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Abstract In this work, we consider the first-order difference equation with general argument

Δx(n) + p(n)x (τ(n)) = 0, n ≥ 0,

where (p(n)) is a sequence of non-negative real numbers, (τ(n)) is a sequence of integers such that
τ(n) < n for n ∈ N, and limn→∞ τ(n) = ∞. Under the assumption that the deviating argument is not
necessarily monotone, we obtain some new oscillation conditions and improve the all known results for
the above equation in the literature, involving only upper and only lower limit conditions. Two examples
illustrating the results are also given.
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1. Introduction

For a long time, the oscillation theory of differential and difference equations has attracted
many researchers. In recent years, there has been much research activity concerning the
oscillation and non-oscillation of solutions of delay differential and difference equations.
For these oscillatory and non-oscillatory results, we refer, for instance [1–19].

Consider the retarded difference equation

Δx(n) + p(n)x(τ(n)) = 0, n = 0, 1, . . . , (1.1)

where (p(n)) is a sequence of non-negative real numbers, (τ(n)) is a sequence of integers
such that

τ(n) < n for n ≥ 0, and lim
n→∞ τ(n) = ∞. (1.2)

Δ denotes the forward difference operator Δx(n) = x(n + 1) − x(n). Define

k = −min
n≥0

τ(n) (clearly, k is a positive integer).
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Upper and lower limit oscillation conditions 619

By a solution of the difference equation (1.1), we mean a sequence of real numbers
(x(n)) which satisfies (1.1) for all n ≥ 0. It is clear that, for each choice of real num-
bers c−k, c−k+1, . . . , c−1, c0, there exists a unique solution (x(n)) of (1.1) which satisfies
the initial conditions x(−k) = c−k, x(−k + 1) = c−k+1, . . . , x(−1) = c−1, x(0) = c0.

A solution (x(n)) of the difference equation (1.1) is called oscillatory, if the terms x(n)
of the sequence are neither eventually positive nor eventually negative. Otherwise, the
solution is said to be non-oscillatory.

When τ(n) = n − l where l ≥ 0 an integer number, then Equation (1.1) reduces to

Δx(n) + p(n)x(n − l) = 0. (1.3)

Strong interest in the delay difference equation (1.1) is motivated by the fact that it
represents a discrete analogue of the delay differential equation

x′(t) + p(t)x(τ(t)) = 0, t ≥ t0, (1.4)

where p(t) ∈ C([t0, ∞), [0, ∞)), τ(t) ∈ C([t0, ∞), R), τ(t) ≤ t and limt→∞ τ(t) = ∞.
In particular, the delay difference equation (1.3) represents a discrete analogue of the

(first-order) delay differential equation

x′(t) + p(t)x(t − T ) = 0, t ≥ t0, (1.5)

where T is a positive real constant. For Equations (1.4) and (1.5), see [8, 10, 13].
The problem of establishing sufficient conditions for the oscillation of all solutions of

the difference equations (1.1) and (1.3) has been the subject of many investigations, for
instance, in 1989, Erbe and Zhang [7] proved that each one of the conditions

lim inf
n→∞ p(n) >

ll

(l + 1)l+1
(1.6)

or

lim sup
n→∞

n∑
j=n−l

p(j) > 1 (1.7)

is sufficient for all solutions of (1.3) to be oscillatory. In the same year, 1989, Ladas,
Philos and Sficas [12] established that all solutions of (1.3) are oscillatory if

lim inf
n→∞

n−1∑
j=n−l

p(j) >

(
l

l + 1

)l+1

. (1.8)

Clearly, the condition (1.8) improves the condition (1.6).
We now turn to the general case of the delay difference equation (1.1). The condition

(1.7) can be extended to Equation (1.1). More precisely, if the sequence (τ(n)) is assumed
to be increasing, then from Chatzarakis et al. [3], it follows that all solutions of (1.1) are
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oscillatory if

lim sup
n→∞

n∑
j=τ(n)

p(j) > 1. (1.9)

In 1991, Philos [14] extended the oscillation criterion (1.8) to the general case of Equation
(1.1), by establishing that, if the sequence (τ(n)) is non-decreasing, then the condition

lim inf
n→∞ [

1
n − τ(n)

n−1∑
j=τ(n)

p(j)] > lim sup
n→∞

(n − τ(n))n−τ(n)

