking possibility strongly depends on the reference
trajectory. For a biped robot, Chevallereau and Aoustin7

proposed an optimization method for reference trajectories.
In their method, a reference trajectory is limited as quartic
spline curves, and their coefficients are treated as decision
variables, and then, general nonlinear optimization solver is
used to optimize these coefficients.

The proposed method also uses quartic spline curves for
a reference trajectory, and their coefficients are optimized.
Both the models of ref. [7] and this paper deal with under-
actuated system, but there is a significant difference between
the biped model in this paper and that of ref. [7]. Our model
has 3 degrees of freedom with only one actuator at a swing-
leg knee while the model of ref. [7] has 5 degrees of freedom
with four actuators. Thus, by taking into account physical
constraints such as the momentum conservation law and a
reaction force from the ground, Chevallereau and Aoustin’s7

model can be dealt with as if a full-actuated system. In
contrast to this, our model cannot be treated as a full-actuated
system, because the stance at heel strike cannot be determined
a priori and, hence, it must rely on numerical simulation.

Therefore, the proposed optimization method adopts the
following strategy. We first generate a steady gait for a certain
(already known) reference trajectory and then generate a
steady gait for a slightly perturbed trajectory. To do this, we
discretize the search space for parameters and utilize a local
search method usually used in combinational optimization
problems.
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Fig. 1. Optimal trajectory of the pendulum for parametric excitation.

To show the practical efficiency of the proposed method,
we apply the method to optimize the reference trajectory
of the relative knee angle of the kneed biped robot.2,3 The
numerical experiments show that the trajectories constructed
by quartic spline are more flexible and more efficient than
those by cubic sinusoid used in the previous papers.2,3

Moreover, the optimal trajectory shown in Fig. 1 for a
pendulum is proven to be almost optimal for the biped robot
from a viewpoint of walking speed.

This paper is organized as follows. Section 2 explains the
model of a biped robot treated in this paper and parametric
excitation walking. In Section 3, we first introduce the
reference trajectory using the quartic spline curve and then
propose the optimization method for the reference trajectory.
Section 4 shows the numerical results of the proposed
method. Finally, in Section 5, we conclude.

2. Parametric Excitation Walking
In this section, we first introduce the biped robot treated in
this paper and then explain the parametric excitation walking
proposed by Harata et al.2,3 For details, please refer to ref. [3].

2.1. Model of planar biped robot with semicircular feet
Figure 2 illustrates the model of a biped robot treated in this
paper. The robot has five point masses, such that each leg
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Fig. 2. Model of a planar kneed biped robot with semicircular feet.

has two masses and the remaining one is at the hip joint, and
has semicircular feet whose centers are on each leg. Each
leg has an actuated knee joint, but the support leg is fixed
in a straight posture (see Fig. 2). Therefore, the robot has 3
degrees of freedom, and the three angles θ1, θ2, and θ3 shown
in Fig. 2 are taken as generalized coordinates. Each angle is
taken in a clockwise direction from vertical upward.

In this model, the robot gait consists of the following three
phases:

� The first phase (single support phase I): A support leg
rotates around the contact point between a semicircular
foot and the ground, and the knee of the swing leg is not
fixed and, hence, the knee angle of the swing leg can be
controlled by an input torque.

� The second phase (single support phase II): A support leg
rotates around the contact point like phase I, but the swing-
leg knee is fixed in a straight posture. When it turns from
the first phase to the second phase, a completely inelastic
collision is assumed to occur at the swing-leg knee.

� The third phase (double support phase): This phase occurs
instantaneously when a swing leg touches down the
ground, and then the role of a support leg and that of a
swing leg are exchanged.

The dynamic equation during the single support phase
takes the form

M(θ )θ̈ + C(θ , θ̇)θ̇ + g(θ ) = SuK − JTλ, (1)

where θ = [ θ1 θ2 θ3 ]T is the generalized coordinate vector,
M is the inertia matrix, C is the Coriolis force and the
centrifugal force, and g is the gravity vector. The matrix J =
[ 0 1 −1 ] is the Jacobian derived from the knee constraint,
θ2 = θ3, and λ ∈ R is the knee binding force. The control
input vector SuK in Eq. (1) is given by

