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Abstract

Our work owes its origin to a recent note of Ram Murty [‘Irrationality of zeros of the digamma function’,
Number Theory in Memory of Eduard Wirsing (eds. H. Maier, R. Steuding and J. Steuding) (Springer,
Cham, 2023), 237–243], in which he proves that all the zeros of the digamma function are irrational with
at most one possible exception. We extend this investigation to higher-order polygamma functions.
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1. Introduction

A meromorphic function on C is said to be transcendental if it is transcendental over
the field of rational functions C(z). It is a guiding principle in number theory that
naturally occurring transcendental functions take transcendental values at algebraic
points, with obvious exceptions. The obvious exceptions typically emerge from purely
analytic reasons, for example to cancel poles of some other transcendental function.

We investigate the zeros of derivatives of the classical Gamma function, Γ(z).
It is a classical result of Hölder [7] that the Gamma function does not satisfy
any algebraic differential equation whose coefficients are rational functions over the
complex numbers. This lack of a differential structure is one of the reasons that makes
investigating the nature of values of the Gamma function rather difficult.

Our work is motivated by a recent elegant note of Murty [10] in which he proves
the following result for the digamma function ψ(z) = ψ0(z) = Γ′(z)/Γ(z).

THEOREM 1.1. All zeros of the digamma function are irrational with at most one
possible exception.

The proof involves tools from analytic number theory as well as the theory of linear
forms in logarithms of algebraic numbers. In fact, the fugitive exceptional rational zero
is not expected to exist.
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We extend this investigation to the higher-order polygamma functions. For a
nonnegative integer k, the polygamma function ψk(z) is the kth derivative of ψ(z). Thus,

ψk(z) = (−1)k+1k!
∞∑

n=0

1
(n + z)k+1 .

We prove the following results.

THEOREM 1.2. Let k be a positive integer.

(a) The function ψ2k+1 has no real zeros. In particular, there are no rational zeros.
(b) The real zeros of ψ2k lie in the intervals (−m + 1/2,−m + 114/227) for all m > 0.

THEOREM 1.3. Concerning the complex zeros of the function ψ1:

(a) ψ1 has no zeros in Z[i]; and
(b) ψ1 has no zeros in {z : Re(z) ≥ 0}.

It would be interesting to study the complex zeros of ψ2k+1 and, in particular, to see
whether ψ1 has any zeros in Q(i).

THEOREM 1.4. For an integer q > 1, consider the vector spaces over Q,

Vo(q) := span{ψ2k+1(a/q) : k ≥ 0, 1 ≤ a ≤ q, (a, q) = 1}

and

Ve(q) := span{ψ2k(a/q) : k ≥ 1, 1 ≤ a ≤ q, (a, q) = 1}.

Let Vo and Ve be the Q vector spaces generated by Vo(q) and Ve(q), respectively, over
all q. Then both Vo and Ve have infinite dimension.

We prove a stronger theorem (Theorem 5.1) of which Theorem 1.4 is an immediate
consequence. As we see, the parity of k plays an important role in studying the zeros
of ψk. We formulate an analogue of Theorem 1.1 and an irrationality result for ψk(x)
in Section 6. In place of Baker’s theorem on linear forms in logarithms, we appeal to
a strong version of a conjecture by Chowla and Milnor on the linear independence of
values of the Hurwitz zeta function.

The numbers ψk(a/q) for k > 0 occur naturally in the context of special values
of periodic L-functions, via the Hurwitz zeta function. The digamma function also
occurs in the recent work of Radchenko and Zagier [11] on the series expansion
of the mysterious Herglotz function. Further related results are given by David
et al. [4], who study the linear independence of values of the Lerch functions
Φs(x, z) =

∑∞
k=0 zk+1/(k + x + 1)s at algebraic points and give a criterion for the linear

independence of the numbers Φi(x,αj) at algebraic points αj.
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2. Prerequisites

The polygamma function, ψk(z), is a meromorphic function on C defined by

ψk(z) =
dk+1

dzk+1 log Γ(z) = (−1)k+1k!
∞∑

n=0

1
(n + z)k+1 , z � 0,−1,−2, . . . .

