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In this study, satellite based pseudo-range measurements are integrated with accelerometer

measurements made by six accelerometers located on the six faces of a cuboid, to indepen-
dently measure the translational and rotational accelerations, and the pseudo-range. These
measurements are then processed by an adaptive Unscented Kalman filter (UKF) to correct

for the estimated errors and to obtain the required position and velocities at two independent
locations. The relative position and velocity are then obtained by the application of standard
vector identities. From these estimates, the position and velocity kinematics of prosthetic

limbs and measurements of the joint angles, the true ambulatory position is estimated using a
third independent UKF based estimator. The robotic limb joint offsets are assumed to be
biased which are also estimated by the third UKF. The basic assumption is that the errors in

the measurements are quite similar at the two locations and for this reason it is hypothesised
that these errors would be reduced when the relative position and velocity were estimated.
The results indicate that the steady-state ambulatory position error of the end-effector is
reduced by more than 98%.

1. INTRODUCTION. To capture human body motion in an ambulatory
situation without the need for external emitters or cameras, it is possible to use in-
ertial sensors such as gyroscopes, ultrasonic velocity sensors, radar altimeters and
accelerometers to estimate the relative position and orientation (Morris (1973),
Bonato (2005), Foxlin (1996), Bachmann (2000), Molet, Boulic, and Thalmann
(1999)). Magnetic sensors can enhance the accuracy of these estimates and provide
stability in the horizontal plane by sensing the direction of the earth’s magnetic field
(Zhu and Zhou (2004)). However in many situations involving prosthetic limbs it is
not always possible to use magnetic sensors. A suitable alternative is to use satellite
aided systems in much the same way as a TOM-TOM helps one to navigate on a
motorway. Prosthetic limbs can be modelled as articulated rigid bodies in which the
joints only have rotational degrees of freedom; this is unlike human body joints
which cannot be modelled as a pure kinematic chain with well-defined joints such
as hinge-joints (Zatsiorsky (1998)). While satellite based navigation systems have
been used to measure the relative attitude of a body by employing carrier phase
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measurements, it is not clear if code based position measurements could be employed
to estimate the relative position and orientation of articulated prosthetic limb joints.
Current practical schemes that are being developed use either rate gyroscopes or
magnetic sensors (Giansanti et al. (2005), Roetenberg, Slycke, and Veltink (2007)).
While the former are expensive the latter can be restrictive, although they can
provide extremely accurate estimates of relative position and orientations.

Generally the rate gyros are the most expensive sensors and in an inertial navigation
system we plan to employ only low cost MEMS accelerometer such as the ADXL203,
two axis accelerometers manufactured by Analog Devices Inc., to provide full inertial
navigation capability to a satellite navigation system. The use of a two axis accelero-
meter provides for precise adjustment for the direction of measurement of acceler-
ation.

Several studies have also been conducted to estimate human body position and
orientation using Kalman filters and extended Kalman filters (Yun and Bachmann
(2006), Luinge, Veltink, and Baten (2007), Yun et al. (2007), Lee and Park (2009)). The
use of the more recent UKF to human body relative position and orientation esti-
mation is virtually non-existent. In this study, satellite based pseudo-range measure-
ments are integrated with accelerometer measurements made by six accelerometers
located on the six faces of a cuboid, to independently measure the translational and
rotational accelerations, and the pseudo-range. These measurements are then pro-
cessed by an UKF to correct for the estimated errors and to obtain the required
position and translation velocities at two independent locations. The relative posi-
tions and velocities are obtained by the application of standard vector identities to
two sets of independent measurements made at two locations. From these estimates,
the position and velocity kinematics of prosthetic limbs and measurements of the
joint angles, the true ambulatory position is estimated. The robotic limb joint offsets
are assumed to be biased which are estimated by the UKF. The UKF is a feasible
alternative to the linear and extended linear Kalman filters that have been proposed
to overcome the difficulty of evaluating Jacobians of nonlinear state and process
dynamic models, and is an effective way of applying the Kalman filter to nonlinear
systems. The basic assumption is that the errors in the measurements are quite similar
at the two locations and for this reason it is hypothesised that these errors would be
reduced when the relative position and velocity were estimated.