(n − τ(n) + 1)n−τ(n)+1
(1.10)

suffices for the oscillation of all solutions of Equation (1.1).
In 1998, Zhang and Tian [19] obtained that if (τ(n)) is non-decreasing,

lim
n→∞(n − τ(n)) = ∞, (1.11)

and

lim inf
n→∞

n−1∑
j=τ(n)

p(j) >
1
e
, (1.12)

then all solutions of (1.1) are oscillatory.
In 1998, Zhang and Tian [18] obtained that if (τ(n)) is not necessarily monotone and

lim sup
n→∞

p(n) > 0 and lim inf
n→∞

n−1∑
j=τ(n)

p(j) >
1
e
, (1.13)

then all solutions of (1.1) oscillate.
In 2008, Chatzarakis et al. [2, 3], when (τ(n)) is not necessarily monotone, studied

Equation (1.1) and proved that, if one of the following conditions

lim sup
n→∞

n∑
j=h(n)

p(j) > 1, where h(n) = max
0≤s≤n

τ(s), n ≥ 0, (1.14)

or

lim sup
n→∞

n−1∑
j=τ(n)

p(j) < ∞ and lim inf
n→∞

n−1∑
j=τ(n)

p(j) >
1
e
, (1.15)

is satisfied, then all solutions of (1.1) oscillate.
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Set,

k(n) :=
(

n − τ(n) + 1
n − τ(n)

)n−τ(n)+1

, n ≥ 0. (1.16)

Clearly,

e < k(n) ≤ 4, n ≥ 0.

In 2006, W. Yan, Q. Meng and J. Yan [17] obtained that if (τ(n)) is non-decreasing and

lim inf
n→∞

n−1∑
j=τ(n)

p(j)
(

j − τ(j) + 1
j − τ(j)

)j−τ(j)+1

> 1, (1.17)

then all solutions of (1.1) are oscillatory.
Observe that, it is easy to see that

n−1∑
j=τ(n)

p(j)k(j) > e
n−1∑

j=τ(n)

p(j)

and therefore the condition (1.17) is better than the condition (1.12).
In 2016, Öcalan [15], when (τ(n)) is not necessarily monotone, established the following

result; if

lim inf
n→∞

n−1∑
j=h(n)

p(j)
(

j − τ(j) + 1
j − τ(j)

)j−τ(j)+1

= lim inf
n→∞

n−1∑
j=τ(n)

p(j)
(

j − τ(j) + 1
j − τ(j)

)j−τ(j)+1

> 1, (1.18)

where h(n) = max0≤s≤n τ(s), n ≥ 0, then all solutions of (1.1) are oscillatory.
In 2011, Braverman and Karpuz [1] proved that if (τ(n)) is not necessarily monotone

and

lim sup
n→∞

n∑
j=h(n)

p(j)
h(n)−1∏
i=τ(j)

1
1 − p(i)

> 1, (1.19)

then all solutions of (1.1) oscillate. Evidently, condition (1.19) has improved condition
(1.14).

In [16], Öcalan proved that if (τ(n)) is not necessarily monotone and

lim inf
n→∞

n−1∑
j=h(n)

p(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

>
1
e
, (1.20)

then all solutions of (1.1) oscillate. It can be seen immediately that if (τ(n)) is non-
decreasing, then condition (1.20) returns to condition (1.15). However, if (τ(n)) is strictly
non-monotone, then condition (1.20) has improved condition (1.15).
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The main aim of this paper is to improve, involving only upper and only lower limit
conditions, the all known results for Equation (1.1) in the literature.

Throughout this paper, we are going to use the following notation:

k−1∏
i=k

A(i) = 1 and
k−1∑
i=k

A(i) = 0.

2. Main results

We present some new sufficient conditions for the oscillation of all solutions of Equation
(1.1), under the assumption that the arguments (τ(n)) is not necessarily monotone.

Let,
h(n) = max

s≤n
τ(s), n ≥ 0. (2.1)

Clearly, h(n) is non-decreasing and τ(n) ≤ h(n) for all n ≥ 0.
The following Lemma was given in [3], which is needed to prove our next theorem.