SuK =

⎡
⎢⎣

0

−1

1

⎤
⎥⎦ uK, (2)

where uK is the input torque for a swing-leg knee.
We now explain impact equations. In the biped robot model

dealt with in this paper, there are collisions at the knee
and the ground. First, we explain an impact equation at the
knee. When a swing leg straightens, a completely inelastic
collision is assumed to occur at the knee of the swing leg. The
coordinates θ̇− and θ̇+, which correspond to before and after
the knee impact, respectively, are related by the following
equation:

M(θ )θ̇+ = M(θ)θ̇− + JT λK, (3)

where λK is the constraint force making J θ̇+ = 0. This force
is given by

λK = −( J M (θ )−1 JT )−1 J θ̇−. (4)

From Eqs. (3) and (4), angular velocities after the knee impact
are

θ̇+ = (I3 − M(θ )−1 JT( J M(θ )−1 JT )−1 J)θ̇−. (5)
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Fig. 3. Geometric relation at the heel-strike instant.

Angular positions do not change before and after the impact.
We remark that, by using the control input explained
below, a collision at a swing-leg knee just before phase
II is negligible. Next, we explain the impact equation at
the ground. We assume that a collision at the ground is
completely inelastic. To derive the impact equation, we
introduce the separated model shown by Fig. 3 and introduce
the generalized coordinate of legs i, (i = 1, 2), such as
q = [q1 q2 ]T, where qi = [xi yi θi ]T. Let the superscripts
“−” and “+” correspond to before and after the impact at
the ground, respectively. Then, we have q− = q+, because
the positions do not change before and after the impact. The
impact equation of generalized coordinates takes the form

M̄ (q) q̇+ = M̄ (q) q̇− + J I (q)T λI , (6)

where λI is an undetermined multiplier vector corresponding
to impulse force, such that J I (q) q̇+ = 0, and M̄(q) ∈ R

6×6

is the inertia matrix.
There are some constraints among coordinates. First, from

geometric conditions we have

z2 = R,

x1 + (l − R) sinθ1 = x2 + (l − R) sinθ2, (7)

z1 + (l − R) cosθ1 = z2 + (l − R) cosθ2.

These equations mean that the height of the center of foot
of the support leg equals the foot radius, and that vertical
and horizontal hip positions from (x1, z1) equal hip positions
from (x2, z2). In addition, the rate constraint that the foot of
the support leg rolls on the ground is given by

ẋ+
2 = Rθ̇+

2 . (8)

The Jacobian J I is derived by differentiating (7) and by
incorporating (8), such that

J I

=

⎡
⎢⎢⎢⎣

0 0 0 0 1 0

1 0 (l − R)cosθ1 −1 0 −(l − R)cosθ2

0 1 −(l − R)sinθ1 0 −1 (l − R)sinθ2

0 0 0 1 0 −R

⎤
⎥⎥⎥⎦.

(9)

The multiplier vector λI is given by

λI = (
J I M̄ (q)−1 JT

I

)−1
J I q̇−. (10)

Therefore, the velocity of the generalized coordinate after
collision becomes

q̇+ =
(

I6 − M̄(q)−1 JT
I

(
J I M̄(q)−1 JT

I

)−1
J I

)
q̇−. (11)

The dynamics of our biped robot is completely determined
by the dynamic Eq. (1) and impact Eqs. (5) and (11).

2.2. Parametric excitation walking
In this subsection, we explain the application of the
parametric excitation walking2,3 to the robot introduced in
the previous subsection. The reference trajectory h̃ of the
relative angle of a swing leg is given in refs. [2,3] as follows:

h̃(t) = (θ2(t) − θ3(t))d

=
⎧⎨
⎩

Am sin3

(
π

Tset − δ
(t − δ)

)
(δ ≤ t ≤ Tset)

0 (otherwise),
(12)

where Am is the maximum bending angle, δ > 0 is the
beginning time of bending. The time parameter t means a
relative time from the beginning of the first phase, that is, t is
reset to be zero just after the third phase and Tset is the time
just before the second phase. Therefore, the parameter Tset

should be determined to be shorter than the walking period.
We remark that, by using the partial linearization

method,2,3 the input torque uK for a swing-leg knee can be
designed so that the relative knee angle completely coincides
with a given reference trajectory, suppose that the trajectory is
sufficiently smooth (e.g. the second derivative is continuous).
For a reference trajectory of (12), the input torque is designed
as

uK = ([ 0 1 −1 ]M−1 S)−1[ 0 1 −1 ]M−1

×(M[ 0 0 − ¨̃h ] + C θ̇ + g). (13)

3. Optimization Method for Reference Trajectories
In this section, we first introduce the reference trajectory
using quartic spline curves and then propose an optimization
method for a reference trajectory.