2. GYRO-FREE SATELLITE AIDED INERTIAL POSITION-
ING. The concept of gyro-free measurement of angular acceleration using linear
accelerometers was proposed by Schuler, Grammatikos and Fegley (1967) almost
forty years ago. Subsequently Padgoanker, Krieger and King (1975) and Mital and
King (1979) considered the computation of rigid body rotations from measure-
ments of linear acceleration obtained from body fixed linear accelerometers. More-
over it was felt that to obtain stable outputs of rotational motion a minimum of
nine accelerometers were necessary. However Chen, Lee and DeBra (1994) were
able to show that six accelerometers are quite adequate to measure rigid body rota-
tions. Since their work a few alternate schemes have emerged using nine accel-
erometers such as the one proposed by Wang, Ding and Zhao (2003). In most of
these proposals the six accelerometer unit was considered as an independent sensor
but was not fully integrated into a strapped down navigation system. Traditionally
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the computation of position and orientation in a strapped down navigation system
has evolved as a two stage process ; first the computation of the navigation position
and orientation followed by the computation of the errors. Navigation measurements
by an inertial measuring unit (IMU) must be calibrated and aligned, prior to being
employed to provide estimates of position and orientation, relative to the North-
East-Down navigation frame by the processes of levelling and gyro-compassing
based on the direction of the gravity vector and earth rate sensing either while the
vehicle remains stationary at a known location on the ground or in-flight. Further-
more most of these algorithms assume that only measurements of body accelerations
and angular rates are available in three mutually perpendicular directions.

With availability of additional measurements a host of Kalman filter based fusion
algorithms have been developed (see Adam, Rivlin and Rotstein (1999) for an ex-
ample) to compensate for misalignment and IMU errors. The Kalman filter is itself a
two stage process involving both state propagation and error correction. Kalman
filter based approaches have been proposed to integrate imaging vision sensors to
provide for multi-sensor inertial navigation and alignment (see for example Wang,
Garratt, Lambert, Wang, Han, and Sinclair (2008)). One popular approach is to
combine measurements made by a GPS receiver with the traditional strapped down
navigation system measurements. When no rate gyro measurements are made and
it is still to possible make other measurements using satellite navigation aids such
as GPS, which can provide estimates of the pseudo-range or of carrier smoothed
pseudo-range and the carrier phase differentials, so the algorithms for the compu-
tation of the navigation position and orientation can be greatly simplified.

GPS aided INS development has progressed in two distinct directions. First, there
was been substantial effort to develop high fidelity navigation systems for attitude
and position estimation. These include high accuracy systems for both geomatic and
navigation applications. (see for example Qin, Zhang, Zhang and Xu (2006)). In the
main these systems have recommended the use of either highly sophisticated angular
rate sensors or carrier phase and differential carrier phase measurement systems
to achieve the improved accuracy. Second, for navigation applications Salychev,
Voronov, Cannon, Nayak and Lachapelle (2000) have considered the development of
low cost GPS aid inertial navigation systems.

3. PROCESS MODELLING WITH GYRO-FREE ACCELERATION
MEASUREMENTS. The basic navigation equations have been derived by
Farrell and Barth (1999). These are summarised here for completeness :
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where VN, VE and VD are the north, east and down velocities in the local tangent
plane, with reference to a local geodetic frame often referred to as the navigation frame
(n-frame) or north-east-down frame. The last three equations relate these velocities to
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the rate of change of the geodetic latitude (l), the rate of change of longitude (’) and
the altitude (h) rate. AN, AE and AD are the north, east, down components of the
measured acceleration in the n-frame which must be compensated by adding the
acceleration due to gravity g, in down direction, vs is angular velocity of the Earth,
RM and RP are the radii of curvature in the meridian and prime vertical at a given
latitude. Unit vectors in the n-frame are related to the unit vectors in the Earth
centred inertial frame according to the relations,
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where J is the hour angle of the vernal equinox. The vector of the north, east, down
components of the measured acceleration in the n-frame are related to the body
components of the measured acceleration, by the transformation,

