
Math. Struct. in Comp. Science (2000), vol. 10, pp. 1–79. Printed in the United Kingdom

c© 2000 Cambridge University Press

Sequent combinators:

a Hilbert system for the lambda calculus†

H E A L F D E N E G O G U E N‡ and J E A N G O U B A U L T - L A R R E C Q§

‡ Department of Computer Science,

The King’s Buildings, University of Edinburgh,

Edinburgh, EH9 3JZ, Scotland

Email: hhg@att.com

§ G.I.E. Dyade, INRIA Rocquencourt,

Domaine de Voluceau, B.P.105,

F-78153 Le Chesnay Cedex, France

Email: jean.goubault@dyade.fr

Received 30 November 1998; revised 10 October 1999

This paper introduces Hilbert systems for λ-calculus, called sequent combinators, addressing

many of the problems of Hilbert systems that have led to the more widespread adoption of

natural deduction systems in computer science. This suggests that Hilbert systems, with their

uniform approach to meta-variables and substitution, may be a more suitable framework

than λ-calculus for type theories and programming languages. Two calculi are introduced

here. The calculus SKIn captures λ-calculus reduction faithfully, is confluent even in the

presence of meta-variables, is normalizing but not strongly normalizing in the typed case,

and standardizes. The sub-calculus SKInT captures λ-reduction in slightly less obvious ways,

and is a language of proof-terms not directly for intuitionistic logic, but for a fragment of S4

that we name near-intuitionistic logic. To our knowledge, SKInT is the first confluent,

first-order calculus to capture λ-calculus reduction fully and faithfully and be strongly

normalizing in the typed case. In particular, no calculus of explicit substitutions has yet

achieved this goal.

1. Introduction

Hypothetical reasoning is an important tool in logic. However, although most logics

include mechanisms for hypothetical reasoning, there is an important divide in how this

reasoning is admitted. One approach is to introduce basic principles of reasoning and

then prove in the meta-theory that the deduction theorem holds, saying that if B is

provable under hypothesis A then A ⇒ B is provable: we shall call such systems Hilbert

systems. The other approach is to include the deduction theorem as a rule of inference,

† This paper was submitted by invitation for inclusion in the special issue in honor of Professor Roger Hindley’s

60th birthday.
‡ Now at AT&T Labs, 180 Park Ave., Florham Park NJ 07932 USA.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 2

thereby making hypothetical reasoning a first-class construct. We call such systems natural

deduction systems, after Gentzen (Gentzen 1969).

This distinction lifts smoothly to type theory with first-class proof objects. Curry’s

combinators with application (Curry and Feys 1958) encode Hilbert’s axioms with modus

ponens, and the abstraction algorithm captures the deduction theorem. Church’s typed

λ-calculus (Church 1940) encodes Gentzen’s natural deduction.

Hilbert systems have some important advantages over natural deduction systems. The

meta-theoretic notion of substitution is simple textual substitution in Hilbert systems,

making them easier to understand, implement, and reason about. Indeed, Church (Church

1956) seems to have justified internalizing the deduction theorem as λ-abstraction on the

basis of Hilbert systems and the deduction theorem.

However, natural deduction systems have come to dominate computer science for

several reasons. First, it is thought that the size of derivations or proof objects explodes

using the deduction theorem in Hilbert systems. Secondly, meta-properties such as the

deduction theorem are commonly brought into the object language; systems of explicit

substitution (Abadi et al. 1991) further internalize substitution and weakening. Thirdly, λ-

calculus reduction is stronger and more natural than combinator reduction: the ξ-equality

of λ-calculus, which allows equality under λ-abstraction or in hypothetical proofs, is not

captured naturally by reduction on combinators. Finally, the duality between introduction

and elimination for the logical constants in natural deduction systems does not appear in

Hilbert systems.

This paper aims to demonstrate that these defects can be overcome by using a new

Hilbert system, sequent combinators. We first introduce SKIn and show that λ-calculus

reduction is preserved by translation to this calculus. Together with the benefits of easier

implementations, this suggests that Hilbert systems can be used to underlie type-theory

based proof assistants and functional programming language implementations.

With respect to the final point, we can take the view underlying Martin-Löf’s Logical

Framework and consider the defined calculus as a meta-language for defining logics or

type theories. This approach recovers the duality between introduction and elimination,

while the meta-language remains basic, since abstraction is replaced with families of

constants whose behaviour can be understood directly. We leave this point as the subject

of future work.

We show that the reduction of SKIn is confluent and standardizes, but is slightly too

permissive: it is weakly but not strongly normalizing in the typed case, like λσ (Abadi et al.

1991). We therefore introduce another, very close calculus, SKInT, which has the required

properties of confluence, standardization and termination. However, SKInT no longer

interprets full λ-reduction by the simple translation used for SKIn. But, as it interprets

more than call-by-value λ-reduction, there are a number of alternative translations that

make SKInT interpret full λ-reduction, which are obtained by using any translation of

the λ-calculus into the call-by-value λ-calculus (Plotkin 1975).

1.1. Sequent combinators

Following Gentzen, we may interpret intuitionistic sequents A1, . . . , Am ` B either as the

formula A1 ∧ · · · ∧ Am ⇒ B (the Hilbert style) or as B under assumptions A1 . . . Am (the

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 3

natural deduction style). We adopt the Hilbert-style interpretation to define a new language

of combinators, where the sequent above is interpreted as A1 ⇒ . . . ⇒ Am ⇒ B, and

currying is implicit. The language has term constructors corresponding to inference rules

similar to those of sequent calculus, rather than constants or combinators corresponding

to axioms in Hilbert’s formal systems. We show that this language is sound and complete

for the λ-calculus, including the equalities α, β and ξ, and extends to η.

The intuition underlying Curry’s combinators is that they represent particular λ-terms,

or functions. The basic operations of our sequent combinators are just Curry’s: identity

I , projection K and composition S , but they are indexed by a fixed number of arguments.

Hence, our combinator Km(M), corresponding to K , takes the first m arguments and

passes them on to M, but ignores the m+ 1st argument. This is in contrast to K ’s simpler

behaviour of taking two arguments and returning the first. Our combinators for I and

S are also parameterized by a number of arguments. Section 3.2 gives a more formal

intuition for the meaning of the combinators, by mapping them to λ-terms.

Alternatively, the sequent combinators we introduce corresponding to I , K and S are

similar to the rules of inference for variables, thinning and substitution for λ-calculus.

Sequent combinators have important meta-theoretic properties. Unlike the case with

combinators, our equalities are naturally interpreted as reductions, and full λ-calculus

reduction is preserved by translation into sequent combinators. Unlike systems of explicit

substitution, we do not need any operation of currying.

1.2. Related work

Our approach has many similarities to that of Curry, but there are important differences.

Curry models the λ-calculus using a basic set of combinators, S and K , plus an invisible

binary application operator, together with equations to explain their behaviour. However,

S and K are so basic that complex equations are needed to capture the rules η expressing

weak extensionality and especially ξ mentioned above. Although these equations are easy

to verify, they are difficult to understand in the modern treatment of type theory and term

rewriting, where we treat equalities as reduction rules from left to right. Hindley (Hindley,

1977) compares the reduction behaviour of combinators and λ-calculus.

Our work improves Curry’s here because the equalities over our combinators can easily

be understood as reduction rules, rewriting from left to right. The combinators S and K ,

as well as the basic operation of application, are captured as particular instances of our

combinators. Soundness of our system for Curry’s equations follows straightforwardly

because both our calculus and his are sound and complete for λ-calculus. Furthermore,

the relationship between reduction in λ-calculus and our sequent combinators is much

stronger than that with Curry’s combinators. Reduction in the λ-calculus is preserved by

translation to SKIn, and many strategies are also preserved by the same simple translation

into the related calculus SKInT. This presents us with new opportunities to study various

questions of interest in the λ-calculus without having to cope with the difficulties of

handling bound variables and α-renaming.

A disadvantage of our representation is that we introduce families of combinators

indexed by natural numbers. This is more complicated than the simple language with

only two or three basic combinators plus application.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 4

Combinators have been used in implementations of functional programming follow-

ing Turner (Turner 1979), leading to such notions as supercombinators (Hughes 1982),

lambda-lifting (Johnsson 1984), and director strings (Kennaway and Sleep 1988) – which

are, by the way, at least as complex as our combinators with integer indices. Diller (1988)

also has a chapter on abstraction algorithms. However, these implementations do not

consider the problem of equality of expressions involving the abstraction operator, and,

in particular, the ξ-rule is not sound. This is usually not a problem in functional language

implementation, but is both an outstanding theoretical problem for λ-calculus and a

practical problem for efficient implementations of type-theoretic proof assistants.

Systems of explicit substitution (pioneered by Abadi et al. (1991), which many others

followed) and categorical combinators (Curien 1993) move substitution from the meta-

theory to the object language. In our formulation, the meta-theoretic substitution is simple

textual substitution, rather than the complex substitution of λ-calculus (see Section 2).

And while our system satisfies equalities such as β and ξ with respect to the meta-theoretic

notions of abstraction and substitution, the actual reductions of the system do not use

the meta-theoretic definitions.

Our systems are also related to Kamareddine and Rı́os’ λse (Kamareddine and Rı́os

1997). Our systems and theirs involve indexed operations for thinning and substitution,

and therefore look superficially alike. The main differences are the presence of λ and

application operators in λse and their absence in SKIn and SKInT, and a more general

thinning operator in λse allowing thinning by a context rather than a single variable. This

latter feature of λse has not been explored yet for sequent combinators, although it may

lead to interesting systems lying between SKIn and SKInT. The other differences, such

as different indexing conventions, are inessential, and arise from λse being an explicit

treatment of de Bruijn variables, whereas our work is a generalization of combinators.

Categorical logic, in particular as developed in Lambek and Scott (1989), has several

of the features we mention in the introduction. In particular, substitution is internalized,

and the relationship between the object and meta-substitutions is clear. Furthermore,

logical constants are presented as is usual in category theory as limit diagrams. However,

there are problems with categorical logic from the point of view of the intensional type

theory used in modern proof assistants. First, λ-reduction is not captured by reduction

in categorical logic. Furthermore, the size of derivations seems to increase significantly

under the abstraction algorithm. Finally, the extensionality inherent to category theory –

and required to capture λ-equality – is too strong for more sophisticated type theories; for

example, extensionality with absurdity and type universes leads to non-termination and

undecidability of type checking (see, for example, Goguen and Luo (1993)).

1.3. Overview

The paper is organized as follows. Section 2 introduces the typing rules for the simply-

typed λ-calculus. Section 3 introduces the combinators, typing and reduction rules for

them, then studies the relationship of this system with the λ-calculus. Section 4 explores the

SKInT calculus and its properties. It is first shown that, whereas the logical reading of the

λ-calculus and SKIn is given by intuitionistic logic, the natural logical reading of SKInT

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 5

is given by near-intuitionistic logic, a fragment of S4 that can also be seen as a relaxation

on the Kripke semantics of intuitionistic logic. Section 4 proceeds to scrutinize SKInT as a

calculus, and various properties of SKInT reduction are established: strong normalization

of simply-typed terms; confluence, even in the untyped case and in the presence of

meta-variables; and standardization. Section 5 relies on the techniques developed for

SKInT to establish similar, but sometimes weaker properties for SKIn: weak termination,

confluence, and standardization again. Although SKInT has fewer reduction rules than

SKIn, we can use it instead of SKIn to implement λ-calculus reduction, and different ways

of doing so are examined in Section 6. Section 7 discusses further work, and we conclude

in Section 8.

2. Simply-Typed λ-Calculus

We assume a denumerable set V of variables x, y, z, . . . , and a non-empty set O of so-

called base types, with the variable o ranging over O. The types, pre-contexts and terms

are introduced by the grammar:

A,B, C ∈ Ty ::= o | A⇒ B

Γ,∆,Φ ∈ C ::= () | Γ, x:A

M,N, P ∈ T ::= x | M(N) | λx.M.

Parentheses will be used liberally to disambiguate terms, types, etc. A pre-context

x1:A1, . . . , xm:Am is a context if the xis are distinct. We shall also write M(N1, . . . , Nk)

instead of M(N1) . . . (Nk), for k > 0.

Substitution in the λ-calculus is complex, because it has to avoid variable capture.

Assuming a fixed procedure for producing fresh variables z, we may define M with N

substituted for x, written [N/x]M, as follows:

[P/x]x =df P [P/x]y =df y (y 6≡ x)

[P/x]M(N) =df ([P/x]M)([P/x]N)

[P/x](λx.M) =df λx.M

[P/x](λy.M) =df λy.[P/x]M (x 6≡ y and y not free in P)

[P/x](λy.M) =df λz.[P/x][z/y]M (z not free in M, P , z 6≡ x and y free in P) .

The compatible closure Rc of a relation R extends R to subterms rather than simply

outermost constructors. Notably, it includes the rule ξ, that says that if MRcN, then

(λx.M)Rc(λx.N) also. Two terms M and N are α-equivalent, M ≡ N, if they are related

by the compatible closure of the following rule:

λx.M α λy.[y/x]M (y not occurring in M).

The judgment form for this calculus is as usual, Γ `M : A. The rules of inference for

the calculus are as follows:

Γ context x:A 6∈ Γ

Γ, x:A ` x : A
(Var)

Γ0,Γ1 `M : A z 6∈ dom(Γ0,Γ1)

Γ0, z:C,Γ1 `M : A
(Thin)

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 6

Γ, x:A `M : B

Γ ` λx.M : A⇒ B
(λ)

Γ `M : A⇒ B Γ ` N : A

Γ `M(N) : B
(App)

Γ0, z:C,Γ1 `M : A Γ0 ` N : C

Γ0,Γ1 ` [N/z]M : A
(Subst)

Γ `M : A M ≡ N
Γ ` N : A

(α)

Strictly speaking, rule (Subst) can be shown to be admissible, and need not be included.

Similarly, the rule (Thin) can be restricted to weakening, or simple context extension, and

allowed to apply only to variables. However, we have chosen this form to emphasize the

relationship with the combinators to be introduced in the next section.

The notions of βη-equality and reduction on terms in the λ-calculus are as usual:

(λx.M)(N) β [N/x]M

λx.(M(x)) η M (x not free in M).

Reduction M . N is the compatible closure of β and α; .+ is the transitive closure of .,

and .∗ its reflexive transitive closure; M = N is the least equivalence relation containing

.. We similarly define .η , .
+
η and =η as the corresponding closures of β plus η plus α.

3. Introducing SKIn

Let m, n, p, . . . denote natural numbers. Types and contexts in SKIn are as in the λ-calculus.

Variable-free contexts, represented as lists of types, and SKIn-terms are defined by

X,Y , Z ∈ L ::= () | X,A
M,N, P ∈ T ::= x | Im | Km(M) | Sm(M,N).

If X is a variable-free context, then its length |X| is simply its length as a list.

The semantical idea behind SKIn– and this holds also in the untyped case – is given

by the following informal correspondence between SKIn-terms and λ-terms:

Im ∼ λx0.λxm−1.λxm.xm
Sm(M,N) ∼ λx0.λxm−1.M(x0, . . . , xm−1, N(x0, . . . , xm−1))

Km(M) ∼ λx0.λxm−1.λxm.M(x0, . . . , xm−1).

It should be apparent that Im, Sm, Km generalize Curry’s combinators I , S and K

respectively.

The judgment for this calculus is `Γ M : A. Intuitively, the usual sequent calculus

judgment X ` A, where the proof contains no free variables, translates to `() M : X → A

for some term M, where X → A is defined as

()→ A =df A (X,B)→ A =df X → (B ⇒ A).

We write the rules of inference in a way that is suggestive of the sequent calculus, where

→ informally plays the role of ` in sequent calculus (Γ is a fixed context):

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 7

(SIm) Sm(Im, P) . P (SKm) Sm(Km(M), P) . M

(SmIn) Sm(In, P) . In−1

(SmKn) Sm(Kn(M), P) . Kn−1(Sm(M,P))

(SmSn) Sm(Sn(M,N), P)

. Sn−1(Sm(M,P), Sm(N,P))

(KmIn) Km(In−1) . In
(KmKn) Km(Kn−1(M)) . Kn(Km(M))

(KmSn) Km(Sn−1(M,P))

. Sn(Km(M),Km(P))

Fig. 1. SKIn reduction rules (for every 0 6 m < n)

x:A ∈ Γ

`Γ x : ()→ A
(Par)

`Γ I|X| : (X,A)→ A
(I)

`Γ M : X → A

`Γ K|X|(M) : (X,B)→ A
(K)

`Γ M : (X,A)→ B `Γ N : X → A

`Γ S|X|(M,N) : X → B
(S)

We can see how the usual combinators are represented in this calculus. Application

M(N) is simply S0(M,N). On the other hand, K corresponds informally to the SKIn term

K1(I0) (this follows easily by using the translation of Definition 3.8 on the term λx.λy.x);

and S corresponds informally to S3(K1(I0), I1) (this again follows by using the translation

on the term λx.λy.S1(x, y), or on λx.λy.λz.(xz)(yz) and normalizing).

3.1. Equality and reduction

Definition 3.1 (Combinator Reduction). Reduction in SKIn is defined by the rules in

Figure 1, where we use the same notation . for the reduction relation as in the λ-calculus,

since no ambiguity can arise.