If m is a natural number, then

ψk(m) = ψk(1) + (−1)k+2k!
m−1∑
n=1

1
(n + 1)k+1 .

The digamma function, ψ(z) = ψ0(z) = Γ′(z)/Γ(z), satisfies the functional equations

ψ(z + 1) = ψ(z) +
1
z

, ψ(1 − z) = ψ(z) + π cot πz.

Consequently, the polygamma function satisfies the functional equations

ψk(z + 1) = ψk(z) +
(−1)kk!

zk+1 , (−1)kψk(1 − z) = ψk(z) +
dk

dzk (π cot πz).

Recall that, for z not an integer,

π cot πz =
1
z
+

∞∑
n=1

( 1
z − n

+
1

z + n

)
.

We end this section by listing some irrationality results relevant to our work. In
1978, Apéry astonished the mathematics community by proving the irrationality of
the function ζ(3). Following that, Ball and Rivoal [2, 12] made the next remarkable
breakthrough.

THEOREM 2.1 (Ball and Rivoal, [2]). Let ε > 0. For any s ≥ 3 odd and sufficiently
large with respect to ε,

dimQ spanQ{1, ζ(3), ζ(5), . . . , ζ(s)} ≥ 1 − ε
1 + log 2

log s.

Fischler et al. [5] recently proved the following result.

THEOREM 2.2. Let ε > 0 and s ≥ 3 be an odd integer sufficiently large with respect to
ε. Then, among the numbers ζ(3), ζ(5), . . . , ζ(s), at least 2(1−ε)log s/log log s are irrational.

3. Proof of Theorem 1.2

We begin with the odd case. For z = x + iy with x, y ∈ R,

ψ2k+1(x + iy) = (2k + 1)!
∞∑

n=0

(n + x − iy)2k+2

((n + x)2 + y2)2k+2

= (2k + 1)!
∞∑

n=0

∑2k+2
r=0

(
2k+2

r

)
(n + x)2k+2−r(−iy)r

((n + x)2 + y2)2k+2 .
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The real part of ψ2k+1(x + iy) is given by

(2k + 1)!
[ ∞∑

n=0

∑2k+2
r=0,4|r

(
2k+2

r

)
(n + x)2k+2−r(y)r

((n + x)2 + y2)2k+2

]

− (2k + 1)!
[ ∞∑

n=0

∑2k+2
r=2,4|(r−2)

(
2k+2

r

)
(n + x)2k+2−r(y)r

((n + x)2 + y2)2k+2

]
.

When z is a real number (which is not a pole), that is, when y = 0,

Reψ2k+1(x) = (2k + 1)!
∞∑

n=0

1
(n + x)2k+2 > 0.

Consequently, ψ2k+1(x) � 0 and so ψ2k+1 has no real zeros.
We now turn to the more involved case when k is even. We see that ψ2k(x) has

no real zeros with x ≥ 0. However, unlike the odd case, ψ2k does have real zeros. We
divide our investigation into two cases.

Case 1: ψ2k has no real zeros in the intervals (−m,−m + 1/2] for all integers m ≥ 1.
The derivative of ψ2k is given by

ψ2k+1(x) = (2k + 1)!
∞∑

n=0

1
(n + x)2k+2 ,

which is positive. Thus, the function ψ2k is a strictly increasing function of x in each of
the intervals In = (−n,−n + 1) for n = 1, 2, 3, . . . . Appealing to the functional equation,
we show that ψ2k(−m + 1/2) < 0. This, along with the strict monotonicity noted above,
shows that ψ2k has no zero in (−m,−m + 1/2] for all integers m ≥ 1.