Lemma 2.1. Assume that (1.2) holds and p(n) ≥ 0. Thus, we have

lim inf
n→∞

n−1∑
j=τ(n)

p(j) = lim inf
n→∞

n−1∑
j=h(n)

p(j),

where (h(n)) is defined by (2.1).

Theorem 2.2. Assume that (1.2) holds and p(n) ≥ 0. Furthermore, assume that

lim inf
n→∞

n−1∑
j=τ(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(j)−1∏
i=τ(j)

1
1 − p(i)

> 1, (2.2)

where (h(n)) is defined by (2.1). If limn→∞(n − h(n)) = ∞ or h(n) = n − m, m ≥ 1 ∈ N,
then all solutions of Equation (1.1) oscillate.

Proof. Assume, for the sake of contradiction, that (x(n)) be an eventually positive
solution of Equation (1.1). Let n1 ≥ −k be an integer such that x(n), x(τ(n)) > 0 for all
n ≥ n1. Thus, from Equation (1.1), we have

Δx(n) = −p(n)x(τ(n)) ≤ 0, n ≥ n1,

which means that the sequence (x(n)) is eventually non-increasing. In view of this and
taking into account that τ(n) < n, Equation (1.1) gives

Δx(n) + p(n)x(n) ≤ 0, n ≥ n1.

If we apply the discrete Grönwall inequality to this inequality, we obtain

x(m) ≥ x(n)
n−1∏
i=m

1
1 − p(i)

, n1 ≤ m ≤ n.
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On the other hand, we know from Lemma 2.1 that

lim inf
n→∞

n−1∑
j=τ(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(j)−1∏
i=τ(j)

1
1 − p(i)

= lim inf
n→∞

n−1∑
j=h(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(j)−1∏
i=τ(j)

1
1 − p(i)

.

Now, we define

s(n) :=
(

n − h(n) + 1
n − h(n)

)n−h(n)+1

, n ≥ 0. (2.3)

Thus, by (2.2), it follows that there exists a constant d such that

n∑
j=h(n)

p(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

≥
n∑

j=h(n)

p(j)s(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

≥
n−1∑

j=h(n)

p(j)s(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

≥ d > 1. (2.4)

Now, in view of (2.4), and for all large n, there exists n∗ ∈ [h(n), n) such that

4
n∗∑

j=h(n)

p(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

≥ d

2
and 4

n∑
j=n∗

p(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

≥ d

2
. (2.5)

From the fact that (h(n)) is non-decreasing and (x(n)) is non-increasing, summing up
(1.1) from h(n) to n∗and applying the discrete Grönwall inequality, we obtain

x(n∗ + 1) − x(h(n)) +
n∗∑

j=h(n)

p(j)x(h(j))
h(j)−1∏
i=τ(j)

1
1 − p(i)

≤ 0

and

x(n∗ + 1) − x(h(n)) + x(h(n∗))
n∗∑

j=h(n)

p(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

≤ 0 (2.6)

Also, summing up Equation (1.1) from n∗ to n, and using the discrete Grönwall inequality,
will yield

x(n + 1) − x(n∗) + x(h(n))
n∑

j=n∗
p(j)

h(j)−1∏
i=τ(j)

1
1 − p(i)

≤ 0. (2.7)

By omitting the first terms in (2.6) and (2.7) and by using (2.5), we obtain

−x(h(n)) + x(h(n∗))
d

8
≤ 0
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and

−x(n∗) + x(h(n))
d

8
≤ 0.

Thus, we have

x(n∗) ≥ x(h(n))
d

8
≥ x(h(n∗))

(
d

8

)2

,

and so
x(h(n∗))

x(n∗)
≤

(
8
d

)2

. (2.8)

On the other hand, by (1.1), we obtain

x(n + 1)
x(n)

− 1 + p(n)
x(τ(n))

x(n)
= 0. (2.9)

Applying the discrete Grönwall inequality to (2.9), we obtain

x(n + 1)
x(n)

− 1 + p(n)
x(h(n))

x(n)

h(n)−1∏
i=τ(n)

1
1 − p(i)

≤ 0. (2.10)

Set

y(n) = 1 − x(n + 1)
x(n)

, (2.11)

then (2.11) yields,

y(n) ≥ p(n)
h(n)−1∏
i=τ(n)