ANED=Dn, bAbody, (3)

where the transformation of the measured body acceleration components to the
north, east, down components in the n-frame Dn,b, satisfies the differential equation,

_DDn, b+VGDn, b=Dn, bVb: (4)

In equation 4 the matrixVG is obtained from the components of the angular velocity
vector of the local geodetic frame or n frame. The angular velocity vector of the local
geodetic frame or n frame may be expressed in terms of the Earth angular velocity in
the local geodetic frame vs as,
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Given a vector, v= v1 v2 v3½ �T, vr is defined by the relation,
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0 xv3 v2

v3 0 xv1

xv2 v1 0
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3
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Then VG is defined as VG=vGr. Similarly Vb is defined as Vb=vbr where vb is the
body angular velocity in the body fixed frame.

In principle, the scalar acceleration measurements may be expressed as,

ai=zi � €RRIxrir _vv+vrvrri
� �

, i=1, 2, 3::::6 (7)

where zi, is the direction of sensitivity of the ith accelerometer, ri the position vector of
the accelerometer location in the body fixed frame, v=vb and €RRI is the inertial
acceleration of the origin of the body frame. With six accelerometers it is, in principle,
possible to express,

xzi �rir zi
� � _vv

€RRI

� �
=aixzi � vrvrri

� �
=ai+fi z

i, ri,v
� �

, (8)
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where,
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It follows that,
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Defining the vectors di as,
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equation 8 may be expressed as,

D _vvT €RR
T

I

h iT
=A+F, (12)

where, D= dT1 dT2 dT3 dT4 dT5 dT6

� �T
, A= a1 a2 a3 a4 a5 a6½ �T, and

F= f1 f2 f3 f4 f5 f6½ �T.
Equation 12 may be expressed as,

_vv= I3r3 03r3½ �Dx1 A+Fð Þ, €RRI= 03r3 I3r3½ �½ �Dx1 A+Fð Þ: (13)

At this stage it is important to recognise that the definition of the functions fi(z
i, ri, v),

must be modified after considering that measurements of acceleration must be com-
pensated by adding the local acceleration due to gravity. Furthermore the definition
of the acceleration of gravity generally includes the centripetal acceleration due the
earth’s rotation rate vector, vs. For this reason, one defines,

Dfi z
i, ri,v

� �
� zi � vsrvsrri

� �
x vrvrri

� �� �
, (14)

and the equations 13 may now be expressed as,

_vv= I3r3 03r3½ �Dx1 Am+G+DF+b+nð Þ, (15)

and the body components of the measured acceleration are,

Abody= 03r3 I3r3½ �½ �Dx1 Am+DF+b+nð Þ, (16)

where, G is the gravitational component of the acceleration in the body frame,
DF= Df1 Df2 Df3 Df4 Df5 Df6½ �T, b is a measurement bias vector and n is a
measurement noise vector. It is possible to choose the location ri, and the direction of
the measurements zi, such that, In equation 15:

I3r3 03r3½ �Dx1G=0: (17)

Hence it follows that,

_vv= I3r3 03r3½ �Dx1 Am+DF+b+nð Þ, (18)

and

ANED=Dn, b 03r3 I3r3½ �½ �Dx1 Am+DF+b+nð Þ, Dn, b=Dn, ID
x1
b, I : (19)
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When the accelerometers are located on the faces of a rectangular cuboid, as shown
in Figure 1, the vectors zi and ri may be expressed as,
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Equation 18 may now be integrated, in principle to obtain the body angular velocity
vector, v=vb. The attitude quaternion is then computed from the equations,
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where the quaternion is subject to the constraint qT.q=1. Once the solution for the
quaternion is known, the transformation from the inertial to the body fixed frame
Db,I is computed from,
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q24+q21xq22xq23 2 q1q2+q3q4ð Þ 2 q1q3xq2q4ð Þ
2 q1q2xq3q4ð Þ q24xq21+q22xq23 2 q2q3+q1q4ð Þ
2 q1q3+q2q4ð Þ 2 q2q3xq1q4ð Þ q24xq21xq22+q23