To this end, we observe that

ψ2k

(
− m +

1
2

)
= −2k!

∞∑
n=0

1
(n − m + 1/2)2k+1 = −2k! 22k+1

∞∑
n=0

1
(2(n − m) + 1)2k+1

= −2k! 22k+1
[( m−1∑

n=0

+

2m−1∑
n=m

+

∞∑
n=2m

) 1
(2(n − m) + 1)2k+1

]
.

The terms in the first two sums cancel in pairs and we are left with

ψ2k

(
− m +

1
2

)
= 2k! 22k+1

[
− 1

(2m + 1)2k+1 −
1

(2m + 3)2k+1 − · · ·
]
< 0,

which proves the claim.

Case 2: Real zeros in intervals of the form (−m + 1/2,−m + 1). Consider

−p
q
= −m +

a
q

,
q
2
< a ≤ q − 1,
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where the denominator q is an odd positive integer. We show that

ψ2k

(
− m +

q + 1
2q

)
> 0

for q ≤ 228. This, along with the fact that ψ2k is strictly increasing in each interval
(−m, 1 − m), ensures that

ψ2k

(
− m +

a
q

)
≥ ψ2k

(
− m +

114
227

)
> 0.

Since 2qm − q − 1 < 2mq − q + 1,

ψ(−m + q + 1/2q)
2k! (2q)2k+1

≥
[ 1
(q − 1)2k+1 −

1
(q + 1)2k+1 −

1
(2qm + q + 1)2k+1 −

1
(2mq + 3q + 1)2k+1 − · · ·

]

≥
[ 1
(q − 1)2k+1 −

1
(q + 1)2k+1 −

1
(2qm)2k+1 −

1
(2q(m + 1))2k+1 − · · ·

]

>
[ 1
(q − 1)2k+1 −

1
(q + 1)2k+1 −

1
(2q)2k+1

(
ζ(2k + 1) −

m−1∑
n=1

1
n2k+1

)]

≥
[ 1
(q − 1)2k+1 −

1
(q + 1)2k+1 −

1
(2q)2k+1 (ζ(2k + 1) − 1)

]

≥
[ 1
(q − 1)2k+1 −

1
(q + 1)2k+1 −

0.21
(2q)2k+1

]
(since ζ(2k + 1) ≤ 1.21 for all k ∈ N)

≥
[ 1
(q − 1)2k+1 −

1
(q + 1)2k+1 −

0.02625
q2k+1

]
.

We claim that the last quantity is positive for q ≤ 228 and all k. Consider

f (x) =
1

(x − 1)m −
1

(x + 1)m −
0.02625

xm .

Now, f (x) > 0 is equivalent to

1 >
(
1 − 2

x + 1

)m
+ 0.02625

(
1 − 1

x

)m
.

The last inequality holds for x = 228 and m = 3 and the function on the right-hand
side is an increasing function of x, so it holds for all x ≤ 228. For this range of x, the
function on the right-hand side is a decreasing function of m for m ≥ 3. This implies
that f (x) > 0 for x ≤ 228 and m ≥ 3. Since q is an odd integer,
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ψ2k
( − m + 114

227
)
> 0.

So the real zeros of ψ2k will lie in the intervals (−m + 1/2,−m + 114/227) for all m > 0.
Next, we show that ψ2k will have a zero in the interval (−n,−n + 1) for all

n = 1, 2, 3, . . . . In the preceding calculations, we saw that

ψ2k

(−p
q

)
< 0, where

−p
q
= −m +

a
q

, a ≤ q
2

and

ψ2k

(
− m +

a
q

)
≥ ψ2k

(
− m +

114
227

)
> 0.

Since ψ2k(x) is continuous and strictly increasing in each interval In = (−n,−n + 1) for
n = 1, 2, 3, . . . , it follows that ψ2k(x) has exactly one zero in each of these intervals.

