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Abstract

The level of distribution of a complex-valued sequence b measures the quality of distri-
bution of b along sparse arithmetic progressions nd+ a. We prove that the Thue–Morse
sequence has level of distribution 1, which is essentially best possible. More precisely,
this sequence gives one of the first nontrivial examples of a sequence satisfying a
Bombieri–Vinogradov-type theorem for each exponent θ < 1. This result improves on
the level of distribution 2/3 obtained by Müllner and the author. As an application of
our method, we show that the subsequence of the Thue–Morse sequence indexed by
�nc�, where 1 < c < 2, is simply normal. This result improves on the range 1 < c < 3/2
obtained by Müllner and the author and closes the gap that appeared when Mauduit
and Rivat proved (in particular) that the Thue–Morse sequence along the squares is
simply normal.

1. Introduction

The Thue–Morse sequence t is one of the most easily defined automatic sequences. Like any
automatic sequence, it can be defined using a uniform morphism over a finite alphabet: t is
the unique fixed point of the substitution 0 �→ 01, 1 �→ 10 that starts with 0. Therefore, t =
(0110100110010110 . . .). Alternatively, this sequence can be defined using the binary sum-of-
digits function s, which counts the number of 1s in the binary expansion of a nonnegative integer
n: we have t(n) = 0 if and only if s(n) ≡ 0 mod 2. The equivalence of these two definitions can
be proved via a third description: start with the one-element sequence t(0) := (0) and define
t(n+1) by concatenating t(n) and the Boolean complement ¬t(n). Then t is the (pointwise) limit
of this sequence of finite words. In this work, we will adopt the second viewpoint. In fact, in
the proofs we will work with the sequence (−1)s(n) instead of t, and we also call this sequence
the Thue–Morse sequence by slight abuse of notation. When working with exponential sums,
we will always use the ‘multiplicative version’ (−1)s(n). For an overview on the Thue–Morse
sequence, we refer the reader to the article by Allouche and Shallit [AS99], which points out
occurrences of this sequence in different fields of mathematics and offers a good bibliography.
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Level of distribution of Thue–Morse

We also wish to mention the survey paper [Mau01] by Mauduit on the Thue–Morse sequence.
For a comprehensive treatment of automatic and morphic sequences, see the book [AS03] by
Allouche and Shallit.

The main topic of this article is the study of t along arithmetic progressions and, more gen-
erally, along Beatty sequences �nα+ β�, where α and β are real numbers and α ≥ 0. This topic
can be traced back at least to Gel’fond [Gel68], who proved the following theorem on the base-q
sum-of-digits function sq defined by sq(ενq

ν + · · · + ε0q
0) = εν + · · · + ε0 for εi ∈ {0, . . . , q − 1}.

Theorem A (Gel’fond). Let q,m, d, b, a be integers and q,m, d ≥ 2. Suppose that gcd(m,
q − 1) = 1. Then

|{1 ≤ n ≤ x : n ≡ a mod d, sq(n) ≡ b mod m}| =
x

dm
+ O(xλ)

for some λ < 1 independent of x, d, a and b.

We are particularly interested in the error term for sparse arithmetic progressions, having
large common difference d. This leads us directly to the other main concept of this paper, the
notion of level of distribution. (We use this term in the same way as Goldston et al. [GPY09];
the term is also used for a very similar concept by other authors. Moreover, the term exponent
of distribution is also common.) Very roughly speaking, the level of distribution is a measure of
how well a given sequence behaves on arithmetic progressions. A formal definition can be found
in the article [FM96a] by Fouvry and Mauduit. We adapt this definition.

Definition 1. Let c = (cn)n≥0 be a sequence of complex numbers and, for each integer d ≥ 1,
let Q(d) and R(d) 
= ∅ be subsets of Z/dZ such that Q(d) ⊆ R(d). The sequence c has level of
distribution θ with respect to Q and R if for all ε > 0 and A > 0 we have for all x ≥ 1 that∑

1≤d≤D

max
0≤y≤x

max
0≤a<d

a+dZ∈Q(d)

∣∣∣∣ ∑
0≤n<y

n≡a mod d

cn − 1
|R(d)|

∑
0≤n<y

n+dZ∈R(d)

cn

∣∣∣∣  (log 2x)−A
∑

0≤n<x

|cn|,

where D = xθ−ε. The implied constant may depend on A and ε. In this definition, the maximum
over the empty index set is defined to be 0.

The most well-known cases are R(d) = Z/dZ or R(d) = (Z/dZ)∗; the treatment of the main
term

1
|R(d)|

∑
0≤n<y

n+dZ∈R(d)

cn

is usually the easy part of an estimate as in the definition. In the case of the Bombieri–Vinogradov
theorem, we use R(d) = (Z/dZ)∗, since the prime numbers are distributed evenly in the residue
classes relatively prime to d. The summands in Definition 1 measure the maximal deviation of a
sum over an arithmetic progression from the expected value, where the maximum is taken over
a set Q(d) of residue classes and the length of the progression may also vary.

The level of distribution is an important concept in sieve theory. As a striking application, a
variant of this concept was used in the paper by Zhang [Zha14] on bounded gaps between primes.
For more information on this subject, we refer the reader to the survey by Kontorovich [Kon14].
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Moreover, we wish to draw the attention of the reader to the book [FI10] on sieve theory by
Friedlander and Iwaniec, in particular Chapter 22 on the level of distribution.

We are ready to present our main result. Note that we use Oε to indicate that the implied
constant may depend on ε.

Theorem 1.1. The Thue–Morse sequence has level of distribution 1 with respect to Q and R
given by Q(d) = R(d) = Z/dZ. More precisely, for all ε > 0, we have

∑
1≤d≤D

max
y,z≥0
z−y≤x

max
0≤a<d

∣∣∣∣ ∑
y≤n<z

n≡a mod d

(−1)s(n)

∣∣∣∣ = Oε(x1−η)

for some η > 0 depending on ε, where D = x1−ε.

Before presenting some history, we wish to say a word about the proof: we are going to
reduce the problem to the estimation of a certain Gowers uniformity norm of the Thue–Morse
sequence. These expressions appear by repeated application of Van der Corput’s inequality and
have the form ∑

0≤n<2ρ

0≤r1,...,rk<2ρ

∏
ε∈{0,1}k

(−1)sρ(n+ε·r),

where ε · r =
∑

1≤i≤k εiri and sρ is the truncated sum-of-digits function in base 2 defined by
sρ(n) = s(n mod 2ρ). Note that, strictly speaking, this is not the Gowers norm of the Thue–Morse
sequence, but the Gowers norm of order k of the projection of (−1)s(n) to Z/2ρZ. The proof of
a very similar statement was given recently by Konieczny [Kon19], and we use the proof from
that paper to prove our estimate.

Gowers norms are certain averaged multiple correlations and were introduced by Gowers
[Gow98, Gow01], who used them to give a new proof of Szemerédi’s theorem. These norms are a
central tool in higher order Fourier analysis [Tao12]; this theory can be used to study questions
in additive combinatorics, such as the behaviour of an arithmetic function f on arithmetic pro-
gressions n, n+ d, n+ 2d, . . . , n+ (�− 1)d. In the ground-breaking paper [GT08] by Green and
Tao, Gowers norms were used to prove the existence of arbitrarily long arithmetic progressions
in the primes. Our result is a statement on arithmetic progressions too; although it is different
in nature, Gowers norms are applicable here.

In order to put Theorem 1.1 into context, we present some related theorems. The well-known
Bombieri–Vinogradov theorem concerns the level of distribution of the von Mangoldt function
Λ, which is defined by Λ(n) = log p if n = p� for some prime p and some � ≥ 1 and Λ(n) = 0
otherwise. This theorem states that Λ has level of distribution 1/2 with respect to Q and R
given by Q(d) = R(d) = (Z/dZ)∗.

Theorem B (Bombieri–Vinogradov). Let d ≥ 1 and a be integers and define

ψ(x; d, a) =
∑

1≤n≤x
n≡a mod d

Λ(n).
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For all real numbers A > 0 there exist B > 0 and a constant C such that setting D =
x1/2(log x)−B we have for all x ≥ 2

∑
1≤d≤D

max
1≤y≤x

max
0≤a<d

gcd(a,d)=1

∣∣∣∣ψ(y; d, a) − y

ϕ(d)

∣∣∣∣ ≤ Cx(log x)−A.

Here ϕ denotes Euler’s totient function.

No improvement on the level of distribution 1/2 in this theorem is currently known. Mean-
while the Elliott–Halberstam conjecture [EH70] states that we can chooseD = x1−ε for any ε > 0.
That is, it is conjectured that the primes have level of distribution 1. Improvements on the expo-
nent 1/2 exist for certain sequences of integers; we refer to the articles [Fou82, Fou84] by Fouvry,
[FI80] by Fouvry and Iwaniec and [FI85] by Friedlander and Iwaniec. Moreover, we mention the
series [BFI86, BFI87, BFI89] by Bombieri et al. concerning this topic. In this context, we also
note the result of Goldston et al. [GPY09], who showed in particular the following conditional
result: if the primes have level of distribution θ for some θ > 1/2, then there exists a constant
C such that pn+1 − pn < C infinitely often, where pn is the nth prime. In a ground-breaking
paper we mentioned before, Zhang [Zha14] used the Goldston et al. method and a variant of
the Bombieri–Vinogradov theorem to prove the above result unconditionally. Maynard [May15]
later proved the bounded gaps result using only the classical Bombieri–Vinogradov theorem.