We use the same notation as in Section 2 for the various closures of sequent combinator

reduction, where the intended reduction . is by reading the equalities from left to right.

As in the λ-calculus, these rules are untyped.

Similar to the λ-calculus, we have both syntactic equality M ≡ N and provable equality

M = N. However, in the combinator language ≡ is exactly syntactic identity, rather than

α-equivalence as in the λ-calculus.

We can already state a few easy results about reduction:

Proposition 3.2 (Weak Church–Rosser). The reduction relation . of SKIn is locally con-

fluent.

Proof. There are 19 critical pairs, all joinable, which were generated and checked

automatically by a variant of the Knuth–Bendix algorithm. We give one case, where the

top term may rewrite either to the left- or the right-hand term, by the rule labelling the

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 8

corresponding arrow, and the diagram can be closed by the dotted arrows leading to the

common reduct.

Km(Sn−1(Kp−1(M), P))

�

(Sn−1Kp−1) (KmSn)

j
Km(Kp−2(Sn−1(M,P))) Sn(Km(Kp−1(M)),Km(P)). .

(KmKp−1), (KmSn)

j �.
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

(KmKp), (SnKp)

Kp−1(Sn(Km(M),Km(P)))

SKIn is in fact confluent (Theorem 5.4), but we lack the necessary tools to show it at

this point of the paper.

Proposition 3.3 (Subject reduction). If `Γ M : A and M . N, then `Γ N : A.

Proof. The proof is straightforward.

Weaker versions of the thinning equalities have appeared in the literature (Peyton-Jones

1986), for example, S(K(M), K(N)) = K(M(N)).

Unfortunately, although SKIn preserves λ-calculus reduction, we have the following

negative result.

Proposition 3.4. SKIn is not strongly normalizing on typed terms.

Proof. This is just as for λσ (Melliès 1995). Let Mn be the sequence of terms defined

as:

M0 =df I1 M1 =df I1

Mn+2 =df S0(K0(Mn),Mn+1),

and let Nn =df S0(K0(S0(K0(I1),Mn)),Mn+1), of type (A,B) → B, for any A, B. Then we

get the following infinite reduction:

Nn ≡S0(K0(S0(K0(I1),Mn)),Mn+1)

.S0(S1(K0(K0(I1)),K0(Mn)),Mn+1)

.S0(S0(K0(K0(I1)),Mn+1), S0(K0(Mn),Mn+1))

≡S0(S0(K0(K0(I1)),Mn+1),Mn+2)

.S0(S0(K1(K0(I1)),Mn+1),Mn+2)

.S0(K0(S0(K0(I1),Mn+1)),Mn+2) ≡ Nn+1.

However, we shall see that, just like λσ (Goubault-Larrecq 1998b), SKIn normalizes

weakly in the typed case (Theorem 5.3).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 9

[[x]](P0, . . . , Pn−1) =df x(P0, . . . , Pn−1)

[[Im]](P0, . . . , Pn−1) =df

{
Pm(Pm+1, . . . , Pn−1) n > m

λxn . . . λxm.xm n 6 m

[[Km(M)]](P0, . . . , Pn−1) =df

{
[[M]](P0, . . . , Pm−1, Pm+1, . . . , Pn−1) n > m

λxn . . . λxm.[[M]](P0, . . . , Pn−1, xn, . . . , xm−1) n 6 m

[[Sm(M,N)]](P0, . . . , Pn−1) =df


[[M]](P0, . . . , Pm−1, [[N]](P0, . . . , Pm−1), Pm, . . . , Pn−1) n > m

λxn . . . λxm−1.[[M]](P0, . . . , Pn−1, xn, . . . , xm−1,

[[N]](P0, . . . , Pn−1, xn, . . . , xm−1)) n < m

Fig. 2. Interpretation of sequent combinators as λ-terms

3.2. Completeness

We first show that SKIn is complete for the λ-calculus, to motivate our combinators.

By completeness, we mean that we may interpret SKIn-terms as λ-terms in such a way

that types are preserved, and that equalities are preserved. Our interpretation of SKIn-

terms, which is an elaboration of the informal semantics of SKIn-terms presented earlier,

is shown in Figure 2, as a map from lists of λ-terms (P0, . . . , Pn−1) (n > 0) to λ-terms

[[M]](P0, . . . , Pn−1). We use the notation Pi, . . . , Pj−1 when i 6 j to denote the sequence of

all Pk , i 6 k < j; when i = j, this sequence is just empty. This interpretation has the

important properties of preserving equality and typing:

Lemma 3.5 (Completeness for typing). If `Γ M : A, then Γ ` [[M]]() : A.

Proof. More generally, we show that whenever `Γ M : (A0, . . . , An−1) → A, and

Γ ` P0 : A0, . . . ,Γ ` Pn−1 : An−1, then Γ ` [[M]](P0, . . . , Pn−1) : A, by induction on the

structure of the typing derivation for M.

This is clear when M is a variable x. When M ≡ Im, then either n > m, in which case we

must have Am = (Am+1, . . . , An−1) → A, and then [[M]](P0, . . . , Pn−1) ≡ Pm(Pm+1, . . . , Pn−1)

indeed has type A; or n 6 m, and then A is of the form (X,B)→ B, with |X| = m− n, so

[[M]](P0, . . . , Pn−1) ≡ λxn . . . λxm.xm has type (X,B)→ B, that is, A.

When M ≡ Km(N) and n > m, the typing derivation for M must end in rule (K),

whose premise must be `Γ N : (A0, . . . , Am−1, Am+1, . . . , An−1) → A; by the induction

hypothesis, Γ ` [[N]](P0, . . . , Pm−1, Pm+1, . . . , Pn−1) : A, hence Γ ` [[M]](P0, . . . , Pn−1) : A.

When M ≡ Km(N) and n 6 m, the premise must be `Γ N : (A0, . . . , An−1, An, . . . ,

Am−1)→ B, where A = (An, . . . , Am−1, Am)→ B, so by the induction hypothesis, weakening

and application, Γ, xn:An, . . . , xm:Am ` [[N]](P0, . . . , Pn−1, xn, . . . , xm−1) : B; this implies the

claim.

When M ≡ Sm(N,P) and n > m, the typing derivation for M must end in rule

(S), with premises `Γ N : (A0, . . . , Am−1, B, Am, . . . , An−1) → A and `Γ P : (A0, . . . ,

Am−1)→ B for some type B; by the induction hypothesis, Γ ` [[P]](P0, . . . , Pm−1) : B and

therefore also Γ ` [[N]](P0, . . . , Pm−1, [[P]](P0, . . . , Pm−1), Pm, . . . , Pn−1) : A, hence the claim.

If M ≡ Sm(N,P) and n < m, then the premises must be `Γ N : (A0, . . . , An−1, An, . . . ,

Am−1, B)→ C and `Γ P : (A0, . . . , An−1, An, . . . , Am−1)→ B, with A = (An, . . . , Am−1)→ C;

by the induction hypothesis, weakening and application, we must then have

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 10

Γ, xn:An, . . . , xm−1:Am−1 `[[P]](P0, . . . , Pn−1, xn, . . . , xm−1) : B

Γ, xn:An, . . . , xm−1:Am−1 `[[N]](P0, . . . , Pn−1, xn, . . . , xm−1,

[[P]](P0, . . . , Pn−1, xn, . . . , xm−1)) : C

This proves the claim.

In the following theorem, equalities in SKIn translate to equalities involving the η

rule in the λ-calculus. We shall refine this result, in order to drop the need for η, in

Theorem 3.21.

Theorem 3.6 (Completeness for equality). If M = N in SKIn, then [[M]]() =η [[N]]().

More generally, if M . N in SKIn, then [[M]]() .∗η [[N]]() in the λ-calculus.

Even more generally, if M . N in SKIn, then [[M]](P0, . . . , Pn−1) .∗η [[N]](P0, . . . , Pn−1) in

the λ-calculus, for any n > 0 and λ-terms P0, . . . , Pn−1.

Proof. The proof is by structural induction on the depth of the contracted redex in M,

then by case analysis on the reduction rule that we used. See Appendix A for details.

The need for the η rule arises when we translate (SIm) redexes. Consider, for example,

S1(I1, x), where x is a variable. Then

[[S1(I1, x)]]() ≡ λx0.[[I1]](x0, [[x]](x0)) ≡ λx0.[[x]](x0) ≡ λx0.x(x0),

and this requires the use of η to be reduced to x ≡ [[x]]().

3.3. Soundness

Soundness extends Curry’s programme of using combinators as a bound-variable-free

language for the λ-calculus. There are several steps to this:

— Functional Abstraction. This involves defining the abstraction operation [x]M by

structural induction on M (Definition 3.7).

— Substitution. This is the standard operation of textual substitution M[x← P].

— Soundness. We show that abstraction and substitution are coherent, and that reduc-

tion is preserved by abstraction. Hence, the reduction and equality of λ-calculus are

preserved by the translation to sequent combinators (Theorem 3.15, Corollary 3.16).

The abstraction algorithm corresponds to the deduction theorem for intuitionistic

implicational logic: if from Γ, A we can prove B, then we can prove A ⇒ B from Γ.

Technically, because the combinators include information about their list of arguments,

the algorithm is particularly easy to define.

Definition 3.7 (Abstraction). Let [x]M be defined inductively by

[x]x =df I0 [x]y =df K0(y) (y 6≡ x)

[x]Im =df I1+m

[x]Km(M) =df K1+m([x]M)

[x]Sm(M,N) =df S1+m([x]M, [x]N).

Notice that, unlike some definitions of abstraction in combinatory logic, we do not need

a special case to define abstraction [x]M for terms M where x does not occur free, that

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 11

is, as K0(M). This is because our calculus is sufficiently expressive that K0(M) .∗ [x]M

holds, using the thinning reductions.

We invite the reader to check that the corresponding abstraction algorithm for λ-terms

in de Bruijn notation is even simpler, and in essence does nothing, as noticed by G. Dowek.

In fact, the abstraction algorithm is essentially a translation to de Bruijn notation.

We can now translate untyped λ-terms into the combinator language.

Definition 3.8. Define P ∗ inductively on the structure of the λ-term P :

x∗ =df x

(P (Q))∗ =df S0(P ∗, Q∗)
(λx.P)∗ =df [x](P ∗).

Our notion of substitution M[x← N] is the trivial, first-order, textual notion.

The usual development of combinators then translates into our setting without difficulty.

The contribution of our language is that ξ-reduction holds: if M . N, then [x]M . [x]N.

Lemma 3.9. S0([x]M,N) .+ M[x← N].

Proof. By structural induction on M. If M ≡ x, then S0([x]M,N) ≡ S0(I0, N) . N ≡
M[x← N] by rule (SI0). If M ≡ y 6≡ x, then S0([x]M,N) ≡ S0(K0(y), N) . y ≡M[x← N]

by rule (SK0). Otherwise, M is of the form fm(M1, . . . ,Mn) for some operator fm, m > 0,

f ∈ {S,K, I} (when f is I, then n = 0), so S0([x]M,N) ≡ S0(fm+1([x]M1, . . . , [x]Mn), N) .

fm(S0([x]M1, N), . . . , S0([x]Mn,N)) (by rule (S0fm+1)) .∗ fm(M1[x ← N], . . . ,Mn[x ← N])

(by the induction hypothesis) ≡M[x← N].

Lemma 3.10. In SKIn, [x]M ≡ [y](M[x← y]) if y 6∈ FV(M).

Proof. The proof is by structural induction on M.

Lemma 3.11. In SKIn, if M . N, then [x]M . [x]N.

Proof. The proof is by induction on the depth of the redex that gets contracted in M.

Base case: M is itself the contracted redex. If M . N by (SIm), then [x]M . [x]N by

(SIm+1): indeed, we must have M ≡ Sm(Im, P) and N ≡ P , so [x]M ≡ Sm+1(Im+1, [x]P) .

[x]P ≡ [x]N by (SIm+1). Similarly, abstraction on x translates (SKm) to (SKm+1), (SmIp)

to (Sm+1Ip+1), and so on.

Induction case: M is not the contracted redex. So M ≡ fm(M1, . . . ,Mn) for some

operator fm and the contracted redex is inside some Mi, 1 6 i 6 n. Let Mi contract

to Ni, and Nj be Mj for every j 6= i. Then [x]M ≡ fm+1([x]M1, . . . , [x]Mi, . . . , [x]Mn) .

fm+1([x]M1, . . . , [x]Ni, . . . , [x]Mn) (by the induction hypothesis), and by definition, the latter

is equal to fm+1([x]N1, . . . , [x]Ni, . . . , [x]Nn), that is, to [x]N.

Lemma 3.12. For every SKIn-term M, for every variable y not free in M, K0(M) .∗ [y]M.

Proof. The proof is by structural induction on M. If M is a variable x, then [y]M ≡
K0(x); indeed, y is not free in M, so y 6≡ x. It follows that in this case, K0(M) ≡ [y]M. If

M is any other term, then M has the form fm(M1, . . . ,Mn) for some operator fm and some

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 12

n > 0; then K0(M) . fm+1(K0(M1), . . . ,K0(Mn)) by rule (K0fm+1), and by the induction

hypothesis, the latter reduces to fm+1([y]M1, . . . , [y]Mn) ≡ [y]M.

Lemma 3.13. For all distinct variables x and y, and for all SKIn-terms M and N such

that y is not free in N, ([y]M)[x← N] .∗ [y](M[x← N]).

Proof. The proof is by structural induction on M. If M ≡ y, then ([y]M)[x ← N] ≡
I0[x← N] ≡ I0 ≡ [y]M ≡ [y](M[x← N]), where M ≡M[x← N] since x 6≡ y. If M ≡ x,

then ([y]M)[x ← N] ≡ (K0(x))[x ← N] (since y 6≡ x) ≡ K0(N) .∗ [y]N (by Lemma 3.12)

≡ [y](M[x ← N]). If M is any other term, then it is of the form fm(M1, . . . ,Mn),

and ([y]M)[x ← N] ≡ fm+1([y]M1, . . . , [y]Mn)[x ← N] ≡ fm+1(([y]M1)[x ← N], . . . ,

([y]Mn)[x ← N]) .∗ fm+1([y](M1[x ← N]), . . . , [y](Mn[x ← N])) (by the induction hy-

pothesis) ≡ [y](M[x← N]).

Lemma 3.14. For all λ-terms M and N and all variables x, M∗[x← N∗] .∗ ([N/x]M)∗.

Proof. The proof is by induction on the size of M.

If M ≡ x, then M∗[x← N∗] ≡ x[x← N∗] ≡ N∗ ≡ ([N/x]M)∗. If M is another variable

y, then M∗[x← N∗] ≡ y ≡ y∗ ≡ ([N/x]M)∗.
If M is an application M1(M2), then M∗[x ← N∗] ≡ (S0(M∗1 ,M∗2))[x ← N∗] ≡

S0(M∗1 [x← N∗],M∗2 [x← N∗]) .∗ S0(([N/x]M1)∗, ([N/x]M2)∗) (by the induction hypothe-

sis) ≡ ([N/x]M)∗.
If M is an abstraction λx.M1, then (λx.M1)∗[x← N∗]≡ (λx.M1)∗ (since x 6∈FV((λx.M1)∗)

≡ ([N/x](λx.M1))∗. And if M is an abstraction λy.M1, then M∗[x← N∗] ≡ ([y]M∗1)[x←
N∗] ≡ ([z](M∗1 [y ← z]))[x ← N∗] (for z 6∈ FV(N∗), by Lemma 3.10) .∗ [z]((M∗1)[y ←
z][x ← N∗]) (by Lemma 3.13) .∗ [z]([N/x][z/y]M1)∗ (by Lemma 3.11 and the induction

hypothesis – notice that the size of M1 and [z/y]M1 are equal) ≡ ([N/x](λy.M1))∗.

Theorem 3.15 (Soundness for reduction). If M . N, then M∗ .+ N∗.

Proof. The proof is by structural induction on M, using Lemma 3.9 and Lemma 3.14

for β, and Lemma 3.11 for ξ.

Corollary 3.16 (Soundness for equality). If M = N, then M∗ = N∗.

Preservation of typing is straightforward.

Lemma 3.17. For every SKIn-term N, if `Γ,x:A N : B, then `Γ [x]N : A⇒ B.

Proof. The proof is by structural induction on N. If N ≡ x, then B is A, and [x]N ≡ I0 is

of type A⇒ A. If N is some other variable y, then y:B is in Γ, so `Γ K0(y) : A⇒ B, and

the claim follows since [x]N ≡ K0(y). If N ≡ Im, then B is of the form (A0, . . . , Am−1, Am)→
Am, and [x]N ≡ Im+1, and the claim follows since `Γ Im+1 : (A,A0, . . . , Am−1, Am) →
Am. If N ≡ Km(P), then B is of the form (A0, . . . , Am−1, Am) → Am+1, and `Γ,x:A P :

(A0, . . . , Am−1)→ Am+1; by the induction hypothesis, `Γ [x]P : (A,A0, . . . , Am−1)→ Am+1,

so `Γ Km+1([x]P) : (A,A0, . . . , Am−1, Am) → Am+1; when N ≡ Sm(P ,Q), the argument is

similar.