1
1 − p(i)

n−1∏
j=h(n)

[1 − y(j)]−1. (2.12)

Now, using the well-known inequality between the arithmetic and geometric means, we
find that

y(n) ≥ p(n)
h(n)−1∏
i=τ(n)

1
1 − p(i)

⎡
⎣1 − 1

n − h(n)

n−1∑
j=h(n)

y(j)

⎤
⎦
−(n−h(n))

. (2.13)

So, using the inequality

α(1 − α)k ≤ kk

(k + 1)k+1
, α ∈ (0, 1), k ∈ N

inequality (2.13) gives

y(n) ≥ p(n)
h(n)−1∏
i=τ(n)

1
1 − p(i)

(
n − h(n) + 1

n − h(n)

)n−h(n)+1 n−1∑
j=h(n)

y(j). (2.14)
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Let lim infn→∞
n−1∑

j=h(n)

y(j) = c. We know that

x(h(n))
x(n)

=
n−1∏

j=h(n)

[1 − y(j)]−1 ≥
⎡
⎣1 − 1

n − h(n)

n−1∑
j=h(n)

y(j)

⎤
⎦
−(n−h(n))

and

x(h(n))
x(n)

≥
(

n − h(n) + 1
n − h(n)

)n−h(n)+1 n−1∑
j=h(n)

y(j) ≥
n−1∑

j=h(n)

y(j). (2.15)

From (2.10) and (2.15), we have

∞ > lim inf
n→∞

x(h(n))
x(n)

≥ lim inf
n→∞

n−1∑
j=h(n)

y(j) = c. (2.16)

Now, from (2.16) we get

n−1∑
j=h(n)

y(j) ≥ c − ε, for n ≥ n2, (2.17)

where ε is an arbitrary real number with 0 < ε < c. So, from (2.14) and (2.17), we have

y(n) ≥ p(n)
(

n − h(n) + 1
n − h(n)

)n−h(n)+1

(c − ε)
h(n)−1∏
i=τ(n)

1
1 − p(i)

. (2.18)

Summing up (2.18) from h(n) to n − 1, we have

n−1∑
j=h(n)

y(j) ≥ (c − ε)
n−1∑

j=h(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(j)−1∏
i=τ(j)

1
1 − p(i)

. (2.19)

Thus, by (2.19), we obtain

c = lim inf
n→∞

n−1∑
j=h(n)

y(j) ≥ (c − ε) lim inf
n→∞

n−1∑
j=h(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(j)−1∏
i=τ(j)

1
1 − p(i)

and as ε → 0, the above inequality yields

lim inf
n→∞

n−1∑
j=h(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(j)−1∏
i=τ(j)

1
1 − p(i)

≤ 1,

which contradicts to (2.2). The proof of the theorem is complete. �
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Remark 2.1. It can be seen immediately that if τ(n) < n, limn→∞(n − h(n)) = ∞
or h(n) = n − m, m ≥ 1 ∈ N, then

n−1∑
j=h(n)

p(j)s(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

> e

n−1∑
j=h(n)

p(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

,

and therefore condition (2.2) is better than condition (1.20).
Moreover, when (τ(n)) is strictly non-monotone and

∏h(j)−1
i=τ(j)

1
1−p(i) = 1, since

(
n − h(n) + 1

n − h(n)

)n−h(n)+1

≥
(

n − τ(n) + 1
n − τ(n)

)n−τ(n)+1

,

condition (2.2) is better than condition (1.18).

Theorem 2.3. Assume that (1.2) holds. Moreover, we suppose that

lim sup
n→∞

n∑
j=h(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(n)−1∏
i=τ(j)

1
1 − p(i)

> e, (2.20)

where (h(n)) is defined by (2.1). If limn→∞(n − h(n)) = ∞ or h(n) = n − m, m ≥ 1 ∈ N,
then all solutions of Equation (1.1) oscillate.

Proof. Assume, for the sake of contradiction, that (x(n)) be an eventually positive
solution of Equation (1.1). Let n1 ≥ −k be an integer such that x(n), x(τ(n)) > 0 for all
n ≥ n1. Thus, by equation (1.1), we have

Δx(n) = −p(n)x(τ(n)) ≤ 0, n ≥ n1,

which means that the sequence (x(n)) is non-increasing. It is clear that if τ(n) < n and
limn→∞(n − h(n)) = ∞, or h(n) = n− m with m ≥ 1 ∈ N, then

e < s(n) ≤ 4, n ≥ 0.