Improvements on the level 1/2 are also known for the sum-of-digits function modulo m.
Fouvry and Mauduit [FM96b] established 0.5924 as a level of distribution of the Thue–Morse
sequence, with respect to Q and R, where Q(d) = R(d) = Z/dZ.

Theorem C (Fouvry–Mauduit). Set

A(x; d, a) = |{0 ≤ n < x : t(n) = 0, n ≡ a mod d}|.

Then ∑
1≤d≤D

max
1≤y≤x

max
0≤a<d

∣∣∣∣A(y; d, a) − y

2d

∣∣∣∣ ≤ Cx(log 2x)−A (1.1)

for all real A and D = x0.5924, where C may depend on A.

More generally, for m ≥ 2, they also studied the sum-of-digits function in base 2 modulo m,
obtaining the weaker level of distribution 0.55711. Using sieve theory, they applied this result to
the study of the sum of digits modulo m of numbers having at most two prime factors. Later,
Mauduit and Rivat [MR10], in an important paper, managed to treat the sum of digits modulo
m of prime numbers, thereby answering one of the questions posed by Gel’fond [Gel68].

Müllner and the author [MS17] improved the exponent 0.5924 to 2/3 − ε, thereby establishing
2/3 as an admissible level of distribution of the Thue–Morse sequence.

Fouvry and Mauduit [FM96a] also considered, more generally, the sum-of-digits function sq

in base q modulo an integer m such that gcd(m, q − 1) = 1. They obtained the result that the
level of distribution approaches 1 as the base q gets larger.
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Theorem D (Fouvry–Mauduit). Let q ≥ 2,m ≥ 1 and b be integers such that gcd(m, q − 1) = 1.

There exists θq > 0 such that for all A and ε > 0 we have for all x ≥ 1∑
1≤d≤D

max
0≤y≤x

max
0≤a<d

∣∣∣∣ ∑
n<y,sq(n)≡b mod m

n≡a mod d

1 − 1
d

∑
n<y,sq(n)≡b mod m

1
∣∣∣∣ = Om,q,A,ε(x(log 2x)−A),

where D = xθq−ε. The implied constant depends at most on m, q, A and ε. As q → ∞, the value

of θq tends to 1.

As an application of this theorem, they considered the sum of digits in base q of integers
having at most two prime factors; moreover, they studied the sum

∑
n<x,sq(n)≡b mod m Λ�(n),

where Λ� is the generalized von Mangoldt function of order � ≥ 2 [FM96a, Corollaire 2].
Theorem D motivates us to look for sequences having level of distribution equal to 1. In

the paper by Fouvry and Mauduit [FM96a] cited above, for example, a list of sequences having
this property is given. Also, we note [FI10, Chapter 22.3], which studies the level of distribution
for additive convolutions, giving further examples. However, in these examples, other than the
trivial example cn = 1 for all n, the maximum over a does not play a rôle: the set Q(d) consists
of at most one element.

We are interested in sequences c having level of distribution 1 and such that the set Q(d) con-
tains ‘many’ residue classes. In other words, we want to find analogues of the Elliott–Halberstam
conjecture. Requiring monotonicity of c, examples can be constructed easily: c(n) = n is such an
example and, more generally, increasing sequences c satisfying certain growth conditions have
this property. Apart from such ‘trivial’ sequences, no other examples seem to be known. Our
Theorem 1.1, giving such an example, might therefore be of interest.

We believe that our method can be adapted to sq(n) mod m for all m ≥ 1 and general bases
q ≥ 2, which would yield θq = 1 for all q ≥ 2 in Theorem D.

The second focus of this paper concerns Piatetski-Shapiro sequences, which are sequences of
the form (�nc�)n≥0 for some c ≥ 1. In order to state the second main theorem, we do not need
additional preparation.

Theorem 1.2. Let 1 < c < 2. The Thue–Morse sequence along �nc� is simply normal. That is,

each of the letters 0 and 1 appears with asymptotic frequency 1/2 in n �→ t(�nc�).

In our earlier paper [MS17] with Müllner, this theorem is proved via a Beatty sequence variant
of Theorem 1.1. That theorem in turn is proved by arguments analogous to the arguments in
the proof of Theorem 1.1 and reduces to the same estimate of the Gowers uniformity norm of
Thue–Morse. Theorem 1.2 is therefore an application of the method of proof of Theorem 1.1.

Again, we present some historical background. Studying Piatetski-Shapiro subsequences of a
given sequence can be seen as a step towards proving theorems on polynomial subsequences. For
example, it is unknown whether there are infinitely many primes of the form n2 + 1; therefore, it
is of interest to consider primes of the form �nc� for 1 < c < 2 and prove an asymptotic formula
for the number of such primes. Piatetski-Shapiro [Pia53] proved such a formula for 1 < c < 12/11,
and the currently best known bound is 1 < c < 2817/2426 due to Rivat and Sargos [RS01]. In
a similar way, the study of the sum-of-digits function along �nc� can be justified. It is another
problem posed by Gel’fond [Gel68] to study the distribution of the sum of digits of polynomial
sequences in residue classes. Since this problem could not be solved at first, Mauduit and Rivat
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[MR95, MR05] considered q-multiplicative functions along �nc� (where a q-multiplicative function
f : N → {z ∈ C : |z| = 1} satisfies f(aqm + b) = f(aqm)f(b) for nonnegative integers a, b,m such
that b < qm) and they obtained an asymptotic formula for c < 7/5.

Theorem E (Mauduit–Rivat). Let 1 < c < 7/5 and set γ = 1/c. For all δ ∈ (0, (7 − 5c)/9) there

exists a constant C > 0 such that for all q-multiplicative functions f : N → {z ∈ C : |z| = 1} and

all x ≥ 1 we have ∣∣∣∣ ∑
1≤n≤x

f(�nc�) −
∑

1≤m≤xc

γmγ−1f(m)
∣∣∣∣ ≤ Cx1−δ.

Since the Thue–Morse sequence is 2-multiplicative, it follows in particular that the subse-
quence indexed by �nc� assumes each of the two values 0, 1 with asymptotic frequency 1/2, as
long as 1 < c < 7/5. This means that this subsequence is simply normal. In the paper [DDM12]
by Deshouillers et al., a statement as in Theorem E for arbitrary automatic sequences and
1 < c < 7/5 is proved. Moreover, we wish to note the paper [Mor11] by Morgenbesser, who
proved uniform distribution of sq(�nc�) in residue classes for all noninteger c > 0, as long as the
base q is large enough (depending on c).

Some progress on Gel’fond’s question on polynomials was made by Drmota and Rivat [DR05]
and by Dartyge and Tenenbaum [DT06]; finally, Mauduit and Rivat [MR09] managed to answer
Gel’fond’s question for the polynomial n2. This latter paper was generalized by Drmota et al.
[DMR19], who showed that in fact t(n2) defines a normal sequence, by which we understand
an infinite sequence on {0, 1} such that every finite sequence of length L occurs as a factor
(contiguous finite subsequence) with asymptotic frequency 2−L. This result also generalizes a
paper by Moshe [Mos07], who showed that every finite word on {0, 1} occurs as a factor of
n �→ t(n2) at least once.

However, the distribution of the sum of digits of �nc� in residue classes, for c ∈ [7/5, 2),
remained an open problem. Progress in this direction was made by the author [Spi14], who
improved the bound on c to 1 < c ≤ 1.42 for the Thue–Morse sequence. The key idea in that
paper is to approximate �nc� by a Beatty sequence �nα+ β� and thus reduce the problem
to a linear one. Müllner and the author [MS17], using the same linearization argument and
a Bombieri–Vinogradov-type theorem for the Thue–Morse sequence on Beatty sequences, were
able to extend this range to 1 < c < 3/2. In that paper, we also handled occurrences of factors
in Piatetski-Shapiro subsequences of t, thus showing that t(�nc�) defines a normal sequence for
1 < c < 3/2.

Theorem F (Müllner–Spiegelhofer). Let 1 < c < 3/2. Then the sequence u = (t(�nc�))n≥0 is

normal. More precisely, for any L ≥ 1 there exist an exponent η > 0 and a constant C such that∣∣|{n < N : u(n+ i) = ωi for 0 ≤ i < L}| −N/2L
∣∣ ≤ CN1−η

for all (ω0, . . . , ωL−1) ∈ {0, 1}L.

This theorem also improved on an earlier result by the author [Spi15], who obtained normality
for 1 < c < 4/3, using an estimate for Fourier coefficients related to the Thue–Morse sequence
provided by Drmota et al. [DMR19].

Our Theorem 1.2 finally closes the gap in the set of exponents c such that we have an
asymptotic formula for Thue–Morse on �nc�. This gap appeared with the Mauduit–Rivat result
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on squares [MR09]; at that time, the gap was [7/5, 2): now, after our paper with Müllner [MS17],
it was only left to close the smaller gap [3/2, 2).