Lemma 3.18. If Γ `M : A then `Γ M
∗ : A.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 13

Proof. The proof is by structural induction on M, where Γ `M : A. If M is a variable

x, then x:A is in Γ, so `Γ x : A, that is, `Γ M
∗ : A. If M is an application P (Q), then

necessarily Γ ` P : B ⇒ A and Γ ` Q : B for some type B. By the induction hypothesis,

`Γ P ∗ : B ⇒ A and `Γ Q∗ : B, so `Γ S0(P ∗, Q∗) : A, that is, `Γ M∗ : A. If M is

an abstraction λx.N, then necessarily A is of the form B ⇒ C , with Γ, x:B ` N : C , so

by the induction hypothesis `Γ,x:B N
∗ : C . By Lemma 3.17, then, `Γ [x]N∗ : B ⇒ C ,

therefore `Γ M
∗ : A.

In this section, we show that the map M 7→M∗ is a conservative embedding of λ-terms

in SKIn modulo conversion: that is, M∗ = N∗ if and only if M = N. One direction is

soundness. The other direction requires the following auxiliary notion of well-stagedness.

Definition 3.19. Define the level lev(M) of the SKIn-term M by

lev(x) = 0

lev(Im) = m+ 1

lev(Sm(M,N)) = max(m, lev(M)− 1)

lev(Km(M)) = max(m, lev(M)) + 1.

A SKIn-term is well-staged if and only if all its subterms of the form Sm(M,N) are such

that lev(M) > m, lev(N) > m, and all its subterms of the form Km(M) are such that

lev(M) > m.

Intuitively, lev(M) is the number of lambdas in front of [[M]](); in particular, lev(P ∗),
where P = λx1 . . . λxn.Q and Q is not an abstraction, is n. More generally, for any non-

abstraction subterm Q of P , Q∗ will appear abstracted n times, where there are n bound

variables in the scope of Q – hence as a term of level n. Now, when we go down the term P ,

the number of bound variables in scope can only increase. The notion of well-stagedness

is intended to represent this monotonicity property.

Thus we have the following lemma.

Lemma 3.20. Let M be a λ-term. Then M∗ is well-staged.

Recall that we shall show later on (Theorem 5.4) that SKIn is confluent. Taking this

as an assumption for the moment, we can refine Theorem 3.6 in the case of well-staged

terms.

Theorem 3.21 (Completeness for equality (2)). For any well-staged terms M and N, if

M = N in SKIn, then [[M]]() = [[N]](), provided that SKIn is confluent.

In general, if M is well-staged and M . N in SKIn, then N is also well-staged and

[[M]]() .∗ [[N]]() in the λ-calculus.

Even more generally, if M is well-staged and M . N in SKIn, then [[M]](P0, . . . , Pn−1) .∗
[[N]](P0, . . . , Pn−1) in the λ-calculus, for any n > 0 and λ-terms P0, . . . , Pn−1.

Proof. Full details are given in Appendix B. Note that the example we gave in Theo-

rem 3.6 to show that we needed the η rule, S1(I1, x), is not well-staged.

The following corollary does not follow from Theorem 3.6, since the latter would only

show [[M∗]]() =η [[N∗]](). We need this refinement in order to show conservativity.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 14

Corollary 3.22. If SKIn is confluent, then M∗ = N∗ implies [[M∗]]() = [[N∗]]().

Lemma 3.23. For any λ-term P , P .∗ [[P ∗]]().

Theorem 3.24 (Conservativity (1)). Assume that SKIn is confluent.

Then, the map M 7→ M∗ is a conservative embedding of λ-terms in SKIn modulo

conversion. That is, M∗ = N∗ if and only if M = N.

Proof. The if direction follows by Soundness.

The only-if direction follows because M = [[M∗]]() = [[N∗]]() = N, by Corollary 3.22

and Lemma 3.23.

Lemma 3.23 implies that, modulo conversion, [[-]]() is a left inverse to -∗. The curious

reader might wonder whether it is also a right inverse to -∗. An anonymous referee has

suggested that this might be the case, and in fact that we might have M .∗ ([[M]]())∗

for every SKIn-term M. Unfortunately, this does not work: take M =df S1(I1, x), then

([[M]]())∗ ≡ (λx0.x(x0))∗ ≡ S1(K0(x), I0). Then M only reduces to x, which is not the same

normal form as S1(K0(x), I0). In fact, the best we can hope for here is that M =η ([[M]]())∗,
which we conjecture.

If M is well-staged, we conjecture that indeed M .∗ ([[M]]())∗. However, we have not yet

been able to prove this. If this conjecture holds, then there would be a simple confluence

proof of SKIn restricted to well-staged terms: if the well-staged term M reduces both

to M1 and to M2 in SKIn, then by Theorem 3.21 [[M]]() reduces both to [[M1]]() and

to [[M2]]() in the λ-calculus. Since the latter is confluent, the latter two have a common

reduct P , so ([[M1]]())∗ and ([[M2]]())∗ both reduce to P ∗ in SKIn, by Theorem 3.15. The

conjecture would imply that ([[M1]]())∗ and ([[M2]]())∗ would be reducts of M1 and M2

respectively, so that P ∗ would be a common reduct of M1 and M2. This was suggested to

us by the same referee; we had abandoned this line of argument since it is impossible to

extend this to a proof that the whole of SKIn was confluent.

One might also wonder whether, conversely to Theorem 3.24, the mapping M 7→ [[M]]()

defines a conservative embedding of SKIn inside the λ-calculus. The answer is no, and

the same counter-example still works: S1(I1, x) and S1(K0(x), I0) are not convertible in

SKIn, whereas [[S1(I1, x)]]() ≡ λx0.x(x0) ≡ [[S1(K0(x), I0)]](). However, the conjecture above

implies that the subset of all well-staged SKIn-terms is conservatively embedded inside

the λ-calculus.

4. SKInT: Terminating sequent combinators, and near-intuitionistic logic

We now introduce SKInT. This can be seen as a variant on SKIn, where the rule

(KmSm+1): Km(Sm(M,N)) . Sm+1(Km(M),Km(N)), that is, rule (KmSn) where n = m+ 1, is

dropped. This is enough to ensure strong normalization in the typed case; in the example

of Proposition 3.4 in particular, this defeats the first reduction. This also facilitates the

design of the η rules: the only η-rules that we need in SKInT are Sm+1(Km(M), Im) .η M,

m > 0.

The rule (KmSm+1) is needed in the proof of Soundness for Reduction, Theorem 3.15,

and, in particular, in Lemma 3.13 to allow reduction to pass under the binder. For example,

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 15

it is necessary to show that ((λx.λy.x)(a(b)))∗ = S0(K1(I0), S0(a, b)) .+ K0(S0(a, b)) .

S1(K0(a),K0(b)) = (λy.a(b))∗.
This discussion only justifies SKInT on ad hoc grounds. However, SKInT arose from

deeper considerations on the modal logic S4. In fact, SKInT will happen to have very

few properties in common with SKIn: presenting it as a variant of SKIn can be seen as a

mere convenience. SKInT is indeed a natural sub-calculus of the λevQ-calculus (Goubault-

Larrecq, 1996b), a calculus of proof terms for the minimal modal logic S4. This calculus

basically implements a well-behaved Lisp-like eval/quote mechanism, presented as an

infinite tower of calculi (Wand and Friedman 1986): in λevQ, Sm(M,N) is evm+1MN (eval

M in stack N, at level m+ 1 of the tower), Km(M) is Qm+1M (kwote, at level m+ 1), and

Im is the empty stack idm+1 at level m + 1. The connection between SKInT and λevQ is

not arbitrary either, and arises from the translation of intuitionistic logic to S4 induced

by their respective Kripke semantics (the translation [A] of the formula A being defined

by [o] =df 2o, [A⇒ B] =df 2([A]⇒ [B])).

We start, therefore, by giving a semantical account of SKInT through near-intuitionistic

logic, a fragment of S4 that can also be seen as a relaxation on the usual Kripke semantics

of intuitionistic logic. This will occupy Section 4.1. We shall then investigate the meta-

mathematical properties of SKInT: termination properties in Section 4.2; confluence in

Section 4.3; and standardization in Section 4.4.

Our intention in this section is only to motivate SKInT as a natural system in its own

right, and as a platform for developing results for SKInT. We leave the full development

of SKInT to another paper.

4.1. Near-intuitionistic logic and the λclos-calculus

Definition 4.1. A near-intuitionistic, or S4, frame is a triple (W,6, ρ), where W is a non-

empty set of so-called worlds w, 6 is a pre-order onW (a reflexive and transitive relation),

and ρ is a valuation mapping base types o ∈ O to subsets of W.

The relation |=(W,6,ρ), or |= when the frame is clear, is defined by

w |= o iff w ∈ ρ(o) (o ∈ O)

w |= A⇒ B iff ∀w′ · w 6 w′ ⊃ w′ |= A ⊃ w′ |= B

where ⊃ is ordinary implication.

We call near-intuitionistic logic the logic whose formulas are types, and such that the

true formulas are those that hold in every frame and under every valuation.

Frames are defined as for the modal logic S4; the only difference with intuitionistic frames

is that we do not require ρ(o) to be upwards-closed, that is, to be such that w ∈ ρ(o)

implies w′ ∈ ρ(o) for every w′ such that w 6 w′. That is, this is a variant of intuitionistic

logic where propositions in a world may fail to remain true in all subsequent worlds.

Alternatively, Definition 4.1 can be seen as the semantics of a particular fragment of S4,

where A⇒ B means the same as the S4 formula 2(A ⊃ B).

The typing rules of SKInT are as for SKIn, except for rule (K), which is now restricted

to the case where A is an arrow type. We name the restricted rule (KT). Here then is the

complete set of typing rules for SKInT:

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 16

x:A ∈ Γ

`Γ x : ()→ A
(Par)

`Γ I|X| : (X,A)→ A
(I)

`Γ M : (X,C)→ A

`Γ K|X|(M) : (X,B, C)→ A
(KT)

`Γ M : (X,A)→ B `Γ N : X → A

`Γ S|X|(M,N) : X → B
(S)

We shall see that the typing rules of SKInT define a sound and complete deduction

system for near-intuitionistic logic. Although we could prove this directly, it will be

instructive to go through another language of proof-terms instead, λclos, and to show,

first, that the latter is a language of proof-terms for near-intuitionistic logic, and second,

that it is isomorphic to SKInT (modulo convertibility, and in the presence of η rules). As

λclos is very close to the λ-calculus, this will weave a more precise web of relationships

between these languages. This will also show that, in a certain sense, SKInT-reduction, as

λclos-reduction, represents cut-elimination in a sequent system for near-intuitionistic logic.

The λclos-calculus is inspired by the variant of Bierman–de Paiva’s λS4 (Bierman and

de Paiva 1992) used in Goubault-Larrecq (1997).

Definition 4.2. The λclos-pre-terms s, t, . . . , are defined as

t ::= x | t(t) | 〈x · t, θ〉
where θ is an explicit substitution, that is, a finite mapping {x1 := t1, . . . , xk := tk} from

variables xi to λclos-terms ti, 1 6 i 6 k. Terms of the form 〈x · t, θ〉 are called closures; x · t
is the code part of the closure, x is its argument, t is its body and θ is the environment

part.

The variable x and the variables in the domain of θ are bound in the body t of any

closure 〈x · t, θ〉.
The λclos-terms are those pre-terms whose closure subterms 〈x · t, θ〉 have the property

that every variable free in t, except x, is in the domain of θ.

Intuitively, closures are pairs of a piece of code computing the value of t when given a

value for x as argument in the environment θ; the role of θ is to map the free variables of

t (except x) to their respective values while evaluating t. We might have written 〈λx · t, θ〉
to remind the reader of the usual λ-notation, but the λ sign is redundant with the brackets,

so we have dispensed with it in order not to clutter the notation.

Substitution is defined as usual, but the constraint on closures in λclos-terms entails that

substitution on closures only operates on the environment, not the body. Formally, we

have the following definition.

Definition 4.3. Let σ =df {y1 := u1, . . . , yp := up} be a substitution. The application sσ of

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 17

σ to the λclos-term s is defined by

yiσ =df ui (1 6 i 6 p)
yσ =df y (y 6≡ yi, 1 6 i 6 p)

(s(t))σ =df sσ(tσ)

〈x · t, {x1 := t1, . . . , xk := tk}〉σ =df 〈x · t, {x1 := t1σ, . . . , xk := tkσ}〉.
The fact that the substitution σ is not applied to the body t of the closure in the last line

is correct: the only free variables in t are either the bound variable x, or are bound by

the environment part of the closure.

We adopt Barendregt’s convention on variable naming, so that no variable is bound at

two distinct occurrences, or occurs both bound and free in a term; we shall sometimes

violate this condition (as in the definition of 〈x · t〉 below) in the name of increased

readability, under the convention that the intended term is obtained by some obvious

α-renaming. Finally, α-equivalent terms are equated, where α-equivalence is the smallest

congruence ≡ such that

(α) 〈x′ · t{x := x′, x1 := x′1, . . . , xk := x′k}, {x′1 := t1, . . . , x
′
k := tk}〉

≡ 〈x · t, {x1 := t1, . . . , xk := tk}〉
where x, x1, . . . , xk are pairwise distinct, and so are x′, x′1, . . . , x′k . That is, not only is the

name of the argument x irrelevant, but so are the names of the bound variables x1, . . . , xn
in the domain of the environment.

To make the notation somewhat more transparent, we define 〈x · t〉 as an abbreviation

for 〈x · t, {x1 := x1, . . . , xk := xk}〉, where x1, . . . , xk are the free variables of t except x. We

call terms 〈x · t〉 abstractions; it follows that every closure 〈x · t, θ〉 can be written as an

abstraction on which the substitution θ has been applied: 〈x · t, θ〉 ≡ 〈x · t〉θ.

Definition 4.4. The reduction relation of λclos is defined as the compatible closure of:

(β) 〈x · t, θ〉(s) . t(θ ∪ {x := s})
(ι) 〈x · t, {x1 := 〈y · s, {y1 := s1, . . . , yp := sp}〉, x2 := t2, . . . , xk := tk}〉,

. 〈x · t{x1 := 〈y · s, {y1 := y1, . . . , yp := yp}〉}
{y1 := s1, . . . , yp := sp, x2 := t2, . . . , xk := tk}〉

(0) 〈x · t, {x1 := t1, x2 := t2, . . . , xk := tk}〉
. 〈x · t, {x2 := t2, . . . , xk := tk}〉 (x1 not free in t)

(2) 〈x · t, {x1 := t1, x2 := t2, . . . , xk := tk}〉
. 〈x · t{x1 := x2}, {x2 := t2, . . . , xk := tk}〉 (if t1 ≡ t2)

where {x1 := t1, . . . , xk := tk} ∪ {x := s} is defined as {x1 := t1, . . . , xk := tk, x := s}, when

x 6≡ xi, for every i, 1 6 i 6 k.

Some comments are in order. Rule (β) is essentially just ordinary β-reduction for

closures. Due to the variable naming convention, we could equivalently write tθ{x := s}
or t{x := s}θ instead of t(θ ∪ {x := s}).

The idea of rule (ι) is that whenever some free variable x1 in t (except x) is mapped

to a closure 〈y · s, {y1 := s1, . . . , yp := sp}〉, we can push the code part y · s of x1 inside

the body t of the closure itself, retaining the environment part y1 := s1, . . . , yp := sp in

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 18

the environment of the outer closure; this can be thought as an inlining rule, as used in

compilers for functional languages. Note that we might have chosen any xi instead of x1,

but since environments are functions, bindings xi := ti commute freely: choosing x1 does

not entail any loss of generality. Logicians will also notice from the typing rules to come

that this is the box-under-box rule of S4 or linear logic.

Rule (0) is a garbage collection rule: it expresses the fact that there is no need to keep

a binding x1 := t1 in the environment when the code part does not refer to x1. Rule (2) is

a contraction rule: if x1 and x2 are bound to the same term t1 in the environment, we can

eliminate one binding, say x1 := t1, and replace x1 by x2 in the body t of the code part.

Our first result, which we shall use later on, is that λclos defines, in a natural way, a

superset of the call-by-value λ-calculus (Plotkin 1975).

Theorem 4.5. Define the following translation function from λ-terms M to λclos-terms M]

by

x] =df x

(M(N))] =df M](N])

(λx.M)] =df 〈x ·M]〉.
Let .V denote the notion of reduction in the λV -calculus, also known as the call-by-value

λ-calculus. This is the compatible closure of the rule:

(βV) (λx.M)(V) .V [V/x]M

where V is a value, that is, any non-application term.

Then M .V N implies M] .+ N] in λclos.

Proof. First, ((λx.M)(V))] . M]{x := V]} in λclos, by rule (β). It remains to show

that M]{x := V]} .∗ ([V/x]M)], by structural induction on M. The only non-trivial

case is when M is a λ-abstraction λy · N: then M]{x := V]} ≡ 〈y · N]〉{x := V]}. If

x is not free in N, hence in N], the result is obvious. Otherwise, assume x free in N,

and hence also in N], by an easy structural induction on N. If V is a variable, then

the result follows by α-renaming. If V is a λ-abstraction λz.P , then V] ≡ 〈z · P]〉 is a

closure; then 〈y ·N]〉{x := V]} ≡ 〈y ·N]〉{x := 〈z · P]〉} . 〈y ·N]{x := 〈z · P]〉}〉 (by (ι))

.∗ 〈y · ([λz.P/x]N)]〉 (by the induction hypothesis) ≡ 〈y · ([V/x]N)]〉 ≡ ([V/x]M)].

