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We relate Kaptsov’s method of B-determining equations for finding invariant solutions of

PDEs to the nonclassical method and to the method of generalised conditional symmetries.

An extension of Kaptsov’s method is then used to find new solutions of degenerate diffusion

equations.

1 Introduction

The technique for finding exact solutions of the widest variety of Differential Equations

(DE) comes from Lie group analysis of differential equations, initiated by Sophus Lie

(1881) over 100 years ago. Since then, there have been many advances in the area of

symmetry analysis of DEs, particularly in the area of higher-order symmetries.

In this paper, we look at how one such very recent advance, namely the method of

B-determining equations for finding invariant solutions (Kaptsov, 1995), relates to the

nonclassical method (Bluman & Cole, 1969) and the method of Generalised Conditional

Symmetries (GCS) (Fokas & Liu, 1994), for a scalar Partial Differential Equation (PDE):

Ω(x, u, u1, u2, . . .) = 0, (1.1)

where x = (x1, x2, . . . xn) denotes n independent variables, u denotes the dependent variable,

and

uk =
∂ku

∂xi1∂xi2 . . . ∂xik

denotes the set of co-ordinates corresponding to all kth order partial derivatives of u

with respect to x. In Kaptsov’s method, a useful extension of the classical symmetry

determining relations is made by incorporating an additional factor B. One aspect that

has not been mentioned before is that a non-zero B-factor may occur when a classical

symmetry is simply multiplied by a scalar function to form an equivalent nonclassical

symmetry.

We begin by providing a brief conceptual background to this paper. Readers who

require further details may refer to the comprehensive accounts of Bluman & Kumei

(1989), Olver (1986) and Ibragimov (1994).
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1.1 Nonclassical method

Bluman & Cole (1969) proposed a generalisation of Lie’s method for finding group-

invariant solutions, which they called the nonclassical method. In this method, also

known as ‘the method of conditional symmetries’, our PDE (1.1) is augmented with its

Invariant Surface Condition (ISC) ∑
i

Xiuxi +N = 0, (1.2)

where Xi and N are functions of x and u. Then the requirement that this system be

invariant under

x∗i = xi + εXi(x, u) + O(ε2)

u∗ = u− εN(x, u) + O(ε2), (1.3)

or equivalently,

x∗i = xi

u∗ = u− ε(N(x, u) +Xiuxi ) + O(ε2) (1.4)

yields an overdetermined nonlinear system of equations for the infinitesimals Xi and N,

the solutions of which are the nonclassical symmetries. Given a nonclassical symmetry,

one may construct invariant solutions that satisfy not only the governing PDE (1.1), but

also the invariance condition (1.2). Hence the set of such invariant solutions includes

all those to be found by the classical method and thus, in general, is a larger set. By

the nonclassical method, it is possible to find further types of explicit solutions by the

same reduction technique that is commonly used in the classical method. Indeed, it is

known that there do exist PDEs which possess symmetry reductions not obtainable via

the classical Lie group method (e.g. see Goard & Broadbridge (1996), Arrigo, Hill &

Broadbridge (1994) and Clarkson & Mansfield (1994)).

We will say that a nonclassical symmetry (Xi,N) is equivalent to some classical symmetry

vector field with co-ordinates (X̄i, N̄) if

(X̄i, N̄) = ψ(x, u)(Xi,N) (1.5)

for some function ψ. This is a practical definition of equivalence, since both of these

symmetries have the same invariant surface, leading to the same invariant reductions

of the governing PDE. We will use the term ‘strictly nonclassical’ for the nonclassical

symmetries which are not equivalent to any classical symmetry.

Since 1969 there have been various modifications to the nonclassical method. In

particular, Clarkson & Kruskal (1989) developed a direct, algorithmic and non-group

theoretic method called the direct method for finding symmetry reductions. However Levi

& Winternitz (1989) established, using a group-theoretic explanation, that all new solutions

obtained by the direct method can also be obtained using the nonclassical method.

1.2 Generalised Conditional Symmetries (GCS)

Fokas & Liu (1994) define GCS as follows:
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‘The function σ(u) is a GCS of the equation ut = K(u) iff

K ′σ − σ′K = F(u, σ), F(u, 0) = 0, (1.6)

where K(u), σ(u) are differentiable functions of u, ux, uxx, . . . , while F(u, σ) is a differentiable

function of u, ux, uxx, . . . and σ, σx, σxx, . . . and prime denotes the Frechét derivative.’