However, the case c > 2 remains open for now for c ∈ Z (which is contained in Gel’fond’s
problem on polynomial subsequences) as well as for Piatetski-Shapiro sequences. For example,
it is a notorious open question to prove that 0 occurs with frequency 1/2 in n �→ t(n3).

Mauduit [Mau01, Conjecture 1] conjectured that

lim
N→∞

1
N

{1 ≤ n ≤ N : sq(�nc�) ≡ b mod m} =
1
m

for almost all c > 1 with respect to Lebesgue measure, where q ≥ 2, m ≥ 1 and b are integers.
While this almost-all result is known for 1 < c < 2, as he notes just before this conjecture, we
believe (as we noted before) that our method can be adapted to generalize our results to general
sequences sq(n) mod m and thus to prove the asymptotic identity for all c ∈ (1, 2). However, while
we are confident that the asymptotic identity in Mauduit’s conjecture holds for all noninteger
c > 1, the case c > 2 cannot yet be handled by our methods.

We note that it would definitely be interesting to generalize the normality result from
Theorem F to all exponents 1 < c < 2.

Notation. For a real number x, we write e(x) = exp(2πix), {x} = x− �x�, ‖x‖ = minn∈Z|x− n|
and 〈·〉 = �x+ 1/2� (the ‘nearest integer’ to x). For a prime number p let νp(n) be the exponent
of p in the prime factorization of n. We define the truncated binary sum-of-digits function

sλ(n) := s(n′),

where 0 ≤ n′ < 2λ and n′ ≡ n mod 2λ, which is the 2λ-periodic extension of the restriction of s
to {0, . . . , 2λ − 1}. For μ ≤ λ we define the two-fold restricted binary sum-of-digits function

sμ,λ(n) = sλ(n) − sμ(n).

For a real number x ≥ 0 we set

log+x = max{1, log x}.
The symbol N denotes the set of nonnegative integers.

Constants implied by the symbols  and O may depend on the variable k (which describes
the number of times that we apply Van der Corput’s inequality), but are otherwise absolute.
Exceptions to this rule will be indicated in the text.

2. Results

In order to (re)state our main theorem, we introduce some notation. Let α, β, y and z be
nonnegative real numbers such that α ≥ 1. We define

A(y, z;α, β) = |{y ≤ m < z : t(m) = 0 and ∃n ∈ Z such that m = �nα+ β�}|.
For integers d = α and a = β, we clearly have

A(y, z; d, a) = |{y ≤ m < z : t(m) = 0 and m ≡ a mod d}|.
Our main theorem is the following result.
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Theorem 2.1. Let ε > 0. There exist η > 0 and C such that∑
1≤d≤D

max
y,z≥0
z−y≤x

max
0≤a<d

∣∣∣∣A(y, z; d, a) − z − y

2d

∣∣∣∣ ≤ Cx1−η

for all x ≥ 1 and D = x1−ε.

Note that this theorem allows intervals [y, z) for arbitrary y ≥ 0, which is more general than
our definition of a level of distribution. Noting that 1 − 2t(n) = (−1)s(n), we obtain the form of
this theorem given in the introduction.

As a corollary we obtain an estimate for the least element m in an arithmetic progression
such that t(m) = 1. For most common differences d, we do not have to search for a long time
until we encounter the first 1.

Corollary 2.2. For d ≥ 1 and a ≥ 0 we define

m(d, a) = min{n ∈ N : t(nd+ a) = 1}.

For each ε > 0 we have, as D → ∞,∣∣∣{d < D : max
a≥0

m(d, a) ≥ dε
}∣∣∣ = o(D).

We note that Dartyge and Tenenbaum considered (among many other things) the homoge-
neous problem concerning a = 0: they proved in particular [DT06, Théorème 2.5] that for any
function ξ(d) tending to ∞, we have m(d, 0) ≤ ξ(d) for almost all d in the sense of asymptotic
density. The added value of our corollary lies in the fact that the maximum is taken over all
arithmetic progressions having a given common difference and a given number of terms. We also
wish to note that Morgenbesser et al. [MSS11] proved in particular that m(d, 0) ≤ d+ 4 for all
nonnegative integers d.

Our second result concerns Piatetski-Shapiro subsequences of the Thue–Morse sequence.

Theorem 2.3. Let 1 < c < 2. Then the sequence n �→ t(�nc�) is simply normal. More precisely,

there exist an exponent η > 0 and a constant C such that∣∣∣∣ 1
N

|{0 ≤ n < N : t(�nc�) = 0}| − 1
2

∣∣∣∣ ≤ CN−η.

In order to prove this theorem, we use the general argument presented in § 4.2 of [MS17].
This argument uses linear approximation of �nc� by �nα+ β� and thus reduces the problem to
Beatty sequences. Therefore, Theorem 2.3 is a corollary of the following Beatty sequence version
of a statement on the level of distribution.

Theorem 2.4. Let 0 < θ1 ≤ θ2 < 1. There exist η > 0 and C such that∫ 2D

D
max
y,z≥0
z−y≤x

max
β≥0

∣∣∣∣A(y, z;α, β) − z − y

2α

∣∣∣∣ dα ≤ Cx1−η

for all x and D such that x ≥ 1 and xθ1 ≤ D ≤ xθ2 .
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In order to derive Theorem 2.3 from this result, it is essential that we have the maximum
over β inside the integral over α, since we need to approximate �nc� by inhomogeneous (shifted)
Beatty sequences �nα+ β�.

Concerning Theorem 2.1, we can obtain a weakened version of this result, without the
maximum over a, using Martin et al. [MMR14].

Remark. Martin et al. [MMR14, Proposition 3] proved an estimate of a sum of type II containing
the following special case: let am and bn be complex numbers satisfying |am| ≤ 1 and |bn| ≤ 1.
Assume that x ≥ 2, 0 < ε ≤ 1/2, xε ≤M,N ≤ x and MN ≤ x. Then

S0 =
∑

M<m≤2M

∑
N<n≤2N

mn≤x

ambn(−1)s(mn) ≤ Cx1−η

for an absolute constant C and some η > 0 only depending on ε. By dyadic decomposition and
using the trivial estimate for n < xε, we obtain∑

M<m≤2M

∣∣∣∣ ∑
0≤n≤2N
mn≤x

(−1)s(mn)

∣∣∣∣ ε x
1−η logN +Mxε

for M and N satisfying the same restrictions and with an implied constant that may depend
on ε. Let x be given and assume that xε ≤M ≤ xθ for some θ ∈ (1/2, 1). Set ε = 1 − θ ≤ 1/2
and N = x/M . Then N ≥ xε and the condition mn ≤ x implies that n ≤ 2N . Using dyadic
decomposition again, this time in the variable m, we obtain∑

xε<m≤D

∣∣∣∣ ∑
0≤u≤x

u≡0 mod m

(−1)s(u)

∣∣∣∣ ε x
1−η log2 x+Mxε log x

for D = xθ. Finally, we use Fouvry and Mauduit [FM96b] in order to handle residue classes
having small modulus m, that is, m ≤ xε. We note (as we did in [MS17]) that the error term in
their estimate [FM96b, (1.6)] is in fact x1−η for some η > 0; this follows from Théorème 2 in the
same paper [FM96b]. We obtain∑

1≤d≤D

∣∣∣∣ ∑
0≤u≤x

n≡0 mod d

(−1)s(u)

∣∣∣∣ ≤ Cx1−η

for D = xθ and some η > 0 and C depending on θ. This is a weak version of a statement of the
type ‘the Thue–Morse sequence has level of distribution 1’, where Q(d) has only one element. We
note that we could also handle the maximum over y ≤ x, using the factor e(βmn) that appears
in [MMR14, Proposition 3]. The added value of our paper (compare also to the remark after
Corollary 2.2) lies in the maximum over the residue classes modulo d.

Finally, we note the following open questions concerning Theorems 2.1 and 2.3.

(i) In Theorem 2.1, can we choose D = x(log x)−B for some B > 0, using x(log x)−A as error
term?

(ii) Does Theorem 2.3 hold for �x2(log x)−C� (and similar sequences, possibly with a worse error
term) in place of �xc�?
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Plan of the paper. In § 3 we state two results (Propositions 3.1 and 3.2) from which Theorems
2.1 and 2.4 follow; moreover, we prove an important Gowers uniformity norm estimate for the
Thue–Morse sequence in Proposition 3.3. We also give an idea of the proof of Proposition 3.1.
Using Proposition 3.1, the proof of Corollary 2.2 is very short and we present it in that section.
In § 4 we state lemmas needed for proving the results from § 3. Section 5 is devoted to proving
Propositions 3.1 and 3.2. Finally, in §§ 5.1 and 5.2, we prove Proposition 3.3 and a technical
lemma appearing in the proof of Propositions 3.1 and 3.2.

3. Auxiliary results

It will be sufficient to prove the following two propositions in order to obtain our main theorems.
To see this, we follow our earlier paper with Müllner [MS17, Section 4.1] and Fouvry and Mauduit
[FM96b] for handling small d. In fact, as we noted before, their Théorème 2 holds with an
improved error term. Moreover, the proof of this result also reveals that the result holds for
arbitrarily shifted intervals [y, z).