Through the M 7→ M] translation, the λclos-calculus defines a strict superset of λV .

Indeed, let x, y, and z be three variables, then (λx.x)(y(z)) and y(z) are not convertible in

λV , but ((λx.x)(y(z)))] ≡ 〈x · x〉(y(z)) . y(z) ≡ (y(z))] in λclos.

We shall also consider the following η-rule.

Definition 4.6. The λclosη-calculus is defined by the reduction relation .η , the compatible

closure of (β), (ι), (0), (2) and the following η-rule:

(η) 〈x · z(x), θ〉 . zθ
where z is a variable other than x.

Notice that z here is a variable, not any term with x not free in it, as in the λ-calculus.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 19

Γ, x:A ` x : A
(Ax)

Γ ` s : A⇒ B Γ ` t : A

Γ ` s(t) : B
(App)

Γ ` t1 : B1 ⇒ C1 . . . Γ ` tk : Bk ⇒ Ck

x1:B1 ⇒ C1, . . . , xk:Bk ⇒ Ck, x:B ` s : C

Γ ` 〈x · s, {x1 := t1, . . . , xk := tk}〉 : B ⇒ C
(Clos)

Fig. 3. Typing λclos

The simple typing rules for λclos are as shown in Figure 3.

The typing rule for closures can be viewed as a combination of a rule to type abstrac-

tions:

Γ⇒, x:B ` s : C

Γ⇒,∆ ` 〈x · s〉 : B ⇒ C
(Abs)

where Γ⇒ is restricted to be an arrowed context, that is, one mapping each variable xi to

an arrow type Bi ⇒ Ci, and ∆ is any context, that we use to build in weakening; and of

a rule (Cut) to type (implicit) substitutions:

Γ ` t : A Γ, x:A ` s : B

Γ ` s{x := t} : B
(Cut)

The latter is the famous cut rule of sequent calculi, and is easily shown to be admissible

in the system of Figure 3, by structural induction on s.

Our first point is to show that the natural deduction system, that is, the typing system

of Figure 3, considering types as formulae, and λclos-terms as proof-terms, is the proof-

theoretical counterpart of the semantics of Definition 4.1.

Theorem 4.7. The deduction rules of Figure 3 are sound and complete for the semantics of

Definition 4.1. That is, given a context x1:A1, . . . , xn:An and a type A0, there is a λclos-term

t such that x1:A1, . . . , xn:An ` t : A0 is derivable in the system of Figure 3 if and only if,

for every near-intuitionistic frame (W,6, ρ), for every w ∈ W such that w |= A1 and . . .

and w |= An, w |= A0, where |= abbreviates |=(W,6,ρ).

Proof. Soundness: We use structural induction on t. The only non-trivial case is for

closures 〈x · s, {x1 := t1, . . . , xk := tk}〉: soundness works in this case because any true

arrow type must remain true in all later worlds.

Completeness: We use an argument à la Smullyan (Goubault-Larrecq and Mackie

1997). Assume that there is no λclos-term t such that Γ0 ` t : A0 is derivable. We then

build a frame and a world w0 such that w0 satisfies Γ0 but w0 6|= A0; worlds are maximally

consistent sets of signed formulas, +A or −A. This parallels the standard construction of

worlds as maximally consistent sets of formulas, except that we use signed formulas to

remedy the lack of negation in our language.

The point now is that the reduction rules of λclos encode cut-elimination in near-intui-

tionistic logic. To make this precise, consider the Gentzen system of Figure 4, where we

decorate types on the left with variables and types on the right with λclos-terms, to show

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 20

Γ, x:A ` x : A
(Ax)

Γ, y:C ` t : A Γ ` s : B

Γ, x:B ⇒ C ` t{y := x(s)} : A
(⇒L)

Γ⇒, x:B ` t : C

Γ⇒,∆ ` 〈x · t〉 : B ⇒ C
(⇒R)

Γ ` t : A Γ, x:A ` s : B

Γ ` s{x := t} : B
(Cut)

Fig. 4. Sequent calculus for near-intuitionistic logic

the correspondence with the natural deduction system of Figure 3. It is understood that

Γ⇒ denotes an arrowed context, while Γ and ∆ denote arbitrary contexts.

Theorem 4.8 (Cut elimination). The following statements are equivalent:

(i) Γ ` s : A is derivable in the system of Figure 3;

(ii) Γ ` s : A is derivable in the system of Figure 4.

Moreover, if any of them holds, then there is a λclos-term t such that s .∗ t and Γ ` t : A

is derivable in the system of Figure 4 without rule (Cut).

Proof. The equivalence between (i) and (ii) is easy and fairly standard. The second part

of the Theorem follows from the following facts: subject reduction holds for simply typed

λclos-reduction; simply typed λclos-reduction is strongly normalizing; and every simply

typed λclos-normal term is the proof term of some cut-free proof in the system of Figure 4.

We can also show that the simply-typed λclosη-calculus is strongly normalizing.

We can also show the following lemma.

Lemma 4.9. The λclos-calculus is confluent. The simply-typed λclosη-calculus is confluent.

Proof. Let (0ι2) denote the group of rules (0), (ι) and (2). Every reduction on (0ι2)

terminates, and (0ι2) is locally confluent, so by Newman’s Lemma (0ι2) is confluent. More

generally, we can show that λclos enjoys the finite developments property: contracting only

those (β)-redexes that are residuals of redexes in the initial term of the reduction always

terminates, and defines a confluent notion of reduction. Standard arguments then show

that this implies the confluence of λclos (Barendregt 1984). As far as the λclosη-calculus is

concerned, although we believe it to be confluent, it seems rather painful to show this

because of the non-left-linear rule (2). We shall only need the result in the typed case,

however; since λclosη terminates in the typed case, it is enough to check the critical pairs.

Now we come, at last, to the reason why we introduced λclos in the first place. The

following theorem shows in particular that SKInT is a complete proof-term language for

near-intuitionistic logic, which was the main point of this section.

Theorem 4.10. Let s 7→ s? be the map from λclos-terms to SKInT-terms shown in Figure 5.

Conversely, let u 7→ u◦ be the map from SKInT-terms to λclos-terms of Figure 6. Then:

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 21

x? =df x

(s(t))? =df S0(s?, t?)

〈x · s, {x1 := s1, . . . , xk := sk}〉? =df

([x]s?)[x1 ← s?1 , . . . , xk ← s?k]

[x]x =df I0

[x]y =df K0(y) (y 6≡ x)

[x]Im =df Im+1

[x]Sm(u, v) =df Sm+1([x]u, [x]v)

[x]Km(u) =df Km+1([x]u)

Fig. 5. Translation from λclos to SKInT

x◦ =df x

Im
◦ =df 〈x0 · 〈x1 · . . . 〈xm−1·

〈z · z〉〉 . . . 〉〉
(Sm(M,N))◦ =df Sm(M◦, N◦)

(Km(M))◦ =df Km(M◦)

S0(s, t) =df s(t)

Sm+1(s, t) =df 〈z · Sm(x(z), y(z)),

{x := s, y := t}〉
K0(s) =df 〈z · x, {x := s}〉

Km+1(s) =df 〈z · Km(x(z)), {x := s}〉

Fig. 6. A translation from SKInT to λclos

1 If Γ ` s : A is derivable in the system of Figure 3, then `Γ s? : A is derivable in

SKInT.

2 If `Γ M : A is derivable in SKInT, then Γ ` M◦ : A is derivable in the system of

Figure 3.

3 If s . t in λclos, respectively, λclosη , then s? .∗ t? in SKInT, respectively, SKInTη .

4 If M .∗ N in SKInT, respectively, SKInTη , then M◦ = N◦ in λclosη .

5 For every λclos-term s, s?
◦

= s in λclos.

6 For every SKInT-term M, M◦? .∗η M in SKInTη .

7 For every λclos-normal, respectively, λclosη-normal, λclos-term s, s? is a SKInT-normal,

respectively, SKInTη-normal, SKInT-term.

Proof. The proof takes the form of a tedious series of computations. Note that 4

and 5 also hold in the simply-typed case, because λclos and λclosη are confluent in the

simply-typed case (Lemma 4.9) and enjoy subject reduction.

In other words, 3–6 tell us that, up to λclosη-convertibility on one side, and up to

SKInTη-convertibility on the other, the λclos-terms and the SKInT-terms are isomorphic;

the isomorphism is given by the pair of inverse functions s 7→ s? and u 7→ u◦. This

isomorphism also preserves types in both directions, by 1 and 2. And one half of it (the

map s 7→ s?) even preserves normal forms literally, 7.

In particular, the typing rules of SKInT are sound and complete for near-intuitionistic

logic, and SKInT-normal forms correspond to cut-free proofs.

4.2. Termination

SKInT is more well-behaved than SKIn, and most of our proofs of properties of SKIn

go through an analysis of SKInT first.

Definition 4.11 (Σ, ΣT). Let Σ denote the sub-calculus of SKIn from Section 3.1 minus

the rule (SIm), m > 0.

Similarly, let ΣT denote the sub-calculus of SKInT minus the rule (SIm), m > 0.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 22

To mimic calculi of explicit substitutions, Σ is the sub-calculus in charge of propagating

substitutions downwards, while (SIm): Sm(Im,M) . M is the β-rule (more precisely, the

βI-rule). This can be seen most easily in the proof of Theorem 3.6 in Appendix A: through

the [[-]]() translation, every rule of Σ translates to an equality in the λ-calculus, and the

only rules that may translate to proper reductions in the λ-calculus are (SIm), m > 0. In

the other direction, notice that ((λx.x)(P))∗ ≡ S0(I0, P
∗) is an (SI0)-redex, which reduces

to P ∗, thus doing a very simple case of βI-reduction. A β-reduction that is not a βI-

reduction is typically (λx.y)(P) . y, which gets translated into SKIn as S0(K0(y), P ∗) . y
by (SK0), not (SI0). In general, β-contraction is simulated in SKIn (see the proof of

Theorem 3.15) by propagating redexes down to the variables that must be replaced: for

example, ((λx.x(y))(P))∗ ≡ S0(S1(I0,K0(y)), P ∗) rewrites to S0(S0(I0, P
∗), S0(K0(y), P ∗)) ≡

(((λx.x)(P))((λx.y)(P)))∗, which then rewrites to (P (y))∗ by one βI and one β step. As the

reader may see, the analogy is not perfect: SKIn tends to blur the distinction between

β-redexes (λx.P)(Q) and explicit substitutions P [x := Q].

ΣT is, similarly, SKInT without this same βI-rule, or equivalently Σ without the rule

Km(Sm(M,N)) . Sm+1(Km(M),Km(N)). We use Ση , ΣTη , SKInη , SKInTη to denote the

corresponding calculi with their respective η-rules.

Let us now examine termination.

Lemma 4.12. ΣT and ΣTη terminate.

Proof. This holds even in the untyped case. The proof is technical, see Appendix C for

the full proof. We merely give an idea of the proof here.

We first show that the three rules (KmIn), (KmKn) and (KmSn+1) (the K group) terminate

by using a translation from SKInT-terms M to SKInT-terms [[M]]q that attempts to

predict the effects of pushing Km down the term on indices of operators, and then

using a recursive path ordering (Dershowitz 1987) on the translated terms. We then

show that the six rules obtained by adding (SmIn), (SmKn) and (SmSn) (the S group) to

the K group define a terminating rewrite system, by using a mapping M 7→ [[M]]eγ

from SKInT-terms to N, parameterized by sequences γ of non-negative integers; we

show that [[[[M]]q]]eγ > [[[[N]]q]]eγ whenever M . N by some rule in the S-group, while

[[[[M]]q]]eγ > [[[[N]]q]]eγ when M . N by some rule in the K-group. The M 7→ [[M]]eγ

translation resembles the M 7→ [[M]](P0, . . . , Pn−1) translation, and depends monotonically

on the indices of operators: the rules of the S group then decrease these indices. We then

define another translation M 7→ [[M]]′γ from SKInT-terms toN, such that [[M]]′γ > [[N]]′γ
whenever M . N by rule (SKm), and [[M]]′γ > [[N]]′γ if M . N by some rule in the S or

K group. This translation is even closer to the M 7→ [[M]](P0, . . . , Pn−1) translation. This

finishes the proof that ΣT terminates.

ΣTη then terminates because the η-rule Sm+1(Km(M), Im) quasi-commutes over ΣT and

clearly terminates on its own (see Dershowitz (1987)).

Notice that Σ does not terminate, since the counter-example of Proposition 3.4 only

uses rules in Σ.

In the typed case, we again have the following result.

Proposition 4.13 (Subject reduction). If `Γ M : A and M . N in SKInT, then `Γ N : A.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 23

` xA : A

` s : A1 ⇒ A2 ` t : A1

` s(t) : A2

` s : A2

` λxA1
.s : A1 ⇒ A2

` s : A

` ε(s) : A

` s : A

` ι(s) : A

` s : A1 ` t : A2

` s⊕ t : A2

Fig. 7. Typing the λ⊕-terms

Proof. The proof is straightforward. Remember that we use (KT) instead of (K) to type

terms of the form Km(M), and that (KmSn) is not a reduction rule of SKInT if n = m+ 1.

At last, we can justify our claim that SKInT is better behaved than SKIn, as far as

termination is concerned.

Theorem 4.14 (Strong normalization). The simply-typed SKInT and SKInTη calculi are

strongly normalizing.

Proof. The idea is to translate SKInT-terms to λ-terms by the M 7→ [[M]](P0, . . . , Pn−1)

translation. This translation preserves types, and the direction of reduction, but due to

the fact that the translations of Im and Km(M) do not depend on some of the Pi’s, some

reductions in SKInT translate as equalities; for example, [[S0(K0(M), N)]](P0, . . . , Pn) ≡
[[M]](P0, . . . , Pn), so any reductions in N are completely ignored by the translation. To

correct this, we change the translation of terms of the form Km(M) to the following:

[[Km(M)]]•(P0, . . . , Pn−1) =df [[M]]•(P0, . . . , Pm−1, Pm ⊕ Pm+1, Pm+2, . . . , Pn−1)

where ⊕ is an operator that we add to the λ-calculus so that P ⊕ Q is semantically

equivalent to Q; the trick is that, in P ⊕ Q, we still see all reductions occurring in P . For

technical reasons, we shall also need a few less important additional operators.

Formally, let the typed λ⊕-calculus be the calculus whose terms are those defined by

the grammar

s, t ::= xA | t(t) | λxA.t | ε(t) | ι(t) | t⊕ t
where A ranges over simple types, submitted to the typing rules of Figure 7. Notice that

any λ⊕-term has exactly one typing derivation, hence exactly one type.

We omit type indices on variables when they should be obvious. Moreover, to make the

notation lighter, we assume that ⊕ is right-associative, that is, s⊕ t⊕ r denotes s⊕ (t⊕ r).
The reduction rules are as follows:

(β) (λx.s)(t) . [t/x]s (ε) ε(s) . s

(η) λx.s(x) . s (x not free in s) (ι) ι(s) . s

(⊕−) s⊕ t . t (⊕) (s⊕ t)⊕ r . s⊕ (t⊕ r).
The [[]]• translation maps typed SKInT-terms M, of type (A0, . . . , An−1) → o, where

o is a base type, and n typed λ⊕-terms s0, . . . , sn−1 of respective types A0, . . . , An−1, to a

term [[M]]•(s0, . . . , sn−1) of type o. It is defined in Figure 8. A sequence si, . . . , sj denotes

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 24

[[Sm(M,N)]]•(s0, . . . , sn−1) =df [[M]]•(s0, . . . , sm−1,

ε(λzm . . . λzp−1.[[N]]•(s0, . . . , sm−1, zm, . . . , zp−1)),

sm, . . . , sn−1)

[[Km(M)]]•(s0, . . . , sn−1) =df [[M]]•(s0, . . . , sm−1, sm ⊕ sm+1, sm+2, . . . , sn−1)

[[Im]]•(s0, . . . , sn−1) =df ι(s0 ⊕ . . .⊕ sm−1 ⊕ sm)(sm+1, . . . , sn−1)

[[x]]•(s0, . . . , sn−1) =df x(s0, . . . , sn−1)

Fig. 8. The [[]]• interpretation (m > 0).

the sequence of elements sk with i 6 k and k 6 j, for all i and j such that i 6 j + 1; in

particular, if i = j + 1, then si, . . . , sj denotes the empty sequence. We can check that the

definition is meaningful. In particular, in the definition of [[Km(M)]]•(s0, . . . , sn−1), typing

constraints (namely, rule (I)) entail that n − 1 > m + 1, so sm+1 is indeed present in the

argument list.

We now show that the typed λ⊕-calculus is strongly normalizing; that M . N implies

[[M]]•(s0, . . . , sn−1) .∗ [[N]]•(s0, . . . , sn−1) for any sequence s0, . . . , sn−1 for which the left-

hand side makes sense; and that, moreover, when M .η N by rule (SIm) or by (ηSm),

[[M]]•(s0, . . . , sn−1) .+ [[N]]•(s0, . . . , sn−1). See Appendix D for details.