REMARK 3.1. We have proved that ψ2k has one real zero, say, xm, in the interval
(−m + 1/2,−m + 114/227). Write xm = −m + ym, where ym ∈ (0, 1).

We claim that the sequence {ym} is strictly decreasing and that ψ2k(−m + 1/2)→ 0
as m→ ∞.

PROOF. Suppose that xm = −m + ym and xm′ = −m′ + ym′ are both zeros of ψ2k, where
m > m′ and ym ≥ ym′ . From the functional equation,

0 = ψ2k(−m + ym) − ψ2k(−m′ + ym′)

= ψ2k(−m + ym) − ψ2k(−m + ym′) −
m∑

n=m′+1

2k!
(−n + ym′)2k+1

= ψ2k(−m + ym) − ψ2k(−m + ym′) +
m∑

n=m′+1

2k!
(n − ym′)2k+1 > 0

because ψ2k is strictly increasing in (−m,−m + 1). This is a contradiction, so ym < ym′ .
Now, we come to the second assertion,

ψ2k

(
− m +

1
2

)
= −2k!

∞∑
n=0

1
(n − m + 1/2)2k+1 = −2k! 22k+1

∞∑
n=0

1
(2(n − m) + 1)2k+1

= 2k! 22k+1
[ m∑

n=0

1
(2n + 1)2k+1 −

∞∑
n=0

1
(2n + 1)2k+1

]
→ 0

as m→ ∞ �

REMARK 3.2. It would be interesting to see whether the real zeros of ψ2k and ψ2l are
distinct for k � l. If xm, x′m are the zeros of ψ2k and ψ2l, respectively, in (−m,−m + 1)
and l > k, is xm > x′m? We have verified this for the zeros of ψ2 and ψ4 in (−1, 0).
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4. Proof of Theorem 1.3

We begin with a proof of Theorem 3(b). For x ≥ 0,

ψ1(x + iy) =
∞∑

n=0

1
(n + x + iy)2 =

∞∑
n=0

(n + x − iy)2

((n + x)2 + y2)2

=

∞∑
n=0

(n + x)2 − y2

((n + x)2 + y2)2 − 2iy
∞∑

n=0

n + x
((n + x)2 + y2)2 .

Now, Imψ1(x + iy) will be zero if and only if either

y = 0 or
∞∑

n=0

n + x
((n + x)2 + y2)2 = 0.

If y = 0, then by Theorem 1.2, Reψ1(x + iy) � 0, so ψ1(x + iy) � 0. If y � 0, then
∞∑

n=0

n + x
((n + x)2 + y2)2 > 0

for x ≥ 0 and, again, Imψ1(x + iy) � 0.
Now, we turn to part (a) of the theorem. It is enough to show that ψ1(−m + iy) � 0,

where m ∈ N, y ∈ R. As before,

Imψ1(−m + iy) = −2y
∞∑

n=0

n − m
((n − m)2 + y2)2 .

Hence, Imψ1(−m + iy) will be zero if and only if either

y = 0 or
∞∑

n=0

n − m
((n − m)2 + y2)2 = 0.

If y = 0, then ψ1(z) has a pole at z = −m, so this cannot be a zero of ψ1(z). If y � 0,
then

∞∑
n=0

n − m
((n − m)2 + y2)2 =

m + 1
((m + 1)2 + y2)2 +

m + 2
((m + 2)2 + y2)2 · · · > 0,

because the first 2m terms of the series cancel in pairs (for n = k and n = 2m − k), so
Imψ1(−m + iy) � 0. Hence, ψ1(z) has no zero in Z + iR. This completes the proof.