Proposition 3.1. For real numbers N,D ≥ 1 and ξ set

S0 = S0(N,D, ξ) =
∑

D≤d<2D

max
a≥0

∣∣∣∣ ∑
0≤n<N

e

(
1
2
s(nd+ a)

)
e(nξ)

∣∣∣∣. (3.1)

Let ρ2 ≥ ρ1 > 0. There exist an η > 0 and a constant C such that

S0

ND
≤ CN−η (3.2)

holds for all ξ ∈ R and all real numbers N,D ≥ 1 satisfying Nρ1 ≤ D ≤ Nρ2 .

With the help of this proposition, it is not difficult to prove Corollary 2.2: we have |{d ∈
[D, 2D) : maxa≥0m(d, a) ≥ N}| ≤ CDN−η for all N,D such that Nρ1 ≤ D ≤ Nρ2 and some C >

0, η > 0. This is the case since we cannot have more than CDN−η many trivial sums in the
expression S0; this means that for each nontrivial summand we encounter at least one 1 for
each a. It follows that |{d ∈ [D, 2D) : maxa≥0m(d, a) ≥ Dε}| ≤ CD1−η′

for all ε > 0. By dyadic
decomposition the statement of the corollary follows.

Proposition 3.2. For real numbers D,N ≥ 1 and ξ set

S0 = S0(N,D, ξ) =
∫ 2D

D
max
β≥0

∣∣∣∣ ∑
0≤n<N

e

(
1
2
s(�nα+ β�)

)
e(nξ)

∣∣∣∣ dα. (3.3)

Let ρ2 ≥ ρ1 > 0. There exist η > 0 and a constant C such that

S0

ND
≤ CN−η (3.4)

holds for all real numbers D,N ≥ 1 satisfying Nρ1 ≤ D ≤ Nρ2 and for all ξ ∈ R.

In the proof of these results, we will use the following essential estimate of a Gowers
uniformity norm of the Thue–Morse sequence (see Konieczny [Kon19]).
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Proposition 3.3. Let k ≥ 2 be an integer. There exist some η > 0 and some C such that

1
2(k+1)ρ

∑
0≤n<2ρ

0≤r1,...,rk<2ρ

e

(
1
2

∑
ε∈{0,1}k

sρ(n+ ε · r)
)

≤ C2−ρη

for all ρ ≥ 0, where ε · r =
∑

1≤i≤k εiri.

Remark. Since the paper [Kon19] by Konieczny also handles the Rudin–Shapiro sequence, it
is certainly possible to prove analogous theorems for this sequence instead of the Thue–Morse
sequence.

We wish to give a rough idea of the proof of Proposition 3.1 (Proposition 3.2 being proved
essentially in the same way).

Idea of the proof of Proposition 3.1. The key idea is to reduce the number of digits that have to
be taken into account and thus to replace the sum-of-digits function s by its truncated version
sρ. Here 2ρ will be significantly smaller than N , so that (we simplify things a bit to convey the
idea) we may replace the sum over s(nd+ a) by a full sum over the periodic function sρ(n). This
reducing of the digits is achieved by a refinement of the method used by Müllner and the author
[MS17], which in turn builds on the ideas from the papers [MR09, MR10] by Mauduit and Rivat.

First, we apply Van der Corput’s inequality and use a ‘carry propagation lemma’ in order to
replace s by sλ. In general, 2λ will be much larger thanN , so that we have to reduce λ further. The
next step is to apply the generalized Van der Corput inequality repeatedly. With each application,
we remove μ many digits. This is achieved by appealing to the Dirichlet approximation theorem,
by which we can find a multiple of α = d/2jμ that is close to a multiple of 2μ. This property can
be used to discard the μ lowest digits.

By this repeated application the estimate is reduced to an estimate of a Gowers uniformity
norm of the Thue–Morse sequence, and we use the method of proof of Konieczny [Kon19] in order
to obtain this estimate. The application of Van der Corput’s inequality in the context of digital
problems is well established, beginning with the work of Mauduit and Rivat [MR09, MR10]. The
combination with Gowers norms however is novel, and we think that this connection is a fruitful
one: iterated application of Van der Corput’s inequality leads to multiple correlations, which in
a natural way lead to Gowers norms.

4. Lemmas

We have the following series of lemmas that can also be found in our earlier paper with Müllner
[MS17]. The first lemma can be proved by elementary considerations.

Lemma 4.1. Let a, b ∈ R and n ∈ N.

If ‖a‖ < ε and ‖b‖ ≥ ε, then �a+ b� = 〈a〉 + �b�, (4.1)

‖na‖ ≤ n‖a‖, (4.2)

If ‖a‖ < ε and 2nε < 1, then 〈na〉 = n〈a〉. (4.3)

As an essential tool, we will use repeatedly the following generalized Van der Corput
inequality [MR09, Lemme 17].
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Lemma 4.2. Let I be a finite interval in Z containing N integers and let zn be a complex number

for n ∈ I. For all integers K ≥ 1 and R ≥ 1 we have∣∣∣∣ ∑
n∈I

zn

∣∣∣∣2 ≤ N +K(R− 1)
R

∑
0≤|r|<R

(
1 − |r|

R

) ∑
n∈I

n+Kr∈I

zn+Krzn. (4.4)

Assume that α is a real number and N is a nonnegative integer. We define the discrepancy
of the sequence nα modulo 1:

DN (α) = sup
0≤x≤1
y∈R

∣∣∣∣ 1
N

∑
n<N

1[0,x)+y+Z(nα) − x

∣∣∣∣.
Applying this definition, using x = 1/(KT ), y = t/(KT ), and α/K instead of α, we obtain the
following lemma.

Lemma 4.3. Let J be an interval in R containing N integers and let α and β be real numbers.

Assume that t, T, � and L are integers such that 0 ≤ t < T and 0 ≤ � < L. Then∣∣∣∣{n ∈ J :
t

T
≤ {nα+ β} < t+ 1

T
, �nα+ β� ≡ � mod L

}∣∣∣∣ =
N

LT
+ O

(
NDN

(
α

L

))
with an absolute implied constant.

In the estimation of our error terms, we will use the following mean discrepancy results
(Lemma 3.4 in [MS17]).

Lemma 4.4. For integers μ ≥ 0 and N ≥ 1 we have∑
0≤d<2μ

DN

(
d

2μ

)
≤ C1

N + 2μ

N
(log+N)2.

Also, the estimate ∫ 1

0
DN (α) dα ≤ C2

(log+N)2

N

holds. The constants C1 and C2 in these estimates are absolute.

The following ‘carry propagation lemma’ will allow us to replace the sum-of-digits function
s by its truncated version sλ. Statements of this type were used by Mauduit and Rivat in their
papers on the sum of digits of primes and squares [MR09, MR10].

Lemma 4.5. Let r,N, λ be nonnegative integers and α > 0, β ≥ 0 real numbers. Assume that I

is an interval containing N integers. Then

|{n ∈ I : s(�(n+ r)α+ β�) − s(�nα+ β�) 
= sλ(�(n+ r)α+ β�) − sλ(�nα+ β�)}|
≤ r(Nα/2λ + 2).

Let Fn be the set of rational numbers p/q such that 1 ≤ q ≤ n, the Farey series of order n.
Each a ∈ Fn has two neighbours aL, aR ∈ Fn satisfying aL < a < aR and (aL, a) ∩ Fn = (a, aR) ∩
Fn = ∅. We have the following elementary lemma concerning this set (see [HW54, Chapter 3]).
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Lemma 4.6. Assume that a/b and c/d are reduced fractions such that b, d > 0 and a/b < c/d.

Then a/b < (a+ c)/(b+ d) < c/d. If a/b and c/d are neighbours in the Farey series Fn, then

bc− ad = 1 and b+ d > n; moreover,

(a+ c)/(b+ d) − a/b <
1
bn

and c/d− (a+ c)/(b+ d) <
1
dn
.

Let α ∈ R and Q a positive integer. We assign a fraction pQ(α)/qQ(α) to α according to
the Farey dissection of the reals: consider reduced fractions a/b < c/d that are neighbours in
the Farey series FQ such that a/b ≤ α < c/d. If α < (a+ c)/(b+ d), then set pQ(α) = a and
qQ(α) = b, otherwise set pQ(α) = c and qQ(α) = d. Lemma 4.6 implies that

|qQ(α)α− pQ(α)| < Q−1. (4.5)

We will call an interval of the form {α ∈ R : pQ(α) = p, qQ(α) = q} a Farey interval around p/q.

5. Proof of Propositions 3.1 and 3.2

As in the proof of Proposition 2.5 in [MS17], for (3.2) and (3.4) to hold it is sufficient to prove
that there exist η > 0 and a constant C such that

S0(N, 2ν , ξ)
N2ν

≤ CN−η

for all real numbers ξ and for all positive integers N and ν such that there exists a real number
D ≥ 1 satisfying Nρ1 ≤ D ≤ Nρ2 and D < 2ν ≤ 2D, where S0 is defined according to (3.1) or
(3.3).