So only finitely many instances of (SIm) or (ηSm) can occur in a reduction. Since ΣT

terminates by Lemma 4.12, the typed SKInT and SKInTη-calculi terminate.

It is a bit unfortunate that we had to introduce yet another calculus, the λ⊕-calculus,

just to prove this result. But, for one, λclos cannot be used, as Theorem 4.10 (iv) only shows

that M . N in SKInT implies M◦ = N◦ in λclosη , not M◦ .+ N◦. A similar translation

to the call-by-value λ-calculus is even more out of the question: recall that the latter

simulates strictly less reductions than λclos through the M 7→M] translation.

4.3. Confluence

Lemma 4.15. ΣT is confluent.

Proof. Among the critical pairs of SKIn from Proposition 3.2, the critical pairs of

SKInT are as for SKIn, except that the cases involving rule (KmSn) with n = m + 1

are dropped. All these critical pairs are joined by rules of SKInT: so SKInT is locally

confluent. Among the critical pairs of SKInT, those of ΣT are joined by rules in ΣT , so

ΣT is locally confluent as well. By Lemma 4.12 and Newman’s Lemma, ΣT is confluent.

The confluence of ΣT is almost equivalent to the finite developments theorem (Baren-

dregt 1984), but not quite, since βI-reductions (reductions by some instance of (SIm)) are

left out of ΣT . This is, however, close enough, so confluence of SKInT follows easily.

Theorem 4.16 (Confluence). SKInT and SKInTη are confluent.

Proof. The proof is by a method due to Yokouchi (Yokouchi 1989; Hardin and Lévy

1989). Let βI denote the rewrite relation induced by the rule schemes (SIm), m > 0. Let

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 25

βI|| be the following notion of parallel reduction:

M .βI|| M

P .βI|| Q

Sm(Im, P) .βI|| Q

M .βI|| N P .βI|| Q

Sm(M,P) .βI|| Sm(N,Q)

M .βI|| N

Km(M) .βI|| Km(N)

We claim that

(i)

M
βI|| - P

N

ΣT

?
....................
ΣT ∗βI||

- Q

ΣT ∗

?

.................

where solid lines denote universally quantified reductions, dashed lines denote existentially

quantified reductions conditioned on the former, ΣT denotes one ΣT step, βI|| denotes

one βI|| step, ΣT ∗ denotes zero, one or more ΣT steps, and ΣT ∗βI|| denotes zero, one or

more ΣT steps followed by one βI|| step. Indeed, because all rules are left-linear, we only

have to consider the critical pairs. There are two of them, which parallel two critical pairs

in Proposition 3.2. Let 0 6 m < n:

1 If M ≡ Sm(Sn(In,M1), N1), N ≡ Sn−1(Sm(In, N1), Sm(M1, N1)) by (SmSn), and P ≡
Sm(M ′1, N ′1) with N1 .βI|| N

′
1, M1 .βI|| M

′
1. Then N .ΣT Sn−1(In−1, Sm(M1, N1)) .βI|| P .

2 If M ≡ Km(Sn(In,M1)), N ≡ Sn+1(Km(In),Km(M1)) by rule (KmSn+1), and P ≡ Km(M ′1)

with M1 .βI|| M
′
1. Then we have N .ΣT Sn+1(In+1,Km(M1)) .βI|| P .

We then claim

(ii)

M
βI|| - P

N

ΣT ∗

?
....................
ΣT ∗βI||

- Q

ΣT ∗

?

.................

We show (ii) by induction on ν(M), the length of the longest ΣT reduction starting from

M (by Lemma 4.12). If ν(M) = 0, then the result is clear. Otherwise, let the first reduction

step from M to N rewrite M to M1, with ν(M1) < ν(M). Claim (ii) follows from the

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 26

following diagram, where the induction hypothesis applies since ν(M2) < ν(M):

M
βI|| - P

by (i)

M1

ΣT

?
...

ΣT ∗
- M2

..
βI||

- P1

ΣT ∗

?

.................

by Lemma 4.15 by induction

N

ΣT ∗

?
...

ΣT ∗
- N2

ΣT ∗......?

......

...
ΣT ∗βI||

- Q

ΣT ∗

?

................

Using Lemma 4.15, it follows immediately that

(iii)

M
ΣT ∗βI||- P

N

ΣT ∗

?
....................
ΣT ∗βI||

- Q

ΣT ∗

?

.................

Now, notice that: (iv) βI|| is strongly confluent, because it is the parallelization of a

left-linear system, βI , with no critical pairs.

We now claim that ΣT ∗βI|| is strongly confluent, that is,

M
ΣT ∗βI||- P

N

ΣT ∗βI||

?
....................
ΣT ∗βI||

- Q

ΣT ∗βI||

?

.................

This is by induction on ν(M) again. If the reductions starting from M both rewrite by βI||
(in particular if ν(M) = 0), then this follows from the fact that βI|| is strongly confluent,

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 27

by (iv). Otherwise,

(v)

M
ΣT ∗ - N2

ΣT ∗βI|| - P

by Lemma 4.15 by (iii)

N1

ΣT∗
?

......................ΣT ∗- N3

ΣT ∗......?

......

...................ΣT ∗βI||- N5

Σ∗

?

.................

by (iii) by induction

N

ΣT ∗βI||

?
...

ΣT ∗
- N4

ΣT ∗βI||......?

......

...
ΣT ∗βI||

- Q

ΣT ∗βI||

?

................

where by assumption there is at least one ΣT step from M to N1 or to N2; the induction

hypothesis applies since ν(M3) 6 min(ν(M1), ν(M2)) < ν(M).

Finally, the reflexive transitive closures of ΣT ∗βI|| and of SKInT are exactly the same,

so, by (v) SKInT, is confluent.

As far as SKInTη is concerned, let βηI denote the rewrite relation induced by the rule

schemes (SIm) and (ηSm), m > 0. Let βηI|| be the following notion of parallel reduction:

M .βηI|| M Sm+1(Km(M), Im) .βηI|| M

P .βηI|| Q

Sm(Im, P) .βηI|| Q
M .βηI|| N P .βηI|| Q

Sm(M,P) .βηI|| Sm(N,Q)

M .βηI|| N

Km(M) .βηI|| Km(N)

We claim that

(i′)

M
βηI||- P

N

ΣT

?
....................
ΣT ∗βηI||

- Q

ΣT ∗

?

.................

As for (i), we only have to consider the critical pairs. There are 5 new ones, which

are the same as the critical pairs for adding η to SKInT. Let 0 6 m < n. We give

as an example the only one for which we need parallel η reduction. In this case,

M ≡ Sm+1(Km(Sn(M1, N1)), Im), N ≡ Sm+1(Sn+1(Km(M1),Km(N1)), Im) by rule (KmSn+1),

and P ≡ Sn(M1, N1) by βηI||. By (Sm+1Sn+1), then, N rewrites to Sn(Sm+1(Km(M1), Im),

Sm+1(Km(N1), Im)), and then to P by βηI||. The rest of the argument of the SKInT case

then goes through, replacing βI|| by βηI|| and (i) by (i′).

Notice that confluence holds even in the untyped case, and, also, in the presence of free

(meta-)variables. In contrast, confluence in the presence of free variables holds for rather

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 28

few calculi of explicit substitutions; one example where it does hold is λσ⇑ (Hardin and

Lévy 1989).

4.4. Standardization

Standardization implies that if a term has a normal form, there is a simple, effective way

of computing it. In the λ-calculus, this strategy consists in always reducing the leftmost

outermost β-redex.

In SKInT, and as we shall see in SKIn as well, this strategy reduces the redexes on

the spine first, where the spine is the leftmost branch of the term. Formally, we have the

following definition.

Definition 4.17. Let the spines S be the sequences defined by

S ::= x | Im | SmS | KmS (m > 0).

The arity of a spine is the number of operators of the form Sm, m > 0, in it. For any

spine S of arity n, we let S[M1, . . . ,Mn] be:

x[] =df x Im[] =df Im
(SmS)[M1, . . . ,Mn]=df Sm(S[M1, . . . ,Mn−1],Mn)

(KmS)[M1, . . . ,Mn]=df Km(S[M1, . . . ,Mn]).

Every term M can be written in a unique way as S[M1, . . . ,Mn]: the spine S is the

sequence of operators along the leftmost branch of M, read top-down, and M1, . . . ,Mn

(the arguments of M) are the second arguments of operators Sm on the spine, read

bottom-up. Iterating this decomposition of spine and arguments allows us to see terms as

trees of spines.

Spine reductions and standard reductions are then defined as follows.

Definition 4.18. A redex is called a spine redex in M if and only if it occurs on the spine

of M. Define the relation of spine reduction .s by M .s N if and only if M . N by

contracting a spine redex in M, and let .s∗ be its reflexive transitive closure. A term that

has no spine redex is called spine-normal.

Define M .std∗ N by induction on N viewed as a tree of spines, if and only if

M .s∗ S[M1, . . . ,Mn], and N ≡ S[N1, . . . , Nn], where Mi .
std∗ Ni for each i, 1 6 i 6 n.

We then use a technique due to René David to show standardization.

Theorem 4.19 (Standardization). If M .∗ N in SKIn (respectively, SKInT), then M .std∗ N.

Proof. By induction on M1 as a tree of spines, check that N .std∗ M1 . M2 implies

N .std∗ M2, permuting rules if necessary. By induction on the length of reductions, the

result then follows. Details are given in Appendix E.

So, to normalize a (normalizable) term, compute one of its spine-normal forms, then

reduce its arguments in the same way, recursively. This allows us to build reduction

machines for SKIn and SKInT in any of the standard ways (Peyton-Jones 1986). For

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 29

(KiIj+1) [i, -].up, ε,j ; up, ε,j + 1 (i 6 j)

(SiIj) [i, t].up, ε,j ; up, ε,j − 1 (i < j)

(SIi) [i, (`, r)].up, ε,j ; r.up, ε,` (i = j)

(KiKj+1) [i, -].up, [j, -].down,` ; [i, -].[j + 1, -].up, down,` (i 6 j)

(KiSj+1) [i, -].up,[j, (`′, r′)].down,` ; [i, -].[j + 1, (`′, r′.[i, -])].up, down,` (i < j)

(SiKj) [i, t].up, [j, -].down,` ; [i, t].[j − 1, -].up, down,` (i < j)

(SKi) [i, t].up, [j, -].down,` ; up, down,` (i = j)

(SiSj) [i, t].up,[j, (`′, r′)].down,` ; [i, t].[j − 1, (`′, r′.[i, t])].up, down,` (i < j)

〈default〉 [c].up, down,` ; up,[c].down,`

Fig. 9. The SKInT spine reduction machine

instance, represent terms by the following data structure, which makes the spines explicit.

Let V be a set of (meta-)variables, and let

L =df V+N leaves

R =df (N× (T+ {-}))∗ rakes

T =df L×R terms

where - is a distinguished element, + denotes disjoint sum and S∗ denotes the set of all

lists of elements of the set S . The leaves ` in L are either meta-variables x ∈ V or

integers m representing Im, and are the bottoms of spines. Rakes in R are partial spines,

together with their arguments; intuitively, an element of the list of the form (m, -) denotes

Km(), and an element of the form (m, t) with t ∈ T denotes Sm(, t). Formally, we use ε

to denote the empty list, use r1.r2 for the concatenation of r1 and r2, and write [c] for

the list with one element c. When c is a couple (`, r), let [`, r] denote [(`, r)]. The terms t

denote SKInT-terms γ(t), where

γ : T→ SKInT

γ(x, r) =df γ1(x, r) (x ∈ V)

γ(m, r) =df γ1(Im, r) (m ∈ N)

γ1 : SKInT×R → SKInT

γ1(M, [m, -].r) =df γ1(Km(M), r)

γ1(M, [m, t].r) =df γ1(Sm(M, γ(t)), r)

We now define a reduction relation ; between triples up, down, `, where up, down ∈ R and

` ∈ L. Such triples denote terms (`, rev(down).up), where rev is the list reversing function,

together with the position on this spine where we shall attempt to detect a possible redex.

Let c denote any element of N× (T∪ {-}), i, j ∈ N, `, `′ ∈ L, r ∈ R, and t, t′ ∈ T. The

rules are given in Figure 9, where the 〈default〉 rule applies only if none of the previous

rules does. The idea is that, as every rule of SKInT is of the form f(g(. . .), . . .) for some

operators f and g, we detect the corresponding redexes by letting up code the part of the

spine containing f and all operators above it, and letting down code the part of the spine

containing g and all operators below it.

The following facts are easily proved.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 30

Proposition 4.20.

1 If up, down, ` ; up′, down′, `′ by some rule other than 〈default〉, then it holds: γ(`,

rev(down).up) .s γ(`′, rev(down′).up′);
2 If up, down, ` ; up′, down′, `′ by 〈default〉, then it holds: γ(`, rev(down).up) ≡ γ(`′,
rev(down′).up′);

3 If γ(`, rev(down)) is spine-normal and up, down, ` ;∗ up′, down′, `′, then again γ(`′,
rev(down′)) is spine-normal;

4 If γ(`, rev(down)) is spine-normal and γ(`, rev(down).up) .s∗ γ(`′, rev(down′).up′) by some

bottommost spine-reduction, then up, down, `;∗ up′, down′, `′;
5 Every ;-normal triple is of the form ε, down, ` for some rake down and some leaf `.

That is, ; implements bottommost spine-rewriting: given an element (`, r) of T such

that γ(`, r) ≡ M, get the ;-normal form of r, ε, ` (if it exists). Write this normal form

ε, r′, `′: then γ(`′, r′) is a spine-normal reduct of M. Recursively applying this procedure

to the elements of T in r′ provides a normalization procedure for M, implementing

.std∗.
This procedure terminates as soon as the standard reduction starting from M that

always reduces bottommost spine-redexes on a given spine itself terminates: this is

because rule 〈default〉 can only be applied finitely many times in a row. We claim that the

restriction to bottommost spine-redexes is not essential, as any spine reduction strategy

applies the (SIm) exactly the same number of times. This implies that the procedure above

actually finds the normal form of M whenever it exists. Proving the claim requires a study

of the notion of solvability of SKInT-terms, and will be the subject of another paper

(Goubault-Larrecq 1998a).

Finally, note that, as far as implementations are concerned, we may represent integers

in rakes as machine integers. Indeed, these integers are bounded above by the number

of nested abstractions in the term that we reduce, provided that this term is closed. For

example, a term represented on a machine with a 32-bit address range will necessarily

feature (many) fewer than 232 nested abstractions, and integers coded on 32 bits are

enough. That is, there is no need for arbitrary precision integers, even under paranoid

correctness criteria.

5. Properties of SKIn

The study of SKInT allows us to infer similar, albeit sometimes weaker, properties for

SKIn: weak termination in Section 5.1, confluence in Section 5.2, and standardization in

Section 5.3.

5.1. Weak termination of SKIn

SKIn is harder to deal with than SKInT, because the counter-example to its termination

also shows that Σ does not terminate. So we cannot just replay the proofs that we gave

for SKInT. We instead pick reduction strategies in SKIn that do terminate.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 31

Split Σ in two parts, the SKT group:

(SKm) Sm(Km(M), N) . M

(SmKn) Sm(Kn(M), N) . Kn−1(Sm(M,N))

(SmSn) Sm(Sn(M,N), P) . Sn−1(Sm(M,P), Sm(N,P))

(KmKn) Km(Kn−1(M)) . Kn(Km(M))

(KmSn+1) Km(Sn(M,N)) . Sn+1(Km(M),Km(N))

where 0 6 m < n, and the rest, namely rules (SmIn), (KmIn) and (KmSm+1). We can observe

the following lemma.

Lemma 5.1. SKT is confluent and terminating.

Proof. SKT is locally confluent: the critical pairs are a subset of those considered in

Proposition 3.2, where again the cases involving rule (KmSn) with n = m+ 1 are dropped.

Furthermore, SKT is a subsystem of ΣT , so it terminates, by Lemma 4.12. Then, by

Newman’s Lemma, SKT is confluent.

In particular, every SKIn-term P has a unique SKT -normal form, which we denote by

↓(P). We then build a variant of Σ minus SKT as the following I group:

(KmIn) Km(In−1) . In
(SmIn) Sm(In, N) . In−1

(KmS′m+1) Km(Sm(M,N)) . Sm+1(Km(M), ↓(Km(N)))

where 0 6 m < n.

A key observation is that if M is SKT -normal, and M rewrites by I to N, then N is

SKT -normal. Since I restricted to SKT -normal terms terminates (see Appendix F), we

get the following lemma.

Lemma 5.2. Σ normalizes weakly. More precisely, all SKT -eager Σ-reductions terminate,

where a reduction is SKT -eager if and only if it only reduces I-redexes in SKT -normal

forms.

Theorem 5.3 (Weak Normalization). All simply-typed SKIn-terms are weakly normalizing

for the SKIn notion of reduction.