2
4

3
5: (23)

and its inverse is obtained by same equation by changing the sign of q4. The required
transformation Dn,b may then be computed without matrix inversion from Dn,IDb,I

x1,
the transformations from the inertial to the n-frame and the inverse transformation
from the inertial to the body fixed frame. Alternately Dn,b may be computed directly
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Figure 1. The GYROCUBE: A sensor for inertial measurements; the directions of the arrows

indicates the direction of sensitivity of the accelerometers.
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from the associated quaternion, representing the relative attitude of the navigation
from relative to the body frame.

4. SATELLITE NAVIGATION MEASUREMENTS MODELLING.
Pseudo-range observations are obtained by measuring the time taken for the signal to
propagate from the satellite to the receiver and multiplying the measurement by the
speed of light after it has been corrected for bias errors. Due to the lack of complete
synchronization between the receiver and satellite clocks, errors in the orbital
ephemeris, the delays due to the ionosphere and troposphere and multipath effects
the measured pseudo-range is always biased. The pseudo-range measurement for a
single satellite may be expressed in terms of the speed of light c, the satellite clock
delay error dt, the receiver clock error delay dT, as,

rm=r+dre+c dtxdTð Þ+drion+drtrop+drp+v, (24)

where, rm is the measured pseudo-range, r is the true magnitude of the pseudo-range
vector, dre is the pseudo-range error due to errors in the orbital ephemeris, drion is the
pseudo-range error due to delays in the ionosphere, drtrop is the pseudo-range error
due to delays in the troposphere, drp is the pseudo-range error due to multi-path
effects and v is the measurement noise. The errors due to errors in the orbital
ephemeris, satellite and receiver clock biases, delays in the ionosphere, delays in the
troposphere, and those due to multi-path effects may be estimated. Thus the estimate
of the pseudo-range may be expressed in terms of the actual magnitude of the pseudo-
range vector r, as,

rme=rmxdr̂rexc dt̂txdT̂T
� �

xdr̂rionxdr̂rtropxdr̂rp=r+v: (25)

The actual pseudo-range vector is related to the geodetic latitude l, geocentric
latitude ls, longitude w and altitude h, by the relations,

r=
rs cos ls cosw+h cos l cosw
rs cos ls sinw+h cos l sinw

rs sin ls+h sin l

2
4

3
5 (26)

where r is the Earth centred, Earth fixed position vector of the body, rs the radius at a
surface point of the flattened Earth ellipsoid and ls are defined in terms of the flat-
tening f and the equatorial radius Re as:

ls= arctan 1xfð Þ2 tan l
� �

(27)

and

rs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

e



1+ 1



1xfð Þ2x1

� �
sin2 ls

� �q
: (28)

To complement these pseudo-range measurements we assume that we also have
independent measurements of the altitude and east geodetic longitude. This is
necessary as the altitude and longitude kinematics have been included in the process
model. Measurements of the altitude may be obtained from a radar altimeter while
there are a variety of ways to obtain the east geodetic longitude. Alternately the
longitude kinematics may be deleted from the process model.
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5. RELATIVE POSITION AND VELOCITY ESTIMATION. Given
the position coordinates of two points located on two independent bodies A and B
respectively in space and the orientation of the two bodies in terms of the individual
body attitude quaternion the relative orientation of body B with respect to body A
can, in principle, be obtained by simply reversing the quaternion of body B followed
by a composition with the quaternion of body A. However such computations are
generally unreliable and so the orientation is estimated from estimates of the relative
position and velocity of the two bodies. The relative position can be determined by
determining the relative position in the reference coordinates and transforming it to
the base coordinates in the body A. The velocity vector of body B relative to body
A is determined by transforming the velocity components of body B to the same
frame used to define the velocity vector of body A and subtracting from them the
velocity components of body A. From the relative position and velocity estimates
and measurements of the joint angles an UKF type mixing filter is implemented
to estimate the joint angles and the true relative position of the end-effector in an
ambulatory condition.