This definition can easily be extended to any PDE, so that a GCS of (1.1) is defined as

a function σ of x, u, u1, u2, . . . , which satisfies

Γ (σ)Ω + F(u, σ)|Ω=0 = 0, F(u, 0) = 0, (1.7)

where

Γ (σ) = σ
∂

∂u
+
∑
|α|>1

Dα(σ)
∂

∂uα
, (1.8)

and where Dα = Dα1
x1
. . . Dαnxn and Dxi is the total xi derivative.

1.3 B-determining equations

Kaptsov (1995) introduces the concept of B-determining equations of a system of PDEs

that generalise the defining equations of the symmetry groups. For a scalar PDE (1.1),

Kaptsov defined equations of the form

Γ (σ)Ω + Bσ|Ω=0 = 0, (1.9)

where Γ (σ) is defined in equation (1.8), as a ‘B-determining equation’, where B is a

function of x,u, u1, . . . , and the function σ of x, u, u1, u2, . . . , generates a manifold σ = 0 in

the graph space of (x, u).

2 Relationship between B-determining equations and the nonclassical method

If we set σ to be the ISC

σ =
∑
i

Xiuxi +N, (2.1)

where Xi and N are functions of x and u, then the nonclassical method on (1.1) requires

Γ (σ)Ω|Ω=0;σ=0 = 0 (2.2)

i.e σ = 0 and its differential consequences are substituted into

Γ (σ)Ω|Ω=0. (2.3)

We can now easily compare this with (1.9). The term Bσ in equation (1.9) is equivalent

to substituting the ISC σ = 0, but not its differential consequences, into (2.3). Hence the

symmetries σ of the form (2.1) found by the B-determining equations method are a subset

of the full class of nonclassical symmetries. In practice, this is often a very convenient

method for finding interesting nonclassical solutions, without needing to resort to the

method of nonclassical symmetries in its full generality.

Kaptsov (1994) considered the nonlinear Poisson equation

uxx + uyy = f(u), (2.4)
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for which the corresponding B-determining equation is

D2
xσ + D2

yσ − (fu + b)σ = 0, (2.5)

subject to (2.4). Here he chose b to be a function of x, y and u, and σ to be the ISC:

σ = Xux + Y uy +N. (2.6)

He suggests that a solution (X,Y ,N) to (2.5) for b� 0 leads to a strictly nonclassical

symmetry.

To obtain all the possible nonclassical symmetries of (2.4), we would need to consider

the following more general version of (2.5):

D2
xσ + D2

yσ − fu + [B1(x, y, u)uxx + B2(x, y, u)u2
x + B3(x, y, u)ux + B4(x, y, u)]σ

+ [B5(x, y, u)ux + B6(x, y, u)]σ2

+ [B7(x, y, u)ux + B8(x, y, u)]σx

+ B9(x, y, u)σσx

+ B10(x, y, u)σy + B11(x, y, u)uxσy

= 0, (2.7)

subject to (2.4). However, we will demonstrate that a non-zero function Bi does not

necessarily imply a strictly nonclassical symmetry.

Letting B10 = B11 = 0, substitution of (2.6) into (2.7) yields the determining equations

(A.1) (see the Appendix), where on eliminating the Bi terms, we find the determining

equations (A.2), with the Bi as specified in (A.3). We consider two solutions of (A.2):

Solution 1

X = 0, Y = ecx, N = eax+by, (2.8)

f = (a2 + b2 + c2 − 2ac)u+ d, a, b, c, d constants.

In this case, the non-zero functions Bi are

B4(x, y, u) = c2

B8(x, y, u) = −2c.

However, (2.8) does not correspond to a strictly nonclassical symmetry as (2.4) is

invariant under

(X̄, Ȳ , N̄) = e−cx(X,Y ,N),

which can be chosen to be the classical symmetry (0, 1, e(a−c)x+by).

Solution 2

X = tan(cx/2 + d) + β sec(cx/2 + d)e
−cy

2 , Y = 1, N = a, (2.9)

f = Be
cu
a , a, c, d constants.