Proof. The proof is by a technique similar to Goubault-Larrecq (1998b), but closer

to Goubault-Larrecq (1997). We use a slight variant of the M 7→ [[M]] interpretation of

Figure 2, the M 7→ [[M]]◦ translation, where only the clause for Im changes, namely,

[[Im]]◦(P0, . . . , Pn−1) =df

{
I(Pm)(Pm+1, . . . , Pn−1) n > m

λxn . . . λxm.I(xm) n 6 m

where I =df λx.x. All other clauses are as in Figure 2, replacing [[]] by [[]]◦ everywhere.

It is easy to replay the proofs of Appendix A. Therefore, Theorem 3.6 carries over, that

is, M . N implies [[M]](P0, . . . , Pn−1) .∗η [[N]](P0, . . . , Pn−1). Moreover, βI-redexes translate

to non-empty reductions, thanks to the introduction of I: if M ≡ Sk(Ik, N), then either

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 32

n > k and

[[M]]◦(P0, . . . , Pn−1)

≡ [[Ik]]◦(P0, . . . , Pk−1, [[N]]◦(P0, . . . , Pk−1), Pk, . . . , Pn−1)

≡ I([[N]]◦(P0, . . . , Pk−1))(Pk, . . . , Pn−1)

. ([[N]]◦(P0, . . . , Pk−1))(Pk, . . . , Pn−1)

.∗ [[N]]◦(P0, . . . , Pn−1)

or n < k and

[[M]]◦(P0, . . . , Pn−1)

≡ λxn . . . λxk−1.[[Ik]]◦(P0, . . . , Pn−1, xn, . . . , xk−1, [[N]]◦(P0, . . . , Pn−1, xn, . . . , xk−1))

≡ λxn . . . λxk−1.I([[N]]◦(P0, . . . , Pn−1, xn, . . . , xk−1))

. λxn . . . λxk−1.[[N]]◦(P0, . . . , Pn−1, xn, . . . , xk−1)

.∗η [[N]]◦(P0, . . . , Pn−1).

Define M �◦ N (respectively, M �◦ N), where M, N are SKIn-terms, if and only if

[[M]]◦(P0, . . . , Pn−1) .+
η [[N]]◦(P0, . . . , Pn−1) (respectively, .∗η) for all λ-terms P0, . . . , Pn−1. We

have just seen that Sk(Ik, N) �◦ N, while in general M . N implies M �◦ N. But the strict

inequality Sk(Ik, N) �◦ N does not pass to context in general.

Formally, recall that a context C is a term with one hole []. C[M] denotes C with the

hole replaced by the term M. Contexts are used to pinpoint where a given redex occurs.

In general, M �◦ N implies C[M] �◦ C[N], but the same does not hold for �◦. The safe

contexts are those such that whenever M �◦ N, we have C[M] �◦ C[N].

For each m > 0, let Tm be the set of terms defined by:

— Sk(M,N) ∈ Tm if and only if m > k and M ∈ Tm+1, or m < k, M ∈ Tk and N ∈ Tm;

— Kk(M) ∈ Tm if and only if m > k and M ∈ Tm−1;

— Ik ∈ Tm if and only if m > k;
— every variable is in Tm.

This is a valid definition of M ∈ Tm by structural induction on M. The syntactically safe

contexts are defined by the grammar

S ::= [] | Sm(S, T) | Sm(Tm,S) | Km(S)

where T denotes the set of all SKIn-terms. It is fairly easy to show that all syntactically safe

contexts are safe, and that for every Σ-normal term of the form C[M], C is syntactically

safe (see Appendix F, Lemma F.8 and Lemma F.9). It follows that whenever M . N by

rule (SIm), and M is Σ-normal, then M �◦ N.

On the other hand, recall that M . N implies M �◦ N for any other rule. So, provided

that �◦ is well-founded on typed SKIn-terms, every Σ-eager reduction must be finite,

where a reduction is Σ-eager if and only if it is of the form

M0 .
∗
Σ M1 .βI M2 .

∗
ΣβI M2i .

∗
Σ M2i+1 .βI M2i+2 .

∗
Σ . . .

where .βI is one-step reduction by (SIm), m > 0, .Σ is reduction by the rules in group

Σ, and M1,M3, . . . ,M2i+1, . . . , are Σ-normal. Note that Σ-eager reduction is a family of

normalization strategies, by Lemma 5.2.

It remains to show that �◦ is well-founded on typed SKIn-terms. If M �◦ N and M is

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 33

of type A in some typing context, then [[M]]◦() .+
η [[N]]◦(), of type A in the same typing

context: we conclude by noticing that βη-reduction terminates on typed λ-terms.

5.2. Confluence of SKIn

We are finally in position to show the following theorem.

Theorem 5.4 (Confluence). SKIn and Σ are confluent.

Proof. We apply Hardin’s interpretation method (Hardin 1989) several times. This

method is as follows. Let R and R′ be two reduction relations, such that R′ is normalizing

and confluent. Let R′(M) denote the unique R′-normal form of M. R then induces a

reduction relation R0 on R′-normal forms, defined as the smallest such that M R N

implies R′(M) R0 R
′(N). Then, whenever R0 is confluent on R′-normal forms, and R0 is a

sub-relation of (R ∪ R′)∗, R ∪ R′ is confluent. This is a simple diagram chase:

M

=

(R ∪ R′)∗ (R ∪ R′)∗

~
M1 R′(M)

R′∗......?

......

M2

=. . .
. . .

. .
R∗0

.. .
. . .

.
R∗0~

R′(M1)

R′∗

?

................

R′(M2)

R′∗

?

................

.
R∗0

~ =. . .
. . .

. . .
. . .

. . .
. . .

. .

R∗0

N

To show the Theorem, we first show that SK , the group of rules consisting of SKT plus

the rules (KmSm+1), m > 0 (alternatively, Σ minus the rules involving Im), is confluent:

take R to be the group of rules (KmSm+1), m > 0, R′ to be SKT , then R0 is the group I0

of all rules (KmS′m+1): Km(Sm(M,N)) . Sm+1(Km(M), ↓(Km(N))), m > 0. It follows that Σ

is confluent: take R to be SK , R′ to be the group of rules (SmIn), (KmIn), 0 6 m < n, and

R0 is SK again. Similarly, SKIn is confluent: take R to be SK , R′ to be the group of rules

(SmIn), (KmIn), (SIm), 0 6 m < n. The details are in Appendix G.

By Theorem 3.24, we get the following corollary.

Corollary 5.5 (Conservativity). The map M 7→M∗ is a conservative embedding of λ-terms

in SKIn modulo conversion. That is, M∗ = N∗ if and only if M = N.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 34

5.3. Standardization of SKIn

We just recall that we have shown in Theorem 4.19, Section 4.4 that SKIn standardizes. It

follows that a simple modification to the machine of Figure 9 yields a machine for spine

reduction in SKIn: in the (KiSj+1) row, replace the i < j condition by i 6 j. In this case,

however, it is not obvious that ; terminates as soon as the starting triple denotes a term

that has a spine-normal form. This is the case provided the following conjecture holds:

for every SKIn-term M, if M has a spine-normal form, then bottommost spine-reduction

terminates.

6. Translating the λ-calculus to λclos and SKInT

At this point of the paper, we are faced with a dilemma: SKIn interprets the λ-calculus

faithfully, is confluent and standardizes, but it only normalizes weakly in the typed

case. This makes it a delicate choice for an implementation of λ-reduction, just as λσ,

λσ⇑ and the other non-strongly-normalizing calculi of explicit substitutions: every such

implementation must first be shown to obey one of the weak normalization strategies of

the calculus. On the other hand, there is no such problem with SKInT, which basically

has all the good properties of the λ-calculus – termination, confluence, standardization

– and also has a natural η-rule. However, we have seen in Section 4.1 that SKInT was

related not to the λ-calculus and intuitionistic logic, but rather to the λclos-calculus and

near-intuitionistic logic.

Our goal in this section is to show that there are numerous bridges between the λ and

λclos-calculi, and that therefore SKInT is a valid choice for implementing the λ-calculus

itself. The main point to be developed here is that SKInT is not the culprit for not

interpreting full λ-reduction: the M 7→M∗ translation of Definition 3.8, taking λ-terms as

input, is the problem, and is too simple-minded.

We shall explore a few ways to do this, all based on translations from the call-by-

value λ-calculus to SKInT. Recall that λclos, which proves the same equalities as SKInT

(Theorem 4.10), proves strictly more equalities than the call-by-value λ-calculus. We shall

use the following lemma.

Lemma 6.1. The following claims hold:

1 For every λ-term M, M∗ ≡M]?.

2 M .∗V N in the λV -calculus implies M∗ .∗ N∗ in SKInT.

Proof. 1 is obvious. If M .V N, then M] .+ N] in λclos by Theorem 4.5, so M]? .∗ N]?

by Theorem 4.10 3; so M∗ .∗ N∗ by 1: 2 follows by induction on the length of the

reduction.

On the typing side, we have the following proposition.

Proposition 6.2. For every arrowed context Γ⇒, for every λ-term M such that Γ⇒ `M : A,

Γ⇒ `M] : A and `Γ⇒ M
∗ : A.

Indeed, the first claim is obvious, while the second follows by Theorem 4.10 and the fact

that M∗ ≡M]?. Notice that the context Γ⇒ needs to be arrowed for us to use the typing

rule (Abs).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 35

6.1. Plotkin’s translation

There are many translations from the λ-calculus to the λV -calculus. À tout seigneur, tout

honneur, we shall first examine Plotkin’s call-by-name CPS (continuation passing style)

transform (Plotkin 1975). This is defined as

Pn(x) =df λk.x(k)

Pn(λx.M) =df λk.k(λx.Pn(M))

Pn(M(N)) =df λk.Pn(M)(λm.m(Pn(N), k)).

Recall that M . N in the λ-calculus implies Pn(M) .+ Pn(N) in the λV -calculus. Let

Pn(M)∗ be defined as (Pn(M))∗. It follows, using Lemma 6.1, that M 7→ Pn(M)∗ defines

an embedding of the λ-calculus, with β-reduction, inside SKInT. It is unknown at the

moment whether this embedding is conservative.

As far as typing is concerned, it is well known that M 7→ Pn(M) gives rise to typings

obtained by double negation transformations in the style of Kolmogorov (Griffin 1990;

Murthy 1991). Let ⊥ denote any type, let ¬A denote A ⇒ ⊥, define Pn(A) as ¬¬(A)0,

where (A)0 is defined by

(o)0 =df o (o ∈ O)

(A⇒ B)0 =df Pn(A)⇒ Pn(B).

We extend these notations to contextsPn(Γ), and letPn(x1:A1, . . . , xn:An) denote x1:Pn(A1),

. . . , xn:Pn(An). Then, Γ `M : A implies Pn(Γ) ` Pn(M) : Pn(A). Since Pn(Γ) is arrowed

by construction, by Proposition 6.2, this also implies `Pn(Γ) Pn(M)∗ : Pn(A). It follows

that reducing Pn(M)∗, when M is a typed λ-term, always terminates, by Theorem 4.14.

6.2. The L translation

A translation that will be conservative is the following L-translation:

L(M) =df λz.Lz(M) LP (x) =df x(P)

LP (λx.M) =df λx.LP (M)

LP (M(N)) =df LP (M)(L(N))

where z is a fresh variable and P is any term. The idea is that as L(M) is an abstraction,

LP (M(N)) is the application of a term to a value, and so β-redexes translate to (βV)-

redexes this way. The index P in LP (M) is somewhat reminiscent of a world index in

Kripke semantics. Let L](M) denote (L(M))], and L∗(M) denote (L(M))∗.

Theorem 6.3 (Soundness). SKInT is sound for λ-reduction along L∗, that is: M .∗ N in

the λ-calculus implies L∗(M) .∗ L∗(N), and M = N implies L∗(M) = L∗(N).

Proof. The proof is by some easy computations. See Appendix H.

It is an easy exercise to compute an explicit definition of L∗, without going through

M 7→ M∗ and L. Define L∗(M) as [z]L∗z(M), where L∗P is defined as follows, for all

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 36

terms P :

L∗P (x) =df S0(x, P)

L∗P (M(N)) =df S0(L∗P (M), L∗(N))

L∗P (λx.M) =df [x]L∗P (M).

Lemma 6.4 (Soundness for typing). Define L(A) on types A by L(A) =df > ⇒ L>(A),

where

L>(o) =df o (o ∈ O)

L>(A⇒ B) =df L(A)⇒ L>(B)

where > is any given, fixed type. Extend this to contexts by L(x1:A1, . . . , xn:An) =df

x1:L(A1), . . . , xn:L(An).

If Γ `M : A, then `L(Γ) L
∗(M) : L(A).

Proof. Assume Γ ` M : A. We show that: (i) L(Γ),Γ′ ` L(M) : L(A) for any

context Γ′, and that: (ii) L(Γ),Γ′′ ` Lz(M) : L>(A), for any context Γ′′ such that

L(Γ),Γ′′ ` z : >. We use structural induction on M. Since (i) trivially follows from

(ii) (take Γ′′ =df Γ′, z:>), we concentrate on (ii). If M is a variable x, then x:A is in

Γ, so (ii) is clear. If M is an abstraction λx.N, then A is of the form B ⇒ C , and

Γ, x:B ` N : C , so by the induction hypothesis (ii) L(Γ), x:L(B) ` Lz(N) : L>(C), and

therefore (ii) holds by rule (Abs). If M is an application N(P), then for some type B,

Γ ` N : B ⇒ A and Γ ` P : B. Let Γ′′ be any context such that L(Γ),Γ′′ ` z : >.

By the induction hypothesis (ii), L(Γ),Γ′′ ` Lz(N) : L(B) ⇒ L>(A); by the induction

hypothesis (i), L(Γ),Γ′′ ` L(P) : L(B). So L(Γ),Γ′′ ` Lz(N)(L(P)) : L>(A), showing (ii).

Now from (i), in particular, L(Γ) ` L(M) : L(A). The Lemma follows from Proposi-

tion 6.2, using the fact that L(Γ) is arrowed.

Theorem 6.5. The map M 7→ L∗(M) is a conservative embedding of λ-terms in SKInT

modulo conversion. That is, L∗(M) = L∗(N) if and only if M = N. This also holds in the

simply-typed case.

Proof. The if direction is soundness, so consider the only if direction. If L∗(M) = L∗(N),

then since SKInT is confluent, L∗(M) .∗ P and L∗(N) .∗ P for some SKInT-term P .

Since the SKInT rules are all SKIn rules, and since L∗(M) and L∗(N) are well-staged

by Lemma 3.20, Theorem 3.21 entails that [[L∗(M)]]() .∗ [[P]]() and [[L∗(N)]]() .∗ [[P]]()

in the λ-calculus (not the λV -calculus). By Lemma 3.23, L(M) .∗ [[L∗(M)]]() and L(N) .∗
[[L∗(N)]](), so L(M) = L(N) in the λ-calculus.

It remains to show that when L(M) = L(N) in the λ-calculus, we have M = N in

the λ-calculus as well. For convenience, we shall consider two λ-calculi, differing only in

the set of variables they are based on, the source λ-calculus and the target λ-calculus.

Conceptually, L maps terms in the source language to the target language. Then, split

the set of variables into two infinite, disjoint sets X and Z , and assume that X is the set

of variables in source λ-terms, and X ∪ Z is the set of variables in target λ-terms. We

can reformulate the definition of L as follows: L(M) =df λz.Lz(M), with z ∈ Z , while

Lz(x) =df x(z) for x ∈ X, Lz(M(N)) =df Lz(M)(L(N)), and Lz(λx.M) =df λx.Lz(M), where

x ∈ X.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 37

The λ-terms that are in the range of L and Lz , respectively, have particular syntactic

forms. It is easy to see that L(M) ∈ V and that Lz(M) ∈ Tz , where the sets V and Tz ,

z ∈ Z , are described by the following grammars:

V ::= λz.Tz | x
Tz ::= V (z) | Tz(V) | λx.Tz

where z ranges over Z , x over X. We shall write s, t, . . . , for terms in Tz , for any z, and

u, v, . . . , for terms in V , to give a visual cue of the domains of terms.

We define a translation L−1 that works as a left-inverse to L as follows. L−1 maps terms

in V to source λ-terms, and is defined by L−1(λz.t) =df L
−1
z (t) and L−1(x) =df x for every

x ∈ X, where L−1
z is the function from Tz to the set of source λ-terms defined by

L−1
z (u(z)) =df L−1(u)

L−1
z (s(v)) =df L−1

z (s)(L−1(v))

L−1
z (λx.s) =df λx.L−1

z (s).

L−1 and L−1
z are well-defined by mutual recursion. In particular, observe that L−1

z is

well-defined on applications: indeed, no term in Tz can be both of the form u(z) with

u ∈ V , z ∈ Z , and of the form s(v) with s ∈ Tz and v ∈ V , since otherwise we would have

z ≡ v, which is impossible since Z ∩ Tz =6.

A straightforward structural induction on M then shows that L−1(L(M)) ≡ M and

L−1
z (Lz(M)) ≡M. Moreover, we can show that (see Appendix H):

— if u ∈ V and u .∗ v, then v ∈ V (Lemma H.5);

— if u ∈ V and u .∗ v, then L−1(u) .∗ L−1(v) (Lemma H.6).