6. THE ADAPTIVE UNSCENTED KALMAN FILTER. Most dy-
namic models employed for the purposes of estimation or filtering of pseudo range
errors or orbit ephemeris errors are not linear. To extend and overcome the
limitations of linear models, a number of approaches such as the EKF have been
proposed in the literature for nonlinear estimation using a variety of ap-
proaches. Unlike the Kalman filter, the EKF may diverge, if the consecutive linear-
izations are not a good approximation of the linear model over the entire
uncertainty domain. Yet the EKF provides a simple and practical approach to deal-
ing with essential non-linear dynamics. The main difficulty in applying the algor-
ithm to problems related to the estimation of a spacecraft’s orbit and attitude is in
determining the proper Jacobian matrices. The UKF is a feasible alternative that
has been proposed to overcome this difficulty, by Julier, and Uhlmann (2000) as an
effective way of applying the Kalman filter to nonlinear systems. It is based on the
intuitive concept that it is easier to approximate a probability distribution than it is
to approximate an arbitrary nonlinear function or transformation, of a random
variable.

The UKF gets its name from the Unscented transformation, which is a method of
calculating the mean and covariance of a random variable undergoing nonlinear
transformation y=f(w). Although it is a derivative free approach, it does not really
address the divergence problem. In essence the method constructs a set of sigma
vectors and propagates them through the same non-linear function. The mean and
covariance of the transformed vector are approximated as a weighted sum of the
transformed sigma vectors and their covariance matrices.

Consider a random variable w with dimension L which is going through the non-
linear transformation, y=f(w). The initial conditions are that w has a mean �ww and a
covariance Pww. To calculate the statistics of y, a matrix x of 2L+1 sigma vectors is
formed as outlined by Julier, and Uhlmann (2000). In this work the scaled unscented
transformation is used as this transformation gives one the added flexibility of scaling
the sigma points to ensure that the transformed covariance matrices are always posi-
tive definite.
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Given a general discrete nonlinear dynamic system in the form:

xk+1=fk xk, ukð Þ+wk, yk=hk xkð Þ+vk (29)

where xksRn is the state vector, uksRr is the known input vector, yksRm is the
output vector at time k. wk and vk are, respectively, the disturbance or process noise
and sensor noise vectors, which are assumed to Gaussian white noise with zero mean.
Furthermore Qk and Rk are assumed to be the covariance matrices of the process
noise sequence, wk and the measurement noise sequence, vk respectively. The un-
scented transformations of the states are denoted as:

fUT
k =fUT

k xk, ukð Þ, hUT
k =hUT

k xkð Þ (30)

while the transformed covariance matrices and cross-covariance are respectively de-
noted as,

P
ff
k=P

ff
k x̂xk, ukð Þ, Phhx

k =Phh
k x̂x

x
k

� �
(31a)

and

Pxhx
k =Pxhx

k x̂x
x
k , uk

� �
: (31b)

The UKF estimator can then be expressed in a compact form. The state time-update
equation, the propagated covariance, the Kalman gain, the state estimate and the
updated covariance are respectively given by,

x̂x
x
k =fUT

kx1 x̂xkx1ð Þ (32a)

P̂P
x
k =P

ff
kx1+Qkx1 (32b)

Kk=P̂P
xhx
k P̂P

hhx
k +Rk

� �x1
(32c)

x̂xk=x̂x
x
k +Kk zkxhUT

k x̂x
x
k

� �� �
(32d)

P̂Pk=P̂P
x
k xKk P̂P

hhx
k +Rk

� �x1
KT

k : (32e)

Equations 32 are in the same form as the traditional Kalman filter and the extended
Kalman filter. Thus higher order non-linear models capturing significant aspects of
the dynamics may be employed to ensure that the Kalman filter algorithm can be
implemented to effectively estimate the states in practice.