3.1. Reference trajectory using quartic spline curve
A quartic spline curve is given by

s(t) = a + bt + ct2 + dt3 + et4. (14)

Here, a, b, c, d, and e are constant parameters, which
are determined uniquely by five constraints. Let the time
parameter t indicate a relative time from the beginning
of the first phase, and Tset denote the time just before
the second phase. Then, by using quartic spline curves, a
reference trajectory for the relative knee angle θ2 − θ3 of
the swing leg is designed during the first phase [0, Tset]. We
first divide the time interval [0, Tset] into seven intervals by

https://doi.org/10.1017/S0263574710000342 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574710000342


588 An optimization method for the reference trajectory of parametric excitation walking

six time parameters, 0 ≤ t1 < t2 < t3 ≤ t4 < t5 < t6 = Tset,
where t1 denotes the beginning of bending, t3 denotes the
end of bending, t4 denotes the beginning of stretching, and t6
denotes the end of stretching. The remaining time parameters,
t2 and t5, are additional points used to make a trajectory
flexible and smooth. Thus, a swing-leg knee is kept in a
straight posture during the interval [0, t1] and is maintained
to be the maximum bending angle Am during the interval
[t3, t4]. Quartic spline curves should be designed for the four
intervals: [t1, t2], [t2, t3], [t4, t5], and [t5, t6]. Consequently,
the reference trajectory h is given by

hT (t) = (θ2 (t) − θ3 (t))d

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if 0 ≤ t < t1

a1 + b1t + c1t
2 + d1t

3 + e1t
4 if t1 ≤ t ≤ t2

a2 + b2t + c2t
2 + d2t

3 + e2t
4 if t2 ≤ t ≤ t3

Am if t3 ≤ t ≤ t4

a4 + b4t + c4t
2 + d4t

3 + e4t
4 if t4 ≤ t ≤ t5

a5 + b5t + c5t
2 + d5t

3 + e5t
4 if t5 ≤ t ≤ t6,

(15)

where the subscript T denotes a six-tuple of time parameters,
T = (t1, . . . , t6). There are 21 parameters, ai , bi , ci di , ei

(i = 1, 2, 4, 5) and the maximum bending angle Am, in the
definition of h. We impose 14 constraints, 8 of which are that
the first and second derivatives at t = t1, t3, t4, t6 equal zero,
and the remaining six are that the first to third derivatives at
points t2, t5 are continuous. Therefore, the above parameters
are uniquely determined for given time parameters t1, . . . , t6
and the maximum bending angle Am. An example of the
trajectory hT for a certain T is illustrated in Fig. 4.

3.2. Optimization method for reference trajectory
As stated in the preceding subsection, the reference trajectory
hT for a swing-leg knee angle is uniquely and completely
determined when time parameters t1 ∼ t6 and the maximum
bending angle Am are given. Since the dynamic equation of
our model is nonlinear, a steady gait for the given reference
trajectory is in general difficult to obtain analytically. In
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Fig. 4. Example of the reference trajectory using quartic spline
curve.

particular, our biped robot has 3 degrees of freedom, but
has only one actuator at the swing-leg knee and, hence, the
stance at heel strike cannot be determined a priori. Therefore,
generating a steady gait is to rely on numerical simulation,
which starts from a certain initial condition and succeeds
to obtain a convergent steady gait by solving the dynamic
equation and impact equation numerically. However, the
initial condition itself strongly depends on the reference
trajectory, and is difficult to determine a priori. Moreover, it
takes a long simulation time to obtain a convergent steady
gait from an initial condition. These issues are a significant
drawback in optimizing a reference trajectory.