5. Proof of Theorem 1.4

THEOREM 5.1. For positive integers N and q > 2, let Vo,N(q) and Ve,N(q) denote the
Q-vector spaces

Vo,N(q) := spanQ{ψ2k+1(a/q) : 0 ≤ k ≤ N, 1 ≤ a ≤ q, (a, q) = 1}
and

Ve,N(q) := spanQ{1,ψ2k(a/q) : 1 ≤ k ≤ N, 1 ≤ a ≤ q, (a, q) = 1}.
Then dimQ Vo,N(q) 	 N and dimQ Ve,N(q) 	 log N.
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PROOF. We show that

dimQ spanQ{ψ2k+1(a/q) : 0 ≤ k ≤ N, 1 ≤ a < q, (a, q) = 1} ≥ N + 1.

By the definition of ψk(z),

ψ2k+1(a/q) = (2k + 1)!
∞∑

n=0

1
(n + a/q)2k+2 = (2k + 1)! ζ(2k + 2, a/q).

Since

qkζ(k)
∏
p|q

(1 − p−k) =
q−1∑
a=1

(a,q)=1

ζ(k, a/q),

it follows that spanQ{ζ(2k + 2, a/q) : 0 ≤ k ≤ N, 1 ≤ a < q, (a, q) = 1} contains
spanQ{ζ(2k + 2) : 0 ≤ k ≤ N}. Now, dimQ spanQ{ζ(2k + 2) : 0 ≤ k ≤ N} = N + 1, so
we get the required result.

Similarly,

dimQ spanQ{1,ψ2k(a/q) : 1 ≤ k ≤ N, 1 ≤ a < q, (a, q) = 1}
= dimQ spanQ{1, ζ(2k + 1, a/q) : 1 ≤ k ≤ N, 1 ≤ a < q, (a, q) = 1}
≥ dimQ spanQ{1, ζ(2k + 1) : 1 ≤ k ≤ N},

and the theorem of Ball and Rivoal (Theorem 2.1) gives the desired result. �

Theorem 1.4 and the following corollary are immediate consequences of
Theorem 5.1.

COROLLARY 5.2. Let k, q > 1 be integers. Then the Q-linear space generated by

{ψk(a/q) : k ≥ 1, 1 ≤ a < q, (a, q) = 1}

has infinite dimension over Q.

6. The conjecture of Chowla–Milnor and its ramifications

Gun et al. [6] discuss several conjectures on the linear independence of values of
the Hurwitz zeta function. The starting point is a question of P. and S. Chowla.

CONJECTURE 6.1 (Chowla and Chowla, [3]). Let p be any prime and let f be any
rational-valued periodic function with period p. Then

L(2, f ) =
∞∑

n=1

f (n)
n2 � 0,

except for the case when

f (1) = f (2) = · · · = f (p − 1) =
f (p)

1 − p2 .
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Milnor interpreted this conjecture in terms of the linear independence of the
Hurwitz zeta function and generalised it for all k > 1.

CONJECTURE 6.2 (Milnor, [9]). For any integer k > 1, the real numbers

ζ(k, 1/p), ζ(k, 2/p), . . . , ζ(k, (p − 1)/p)

are linearly independent over Q.

Further, for q not necessarily prime, Milnor suggested the following generalisation
of the Chowla conjecture.

CONJECTURE 6.3 (Chowla–Milnor, [9]). Let k > 1, q > 2 be integers. Then the φ(q)
real numbers ζ(k, a/q), for (a, q) = 1, 1 ≤ a ≤ q, are linearly independent over Q.

Following Gun et al. [6], for any integer k > 1, define the Q-linear space Vk(q) by

Vk(q) = spanQ{ζ(k, a/q) : 1 ≤ a ≤ q, (a, q) = 1}.
The Chowla–Milnor conjecture asserts that the dimension of Vk(q) for k > 1 is φ(q).
Gun et al. [6] gave the following nontrivial lower bound for this dimension.

THEOREM 6.4 [6]. Let k > 1, q > 2. Then dimQ Vk(q) ≥ φ(q)/2.

They also proposed a stronger version of the Chowla–Milnor conjecture.