In this case, the non-zero function Bi is

B8 = −βc sec
(cx

2
+ d
)
e
−cy

2

However, (2.9) again does not correspond to a strictly nonclassical symmetry as (2.4) is
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invariant under

(X̄, Ȳ , N̄) = cos
(cx

2
+ d
)
e
cy
2 (X,Y ,N),

which is the classical symmetry (sin(cx/2 + d)e
cy
2 + β, cos(cx/2 + d)e

cy
2 , a cos(cx/2 + d)e

cy
2 ).

Hence, as nonclassical symmetries can be equivalent to classical symmetries by relationship

(1.5), a non-zero function Bi in (2.7) does not ensure a strictly nonclassical symmetry. That

is, if all the functions Bi can be effectively set to zero, by multiplying each infinitesimal

by some non-zero function of x and u, then the symmetry is not strictly nonclassical. The

usual simplification of setting Y = 1 in finding nonclassical symmetries would not be

appropriate here if we wanted to check if all the functions Bi could be set to zero in this

manner. We note that Kaptsov’s method will not always require as many functions Bi as

in (2.7).

Consider the reaction-diffusion equation

ut = uxx + f(u), (2.10)

for which the corresponding B-determining equation is

Dxxσ − Dtσ + σfu + bσ|ut=uxx+f(u) = 0. (2.11)

To find all the possible nonclassical symmetries of (2.10), we would need the following

extension of (2.11):

Dxxσ − Dtσ + σfu + [B1u
2
x + B2ux + B3]σ + [B4ux + B5]σx = 0,

subject to (2.10), and where B1, .., B5 are functions of x, y and u and σ is the ISC.1

3 Relationship between B-determining equations and the method of GCS

Comparing equations (1.7) and (1.9) we see that the B-determining equations are one

special case of the method of GCS where

F(u, σ) = Bσ.

As such, many of the GCS so far found in the literature can be found by using B-

determining equations. As an example, Qu (1997) found that the diffusion equation

ut = uxx + c2u log u+ c3u− c2
1u(log u)2

admits the GCS

σ = uxx − u2
x

u
+ c1ux; c1� 0.

Using Kaptsov’s method, this symmetry corresponds to

b = (2c3 − 2c2
1(log u)2 + 2c2 log u)− 2ut

u
+

2c1

u
ux +

2

u2
u2
x.

1 We note that if the infinitesimal Y = 1 in the ISC, then we only require the extension

(B1(x, y, u)ux + B2(x, y, u))σ,

to get the most general nonclassical determining equations as found by Arrigo, Hill & Broadbridge

(1994).
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We now state the results of an investigation into finding GCS of the degenerate diffusion

equation

ut =
∂

∂x
(f(u)g(ux)) (3.1)

in the cases g(ux) = e−ux and g(ux) = u−3
x , by using an extension of the method of

B-determining equations. Both of these examples were chosen because the diffusivities

decrease at a rate faster than u−2
x as ux tends to infinity. When f = 1, this is the case of

strongly degenerate diffusion, within which non-parabolic behaviour may be apparent in

the solutions (see Bertsch & Dal Passo, 1992).

We looked for σ of the form

σ = uxx + P (u)u2
x + Q(u)ux + R(u) (3.2)

satisfying

Γ (σ)Ω − g(ux) {σ[b11 + b12ux + b13u
2
x]

+σσx[b21 + b22ux + b23u
2
x]

+σ2[b31 + b32ux + b33u
2
x]

+σ3[b41 + b42ux + b43u
2
x]

+σx[b51 + b52ux + b53u
2
x]} = 0, (3.3)

subject to

Ω = ut − ∂

∂x
(f(u)g(ux)) = 0.

The GCS (3.2) reduces to a nonclassical symmetry in the case g(ux) = e−ux when

P = 0, Q = −f
′

f
, R = 0,

and in the case g(ux) = u−3
x when

P = − f
′

3f
, Q = 0, R = 0.

We ignore those cases here, as it has already been shown by Goard (1997), that in the

case T = 1, no strictly nonclassical symmetries exist for these equations.

The symmetries thus found are listed in Tables 1 and 2, together with corresponding

solutions. As an example of the functions bij which were needed, for the case

f = cu2 + du+ e, g(ux) = e−ux ,

the GCS was found with σ = uxx and

b11 = 0 b12 = 4c b13 = −6c

b21 = 2du+ 2e+ 2cu2 b22 = 0 b23 = 0

b31 = −2d− 4cu b32 = 3 + 6cu b33 = 0

b41 = −e− cu2 − du b42 = 0 b43 = 0

b51 = 0 b52 = −4cu− 2d b53 = 0.
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Table 1. Solutions for (3.1) with g(ux) = e−ux , where li(x) =

∫ x 1

ln u
du and

A, B, α, β, c, d, ε, p, γ are constants.