In order to treat the two propositions to some extent in parallel, we will work with two
measures μ: for Proposition 3.1, we take the measure defined by μ(A) = |A ∩ Z|, counting the
number of integers inside a set, while for Proposition 3.2, μ is the Lebesgue measure. We note
that in this proof, implied constants in estimates depend only on the variable k, whose meaning
will become clear later.

By Cauchy–Schwarz, followed by Van der Corput’s inequality (4.4) (R0 will be specified
later), we obtain

|S0(N, 2ν , ξ)|2 ≤ 2νN +R0

R0

∫ 2ν+1

2ν

sup
β≥0

∑
0≤|r0|<R0

(
1 − |r0|

R0

)
e(r0ξ)

×
∑

0≤n<N
0≤n+r0<N

e

(
1
2
s(�(n+ r0)α+ β�) − 1

2
s(�nα+ β�)

)
dμ(α).

We apply the carry propagation lemma (Lemma 4.5), treat the summand r0 = 0 separately
and omit the condition 0 ≤ n+ r0 < N . Moreover, we consider r0 and −r0 synchronously. In this

2572

https://doi.org/10.1112/S0010437X20007563 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007563


Level of distribution of Thue–Morse

way we obtain for all λ ≥ 0

|S0(N, 2ν , ξ)|2  (2νN)2E0 +
2νN

R0

∑
1≤r0<R0

×
∫ 2ν+1

2ν

sup
β≥ 0

∣∣∣∣ ∑
0≤n<N

e

(
1
2
sλ(�(n+ r0)α+ β�) − 1

2
sλ(�nα+ β�)

)∣∣∣∣ dμ(α),

where

E0 =
1
R0

+
R02ν

2λ
+
R0

N
.

We apply Cauchy–Schwarz on the sum over r0 and the integral over α in order to prepare
our expression for another application of Van der Corput’s inequality. It follows that

|S0(N, 2ν , ξ)|4  23νN2

R0

∑
1≤r0<R0

∫ 2ν+1

2ν

sup
β≥0

|S1|2 dμ(α) + (2νN)4E0,

where

S1 =
∑

0≤n<N

e

(
1
2
sλ(�(n+ r0)α+ β�) − 1

2
sλ(�nα+ β�)

)
.

(Note that the error term is also squared, but if it is larger than or equal to 1, the estimate
is trivial anyway. We will use this argument again in a moment.) We apply Van der Corput’s
inequality (4.4) with R = R1 and K = K1 to be chosen later:

|S1|2 ≤ N +K1(R1 − 1)
R1

∑
0≤|r1|<R1

(
1 − |r1|

R1

)

×
∑

0≤n<N
0≤n+r1K1<N

e

(
1
2

∑
ε0,ε1∈{0,1}

sλ(�(n+ ε0r0 + ε1r1K1)α+ β�)
)

;

therefore, combining the summands for r1 and −r1 and omitting the condition 0 ≤ n+ r1K1

< N ,

|S0(N, 2ν , ξ)|4  23νN3

R0R1

∑
1≤r0<R0
0≤r1<R1

∫ 2ν+1

2ν

sup
β≥0

|S2| dμ(α) + (2νN)4(E0 + E1),

where

S2 =
∑

0≤n<N

e

(
1
2

∑
ε0,ε1∈{0,1}

sλ(�(n+ ε0r0 + ε1r1K1)α+ β�)
)

and

E1 =
R1K1

N
.

Cauchy–Schwarz over r0, r1 and α yields

|S0(N, ν, ξ)|8  27νN6

R0R1

∑
1≤r0<R0
0≤r1<R1

∫ 2ν+1

2ν

sup
β≥0

|S2|2 dμ(α) + (2νN)8(E0 + E1).
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We apply Van der Corput’s inequality with R = R2 and K = K2 to be chosen later:

|S0(N, 2ν , ξ)|8
(2νN)8

 (E0 + E1 + E2) +
1

R0R1R22νN

∑
1≤r0<R0
0≤r1<R1
0≤r2<R2

∫ 2ν+1

2ν

sup
β≥0

|S3| dμ(α),

where

S3 =
∑

0≤n<N

e

(
1
2

∑
ε0,ε1,ε2∈{0,1}

sλ(�nα+ β + ε0r0α+ ε1r1K1α+ ε2r2K2α�)
)

and E2 = R2K2/N. Continuing in this manner and replacing the range of integration (we note
that we are going to choose λ > ν later), we obtain∣∣∣∣S0(N, 2ν , ξ)

2νN

∣∣∣∣2k+1

 (E0 + E1 + · · · + Ek)

+
1

R0R1 · · ·Rk2νN

∑
1≤r0<R0

0≤ri<Ri,1≤i≤k

∫ 2λ

0
sup
β≥0

|S4| dμ(α), (5.1)

where

S4 =
∑

0≤n<N

e

(
1
2

∑
ε0,...,εk∈{0,1}

sλ(�nα+ β + ε0r0α+ ε1r1K1α+ · · · + εkrkKkα�)
)

and

E0 =
1
R0

+
R0 2ν

2λ
+
R0

N
,

Ei =
RiKi

N
for 1 ≤ i ≤ k.

Now we choose the multiples K1, . . . ,Kk in such a way that the number of digits to be taken
into account is reduced from λ to ρ := λ− (k + 1)μ, where μ is chosen later. For this we use
Farey series; see (4.5). Let

K1 = q22μ+2σ

(
α

22μ

)
q2σ

(
p22μ+2σ(α/22μ)

2(k−1)μ

)
;

Ki = q2μ+2σ

(
α

2(i+1)μ

)
q2σ

(
p2μ+2σ(α/2(i+1)μ)

2(k−i)μ

)
for 2 ≤ i < k;

Kk = q2μ+σ

(
α

2(k+1)μ

)
,

where σ is chosen later. Moreover, we set

M1 = p22μ+2σ

(
α

22μ

)
q2σ

(
p22μ+2σ(α/22μ)

2(m−1)μ

)
;

Mi = p2μ+2σ

(
α

2(i+1)μ

)
q2σ

(
p2μ+2σ(α/2(i+1)μ)

2(k−i)μ

)
for 2 ≤ i < k;
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Mk = p2μ+σ

(
α

2(k+1)μ

)
.

By Lemma 4.6, estimating the second factor in the definition of Ki and Mi by 2σ, we have

|K1α− 22μM1| < 2−σ;∣∣∣∣Kiα

2iμ
− 2μMi

∣∣∣∣ < 2−σ for 2 ≤ i < k; (5.2)∣∣∣∣Kkα

2kμ
− 2μMk

∣∣∣∣ < 2−σ.

We are going to use these inequalities in order to replace riKiα in the sum S4, starting with
r1K1α. We treat the case when α is an integer first: in this case, K1α = 22μM1, and by the fact
that the arguments of sλ corresponding to ε1 = 0, 1 differ by a multiple of 22μ, we may shift the
argument by 2μ digits and thus reduce the number of digits to be taken into account from λ to
λ− 2μ:

S4 =
∑

0≤n<N

e

(
1
2

∑
ε0,...,εk∈{0,1}

s2μ,λ(�nα+ β

+ ε0r0α+ ε1r1M122μ + ε2r2K2α+ · · · + εkrkKkα�)
)

=
∑

0≤n<N

e

(
1
2

∑
ε0,...,εk∈{0,1}

sλ−2μ

(⌊
nα+ β

22μ
+
ε0r0α

22μ
+ ε1r1M1

+
ε2r2K2α

22μ
+ · · · + εkrkKkα

22μ

⌋))
.

In the case α 
∈ Z, we use the inequalities (5.2) and the argument that nα-sequences are usually
not close to an integer. This can be made precise as follows. Assume that

‖nα+ β′‖ ≥ R1/2σ, (5.3)

where β′ = β + ε0r0α+ ε2r2K2α+ · · · + εkrkKkα, and that 2R1 < 2σ. Using the inequality (4.3)
in Lemma 4.1 with ε = 1/2σ, where σ ≥ 1 is chosen later, and (4.5), we obtain

〈r1K1α〉 = r1〈K1α〉 = r122μM1.

Applying (4.1), setting ε = R1/2σ, we see that (5.3) together with (5.2) implies that

�nα+ r1K1α+ β′� = �nα+ r122μM1 + β′�.
The number of n where hypothesis (5.3) fails for some ε0, ε2, . . . , εk can be estimated by
discrepancy estimates for {nα}-sequences: for all positive integers N and 2R1 < 2σ we have

|{n ∈ [0, N − 1] : ‖nα+ β′‖ ≤ R1/2σ}|
= |{n ∈ [0, N − 1] : nα+ β′ ∈ [−R1/2σ, R1/2σ] + Z}|
= |{n ∈ [0, N − 1] : nα ∈ [0, 2R1/2σ] − β′ −R1/2σ + Z}|
≤ NDN (α) + 2R1N/2σ.
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Therefore, the number of n ∈ [0, N − 1] such that there exist ε0, ε2, . . . , εk ∈ {0, 1} with ‖nα+
β′‖ ≤ R1/2σ is bounded by 2kN(DN (α) + 2R1/2σ), which is  N(DN (α) + 2R1/2σ) by our
convention that implied constants may depend on k.