Now, if L(M) = L(N), then for some λ-term P , L(M) .∗ P and L(N) .∗ P . By the above,

and since L(M) and L(N) are in V , L−1(L(M)) .∗ L−1(P) and L−1(L(N)) .∗ L−1(P); in

other words, L−1(P) is a common reduct of both M ≡ L−1(L(M)) and N ≡ L−1(L(N)),

so M = N.

Since we have shown M = N by exhibiting a common reduct of M and N, and since

subject reduction holds for the simply-typed λ-calculus, the claim is also proved in the

simply-typed case.

One could also notice that L∗ is an injective function, which maps β-normal λ-terms

to normal SKInT-terms (use Theorem 4.10), so L∗ preserves weak normalization: for

every weakly λ-normalizing M, L∗(M) is weakly SKInT-normalizing. But this result, and

preservation of strong normalization as well, can be proved in a far more general setting,

using disciplines of conjunctive types. This will be published elsewhere (Goubault-Larrecq

1998a).

In short, SKInT is a confluent first-order calculus, even on terms with free variables,

implementing λ-reduction fully and faithfully, which terminates in the typed case. To our

knowledge, this is the first calculus that has all of these properties together.

6.3. What about no translation?

Until now, we were looking for embeddings of the λ-calculus inside SKInT. This is useful

in general, for example in implementing type theory based proof assistants; in fact, this

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 38

is necessary for unification algorithms in the style of Dowek et al. (1995). However, if the

goal is just to implement reduction machines, we do not need as much. The representations

used for optimal λ-reduction, notably Lamping (1990) and Gonthier et al. (1992a), only

have the following property: there is a translation f from λ-terms to some target language,

and a converse translation g, called the read-back function, such that if M normalizes to

N in the λ-calculus, then f(M) normalizes to some term t in the target language such

that g(t) ≡ N. But M .∗ N does not imply f(M) .∗ f(N), since reductions in the target

language only simulate reductions that reduce all the redexes in a given Lévy family as

a whole; this is precisely the purpose of optimal λ-reduction. Furthermore, the normal

form t may not be the image by f of a normal λ-term N. In fact, some of the reductions

from M to N are not accomplished in the target language, but rather by the read-back

function g.

Exactly the same happens with SKInT: take for f the M 7→ M∗ translation, and for

g the M 7→ [[M]]() translation. Reduction in SKInT does not implement Lévy-optimal

λ-reductions this way; our only point is to show that the read-back model of computation

described above works with SKInT instead of SKIn, so SKInT is a viable alternative to

SKIn. Our claim follows from the following result.

Lemma 6.6. If M is a normal SKInT-term, then [[M]]() is a normal λ-term.

Proof. More generally, we show that for every normal SKInT-term M with lev(M) = m,

for all normal λ-terms P0, . . . , Pn−1 such that Pi is not a λ-abstraction for any i, i < m, then

[[M]](P0, . . . , Pn−1) is a normal λ-term. Observe that the condition on Pi means informally

that the m first arguments of the interpretation function are not abstractions. We shall

also use the following easily verified facts: (i) Km(M1) is SKInT-normal if and only if M1

is and lev(M1) 6 m; (ii) Sm(M1,M2) is SKInT-normal if and only if M1 and M2 are, and

lev(M1) 6 m.

If M is a variable, this is obvious. If M is of the form Ik , then, by assumption,

lev(M) = k+ 1 = m. If n > k, that is, if n > m, then [[M]](P0, . . . , Pn−1) ≡ Pk(Pk+1, . . . , Pn−1)

is normal, since, by assumption, Pk , k < m, is not a λ-abstraction. If n 6 k, then

[[M]](P0, . . . , Pn−1) ≡ λxn . . . λxm−1.xm−1 is normal.

If M is of the form Kk(M1), then we have two cases. Observe that, by (i), lev(M1) 6 k,
so m = lev(M) = max(k, lev(M1)) + 1 = k + 1, and therefore lev(M1) 6 m − 1. If

n > k, then [[M]](P0, . . . , Pn−1) ≡ [[M1]](P0, . . . , Pk−1, Pk+1, . . . , Pn−1). By assumption, the

lev(M1) first elements in P0, . . . , Pk−1, Pk+1, . . . , Pn−1, which are among the m − 1 first,

and therefore also among the m first in P0, . . . , Pn−1, are not λ-abstractions. So the

induction hypothesis applies, and [[M]](P0, . . . , Pn−1) is therefore normal. If n 6 k, then

[[M]](P0, . . . , Pn−1) ≡ λxn . . . λxk.[[M1]](P0, . . . , Pn−1, xn, . . . , xk−1). Since m = k + 1, n < m, so

P0, . . . , Pn−1 are not λ-abstractions: the induction hypothesis applies again, showing the

claim.

If M is of the form Sk(M1,M2), then we again consider two cases. Observe that by

(ii) lev(M1) 6 k, so m = lev(M) = max(k, lev(M1) − 1) = k, in particular lev(M1) 6 m.

If n > k, then [[M]](P0, . . . , Pn−1) ≡ [[M1]](P0, . . . , Pk−1, [[M2]](P0, . . . , Pk−1), Pk, . . . , Pn−1). But

then the induction hypothesis applies immediately, since n > k implies n > m, and

therefore the m first arguments to the interpretation function are P0, . . . , Pm−1, which

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 39

are not abstractions by assumption. If n < k, then [[M]](P0, . . . , Pn−1) ≡ λxn . . . λxk−1.

[[M1]](P0, . . . , Pn−1, xn, . . . , xk−1, [[M2]](P0, . . . , Pn−1, xn, . . . , xk−1)). The m first arguments to

the interpretation of M1 are then exactly P0, . . . , Pn−1, xn, . . . , xk−1, since m = k, and are

therefore not λ-abstractions; so by the induction hypothesis the claim is proved.

Now, for every λ-term M, if M∗ normalizes in SKInT, say to the SKInT-normal form

N, then M .∗ [[M∗]]() (by Lemma 3.23) .∗ [[N]]() (by Lemma 3.20 and Theorem 3.21, using

the fact that SKInT is a sub-calculus of SKIn), and [[N]]() is λ-normal by Lemma 6.6.

Reducing M∗ in SKInT (not SKIn) using any reduction strategy, and then reading

back the normal form [[N]](), is then an effective procedure for normalizing M. It will

be a consequence of results shown elsewhere (Goubault-Larrecq 1998a) that M 7→ M∗
preserves weak and strong normalization, so this procedure applies to every normalizable

λ-term M.

7. Further work

Although our current strong normalization proof is complicated, we believe that it can be

considerably simplified; at least the fact that substitution in SKIn and SKInT is essentially

first-order substitution (recall that S0([x]M,N) .+ M[x← N]) should simplify the models

for proofs of strong normalization, compared to traditional λ-calculi (Girard et al. 1989;

Goguen 1995).

The form of our judgments and rules is intuitively similar to the sequent calculus, but

the actual rules are different, resembling instead the rules for the combinators S and K .

Following the sequent calculus more closely is a natural continuation of this work. This

also leads to the study of linear calculi, with a formal similarity between SKInT and the

fans, croissants and brackets of Gonthier et al. (1992b): SKInT has identities Im but lacks

abstraction and application nodes and plugs.

Combinators and explicit substitution leads to a cleaner treatment of higher-order

unification (Dougherty 1993; Dowek et al. 1995). We believe that our calculi can be

profitably used in a similar way.

Extending our approach to dependent types could also allow the incorporation of

functional programming techniques (Peyton-Jones 1986) in proof checkers and lead to

simpler implementations.

8. Conclusions

In the introduction, we mentioned several disadvantages of Hilbert systems when com-

pared with natural deduction systems. Let’s see how they are addressed by sequent

combinators:

— The size of sequent combinators does not grow much under the abstraction algorithm.

The causes for growth are [x]y, which introduces a new term constructor, and the

index for each of the combinator term constructors. As Curien notes (Curien 1993),

with indices in binary, abstraction increases the size from n to n log n, and as we

noted in Section 4.4, the actual implementation can use 32-bit integers to store indices

without any problem.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 40

— Our system behaves well with respect to meta-theoretic abstraction and substitution.

— Reduction and equality for λ-calculus are preserved, conservatively, by translation into

sequent combinators, and there is a natural notion of standard reduction.

Furthermore, the system SKInT offers a confluent first-order calculus implementing

λ-calculus reduction fully and faithfully and terminating in the typed case. We therefore

believe we have demonstrated that Hilbert systems can be a viable alternative to λ-calculi.

Appendix A. Completeness of SKIn

We first prove some auxiliary Lemmas.

Lemma A.1. If Pi .
∗ Qi in the λ-calculus for every 0 6 i < n, then

[[M]](P0, . . . , Pn−1) .∗ [[M]](Q0, . . . , Qn−1).

The same result holds if we replace . by .η .

Proof. The proof is by structural induction on M. We consider variables and K.

If M is a variable, then [[M]](P0, . . . , Pn−1) ≡ x(P0, . . . , Pn−1) .∗ x(Q0, . . . , Qn−1) ≡
[[M]](Q0, . . . , Qn−1).

If M ≡ Km(N), then either n > m and

[[M]](P0, . . . , Pn−1)

≡ [[N]](P0, . . . , Pm−1, Pm+1, . . . , Pn−1)

.∗ [[N]](Q0, . . . , Qm−1, Qm+1, . . . , Qn−1) (by the induction hypothesis)

≡ [[M]](Q0, . . . , Qn−1)

or n 6 m and

[[M]](P0, . . . , Pn−1)

≡ λxn . . . λxm.[[N]](P0, . . . , Pn−1, xn, . . . , xm−1)

.∗ λxn . . . λxm.[[N]](Q0, . . . , Qn−1, xn, . . . , xm−1) (by the induction hypothesis)

≡ [[M]](Q0, . . . , Qn−1).

.η follows similarly.

Lemma A.2. For every SKIn-term M, for all 0 6 m 6 n, and for all λ-terms P0, . . . , Pn−1

([[M]](P0, . . . , Pm−1))(Pm, . . . , Pn−1) .∗ [[M]](P0, . . . , Pn−1)

in the λ-calculus.

Proof. It is enough to prove the Lemma when m < n, since the case m = n is trivial.

We then prove the claim by structural induction on M. We consider the cases for S.

If M ≡ Sk(N,P) and k 6 m < n, then

([[M]](P0, . . . , Pm−1))(Pm, . . . , Pn−1)

≡ ([[N]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pm−1))(Pm, . . . , Pn−1)

.∗ [[N]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pn−1)

(by the induction hypothesis on N)

≡ [[M]](P0, . . . , Pn−1).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 41

If M ≡ Sk(N,P) and m < k 6 n, then

([[M]](P0, . . . , Pm−1))(Pm, . . . , Pn−1)

≡ (λxm . . . λxk−1.

[[N]](P0, . . . , Pm−1, xm, . . . , xk−1, [[P]](P0, . . . , Pm−1, xm, . . . , xk−1)))

(Pm, . . . , Pn−1)

.∗ ([[N]](P0, . . . , Pm−1, Pm, . . . , Pk−1, [[P]](P0, . . . , Pm−1, Pm, . . . , Pk−1)))

(Pk, . . . , Pn−1)

.∗ [[N]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pn−1)

(by the induction hypothesis on N)

≡ [[M]](P0, . . . , Pn−1).

If M ≡ Sk(N,P) and m < n < k, then

([[M]](P0, . . . , Pm−1))(Pm, . . . , Pn−1)

≡ (λxm . . . λxk−1.

[[N]](P0, . . . , Pm−1, xm, . . . , xk−1, [[P]](P0, . . . , Pm−1, xm, . . . , xk−1)))

(Pm, . . . , Pn−1)

.∗ λxn . . . λxk−1.[[N]](P0, . . . , Pn−1, xn, . . . , xk−1, [[P]](P0, . . . , Pn−1, xn, . . . , xk−1))

≡ [[M]](P0, . . . , Pn−1).

Lemma A.3. For every SKIn-term M, all pairwise distinct variables xm, . . . , xn−1 not free

in M, and all λ-terms P0, . . . , Pm−1, if m 6 n, then

λxm . . . λxn−1.[[M]](P0, . . . , Pm−1, xm, . . . , xn−1) .∗η [[M]](P0, . . . , Pm−1).

Proof. The proof is by structural induction on M. Notice that the case m = n is trivial,

so we can assume m < n. We consider S.

If M ≡ Sk(N,P) and k 6 m < n, then

λxm . . . λxn−1.[[M]](P0, . . . , Pm−1, xm, . . . , xn−1)

≡ λxm . . . λxn−1.[[N]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pm−1, xm, . . . , xn−1)

.∗η [[N]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pm−1) (by the induction hypothesis)

≡ [[M]](P0, . . . , Pm−1).

If M ≡ Sk(N,P) and m < k 6 n, then

λxm . . . λxn−1.[[M]](P0, . . . , Pm−1, xm, . . . , xn−1)

≡ λxm . . . λxn−1.[[N]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pm−1, xm, . . . , xn−1)

.∗η λxm . . . λxk−1.[[N]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pm−1, xm, . . . , xk−1)

(obvious if n = k, otherwise by the induction hypothesis)

≡ [[M]](P0, . . . , Pm−1).

If M ≡ Sk(N,P) and m < n < k, then

λxm . . . λxn−1.[[M]](P0, . . . , Pm−1, xm, . . . , xn−1)

≡ λxm . . . λxn−1.λxn . . . λxk−1.

[[M]](P0, . . . , Pm−1, xm, . . . , xk−1, [[N]](P0, . . . , Pm−1, xm, . . . , xk−1))

≡ [[M]](P0, . . . , Pm−1).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 42

Definition A.4. The contexts, that is, terms with one hole [], are defined by the grammar

C ::= [] | Sk(C, N) | Sk(M,C) | Kk(C).

We write C[M] for the result of replacing the hole [] by M in C.

Rewriting M to N by some rule means that there is a context C such that M ≡ C[L],

N ≡ C[R], and L . R is an instance of the given rule.

Proof of Theorem 3.6. We prove the result by structural induction on C, and in the base

case, by case analysis on the rule used. Let M, N, L, R, C be as above. We consider the

cases where C is Sk(P ,C1) or empty.

If C ≡ Sk(P ,C1), then either n > k and

[[M]](P0, . . . , Pn−1)

≡ [[P]](P0, . . . , Pk−1, [[C1[L]]](P0, . . . , Pk−1), Pk, . . . , Pn−1)

.∗η [[P]](P0, . . . , Pk−1, [[C1[R]]](P0, . . . , Pk−1), Pk, . . . , Pn−1)

(by the induction hypothesis and Lemma A.1)

≡ [[N]](P0, . . . , Pn−1)

or n < k and

[[M]](P0, . . . , Pn−1)

≡ λxn . . . λxk−1.[[P]](P0, . . . , Pn−1, xn, . . . , xk−1, [[C1[L]]](P0, . . . , Pn−1, xn, . . . , xk−1))

.∗η λxn . . . λxk−1.[[P]](P0, . . . , Pn−1, xn, . . . , xk−1, [[C1[R]]](P0, . . . , Pn−1, xn, . . . , xk−1))

(by the induction hypothesis and Lemma A.1)

≡ [[N]](P0, . . . , Pn−1)

If C is the empty context, then we need to examine each rule in turn.

We consider rules (SIk), (SKk) and (SkKp), where k < p. Note that in all cases except in

(SIk), [[M]](P0, . . . , Pn−1) actually equals [[N]](P0, . . . , Pn−1).

— Rule (SIk): M ≡ Sk(Ik, N); either n > k and

[[M]](P0, . . . , Pn−1) ≡ [[Ik]](P0, . . . , Pk−1, [[N]](P0, . . . , Pk−1), Pk, . . . , Pn−1)

≡ ([[N]](P0, . . . , Pk−1))(Pk, . . . , Pn−1) .∗ [[N]](P0, . . . , Pn−1)

by Lemma A.2, or n < k and

[[M]](P0, . . . , Pn−1)

≡ λxn . . . λxk−1.[[Ik]](P0, . . . , Pn−1, xn, . . . , xk−1, [[N]](P0, . . . , Pn−1, xn, . . . , xk−1))

≡ λxn . . . λxk−1.[[N]](P0, . . . , Pn−1, xn, . . . , xk−1) .∗η [[N]](P0, . . . , Pn−1)

by Lemma A.3, since n 6 k.
— Rule (SKk): M ≡ Sk(Kk(N), P); either n > k and

[[M]](P0, . . . , Pn−1)

≡ [[Kk(N)]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pn−1)

≡ [[N]](P0, . . . , Pk−1, Pk, . . . , Pn−1) (since n+ 1 > k)

≡ [[N]](P0, . . . , Pn−1)

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 43

or n < k and

[[M]](P0, . . . , Pn−1)

≡ λxn . . . λxk−1.[[Kk(N)]](P0, . . . , Pn−1, xn, . . . , xk−1, [[P]](P0, . . . , Pk−1))

≡ λxn . . . λxk−1.[[N]](P0, . . . , Pn−1, xn, . . . , xk−1)

≡ [[N]](P0, . . . , Pn−1).