In order to employ the UKF when precise statistics of the process and measure-
ment noise vectors are not available, the adaptive filter method proposed by Song, Qi
and Han, 2006 is used to estimate the orbit parameters. The covariance matrixes of
measurement residuals are recursively updated in the UKF. The measurement noise
covariance matrices, in the case of the UKF, may be expressed as:

R̂Rk=Ck,N
r +P̂P

hh

k (33)

where, Cr
k,N is defined in terms of the sample size N and the residual rk as:

Ck,N
r =

1

N

Xk
j=kxN+1

rjr
T
j , rk= zkxHkx̂xkð Þ=vk+Hk xkxx̂xkð Þ: (34)
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Equation 33 involves the further computation of P̂k
hh, by applying the unscented

nonlinear transformation, hk
UT(x̂k) to the state estimate, x̂k. The measurement noise

covariance may be updated in principle by employing equation 33. The nonlinear
relationships between the covariance matrices also suggests that the update of Rk

could be done by employing the covariance of the residual.
In the application considered in this paper, the adaptation of Qk implemented as it

is, the process statistics are often unknown or may be considered to vary. It was
observed that the magnitudes of the filter gains were relatively small and for this
reason the exact expression for an estimate of Qk :

Q̂Qkx1 � C
k,N
Dx +P̂PkxP

ff
kx1 (35a)

was approximated as:

Q̂Qkx1 � C
k,N
Dx (35b)

where CDx
k,N is defined as:

C
k,N
Dx =

1

N

Xk
j=kxN+1

DxDxT � P̂P
x
k xP̂Pk=KkHkP̂P

=
k , (36)

and

Dx= xkxx̂x
x
k

� �
x xkxx̂xkð Þ: (37)

To update the process covariance matrix, Qk, the update law is assumed to be,

Qk=Qkx1+aQ Q̂Qkx1xQkx1

� �
(38)

where the adaptation rate constant, aQ, is chosen to be a small number such
as, aQ=0.01. It is also not required to update the process covariance matrix, Qk,
after every integration time step. Thus the update of the process covariance
matrix, Qk, is carried out only once every ten time steps, thus facilitating multi-rate
adaptation.

7. APPLICATION TO A THREE LINK ROBOTIC LIMB. The
reference frames and joint angles used to define the transformation of position and
orientations, using the Denavit and Hartenberg convention, for a typical three-link
robotic limb are shown in Figure 2. The link offsets and the link lengths are not
shown on the same figure for clarity and are assumed to be h, d1, d2 and 0, a1, a2
respectively.

The link offsets and the joint angles are estimates while the measurements of the
joint angles are assumed to be available. The Denavit and Hartenberg transforma-
tions for relating the base frame to the end-effector frame are given by:

x0

y0
z0
1

2
664

3
775=T0, 1T1, 2T2, 3

xe
ye
ze
1

2
664

3
775 (39)
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T0,3=T0,1T1,2T2,3=

cos h1 0 sin h1 0

sin h1 0 x cos h1 0

0 1 0 h

0 0 0 1

2
66664

3
77775

cos h2 x sin h2 0 a1 cos h2

sin h2 cos h2 0 a1 sin h2

0 0 1 d1

0 0 0 1

2
66664

3
77775

r

cos h3 x sin h3 0 a2 cos h3

sin h3 cos h3 0 a2 sin h3

0 0 1 d2

0 0 0 1

2
66664

3
77775

(40)

The velocity kinematics of the end-effector in the base coordinates may be ex-
pressed in terms of the joint angular velocity vector as;