Therefore, the optimization method proposed in this paper
adopts the following strategy. The method starts from a
steady gait corresponding to the reference trajectory known
to generate sustainable walking and evaluate a walking
performance index value for the steady gait. Next, the method
perturbs slightly the above-mentioned reference trajectory
and generates the steady gait corresponding to the perturbed
trajectory from the above-mentioned gait as initial gait. When
the difference between these trajectories is small enough, the
difference between these corresponding steady gaits is also
small, and it is expected to take a little time to generate a
convergent steady gait. Then, if the walking performance
index value of the perturbed trajectory is better than that
of the original trajectory, we update the trajectory and the
corresponding gait, and repeat the above procedure.

The generic optimization method for the given maximum
bending angle Am is summarized as follows.

Step 0 (Initialization). Choose a known steady gait W0

corresponding to the reference trajectory hT0 with six-
tuple of time parameters T0 = (t0

1 , . . . , t0
6 ). Evaluate

a walking performance index value p0 for the gait
W0. Set k = 0.

Step 1. Choose T̄k from a neighborhood of Tk .
Step 2. Starting from the gait Wk , perform a simulation until

the gait converges to the steady gait W̄k corresponding
to the reference trajectory hT̄k

.
Step 3. If the simulation fails to converge, or if the walking

performance index value p̄k for the gait W̄k is worse
than pk , choose another T̄k and repeat Step 2. If there
is no candidate of T̄k in a neighborhood of Tk , stop.
Output the current gait Wk .

Step 4 (Update). Set Wk+1 = W̄k , Tk+1 = T̄k , and pk+1 =
p̄k . Set k = k + 1 and go to Step 1.

It is worth mentioning some practical implementation
issues. The first and significant issue is that the search
space for time parameters t1 ∼ t6 is inherently continuous.
However, numerical simulation is in general implemented in
discrete time spaces on a computer and, hence, we discretize
the search space a priori. According to this, we adopt the
neighborhood of Tk in Steps 1 and 3, as the Hamming distance
between T̄k and Tk is one, that is, one of time parameters
t1 ∼ t6 is different with one unit.

The second issue is a walking performance index which
is an object of the above optimization algorithm. In the
numerical simulations in the next section, we use the four
indices, namely the average walking speed, the foot clearance
which is the highest position of the bottom of a swing
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leg, the maximum value of input torque, and the specific
resistance (SR). Among them, the SR, which represents
energy efficiency,8 is defined as

SR =

∫ T −

0+
|uK (θ̇2 − θ̇3)|dt/T

MggV
. (16)

In Eq. (16), 0+ and T − represent the time just after and
before the collision, respectively, at the ground, Mg is the
total mass of a biped robot, and V is the walking speed of
one step. The smaller the SR value is, the more efficient a
walking is.

The proposed algorithm is inherently the same as local
search methods usually used in combinatorial optimization
problems and, hence, the method in general can find a local
minimum only. In particular, the local minima obtained by the
algorithm depend on an initial steady gait and the selection
rule from a neighborhood in Steps 1 and 3.

4. Simulation Results
In this section, we show the simulation results of the
optimization method proposed in the previous section applied
for the biped model (Fig. 2), whose physical parameters are
shown in Table I.

In the simulation, the time parameter t6 is fixed as
t6 = Tset = 0.45 s, and the search space for the other time
parameters t1, . . . , t5 is the interval [0, 0.45], which is
discretized in 0.01 s. The initial steady gait corresponds to the
reference trajectory h defined by (15) with Am = 1.00 rad,
t1 = 0.14, t2 = 0.19, t3 = 0.30, t4 = 0.30, t5 = 0.44, and
t6 = 0.45. The selection rule of a neighborhood in Steps 1
and 3 is t1, t2, . . . , t5 in order. In the simulation, when a local
optimal solution is obtained, then the maximum bending
angle Am reduced by 0.01 rad, and the optimization method
is applied again in which the previous local optimal gait is as
the initial gait. This procedure is repeated until a steady gait
is failed to be found.

For the comparison purpose, we also optimize the
reference trajectory h̃ defined (12) using cubic sinusoid. In
this case, Tset is fixed as Tset = 0.45 s and the optimal bending
delay δ is found for each Am by a simple exhaustive search
for the interval [0, 0.45] discretized in 0.01.