From Equation (1.1), we have

s(n)Δx(n) + p(n)s(n)x(τ(n)) = 0, n ≥ n1. (2.21)

Now, we assume that τ(n) < n and limn→∞(n − h(n)) = ∞. Summing up (2.21) from
h(n) to n, we obtain

n∑
j=h(n)

s(j)Δx(j) +
n∑

j=h(n)

p(j)s(j)x(τ(j) = 0. (2.22)

Applying the discrete Grönwall inequality to (2.22), we obtain

n∑
j=h(n)

s(j)Δx(j) +
n∑

j=h(n)

p(j)s(j)x(h(n))
h(n)−1∏
i=τ(j)

1
1 − p(i)

≤ 0,
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and from the fact that (h(n)) is non-decreasing and (x(n)) is non-increasing, we have

s(h(n))x(n + 1) − s(h(n))x(h(n)) + x(h(n))
n∑

j=h(n)

p(j)s(j)
h(n)−1∏
i=τ(j)

1
1 − p(i)

≤ 0, (2.23)

or

− s(h(n))x(h(n)) + x(h(n))
n∑

j=h(n)

p(j)s(j)
h(n)−1∏
i=τ(j)

1
1 − p(i)

≤ 0. (2.24)

So, from (2.24), we obtain

x(h(n))

⎡
⎣ n∑

j=h(n)

p(j)s(j)
h(n)−1∏
i=τ(j)

1
1 − p(i)

− s(h(n))

⎤
⎦ ≤ 0, (2.25)

and
n∑

j=h(n)

p(j)s(j)
h(n)−1∏
i=τ(j)

1
1 − p(i)

≤ s(h(n). (2.26)

Since limn→∞(n − h(n)) = ∞, we have limn→∞ s(h(n)) = e. So, by (2.26), we obtain

lim sup
n→∞

n∑
j=h(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(n)−1∏
i=τ(j)

1
1 − p(i)

≤ e,

which contradicts to (2.20).
Now, we assume that h(n) = n − m, m ≥ 1 ∈ N. So, condition (2.20) is equivalent to

lim sup
n→∞

n∑
j=n−m

p(j)
n−m−1∏
i=j−m

1
1 − p(i)

> e

(
m

m + 1

)m+1

. (2.27)

In view of (2.23), we have

s(h(n))x(n + 1) − s(h(n))x(h(n)) + x(h(n))
n∑

j=n−m

p(j)s(j)
n−m−1∏
i=j−m

1
1 − p(i)

≤ 0. (2.28)

On the other hand, since limn→∞ x(n) = l ≥ 0, we can find a constant c > 0 such that

c > [s(h(n)) − e] and s(h(n))x(n + 1) > cx(h(n)). (2.29)

Thus, from (2.28) and (2.29), we obtain

cx(h(n)) − s(h(n))x(h(n)) + x(h(n))
(

m + 1
m

)m+1 n∑
j=n−m

p(j)
n−m−1∏
i=j−m

1
1 − p(i)

≤ 0,
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or

x(h(n))[c − s(h(n))] + x(h(n))
(

m + 1
m

)m+1 n∑
j=n−m

p(j)
n−m−1∏
i=j−m

1
1 − p(i)

≤ 0,

or

−ex(h(n)) + x(h(n))
(

m + 1
m

)m+1 n∑
j=n−m

p(j)
n−m−1∏
i=j−m

1
1 − p(i)

≤ 0,

and

x(h(n))

⎡
⎣(

m + 1
m

)m+1 n∑
j=n−m

p(j)
n−m−1∏
i=j−m

1
1 − p(i)

− e

⎤
⎦ ≤ 0. (2.30)

So, by (2.30), we obtain

lim sup
n→∞

n∑
j=n−m

p(j)
n−m−1∏
i=j−m

1
1 − p(i)

≤ e

(
m

m + 1

)m+1

,

which contradicts to (2.20). The proof of theorem is complete. �

Remark 2.2. Observe that, it is easy to see that if τ(n) < n, limn→∞(n − h(n)) = ∞
or h(n) = n − m, m ≥ 1 ∈ N, then

n∑
j=h(n)

p(j)s(j)
h(n)−1∏
i=τ(j)

1
1 − p(i)

> e
n∑

j=h(n)

p(j)
h(n)−1∏
i=τ(j)

1
1 − p(i)

,

and therefore condition (2.20) is better than condition (1.19).