_xx00

_yy00
_zz00

2
4

3
5=B

_hh1
_hh2
_hh3

2
4

3
5 (41)

where,

B=

xSh1 a2C h2+h3ð Þ+a1Ch2ð Þ+ d1+d2ð ÞCh1 xCh1 a2S h2+h3ð Þ+a1Sh2ð Þ xa2Ch1S h2+h3ð Þ

Ch1 a2C h2+h3ð Þ+a1Ch2ð Þ+ d1+d2ð ÞSh1 xSh1 a2S h2+h3ð Þ+a1Sh2ð Þ xa2Sh1S h2+h3ð Þ

0 a2C h2+h3ð Þ+a1Ch2 a2C h2+h3ð Þ

2
664

3
775

(42)
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θ3

Figure 2. Reference frames and joint angles used to define the transformation of position and

orientations for a typical three-link robotic limb.
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Thus the joint angles may be expressed in terms of the translation velocities of the
end-effector. In a practical situation, given noisy estimates of the relative velocities of
the end-effector in the Cartesian base coordinates and noisy estimates of the end-
effector relative position, the joint angular velocities may be estimated by solving a
nonlinear filtering problem. Thus:

_hh1

_hh2

_hh3

2
64

3
75=Bx1

_xx00m

_yy00m

_zz00m

2
64

3
75+

wx

wy

wz

2
64

3
75

8><
>:

9>=
>;,

x00m

y00m

z00m

1

2
6664

3
7775=T0, 3 h1, h2, h3ð Þ

0

0

0

1

2
6664

3
7775+

vx

vy

vz

0

2
6664

3
7775 (43)

where wx wy wz½ �T and vx vy vz½ �T are vectors of independent white noise
processes.

Equation 43 may be expressed as:

x00m

y00m
z00m

2
4

3
5=H h1, h2, h3ð Þ+

vx
vy
vz

2
4

3
5, H=

Ch1 a2C h2+h3ð Þ+a1Ch2ð Þ+ d1+d2ð ÞSh1

Sh1 a2C h2+h3ð Þ+a1Ch2ð Þx d1+d2ð ÞCh1

a2S h2+h3ð Þ+a1Sh2+h

2
4

3
5:
(44)

The joint angles are assumed to satisfy the bounds, xp<h1<p,xp<h2<p,
xp<h3<p. The matrix B is singular when the joint angle h2=p/2. For this reason,
when the joint angle h2=p/2, the inverse of the matrix B is interpreted as the gen-
eralised inverse or pseudo inverse.

Given the position coordinates of the origin of reference frame at the end-effector,
the link offsets and the link lengths, the joint angles may be computed in closed form.
However, rather than use this closed form solution, a filtering problem is solved to
obtain the true ambulatory position of the end effector. Thus it is assumed two sat-
ellite navigation aided inertial sensor packs are located at the origin of the base frame
and at the origin of the end-effector. From the estimates of the position vector and
velocity obtained from each location the joint angles and link offsets and biases may
be estimated using a second independent UKF estimator to mix the position and
velocity estimates at the two locations. Henceforth this second independent filter will
be referred to as the inner filter while the two UKF estimators used to estimate the
position and velocity at two locations are referred to as the outer filters.

In Figure 3 (Left) are shown comparisons of the relative position estimates pro-
duced by the outer filters, simulated and estimated end-effector relative position co-
ordinates obtained by using the inner UKF based relative position estimator over a 6
second time frame corresponding to 30 000 uniform time steps. Initially the estimator
seeks to track the simulated values but eventually tracks the outer filter estimates.
Figure 3 (Right) shows comparisons of the corresponding simulated and estimated
joint angle variations over the same time frame obtained by using three independent
UKF based state estimators, without adaptation of the process covariance matrix,
for the two satellite navigation aided accelerometer measurements and the robot
kinematics position and velocity mixing. The figures indicate that the estimate is
considerably noisy and that the filter tends to track the relative position estimates
obtained by the outer filters in all three axes after about 20 seconds, rather than track
the simulation. Thus the filter does not eliminate the drifts that may be present in the
outer filter estimates.