We replace K1α by 22μM1 and subsequently shift the digits by 2μ and obtain

S4 =
∑

0≤n<N

e

(
1
2

∑
ε0,...,εk∈{0,1}

sλ−2μ

(⌊
nα+ β

22μ
+
ε0r0α

22μ
+ ε1r1M1

+
ε2r2K2α

22μ
+ · · · + εkrkKkα

22μ

⌋))
+ O(NDN (α) +NR1/2σ).

Repeating this argument for all i ∈ {2, . . . , k} we obtain

S4 = NO
(
D̃N (α) +DN

(
α

22μ

)
+ · · · +DN

(
α

2kμ

)
+
R1 + · · · +Rk

2σ

)
+

∑
0≤n<N

e

(
1
2

∑
ε1,...,εk∈{0,1}

sλ−(k+1)μ

(⌊
nα+ β

2(k+1)μ
+

ε0r0α

2(k+1)μ
+

∑
1≤i≤k

εiriMi

2(k−i)μ

⌋))
,

where D̃N (α) = DN (α) if α 
∈ Z and D̃N (α) = 0 otherwise.
Now the second factor in the definition of Ki comes into play. We use the definition of

Mi together with the approximation property (4.5), and apply the discrepancy estimate for
{nα}-sequences again, to obtain

S4 = NO
(
D̃N (α) +DN

(
α

22μ

)
+ · · · +DN

(
α

2(k+1)μ

)
+
R1 + · · · +Rk

2σ

)
+ S5, (5.4)

where

S5 =
∑

0≤n<N

e

(
1
2

∑
ε0,...,εk∈{0,1}

sλ−(k+1)μ

(⌊
nα+ β

2(k+1)μ
+

ε0r0α

2(k+1)μ

⌋
+

∑
1≤i≤k

εiripi

))

and

p1 = p2σ

(
p22μ+2σ(α/22μ)

2(k−1)μ

)
;

pi = p2σ

(
p2μ+2σ(α/2(i+1)μ)

2(k−i)μ

)
for 2 ≤ i < k; (5.5)

pk = p2μ+σ

(
α

2(k+1)μ

)
.

Our next goal is to remove the Beatty sequence occurring in S5, and also to remove the
integers pi. The resulting expression can be handled by the Gowers norm estimate given in
Proposition 3.3, which will finish the proof.

We start by splitting the Beatty sequence into two summands. Let t, T be integers such that
0 ≤ t < T and define

S6 =
∑

0≤n<N
t/T≤{(nα+β)/2(k+1)μ}<(t+1)/T

e

(
1
2

∑
ε0,...,εk∈{0,1}

sλ−(k+1)μ

(⌊
nα+ β + ε0r0α

2(k+1)μ

⌋
+

∑
1≤i≤k

εiripi

))
.
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We define

G =
{

1 ≤ t < T :
[
t

T
+

ε0r0α

2(k+1)μ
,
t+ 1
T

+
ε0r0α

2(k+1)μ

)
∩ Z = ∅

}
.

Clearly, we have |G| ≥ T − 2, since we have to exclude at most one t. For t ∈ {0, . . . , T − 1} \G
we estimate S6 trivially, using Lemma 4.3: we obtain

S6  N

T
+NDN

(
α

2(k+1)μ

)
. (5.6)

Assume that t ∈ G and that t/T ≤ {(nα+ β)/2(k+1)μ} < (t+ 1)/T . Then⌊
nα+ β

2(k+1)μ

⌋
+
t

T
+

ε0r0α

2(k+1)μ
≤ nα+ β + ε0r0α

2(k+1)μ
<

⌊
nα+ β

2(k+1)μ

⌋
+
t+ 1
T

+
ε0r0α

2(k+1)μ

and the assumption t ∈ G gives⌊
nα+ β + ε0r0α

2(k+1)μ

⌋
=

⌊
nα+ β

2(k+1)μ

⌋
+

⌊
t

T
+

ε0r0α

2(k+1)μ

⌋
for ε0 ∈ {0, 1}. From these observations we obtain for t ∈ G:

S6 =
∑

0≤m<2ρ

∑
0≤n<N

t/T≤{(nα+β)/2(k+1)μ}<(t+1)/T


(nα+β)/2(k+1)μ�≡m mod 2ρ

× e

(
1
2

∑
ε0,...,εk∈{0,1}

sρ

(
m+

⌊
t

T
+

ε0r0α

2(k+1)μ

⌋
+

∑
1≤i≤k

εiripi

))
.

Note that the Beatty sequence �(nα+ β)/2(k+1)μ� does not occur in the summand any more.
We may therefore remove the second summation by estimating the number of times the three
conditions under the summation sign are satisfied. At this point we want to stress the fact that
N is going to be significantly larger than 2ρ = 2λ−(k+1)μ. Using Lemma 4.3 and the usually very
small discrepancy of nα-sequences, this fact will enable us to remove the summation over n,
while introducing only a negligible error term for most α. This is the point in the proof where
the successive ‘cutting away’ of binary digits with the help of Farey series pays off.

By Lemma 4.3, applied with L = 2ρ, and noting that λ = (k + 1)μ+ ρ, we obtain for t ∈ G

S6 =
N

2ρT
S7 + O

(
2ρNDN

(
α

2λ

))
, (5.7)

where

S7 =
∑

0≤m<2ρ

e

(
1
2

∑
ε0,...,εk∈{0,1}

sρ

(
m+

⌊
t

T
+

ε0r0α

2(k+1)μ

⌋
+

∑
1≤i≤k

εiripi

))
.

We note the important fact that this expression is independent of β. This will allow us to remove
the maximum over β inside the integral over α and thus prove the strong statement on the level
of distribution.
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We wish to simplify this expression in such a way that Proposition 3.3 is applicable. To this
end, we use the summation over ri and the integral over α. We define

S8 =
∫ 2λ

0

∑
0≤r1,...,rk<2ρ

|S7| dμ(α),

which is an expression that will appear when we expand the original sum S0.
We are going to apply the argument that for most α < 2λ (with respect to μ) the 2-adic

valuation of p1, . . . , pk is small. For these α, the term ripi mod 2ρ attains eachm ∈ {0, . . . , 2ρ − 1}
not too often, as ri varies. We may therefore replace rip1 by ri and thus obtain full sums over
ri: at this point, we set

Ri = 2ρ for 1 ≤ i ≤ k.

In order to make this argument work, we are going to utilize the following technical result, the
proof of which we give in § 5.2.

Lemma 5.1. Let μ, λ, σ, γ, k be nonnegative integers such that k ≥ 2 and

λ ≥ (k + 1)μ, γ ≤ λ− (k + 1)μ,
μ ≥ 4σ, σ ≥ γ ≥ 1.

(5.8)

Let p1, . . . , pk be defined by (5.5) and set

A = {α ∈ {0, . . . , 2λ − 1} : 23γ | pi for some i = 1, . . . , k}.
Then

|A| = O(2λ−γ).

Analogously, if

A = {α ∈ [0, 2λ] : 23γ | pi for some i = 1, . . . , k},
then

λ(A) = O(2λ−γ),

where λ is the Lebesgue measure. The implied constants only depend on m (and are independent

of μ, λ, σ and γ).

Let A be defined as in this lemma. We choose Ri = 2ρ for 1 ≤ i ≤ k.
Assume that α 
∈ A. Then, by an elementary argument, ripi mod 2ρ attains each value not

more than 23γ times, as ri runs through {0, . . . , 2ρ − 1}. The contribution for α ∈ A will be
estimated trivially by the lemma. We obtain

S8 ≤ 23γk

∫ 2λ

0

∑
0≤r1,...,rk<2ρ

|S9|dμ(α) + O(2λ+(k+1)ρ−γ),

where

S9 =
∑

0≤n<2ρ

e

(
1
2

∑
ε0,...,εk∈{0,1}

sρ

(
n+

⌊
t

T
+

ε0r0α

2(k+1)μ

⌋
+

∑
1≤i≤k

εiri

))
.

The next step is removing the remaining floor function, using the integral over α. In the con-
tinuous case, the expression �t/T + r0K0α/2(k+1)μ� mod 2ρ runs through {0, . . . , 2ρ − 1} in a

2578

https://doi.org/10.1112/S0010437X20007563 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007563


Level of distribution of Thue–Morse

completely uniform manner. That is, for r0 
= 0 and 0 ≤ m < 2ρ we have

λ({α ∈ [0, 2λ] : �t/T + r0α/2(k+1)μ� ≡ m mod 2ρ}) = 2λ−ρ,

where λ is the Lebesgue measure. We consider the discrete case. Assume that r0 ≤ 2(k+1)μ (we
will choose R0 very small at the end of the proof, so that this will be satisfied). Then the set of
α ∈ {0, . . . , 2λ − 1} such that �t/T + r0α/2(k+1)μ� ≡ m mod 2ρ decomposes into at most r0 + 1
intervals (note that λ = (k + 1)μ+ ρ), each having ≤ 2(k+1)μ/r0 + 1 elements. In total we have
 2λ−ρ elements, where the implied constant is absolute. It follows that

S8  2λ+(k+1)ρ−γ + 2λ−ρ+3γk
∑

0≤r0,...,rk<2ρ

|S10(r0, . . . , rk)|,

where

S10(r0, . . . , rk) =
∑

0≤n<2ρ

e

(
1
2

∑
ε0,...,εk∈{0,1}

sρ

(
n+

∑
0≤i≤k

εiri

))
.