4.1. Comparison between h and h̃

We first present the results of optimization with respect to SR.
The results are summarized in Figs. 5 and 6. In these figures,
circles denote the results for quartic spline curve h and
crosses denote those for cubic sinusoid h̃. Figure 5 depicts the
optimal SR for each bending angle Am, and corresponding

Table I. Physical parameters of the robot.

a2 0.18 m R 0.15 m
a1 0.12 m m1 0.4 kg
r2 0.09 m m2 1.6 kg
r1 0.06 m mH 2.2 kg
l 0.30 m
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Fig. 6. Comparison of walking speeds between h and h̃.

walking speed is depicted in Fig. 6. From Fig. 5, it is observed
that the reference trajectory h using quartic spline curves
is more efficient than h̃ using cubic sinusoid. In addition,
the reference trajectory h can generate a sustainable gait
in the region Am ≥ 0.63 rad, while the reference trajectory
h̃ can generate the gait in the region Am ≥ 0.76 rad. This
result suggests that the reference trajectory h can restore
more energy than the reference trajectory h̃ at small Am. It is
observed from Fig. 5 that there is an optimal bending angle
with respect to SR, such as about 0.71 rad for the reference
trajectory h and about 0.82 rad for h̃, while in both cases
walking speed is faster as bending angle becomes larger as
shown in Fig. 6.

To see in more detail, we consider the case of the maximum
bending angle Am = 0.82 rad, which is the most efficient in
h̃. Table II shows the value of four walking performance
indices, such as SR, walking speed, the maximum torque,
and foot clearance, for the optimal trajectories h and h̃ with
Am = 0.82 rad. From Table II, the walking speed and the foot
clearance of the reference trajectory h are larger than those
of h̃, while the maximum torque of the reference trajectory
h̃ is smaller than that of h. Figure 7 illustrates the optimal
trajectories for h and h̃. In Fig. 7, the solid line denotes h and
the dashed line denotes h̃. Time parameters of the trajectory
with h are shown in Table III, and the optimal delay δ for h̃
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Table II. Simulation results.

h̃ h

SR [−] 0.1041 0.0759
Walking speed (m/s) 0.2050 0.2662
Maximum torque (Nm) 0.6440 0.7518
Foot clearance (mm) 0.075 0.338

Table III. Optimal parameters.

t1 t2 t3 t4 t5 t6

0.17 0.22 0.29 0.34 0.44 0.45
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Fig. 7. Optimal trajectory for Am = 0.82 rad.

is 0.18 s. It is observed from Fig. 7 that the swing-leg knee is
kept in the maximum bending angle about 0.05 s in h. This
is one reason why the reference trajectory h is more efficient
than h̃.

Next, we present the results of optimizing the trajectory
h with Am = 0.82 rad in limiting the duration, (t4 − t3) of
keeping the maximum bending angle, to show the effect of
duration. Table IV shows the optimal SR, walking speed
(denoted by WS), and time parameters. From the table, it is
observed that SR is larger, and walking speed is smaller as
max (t4 − t3) is smaller. Table IV shows that the result of
h without duration (that is, (t4 − t3) = 0) is more efficient
than that of h̃ with the same maximum bending angle Am =
0.82 rad. The trajectory of this case is also depicted in Fig. 7
(denoted by the dot-dashed line). By comparison of this with

Table V. Results of similar walking speed.

h̃ h

Am (rad) 0.97 0.82
SR (−) 0.1143 0.0759
Walking speed (m/s) 0.2648 0.2662
Maximum torque (Nm) 0.8191 0.7518
Foot clearance (mm) 0.386 0.338
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Fig. 8. Reference trajectory of the similar walking speed.

h̃, it is found that the efficiency of h more than h̃ is brought
by the flexibility, in particular, asymmetricity, of h.

Next, we compare the optimal reference trajectories
between h and h̃ with respect to SR in the case of almost
same walking speed, about 0.265 m/s. The results are shown
in Figs. 8 and 9 and Table V. Figure 8 shows the optimal
reference trajectories, where the solid line denotes h and
the dashed line denotes h̃. Figure 9(a) shows the angular
position of the reference trajectory h, Fig. 9(b) shows the
mechanical energy of the reference trajectory h, Fig. 9(c)
shows the angular position of the reference trajectory h̃,
and Fig. 9(d) shows mechanical energy of the reference
trajectory h̃. From Figs. 9(b) and (d), it is observed that the
variation of mechanical energy of the reference trajectory h

is smaller than that of h̃. This is another certification that the
reference trajectory h is more efficient than h̃. In general,
the variation of mechanical energy equals input power and,
hence, the smaller the variation of mechanical energy is,
the more efficient a walking is in the case of almost the
same walking speed. We note that from Figs. 9(b) and (d)
the energy lost by the knee collision is almost zero for