306 RANJAN VEPA VOL. 64

https://doi.org/10.1017/S0373463310000494 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463310000494


In an attempt to reduce the noise in the estimate and improve the convergence of
the outer filter estimate to the simulated relative position thus eliminating any drifts
and biases that may be present, the adaptive UKF algorithm was used to estimate the
positions and velocities at the two locations where the satellite navigation measure-
ments are made, with the process covariance matrix updated recursively. Thus both
the outer filters were configured to be adaptive while the inner mixing filter used to
estimate the joint angles and link offsets continued to be non-adaptive. Figures 4
(Left) and (Right) illustrates the results obtained, with the process covariance ma-
trices in the outer filters updated recursively, corresponding to Figures 3 (Left) and
(Right) respectively. It can be easily observed that in the adaptive case, although the
end-effector position estimated by the inner filter is substantially less noisy and that
the estimate does latch on and track the true simulated relative position.

The joint angles are now increased by a factor of three so they are all greater than
p/2 over certain sections of the simulation time frame. The corresponding compar-
isons of the relative position estimates obtained from the outer filter estimates, si-
mulated and estimated end-effector position coordinates obtained from the inner
filter estimates are shown in Figure 5 (Left). In the outer filters the adaptive UKF
estimator was used with the process covariance matrices updated recursively. The
comparisons of the corresponding simulated and estimated joint angle variations
over the same time frame are shown in Figure 5 (Right). The end-effector position
coordinates continue to be estimated with almost the same accuracy as the case
shown in Figure 4 (Left), although the joint angle estimates are relatively quite noisy.
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Figure 3. (Left). Comparisons of the outer filter estimate, simulated and inner filter estimated

end-effector position coordinates obtained by using UKF based state estimators over 30 000 time

steps. (Right). Comparisons of the simulated and estimated joint angle variations over a 6 second

time frame corresponding to 30 000 time steps.
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8. DISCUSSION AND CONCLUSIONS. In this paper the author has
demonstrated the feasibility of implementing an adaptive unscented Kalman filter
based mixing filter which may be used to estimate the relative position and orienta-
tions of prosthetic robotic limbs. The measurements were assumed to be made
by six low cost ADXL203, type two axis accelerometers and a low cost altimeter.
Measurements made by expensive sensors such as gyroscopes or high cost accel-
erometers, were assumed to be unavailable. The estimates of the relative position by
using a standard UKF did not converge to the simulated relative position and the
filters were unable to eliminate the drift in the position components. In an attempt
to reduce the noise in the estimate and improve the convergence of the outer filter
estimate to the simulated relative position thus eliminating any drifts and biases that
may be present, the adaptive UKF algorithm was used to estimate the positions
and velocities at the two locations where the satellite navigation measurements are
made, with the process covariance matrix updated recursively. Thus both the outer
filters were configured to be adaptive while the inner mixing filter used to estimate
the joint angles and link offsets continued to be non-adaptive. When the adaptive
UKF algorithm was used in the outer estimators there was substantial reduction
in the errors in the estimated user position at the end of time frame while the filter
itself converged to a steady state faster than the non-adaptive implementation.
Thus the integrity of the ambulatory position estimated was maintained as the filter
was able to eliminate all drifts and biases introduced by the outer filters. For this
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Figure 4. (Left) Comparisons of the outer filter estimate, simulated and inner filter estimated end-

effector position coordinates obtained by using an adaptive UKF based position and velocity

outer estimators over 30 000 time steps. (Right) Comparisons of the simulated and estimated joint

angle variations corresponding to the adaptive UKF outer estimator over a 6 second time frame

corresponding to 30 000 time steps.
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reason the adaptive filter was used to estimate the steady state ambulatory position
of the end-effector after a disturbance or motion initiation. The steady-state ambu-
latory position error, in the relative position of the end-effector obtained from the
outer filter estimates, is reduced by more than 98%. A major portion of the error in
the relative position obtained from the outer filter estimates is a steady drift which
is completely eliminated.
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