As a final step in the procedure of reducing the main theorems to Proposition 3.3, we are going
to remove the absolute value around S10. For brevity, we set

g(n) =
∑

ε0,...,εk∈{0,1}
sρ

(
n+

∑
0≤i≤k

εiri

)
.

By the 2ρ-periodicity of g we have∑
0≤r0,...,rk<2ρ

|S10(r0, . . . , rk)|2

=
∑

0≤r0,...,rk<2ρ

∑
0≤n1,n2<2ρ

e

(
1
2
g(n1) +

1
2
g(n2)

)

=
∑

0≤r0,...,rk<2ρ

∑
0≤n1<2ρ

∑
0≤rk+1<2ρ

e

(
1
2
g(n1) +

1
2
g(n1 + rk+1)

)

=
∑

0≤r0,...,rk+1<2ρ

∑
0≤n1<2ρ

e

(
1
2
g(n1) +

1
2
g(n1 + rk+1)

)

=
∑

0≤r0,...,rk+1<2ρ

∑
0≤n1<2ρ

e

(
1
2

∑
ε0,...,εk∈{0,1}

∑
εk+1∈{0,1}

sρ(n1 + ε · r + εk+1rk+1)
)

=
∑

0≤r0,...,rk+1<2ρ

S10(r0, . . . , rk+1).

We have therefore removed the absolute value around S10 for the price of an additional variable
rk+1; see also [GT10, Section 4] for this type of argument. This means that we have reduced our
main theorems to Proposition 3.3.

By this proposition and Cauchy–Schwarz we obtain

S8  2λ+(k+1)ρ(2−γ + 23γk−ηρ) (5.9)

for some η > 0.
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It remains to collect the error terms and to choose values for the free variables. Using (5.7)
and (5.6), we obtain

S5 
∑
t�∈G

(
N

T
+NDN

(
α

2(k+1)μ

))
+

∑
t∈G

(
N

2ρT
S7 + 2ρNDN

(
α

2λ

))

 N

2ρT

∑
t∈G

S7 +
N

T
+NDN

(
α

2(k+1)μ

)
+ 2ρNTDN

(
α

2λ

)

and by (5.4) and (5.1) we obtain

∣∣∣∣S0(N, ν, ξ)
2νN

∣∣∣∣2k+1

 O
(

1
R0

+
R02ν

2λ
+
R0

N
+
R1K1

N
+ · · · + RkKk

N

)

+
1

2νN

∫ 2λ

0
NO

(
D̃N (α) +DN

(
α

22μ

)
+ · · · +DN

(
α

2(k+1)μ

)
+
R1 + · · · +Rk

2σ

)
dμ(α)

+
1

2νN

∫ 2λ

0
O

(
N

T
+NDN

(
α

2(k+1)μ

)
+ 2ρTNDN

(
α

2λ

))
dμ(α)

+
1

R0 · · ·Rk2νN

N

2ρT

∑
t∈G

∑
1≤r0<R0

∫ 2λ

0

∑
0≤r1,...,rk<2ρ

|S7| dμ(α). (5.10)

We employ the mean discrepancy estimates from Lemma 4.4. Assume that δ ≤ λ. In the
continuous case we have

1
2ν

∫ 2λ

0
DN

(
α

2δ

)
dα 2λ−ν−δ

∫ 2δ

0
DN

(
α

2δ

)
dα 2λ−ν (log+N)2

N
,

while the discrete case gives

1
2ν

∑
0≤d<2λ

DN

(
d

2δ

)
 2λ−δ−νN + 2δ

N
(log+N)2 = 2λ−ν(log+N)2

(
1
N

+
1
2δ

)
.

In total, noting that λ ≥ (k + 1)μ, the discrepancy terms can be estimated by

2λ−ν(log+N)22ρT

(
1
N

+
1

22μ

)
.

By (5.9), the last summand in (5.10) can be estimated by

2λ−ν(2−γ + 23γk−ηρ).
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Moreover, using the facts that R1 = · · · = Rk = 2ρ and Ki ≤ 22μ+3σ for 1 ≤ i ≤ k, we obtain

∣∣∣∣S0(N, ν, ξ)
2νN

∣∣∣∣2k+1

 1
R0

+
R02ν

2λ
+
R0

N
+

2ρ+2μ+3σ

N

+ 2λ−ν(log+N)22ρT

(
1
N

+
1

22μ

)
+ 2ρ−σ+λ−ν +

1
T

+ 2λ−ν(2−γ + 23γk−ηρ)

(5.11)

with some implied constant only depending on k. Collecting also the requirements on the variables
we assumed in the course of our calculation, we see that this estimate is valid as long as

R0, T ≥ 1, k ≥ 2, γ, ν, λ, ρ, μ ≥ 0, R1 = · · · = Rk = 2ρ,

λ > ν, ρ = λ− (k + 1)μ,
γ ≤ ρ < σ − 1, μ ≥ 4σ,
R0 ≤ 2(k+1)μ.

(5.12)

It remains to choose the variables within these constraints. Choose the integer j ≥ 1 in such
a way that N j−1 ≤ 2ν < N j and set k = 3j − 1. Clearly, k ≥ 2. We define

μ =
⌊

ν

k + 1 + 1/8

⌋
, σ = �μ/4�, ρ̃ = ν − (k + 1)μ.

We obtain the inequalities N ≥ 23μ, μ ≥ 4σ, ρ̃ ≥ 0. Moreover, for large ν we obtain ρ̃ ∼ μ/8.
Choose γ = �ρ̃η/(6k)� and R0 = �2γ/4�. Then the last summand in (5.11) is  2λ−ν(2−γ +

2−ρ̃η/2)  2λ−ν−γ . Finally, set λ = ν + �γ/2�, T = 2γ and ρ = λ− (k + 1)μ. It follows that ρ =
ρ̃+ �γ/2� ∼ (μ/8)(1 + η/(12k)) ≤ μ/8 + μ/192. Using these definitions, it is not hard to see that,
for large N and ν, the requirements (5.12) are met.

Using the statements Nρ1 ≤ D ≤ Nρ2 and D < 2ν ≤ 2D we can easily estimate (5.11) term
by term and conclude that S0(N, ν, ξ)/(2νN) ≤ CN−η′

for some η′ > 0 and some constant C.
This finishes the proof of Propositions 3.1 and 3.2 and therefore of our main theorems. It remains
to prove our auxiliary results.

5.1 Proof of Proposition 3.3
We utilize ideas from the paper [Kon19] by Konieczny. In that paper, he uses the Gowers norm
on intervals in Z, while we are concerned with the cyclic group Z/2ρZ. The proof of Proposition
3.3 is analogous to Konieczny’s proof. In fact, it is possible to relate the two notions of Gowers
norms to each other and therefore avoid going into the details of the proof in [Kon19] (Konieczny,
private communication; we also thank the anonymous referee for pointing out this possibility).
In this paper, however, we chose to follow the proof from [Kon19], as the argument is interesting
and not unreasonably long.

Set

Aρ(a) =
1

2(k+1)ρ

∑
0≤n<2ρ

0≤r1,...,rk<2ρ

e

(
1
2

∑
ε∈{0,1}k

sρ(n+ ε · r + aε)
)
.
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Then, in analogy to equation (16) of [Kon19], we get after a similar calculation (using k ≥ 2)
that

Aρ+1(a) =
(−1)|a|

2k+1

∑
e0,...,ek∈{0,1}

Aρ(δ(a, e)), (5.13)

where |a| =
∑

ε∈{0,1}k aε and

δ(a, e)ε =
⌊
aε + e0 +

∑
1≤i≤k εiei

2

⌋
.

We define a directed graph with weighted edges according to (5.13). The set of vertices is
given by the set of families a ∈ Z{0,1}k

. There is an edge from a to b if and only if there is an
e = (e0, . . . , ek) ∈ {0, 1}k+1 such that δ(a, e) = b and this edge has the weight

w(a,b) =
(−1)|a|

2k+1
|{e ∈ {0, 1}k+1 : δ(a, e) = b}|.

Note that ∑
b∈Z{0,1}k

|w(a,b)| = 1, (5.14)

which we will need later. We are interested in the subgraph (V,E,w) induced by the set of
vertices reachable from 0. This graph is finite: we have

max
ε∈{0,1}k

|δ(a, e)ε| ≤ 1
2

(
max

ε∈{0,1}k
|aε| + k + 1

)
and, by induction, it follows that maxε∈{0,1}k |aε| < k + 1 for all a ∈ V , which implies the
finiteness of V .

This subgraph is strongly connected. We prove this by showing that 0 is reachable from
each a ∈ V . This follows immediately by considering the path given by the edges (a(0),a(1)),
(a(1),a(2)),. . . ,(a(j),a(j+1)) defined by a(0) = a and a(i+1) = δ(a(i), (0, . . . , 0)). It is clear from
the definition of δ that such a path reaches 0 if j is large enough.