Symmetry f(u) Solution

uxx +
ux

u+ c
1 α li

(
u+ c

α

)
= −x− 1

α
t+ p

uxx − ux

1 + u
u(1 + u) li(β(1 + u)) = β

(
x+

1

β
t+ p

)
uxx +

(−f′
f

+
B

A+ Bu

)
ux (A+ Bu)eu u = αeBe

−γ tex − γ

uxx +

(−f′
f

+
B

A+ Bu

)
ux (A+ Bu)ee

u
u = − ln

{
1

β
[e−β(x+Be−β t+γ) − 1]

}
uxx − ux + 1 eu u = c+ (ec−1t+ α)ex + x

uxx cu2 + du+ ε u = xh(t) + j(t) where h, j satisfy

− 1

h(t)
eh(t) + li(eh) = 2ct+ α and

j ′(t)− 2ce−hhj = 2cde−hh

4 Conclusion

The B-determining equations provide a neat formalism for determining not only non-

classical point symmetries but also higher-order generalised conditional symmetries of

partial differential equations. In general, if a simple form is assumed for the B ansatz,

then the nonclassical determining relations may be considerably simplified. However, to

recapture all nonclassical symmetries, a single B-factor might not be sufficient. Provided a

sufficient number of B-factors are incorporated to multiply many possible derivatives of

a higher-order invariance condition σ(x, u, u1, u2, . . .), generalised conditional symmetries

might be recovered.

Appendix A

This section provides details of the nonclassical determining equations for (2.4) using the

extension of (2.6).

With B10 = B11 = 0, substitution of (2.6) into (2.7) yields the following determining

equations:

2Xu + B1X + B7X + B9X
2 = 0

−2Yu + B1Y + B9Y X = 0

2Yu + B7Y + B9XY = 0

2Yxu + 2Xyu + 2Y NB5 + 2XY B6 + B3Y + B7Yx + B8Yu + B9XYx + B9Y Xx

+B9Y Nu + B9NYu = 0

Xuu + B5Y
2 + B9Y Yu = 0
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Table 2. Solutions for (3.1) with g(ux) = u−3
x , where A, B, C, K, γ, ε, c, α, β are

constants.

Symmetry f(u) Solution

uxx +
u2
x

u+ c
1 u = [+(48t+ γ)

1
2 x+ ε(48t+ γ)

1
2 ]

1
2 − c

uxx +
u2
x

3u+ c
1 u =

(
αx+

64

27α2
t+ β

) 3
4 − c

uxx A+ Bu+ Cu2 u = (4Ct+ γ)
1
2 x+ ε(4Ct+ γ)

1
2 − B

2C

uxx +Ku2
x e−3Ku(A+ Bu) u =

1

K
ln
[
(2K4Ct+ 2ε)

1
2 x− B

KC

+Ce−2Kuα(2K4Ct+ 2ε)
1
2

]
K� 0, C� 0

uxx +Ku2
x e−3Ku(A+ Bu) u =

1

K
ln

[
(2ε)

1
2 x+

K3B

2ε
t+ γ

]
K� 0

uxx A+ Bu u = αx+
Bt

α2
+ β

uxx − u2
x

3u
u2 u =

(
cx+

8

27c2
t+ β

) 3
2

2Xu + Y 2B9 = 0

Yuu + 2B5XY + B2Y + B7Yu + B9XYu + B9Y Xu = 0

2Xx − 2Yy + B1N + B8X + B9NX = 0

Xuu + B5X
2 + B2X + B7Xu + B9XXu = 0

2Xxu +Nuu + 2XNB5 + B6X
2 + B2N + B3X + B7Xx + B7Nu

+B8Xu + B9XXx +XNuB9 + B9NXu = 0

2Yyu +Nuu + B6Y
2 + B9Y Yx = 0

Yuu = 0

2Yx + 2Xy + B8Y + B9NY = 0

Xuf + 2Nxu +Xxx +Xyy +N2B5 + 2XNB6 + B3N + B4X + B7Nx + B8Xx

+B8Nu +XNxB9 + B9NXx + B9NNu = 0

3Yuf + 2Nyu + Yyy + Yxx + 2Y NB6 + B4Y + B8Yx + B9Y Nx + B9NYx = 0

Nxx + 2Yyf +Nuf +Nyy −Nfu + B6N
2 + B4N + B8Nx + B9NNx = 0 (A 1)

where on eliminating the Bi terms we find the determining equations:

2Xu +
2X2Xu

Y 2
= 0

2Xx − 2Yy +
2NYu
Y
− 2XYx

Y
− 2XXy

Y
+

2NXXu

Y 2
= 0

Xuu +
X2Xuu

Y 2
− XYuu

Y
+

2XY 2
u

Y 2
+

2X2
uX

Y 2
− 2XuYu

Y
= 0
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2Xxu + Nuu − 2NXXuYu

Y 3
+

2X2Yuy

Y 2
+
X2Nuu

Y 2

− 2X2XuYx

Y 3
− NYuu

Y
+

2NY 2
u

Y 2
+

2NX2
u

Y 2
− 2XYxu

Y

− 2XXyu

Y
+

2NXXuu

Y 2
+

4YxYuX

Y 2
+

2YuXyX

Y 2

+
2XXuXx

Y 2
+

2XNuXu

Y 2
− 2YuXx

Y
− 2YuNu

Y

− 2XuYx

Y
− 2XuXy

Y
= 0

Xuf + 2Nxu +Xxx +Xyy +
N2Xuu

Y 2
− 2N2XuYu

Y 3
+

4XNYuy
Y 2

+
2XNNuu

Y 2
− 6XNXuYx

Y 2
− 2NYxu

Y
− 2NXyu

Y
+

4NYxYu
Y 2

+
2NYuXy

Y 2
+

2XNYxXu

Y 3
+

2NXxXu

Y 2
+

2NuXuN

Y 2

− 3YufX

Y
− 2XNyu

Y
− YyyX

Y
− YxxX

Y
+

2XY 2
x

Y 2

+
2XXyYx

Y 2
+

2NxXXu

Y 2
− 2NxYu

Y
− 2XxYx

Y
− 2XyXx

Y

− 2NuYx

Y
− 2NuXy

Y
= 0

Nxx + 2Yyf +Nuf +Nyy −Nfu +N2

(−2Yuy
Y 2

− Nuu

Y 2
+

2XuYx

Y 3

)
+ N

(−3Yuf

Y
− 2Nuy

Y
− Yyy

Y
− Yxx

Y
+

4NYyu
Y 2

+
2NNuu

Y 2

− 4NXuYx

Y 3
+

2XyYx

Y 2
+

2NxXu

Y 2
+

2Y 2
x

Y 2

)
+ Nx

(−2Yx
Y
− 2Xy

Y
+

2NXu

Y 2

)
+NNx

(−2Xu

Y 2

)
= 0 (A 2)

where

B1 =
2Yu
Y

+
2XXu

Y 2

B2 = −Yuu
Y

+
2XXuu

Y 2
− 2XXuYu

Y 3
+

2Y 2
u

Y 2
+

2X2
u

Y 2

B3 =
−2Yxu
Y

− 2Xyu

Y
+

2NXuu

Y 2
− 6NXuYu

Y 3
+

4XYuy
Y 2

+
2XNuu

Y 2
− 6XXuYx

Y 3
+

4YxYu
Y 2

+
2YuXy

Y 2
+

2XYxXu

Y 3

+
2XuXx

Y 2
+

2NuXu

Y 2
+

2NXuYu

Y 3

B4 =
−3Yuf

Y
− 2Nyu

Y
− Yyy

Y
− Yxx

Y
+

4NYyu
Y 2

+
2NNuu

Y 2

−4NXuYx

Y 3
+

2Y 2
x

Y 2
+

2XyYx

Y 2
+

2NxXu

Y 2
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B5 = −Xuu

Y 2
+

2XuYu

Y 3

B6 = −2Yuy
Y 2
− Nuu

Y 2
+

2XuYx

Y 3

B7 = −2Yu
Y

+
2XXu

Y 2

B8 = −2Yx
Y
− 2Xy

Y
+

2NXu

Y 2

B9 = −2Xu

Y 2
(A 3)
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