Table IV. Optimal parameters subject to duration of keeping the maximum bending.

max(t4 − t3) SR (−) WS (m/s) t1 t2 t3 t4 t5 t6

0.05 0.0759 0.2662 0.17 0.22 0.29 0.34 0.44 0.45
0.04 0.0768 0.2624 0.17 0.22 0.29 0.33 0.44 0.45
0.03 0.0786 0.2576 0.17 0.22 0.29 0.32 0.44 0.45
0.02 0.0808 0.2518 0.17 0.22 0.29 0.31 0.44 0.45
0.01 0.0835 0.2449 0.17 0.22 0.29 0.30 0.44 0.45
0.00 0.0870 0.2365 0.17 0.22 0.29 0.29 0.44 0.45
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Fig. 9. Simulation results of same walking speed.
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Fig. 10. Optimal trajectories for each index.

both reference trajectories h and h̃. Table V summarizes
the maximum bending angle and walking performance index
values for the gaits shown in Fig. 9. From the table, it is
observed that the SR and the maximum input torque of the
reference trajectory h are better than those of h̃, while the
foot clearance of h is worse than that of h̃. This is simply
because that the maximum bending angle Am of h̃ is larger
than that of h.

Simulation results in this section show that the reference
trajectory h is more efficient than h̃. This is because of
the duration of keeping the maximum bending angle and
asymmetricity of h. In addition, it is observed from Table II
that the foot clearance of the reference trajectory h is larger
than that of the reference trajectory h̃. This is because the
end of bending swing leg of h is faster than that of h̃.

4.2. Results with respect to other walking
performance indices
Finally, we present the results of optimization with respect
to other indices, such as walking speed, foot clearance, and
the maximum input torque. In the simulations, we fix the
maximum bending angle and the time parameter t6 as Am =
0.90 rad and t6 = 0.45 s, respectively.

The results are summarized in Tables VI and VII and
Fig. 10. Table VI presents performance index values. The
first row of Table VI presents the results with respect to
walking speed, the second row presents those with respect to
foot clearance, the third row presents those with respect to the
maximum input torque and the forth row presents those with
respect to the SR. Figure 10 illustrates the optimal trajectories
for each performance index and the corresponding time
parameters are shown in Table VII. In Fig. 10, the solid

Table VI. Results of optimization with respect to some indices.

Index WS (m/s) FC (mm) MT (Nm) SR (−)

Walking speed (WS) 0.3350 0.409 39.1941 1.2922
Foot clearance (FC) 0.2396 1.504 4.4147 0.2664
Maximum torque (MT) 0.2758 0.758 0.7071 0.0942
Specific resistance (SR) 0.2957 0.488 0.8391 0.0813
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Table VII. Parameters of optimal trajectories.

Index t1 t2 t3 t4 t5 t6

Walking speed 0.20 0.21 0.22 0.41 0.42 0.45
Foot clearance 0.02 0.27 0.31 0.39 0.41 0.45
Maximum torque 0.09 0.12 0.34 0.34 0.44 0.45
SR 0.17 0.20 0.29 0.33 0.44 0.45
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Fig. 11. Position of CoM of swing leg.

line denotes the optimal trajectory for SR, the dashed line
denotes the optimal trajectory for walking speed, the dotted
line denotes the optimal trajectory for foot clearance, and the
dot-dashed line denotes the optimal trajectory for maximum
torque.

From Table VI, it is observed that maximum torque is large
in the case of foot clearance and walking speed. In particular,
the optimized result for walking speed needs the maximum
input torque, 39 Nm, and hence, SR is the largest. This is
because the knee motion in this case is very quick, such as the
interval of bending is 0.02 s. From Fig. 10 and Table VII, it is
observed that the beginning of the bending, t1, is early in the
case of optimizing foot clearance. In the case of optimizing
maximum torque, there is no keeping interval. The obtained
trajectory for walking speed seems impossible to be realized
with a real actuator because it requires too large torque, about
39 Nm. In the case of foot clearance, knee torque is relatively
large compared with a robot size and, hence, it also seems
difficult to realize the trajectories with a real actuator. On the
other hand, the obtained trajectories for maximum torque and
SR may be realized with a real actuator in view of maximum
torque.