Now, we present two examples to show the significance of our results. The first example
is for comparing lim sup conditions.

Example 2.1. Consider the following difference equation

Δx(n) + (0.22)x(n − 2) = 0, n = 0, 1, . . . (2.31)

Let us first show that the lim sup tests mentioned in the introduction fail for this equation.
Clearly,

lim sup
n→∞

n∑
j=h(n)

p(j) = lim sup
n→∞

n∑
j=n−2

p(j) = 0.66 ≯ 1,
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which means that the condition (1.14) is not applicable for this equation. Moreover,

lim sup
n→∞

n∑
j=h(n)

p(j)
h(n)−1∏
i=τ(j)

1
1 − p(i)

= lim sup
n→∞

n∑
j=n−2

p(j)
n−3∏

i=j−2

1
1 − p(i)

= lim sup
n→∞

[
p(n − 2)

n−3∏
i=n−4

1
1 − p(i)

+ p(n − 1)
n−3∏

i=n−3

1
1 − p(i)

+ p(n)
n−3∏

i=n−2

1
1 − p(i)

]

= lim sup
n→∞

[
p(n − 2)

(
1

1 − p(n − 4)

) (
1

1 − p(n − 3)

)
+p(n − 1)

(
1

1 − p(n − 3)

)
+p(n)

]

= 0.863 66 ≯ 1,

which means that the condition (1.19) is not applicable for this equation. However,

lim sup
n→∞

n∑
j=h(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(n)−1∏
i=τ(j)

1
1 − p(i)

= 0.863 66
(

3
2

)3

= 2.914 9 > e ∼= 2.71.

That is, condition (2.20) of Theorem 2.3 is satisfied. Therefore, all solutions of (2.31)
oscillate.

The second example is for comparing lim inf conditions.

Example 2.2. Consider the following difference equation

Δx(n) + (0.3)x(τ(n)) = 0, n ≥ 0, (2.32)

with

τ(n) =
{

n − 3, if n is even,
n − 1 if n is odd.

Here, it is clear that (1.2) is satisfied and (τ(n)) is strictly non-monotone. Also, by (2.1),
we have

h(n) = max
s≤n

τ(s) =
{

n − 2, if n is even,
n − 1 if n is odd.

Let us first show that the lim inf tests mentioned in the introduction fail for this equation.
Clearly,

lim inf
n→∞

n−1∑
j=τ(n)

p(j) = lim inf
n→∞

n−1∑
j=n−1

(0.3) = 0.3 ≯
1
e
,
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which means that condition (1.15) is not applicable for this equation. Moreover,

lim inf
n→∞

n−1∑
j=h(n)

p(j)
h(j)−1∏
i=τ(j)

1
1 − p(i)

= lim inf
n→∞

n−1∑
j=n−1

p(j)
j−2∏

i=j−1

1
1 − p(i)

= 0.3 ≯
1
e
,

which means that condition (1.20) is not applicable for this equation. Also,

lim inf
n→∞

n−1∑
j=h(n)

p(j)
(

j − τ(j) + 1
j − τ(j)

)j−τ(j)+1

= lim inf
n→∞

n−1∑
j=n−1

p(j)
(

j − τ(j) + 1
j − τ(j)

)j−τ(j)+1

= (0.3) ×
(

4
3

)4

∼= 0.94 ≯ 1,

which means that condition (1.18) is not applicable for this equation. However,

lim inf
n→∞

n−1∑
j=h(n)

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1 h(j)−1∏
i=τ(j)

1
1 − p(i)

= lim inf
n→∞

n−1∑
j=n−1

p(j)
(

j − h(j) + 1
j − h(j)

)j−h(j)+1

= (0.3) ×
(

3
2

)3

∼= 1.01 > 1.

That is, condition (2.2) of Theorem 2.2 is satisfied. Therefore, all solutions of (2.32)
oscillate.
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