We wish to apply (5.13) recursively. We therefore define, for two vertices a,b ∈ V and a
positive integer j, the weight wj(a,b) as the sum of all weights of paths of length j from a to b.
(Here the weight of a path is the product of the weights of the edges.)

In order to prove Proposition 3.3, it is sufficient to prove that there is a j such that∑
b∈V

|wj(a,b)| < 1

for all a ∈ V . In order to prove this, it is sufficient, by the strong connectedness of the graph and
(5.14), to prove that there are two paths of the same length from 0 to 0 such that their respective
weights have different sign. One of these paths is the trivial one, choosing e0 = · · · = ej = 0 in
each step. This path has positive weight.

For the second path, we follow Konieczny [Kon19, proof of Proposition 2.3]. As in that paper,
we define a(0) = a(j+1) = 0 and, for 1 ≤ i ≤ j,

a(i)
ε =

{
1, if ε1 = · · · = εi = 1;

0, otherwise.
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Assuming for a moment that there is an edge from a(i) to a(i+1) for all i ∈ {0, . . . , j}, it is easy to
see that each edge (a(i),a(i+1)) has positive weight for 0 ≤ i < j, while (a(j),a(j+1)) has negative
weight. Proving that these vertices indeed define a path is contained completely in the argument
given in [Kon19]. This finishes the proof of Lemma 3.3.

5.2 Proof of Lemma 5.1
We choose an integer γ > 0 and bound the size of the set of α < 2λ such that 23γ | pi for some
i ∈ {1, . . . , k}. We will need the following two lemmas.

Lemma 5.2. Let λ be the Lebesgue measure. Assume that K ≥ 1 and γ ≥ 0 are integers. Then

λ({x ∈ [0, 1] : 2γ | qK(x)})  1
2γ

+
1
K
.

The constant in this estimate is absolute.

Proof. We have to sum up the lengths of the Farey intervals around p/q such that 2γ | q. By
Lemma 4.6, each such fraction contributes at most 2/(Kq). By summing over p ∈ {1, . . . , q}, this
gives a contribution 2/K for each multiple q of 2γ and we obtain a total contribution


∑

1≤q≤K
2γ |q

1
K

≤ 1
2γ

+
1
K
. �

Lemma 5.3. Let x0, . . . , xM−1 ∈ [0, 1] and δ > 0. Assume that ‖xi − xj‖ ≥ δ for i 
= j. Then

|{n ∈ {0, . . . ,M − 1} : 2γ | qK(xi)}|  K2

2γ
+

1
δ

(
1
2γ

+
1
K

)
.

The implied constant is absolute.

Proof. In each Farey interval around p/q such that q is divisible by 2γ there are at most
2/(Kqδ) + 1 many points xi. By summing over p and q, we can bound the number of points
in such intervals by


∑

1≤q≤K
2γ |q

∑
1≤p≤q

(
1

qKδ
+ 1

)
=

∑
1≤q≤K

2γ |q

(
1
Kδ

+ q

)
= (K2−γ + 1)

1
Kδ

+
∑

1≤q≤K
2γ |q

q

≤ 1
2γδ

+
1
Kδ

+ 2γ
∑

1≤q′≤
K2−γ�
q′  K2

2γ
+

1
2γδ

+
1
Kδ

. �

We proceed to the proof of Lemma 5.1. Consider p1 and the case ‘α discrete’. In this
case, we have p22μ+2σ(α/22μ) = α. Assume therefore that α = α0 + 2(k−1)μα1, where α0 ∈
{0, . . . , 2(k−1)μ − 1} and α1 ∈ {0, . . . , 2λ−(k−1)μ − 1}.

Then

p1 = p2σ(α/2(k−1)μ) = p2σ(α0/2(k−1)μ) + q2σ(α0/2(k−1)μ)α1.

By Lemma 5.3, using also (5.8), it follows that the number of α0 ∈ {0, . . . , 2(k−1)μ − 1} such
that 2γ � q2σ(α0/2(k−1)μ) is 2(k−1)μ(1 −O(2−γ)). For each such α0, we let α1 run through
{0, . . . , 2λ−(k−1)μ − 1}. Then two occurrences α1, α′

1 such that 22γ | p1 are separated by at
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least 2γ steps; it follows that the number of such α1 is bounded by 2λ−(k−1)μ−γ . Putting these
errors together, we see that the number of α ∈ {0, . . . , 2λ − 1} such that 22γ � p1 is given by
2(k−1)μ(1 −O(2−γ))2λ−(k−1)μ(1 −O(2−γ)) = 2λ(1 −O(2−γ)).

Next, we consider the continuous case. We write α = α0 + 22μα1 + 2(k+1)μα2 , where
α0 ∈ [0, 22μ) is real and α1 < 2(k−1)μ and α2 < 2λ−(k+1)μ are nonnegative integers. Set p =
p22μ+2σ(α0/22μ) and q = q22μ+2σ(α0/22μ). Then

p22μ+2σ(α/22μ)
2(k−1)μ

=
p+ (α1 + 2(k−1)μα2)q

2(k−1)μ
=
p+ α1q

2(k−1)μ
+ α2q.

By the approximation property (4.5) (note that σ ≥ 1) we have

p1 =
〈(

p+ α1q

2(k−1)μ
+ α2q

)
q2σ

(
p+ α1q

2(k−1)μ

)〉
=

〈
p+ α1q

2(k−1)μ
q2σ

(
p+ α1q

2(k−1)μ

)〉
+ α2q q2σ

(
p+ α1q

2(k−1)μ

)
and we note that the first summand does not depend on α2.

As α0 runs through [0, 22μ], we have by Lemma 5.2 that 2γ � q in a set of measure 22μ(1 −
O(2−γ + 2−2μ−2σ)). By (5.8), this is 22μ(1 −O(2−γ)). Assume that α0 is such that 2γ � q and set
γ′ = ν2(q) < γ. Next, we let α1 run. We choose xj = {(p+ jq)/2(k−1)μ} for 0 ≤ j < 2(k−1)μ−γ′

and we note that these points satisfy ‖xi − xj‖ ≥ 1/2(k−1)μ−γ′
for i 
= j. By Lemma 5.3 it follows

that {
α1 ∈ {0, . . . , 2(k−1)μ−γ′ − 1} : 2γ | q2σ

(
p+ α1q

2(k−1)μ

)}
 22σ

2γ
+ 2(k−1)μ−γ′

(
1
2γ

+
1
2σ

)
.

By (5.8), this is  2(k−1)μ−γ′−γ . Performing this also for the other intervals of length 2(k−1)μ−γ′
,

we obtain {
α1 ∈ {0, . . . , 2(k−1)μ − 1} : 2γ | q2σ

(
p+ α1q

2(k−1)μ

)}
 2(k−1)μ−γ .

Finally, α2 runs through {0, . . . , 2λ−(k+1)μ − 1} and we consider p1. For given good α1 and
α0 (such that 2γ � q and 2γ � q2σ((p+ α1q)/2(k−1)μ)), p1 is an arithmetic progression in α2 whose
common difference is not divisible by 22γ . Similarly to the discrete case, it follows that p1 is
divisible by 23γ for at most 2λ−(k+1)μ−γ many α2. It follows that there is a set of measure

22μ(1 −O(2−γ))2(k−1)μ(1 −O(2−γ))2λ−(k+1)μ(1 −O(2−γ)) = 2λ(1 −O(2−γ))

of α < 2λ such that 23γ � p1.
The cases 2 ≤ i ≤ k do not require any new ideas; we only give a sketch of a proof. Let

2 ≤ i < k. We treat the discrete and continuous cases in parallel. We write α = α0 + 2(i+1)μα1 +
2(k+1)μα2, where α0 < 2(i+1)μ, and α1 < 2(k−i)μ and α2 < 2λ−(k+1)μ are nonnegative integers. Set
p = p2μ+2σ(α0/2(i+1)μ) and q = q2μ+2σ(α0/2(i+1)μ). Then

pi =
〈
p+ α1q

2(k−i)μ
q2σ

(
p+ α1q

2(k−i)μ

)〉
+ α2qq2σ

(
p+ α1q

2(k−i)μ

)
,

as before. By Lemmas 5.2 and 5.3, we have 2γ � q for α0 in a set of measure 2(i+1)μ(1 −O(2−γ)),
where we used 2μ+ 4σ ≤ (i+ 1)μ in the discrete case. (We note that this last inequality is the
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reason for defining p1 separately, using 22μ instead of 2μ.) The remaining steps are as before and
this case is finished.

Finally, in the case i = k, we write α = α0 + 2(k+1)μα1, where α0 < (k + 1)μ and α1 ∈
{0, . . . , 2λ−(k+1)μ − 1}. Then

pk = p2μ+σ(α0/2(k+1)μ) + q2μ+σ(α0/2(k+1)μ)α1.

By Lemmas 5.2 and 5.3 and (5.8), we have 2γ | q2μ+σ(α0/2(k+1)μ) for α0 in a set of measure
O(2(k+1)μ−γ) and the statement follows as before.

In total, we have a set of measure 2λ(1 −O(2−γ)) of α < 2λ such that 23γ � pi for all i.
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