We remark that the optimal trajectory with respect to
walking speed is very close to the optimal trajectory for
the pendulum shown in Fig. 1. To see this in more detail,
we depict the relative position of CoM of swing leg in one
step. In Fig. 11, the solid line denotes the optimal trajectory
of CoM of swing leg with respect to walking speed, and the
dot-dashed line denotes the optimal trajectory for pendulum,
the direction of the motions is indicated by arrows, the origin
is corresponding to the position of hip joint of the robot, the
horizontal axis represents horizontal position and the vertical
axis represents vertical position. The white circle denotes the
position of the beginning of bending and the black circle

denotes the position of the end of stretching of the optimal
trajectory of CoM of the swing leg with respect to walking
speed. From Fig. 11, it is observed in the optimal trajectory
with respect to walking speed that CoM is raised very quickly
at the bottom of the swing leg and it was also made down
very quickly at the highest point. This indicates that the
trajectory of CoM of the swing leg is very close to the optimal
trajectory for the pendulum. This is a remarkable result which
reveals that the optimal trajectory for the pendulum is also
meaningful for parametric excitation walking in a certain
sense, despite that the structure of the pendulum and a biped
robot are quite different.

There is no keeping interval in the case of optimizing
maximum torque. The faster the knee motion is, the larger
torque is required. Hence, the reference trajectory has no
keeping interval in order to smooth the knee motion. When
maximum torque is small, walking speed is small. On the
other hand, when walking speed is large, large torque is
required. Therefore, the reference trajectory in the case
of optimizing SR is between that of walking speed and
maximum torque in some sense. To increase foot clearance,
a biped robot should keep bending swing leg. As a result
of the optimization for foot clearance, the beginning time of
bending swing leg becomes early and the end of stretching
swing leg delays.

Remark 4.1. We set the maximum step for solving
differential equation numerically with MATLAB as 0.001 s
and, hence, we chose discretization for the trajectory time as
0.01 s (10 times larger than maximum integral step). If we
discretize the trajectory time finer, we should make maximum
integral step finer. However, small integral time causes large
time consumption and may cause numerical error. Therefore,
we chose discretization for the trajectory time as 0.01 s.

All simulations were implemented on WINDOWS XP SP3,
Core 2 Duo 3.16 GHz, 3.25 GB memory with MATLAB
R2008a. It takes about 360 s on average to converge a steady
gait and to evaluate a walking performance index value after
each perturbation.

5. Conclusion and Future Works
In this paper, we proposed the optimization method for
parametric excitation walking. We utilized the quartic spline
curve instead of cubic sinusoid and optimized the parameters
of spline curve with respect to some indices. Simulation
results showed that the proposed method could yield various
gaits corresponding to maximum walking speed, maximum
foot clearance, minimum input torque, and the most energy
efficiency. For example, the SR of optimal gait was three-
tenths of previous parametric excitation walking. In addition,
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we showed that the optimal trajectory with respect to
walking speed is very close to the optimal trajectory for the
pendulum.

Some remarks and subjects of future works are
summarized as follows.

(1) The proposed method in general could find a local
minimum only. We expect that the proposed method
will be improved by incorporating with some globalizing
technique, such as genetic algorithm (GA), multi-start
local search, and so on.

(2) In this paper, we use a quartic spline curve to make the
acceleration smooth. When the obtained trajectories are
applied to a real robot, an actuator will be controlled
by proportional-derivative (PD) controller and, hence, a
knee may not track the reference trajectory completely.
On the other hand, some modifications of the proposed
method are available soon, such that, introducing five-
order spline curves to smooth jerk, or introducing a
maximum torque constraint. To clarify how much these
modifications influence the results is also one of the
subjects for future research.

(3) The proposed method optimized the reference trajectory
only. To grow in more efficiency, it is important to
optimize the physical parameters of the biped robot, for
example mass and link length.

(4) Another method to grow in efficiency is the parametric
excitation based ornithoid walking4,5 and the combined
parametric excitation walking proposed by Harata et al.9

In the next paper, we will apply the proposed optimization
method to the above parametric excitation walking

methods and will improve the efficiency of these
methods.
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