CONJECTURE 6.5 (Strong Chowla–Milnor; see [6]). For any k, q > 1, the φ(q) + 1 real
numbers 1 and ζ(k, a/q) with 1 ≤ a ≤ q, (a, q) = 1 are linearly independent over the
rational numbers.

We now indicate the relationship between the Chowla–Milnor conjecture and our
investigation, which is facilitated by the relationship

ψk

(a
q

)
= (−1)k+1k!

∞∑
n=0

1
(n + a/q)k+1 = (−1)k+1k! ζ(k + 1, a/q).

Consequently, the Chowla–Milnor conjecture is equivalent to the assertion that, for
any k > 1, the set

{ψk(a/q) : 1 ≤ a ≤ q, (a, q) = 1}
is linearly independent over Q.

THEOREM 6.6. Under the Chowla–Milnor conjecture, the set of rationals
I(q) = {p/q, p ∈ Z, (p, q) = 1} contains at most one zero of ψ2k(x).

PROOF. Since ψ2k(p/q) � 0 if p/q > 0, it enough to consider negative values of p.
Suppose that there exist two zeros in this set, say,

p1/q = −m + a/q and p2/q = −m′ + b/q, with (a, q) = (b, q) = 1.

Note that the functional equation for ψ2k ensures that both ψ2k(a/q) and ψ2k(b/q)
are rational numbers. This shows that ζ(2k + 1, a/q) and ζ(2k + 1, b/q) are linearly
dependent over Q, which is in contradiction to the Chowla–Milnor conjecture. �
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REMARK 6.7. The strong Chowla–Milnor conjecture implies that, for any x ∈ Q \ Z,
ψk(x) is irrational.

PROOF. By the Strong Chowla–Milnor Conjecture, we see that ψk(a/q) is irrational
for all (a, q) = 1, 1 ≤ a < q. By the first functional equation for ψk, for any nonintegral
rational number x, ψk(x) is irrational. �

DEFINITION 6.8. For an integer k ≥ 2 and complex number z ∈ C with |z| ≤ 1, the
polylogarithm function of order k is Lik(z) =

∑∞
n=1 zn/nk.

For k = 1, the series is Li1(z) = − log (1 − z), provided that |z| < 1.
Analogous to Baker’s theorem on linear forms in logarithms [1], Gun et al. [6]

proposed the following conjecture for polylogarithms.

CONJECTURE 6.9 (Polylogarithm conjecture). Any linear combination of polyloga-
rithms of algebraic numbers of modulus less than or equal to one with algebraic
coefficients is either zero or transcendental.

We end our paper with the following theorem.

THEOREM 6.10. Under the polylogarithm conjecture, for any rational x ∈ Q \ Z, ψk(x)
is transcendental.

PROOF. We derive an extension of Gauss’s formula by an argument of Jensen using
roots of unity. This identity is known (see, for example, [8]).

We begin with Simpson’s formula. For a power series f (t) =
∑∞

n=0 antn,

∞∑
n=0

aqn+mtqn+m =
1
q

q−1∑
j=0

ω−jm f (ωjt),

where ω is a primitive qth root of unity. This follows easily by orthogonality. Now,

ψk

(a
q

)
= (−1)k+1k! qk+1

∞∑
n=0

1
(qn + a)k+1 .

From the series Lik(z) =
∑∞

n=1 zn/nk and Simpson’s formula with ω = e2πi/q and t = 1,

ψk

(a
q

)
= (−1)k+1k! qk

q−1∑
j=0

ω−jaLik+1(ωj).

By using this identity and the polylogarithm conjecture, along with

ψk

(a
q

)
= (−1)k+1k!

∞∑
n=0

1
(n + a/q)k+1 = (−1)k+1k! ζ(k + 1, a/q) � 0,

we deduce that ψk(a/q) is transcendental for 1 ≤ a ≤ q and (a, q) = 1. The first of the
two functional equation for ψk(z) immediately implies that ψk(x) is transcendental for
any nonintegral rational number x. �
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