— Rule (SkKp), k < p: M ≡ Sk(Kp(N1), P), N ≡ Kp−1(Sk(N1, P)); either n > p and

[[M]](P0, . . . , Pn−1)

≡ [[Kp(N1)]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pn−1)

≡ [[N1]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pp−2, Pp, . . . , Pn−1)

≡ [[Sk(N1, P)]](P0, . . . , Pp−2, Pp, . . . , Pn−1)

≡ [[Kp−1(Sk(N1, P))]](P0, . . . , Pn−1) ≡ [[N]](P0, . . . , Pn−1)

or p > n > k and

[[M]](P0, . . . , Pn−1)

≡ [[Kp(N1)]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pn−1)

≡ λxn+1 . . . λxp.[[N1]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pn−1, xn+1, . . . , xp−1)

≡ λxn . . . λxp−1.[[N1]](P0, . . . , Pk−1, [[P]](P0, . . . , Pk−1), Pk, . . . , Pn−1, xn, . . . , xp−2)

≡ λxn . . . λxp−1.[[Sk(N1, P)]](P0, . . . , Pn−1, xn, . . . , xp−2)

≡ [[Kp−1(Sk(N1, P))]](P0, . . . , Pn−1) ≡ [[N]](P0, . . . , Pn−1)

or k > n and

[[M]](P0, . . . , Pn−1)

≡ λxn . . . λxk−1.

[[Kp(N1)]](P0, . . . , Pn−1, xn, . . . , xk−1, [[P]](P0, . . . , Pn−1, xn, . . . , xk−1))

≡ λxn . . . λxk−1.λxk+1 . . . λxp.

[[N1]](P0, . . . , Pn−1, xn, . . . , xk−1, [[P]](P0, . . . , Pn−1, xn, . . . , xk−1), xk+1, . . . , xp)

≡ λxn . . . λxk−1.λxk . . . λxp−1.

[[N1]](P0, . . . , Pn−1, xn, . . . , xk−1, [[P]](P0, . . . , Pn−1, xn, . . . , xk−1), xk, . . . , xp−1)

≡ λxn . . . λxp−1.[[Sk(N1, P)]](P0, . . . , Pn−1, xn, . . . , xp−1)

≡ [[Kp−1(Sk(N1, P))]](P0, . . . , Pn−1) ≡ [[N]](P0, . . . , Pn−1).

Appendix B. Conservativity of SKIn

Lemma B.1. For every SKIn-term M, for every n > 0:

[[[x]M]](x, Q0, . . . , Qn−1) ≡ [[M]](Q0, . . . , Qn−1).

Proof. The proof is by structural induction on M. We consider variables and S.

If M ≡ x, then

[[[x]M]](x, Q0, . . . , Qn−1) ≡ [[I0]](x, Q0, . . . , Qn−1)

≡ x(Q0, . . . , Qn−1) ≡ [[x]](Q0, . . . , Qn−1)

≡ [[M]](Q0, . . . , Qn−1).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 44

If M is another variable y, then

[[[x]M]](x, Q0, . . . , Qn−1) ≡ [[K0(y)]](x, Q0, . . . , Qn−1)

≡ [[y]](Q0, . . . , Qn−1) ≡ [[M]](Q0, . . . , Qn−1).

If M ≡ Sm(M1,M2), then either n > m and

[[[x]M]](x, Q0, . . . , Qn−1)

≡ [[Sm+1([x]M1, [x]M2)]](x, Q0, . . . , Qn−1)

≡ [[[x]M1]](x, Q0, . . . , Qm−1, [[[x]M2]](x, Q0, . . . , Qm−1), Qm . . . , Qn−1)

≡ [[M1]](Q0, . . . , Qm−1, [[M2]](Q0, . . . , Qm−1), Qm . . . , Qn−1)

(by the induction hypothesis)

≡ [[Sm(M1,M2)]](Q0, . . . , Qn−1)

≡ [[M]](Q0, . . . , Qn−1)

or n < m and

[[[x]M]](x, Q0, . . . , Qn−1)

≡ [[Sm+1([x]M1, [x]M2)]](x, Q0, . . . , Qn−1)

≡ λxn+1 . . . λxm.[[[x]M1]](x, Q0, . . . , Qn−1, xn+1, . . . , xm,

[[[x]M2]](x, Q0, . . . , Qn−1, xn+1, . . . , xm))

≡ λxn+1 . . . λxm.

[[M1]](Q0, . . . , Qn−1, xn+1, . . . , xm, [[M2]](Q0, . . . , Qn−1, xn+1, . . . , xm))

(by the induction hypothesis)

≡ λxn . . . λxm−1.

[[M1]](Q0, . . . , Qn−1, xn, . . . , xm−1, [[M2]](Q0, . . . , Qn−1, xn, . . . , xm−1))

≡ [[Sm(M1,M2)]](Q0, . . . , Qn−1)

≡ [[M]](Q0, . . . , Qn−1)

Lemma B.2. For every SKIn-term M, [[[x]M]]() ≡ λx.[[M]]().

Proof. The proof is by structural induction on M. We consider variables and K.

If M ≡ x, then [[[x]M]]() ≡ [[I0]]() ≡ λx0.x0, while λx · [[M]]() ≡ λx.x, so these terms are

α-equivalent.

If M is another variable y, then [[[x]M]]() ≡ [[K0(y)]]() ≡ λx0.[[y]]() ≡ λx0.y, while

λx · [[M]]() ≡ λx.y, and these terms are α-equivalent.

If M ≡ Km(M1), then

[[[x]M]]()

≡ [[Km+1([x]M1)]]()

≡ λx0 . . . λxm+1.[[[x]M1]](x0, . . . , xm)

≡ λx.λx0 . . . λxm.[[[x]M1]](x, x0, . . . , xm−1) (by α-renaming)

≡ λx.λx0 . . . λxm.[[M1]](x0, . . . , xm−1) (by Lemma B.1)

≡ λx.[[Km(M1)]]() ≡ λx.[[M]]()

Proof of Lemma 3.23. We show more generally that, for all λ-terms

Q0, . . . , Qn−1, P (Q0, . . . , Qn−1) .∗ [[P ∗]](Q0, . . . , Qn−1),

by structural induction on P .

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 45

If P is a variable x, then

[[P ∗]](Q0, . . . , Qn−1) ≡ [[x]](Q0, . . . , Qn−1) ≡ x(Q0, . . . , Qn−1) ≡ P (Q0, . . . , Qn−1).

If P is of the form P1(P2), then [[P ∗]](Q0, . . . , Qn−1) ≡ [[S0(P ∗1 , P ∗2)]](Q0, . . . , Qn−1) ≡
[[P ∗1]]([[P ∗2]](), Q0, . . . , Qn−1). But

P1(P2)(Q0, . . . , Qn−1)

≡ P1(P2, Q0, . . . , Qn−1)

.∗ P1([[P ∗2]](), Q0, . . . , Qn−1) (by the induction hypothesis on P2)

.∗ [[P ∗1]]([[P ∗2]](), Q0, . . . , Qn−1) (by induction hypothesis on P1)

≡ [[P ∗]](Q0, . . . , Qn−1)

If P is of the form λx.P1, then [[P ∗]](Q0, . . . , Qn−1) ≡ [[[x]P ∗1]](Q0, . . . , Qn−1). If n = 0,

then [[P ∗]]() ≡ [[[x]P ∗1]]() ≡ λx.[[P ∗1]]() (by Lemma B.2) and by induction P1 .
∗ [[P ∗1]](), so

P .∗ [[P ∗]](). If n 6= 0, then on the one hand

[[P ∗]](Q0, . . . , Qn−1) ≡ [Q0/x][[[x]P ∗1]](x, Q1, . . . , Qn−1) ≡ [Q0/x][[P ∗1]](Q1, . . . , Qn−1),

but on the other hand

P (Q0, Q1, . . . , Qn−1) . ([Q0/x]P1)(Q1, . . . , Qn−1) ≡ [Q0/x]P1(Q1, . . . , Qn−1)

(by the variable naming conventions), which rewrites to [Q0/x][[P ∗1]](Q1, . . . , Qn−1), that is,

to [[P ∗]](Q0, . . . , Qn−1) by induction.

Now we prove a few properties about well-stagedness. The first is a subject reduction

property.

Lemma B.3. For every well-staged SKIn-term M, if M . N, then N is well-staged and

lev(N) > lev(M).

Proof. Let us write M ≡ C[L] and N ≡ C[R], where L . R is an instance of some

rewrite rule in SKIn, and C is a context. We prove the claim by structural induction on

C. If C ≡ Km(C1) for some smaller context C1, then by the induction hypothesis C1[R] is

well-staged and lev(C1[R]) > lev(C1[L]) > m (since M is well-staged), so N is well-staged;

moreover, lev(N) = max(m, lev(C[R])) + 1 > max(m, lev(C[L])) + 1 = lev(M). Similarly

when C is of the form Sm(M1,C1) or when C is of the form Sm(C1, N1).

Finally, we deal with the base case, namely when C is the empty context. We consider

several cases:

Rule (SIm): M ≡ Sm(Im,N), and since M is well-staged, so is its subterm N; since

M is well-staged again, lev(N) > m. But lev(M) = max(m,m + 1 − 1) = m (by def-

inition) 6 lev(N). In the following, we assume that 0 6 m < n. Rule (SmKn):

M ≡ Sm(Kn(M1), P), N ≡ Kn−1(Sm(M1, P)). Since M is well-staged, so are M1 and

P ; moreover, (a) lev(M1) > n and (b) lev(P) > m. By (a) and (b), Sm(M1, P) is

well-staged. Moreover, lev(Sm(M1, P)) = max(m, lev(M1) − 1) > n − 1 by (a), so N is

well-staged. Finally, lev(M) = max(m,max(n, lev(M1)) + 1 − 1) = max(n, lev(M1)), while

lev(N) = max(n−1,max(m, lev(M1)−1))+1 = max(n−1, lev(M1)−1)+1 = max(n, lev(M1)),

so lev(M) = lev(N).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 46

Lemma B.4. Let M be a well-staged term of level n, then [x]M is well-staged of level

n+ 1.

Proof. The proof is by structural induction on M.

The base cases are straightforward. We consider the case where M is of the form Km(N),

then lev(N) > m and by induction hypothesis [x]N is well-staged of level lev(N) + 1;

in particular lev([x]N) > m + 1, so [x]M ≡ Km+1([x]N) is well-staged; and lev([x]M) =

max(m+1, lev([x]N))+1 = max(m+1, lev(N)+1)+1 = (max(m, lev(N))+1)+1 = lev(M)+1.

Proof of Lemma 3.20. We show that M∗ is well-staged by structural induction on M.

If M ≡ x, then x∗ ≡ x is well-staged (and of level 0). If M is an application M1(M2),

then M∗ ≡ S0(M∗1 ,M∗2), where M∗1 and M∗2 are well-staged by the induction hypothesis;

moreover, lev(M∗1) > 0 and lev(M∗2) > 0 by definition of the levels, so M∗ is well-staged.

And if M is an abstraction λx.M1, then M∗ ≡ [x]M∗1 ; by the induction hypothesis, M∗1 is

well-staged, and by Lemma B.4, [x]M∗1 is well-staged, so M∗ is well-staged.

We now attack the proof of Theorem 3.21. We need to adapt some of the results of

Appendix A.

Lemma B.5. For every well-staged SKIn-term M, we have that all pairwise distinct

variables xm, . . . , xn−1 not free in M, and all λ-terms P0, . . . , Pm−1, if m 6 n 6 lev(M), then

λxm · . . . · λxn−1 · [[M]](P0, . . . , Pm−1, xm, . . . , xn−1) .∗ [[M]](P0, . . . , Pm−1).

Proof. The proof is as for Lemma A.3, except that the additional assumptions n 6
lev(M) and M well-staged allow us to replace .η by ..

The proof is by structural induction on M. Again, the case m = n is trivial, so that we

can assume m < n. When M is a variable x, we have lev(M) = 0, so this case is vacuous.

If M ≡ Kk(N) and k < m < n, then

λxm . . . λxn−1.[[M]](P0, . . . , Pm−1, xm, . . . , xn−1)

≡ λxm . . . λxn−1.[[N]](P0, . . . , Pk−1, Pk+1, . . . , Pm−1, xm, . . . , xn−1)

.∗ [[N]](P0, . . . , Pk−1, Pk+1, . . . , Pm−1) (by the induction hypothesis)

≡ [[M]](P0, . . . , Pm−1).

To show that the induction hypothesis was applicable, we need to show that n − 1 6
lev(N). By assumption, n 6 lev(M), and by definition lev(M) = max(k, lev(N)) + 1, so

n 6 max(k, lev(N)) + 1, therefore n − 1 6 max(k, lev(N)). Since we are in a case where

k < m < n, in particular k 6 n−2, so n−1 6 max(n−2, lev(N)). It follows that n−1 6 n−2

or n− 1 6 lev(N), but the first case is impossible. So indeed n− 1 6 lev(N).

If M ≡ Kk(N) and m 6 k < n, then

λxm . . . λxn−1.[[M]](P0, . . . , Pm−1, xm, . . . , xn−1)

≡ λxm . . . λxn−1.[[N]](P0, . . . , Pm−1, xm, . . . , xk−1, xk+1, . . . , xn−1)

.∗ λxm . . . λxk.[[N]](P0, . . . , Pm−1, xm, . . . , xk−1)

(obvious if k = n− 1, otherwise by the induction hypothesis)

≡ [[M]](P0, . . . , Pm−1).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 47

Indeed, if k 6= n− 1, then k 6 n− 2, and the same argument as in the previous case (case

k < m < n) shows that the induction hypothesis was applicable.

And if M ≡ Kk(N) and m < n 6 k, then:

λxm . . . λxn−1.[[M]](P0, . . . , Pm−1, xm, . . . , xn−1)

≡ λxm . . . λxn−1.λxn . . . λxk.[[N]](P0, . . . , Pm−1, xm, . . . , xk−1)

≡ [[M]](P0, . . . , Pm−1)

Proof of Theorem 3.21. This is as for Theorem 3.6, with a few changes. We show

that M . N and M well-staged implies [[M]](P0, . . . , Pn−1) .∗ [[N]](P0, . . . , Pn−1); that N

is well-staged is by Lemma B.3. It will follow that M . N and M well-staged imply N

well-staged and [[M]]() .∗ [[N]](), trivially. That M = N in SKIn, when M and N are

well-staged, implies [[M]]() = [[N]]() follows, in turn, from the fact that, assuming SKIn

to be confluent, if M = N then M .∗ P and N .∗ P for some term P , so [[M]]() .∗ [[P]]()

and [[N]]() .∗ [[P]]().

Therefore, let M be C[L], N be C[R], where L . R is some instance of a rule of SKIn. We

show that [[M]](P0, . . . , Pn−1) .∗ [[N]](P0, . . . , Pn−1) by structural induction on C, and in the

base case, by analysis of the rule used. We only describe the differences with the proof of

Theorem 3.6 (see Appendix A).

In the induction cases, that is, when C 6≡ [], the argument is unchanged, except for

replacing .η by .. So we deal with the base case:

— Rule (SIk): M ≡ Sk(Ik, N), and lev(M) = k, lev(N) > k. If n > k, then the argument in

as in the proof of Theorem 3.6. If n < k, however, we compute:

[[M]](P0, . . . , Pn−1)

≡ λxn . . . λxk−1.[[Ik]](P0, . . . , Pn−1, xn, . . . , xk−1, [[N]](P0, . . . , Pn−1, xn, . . . , xk−1))

≡ λxn . . . λxk−1.[[N]](P0, . . . , Pn−1, xn, . . . , xk−1)

.∗ [[N]](P0, . . . , Pn−1)

by Lemma B.5, since n 6 k 6 lev(N).

In the cases of the other rules, the argument remains unchanged, apart from the replace-

ment of .η by ..

Appendix C. Termination of ΣT

We show that ΣT terminates by proving that larger and larger groups of rules terminate.

C.1. The K group

Let the K group denote the following group of SKInT reduction rules:

(KmIn) Km(In−1) . In
(KmKn) Km(Kn−1(M)) . Kn(Km(M))

(KmSn+1) Km(Sn(M,P)) . Sn+1(Km(M),Km(P))

where 0 6 m < n. In this section, we show that the K group terminates. To this end, we

define a function M 7→ qi(M) that predicts how the rules in the K group will change the

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 48

[[SmIn]]q Sm(In, P) . In−1

[[SmSn]]q Sm(Sn(M,N), P) . Sn−1(Sm(M,P), Sm(N,P))

[[SmKn]]q Sm(Kn(M), P) . Kn−1(Sm(M,P))

[[KmIn]]q Km(In) . In
[[KmSn+1]]q Km(Sn+1(M,P)) . Sn+1(Km(M),Km(P))

[[KmKn]]q Km(Kn(M)) . Kn(Km(M))

Fig. 10. Translating rules by [[]]q (0 6 m < n)

indices of operators inside M when reducing Ki(M). The function M 7→ [[M]]q tries to

predict all possible index changes due to rules in the K group. This is the basic idea, but

the actual definition is heavily tweaked so as to make all proofs go through.

Definition C.1. Let qi, i > 0, be the functions defined as follows:

qi(Sj(M,N)) =df

{
Sj+1(qi(M), qi(N)) (i 6 j − 1)

Sj(qi+1(M), N) (j − 1 < i)
qi(Ij) =df

{
Ij+1 (i 6 j)
Ij (j < i)

qi(Kj(M)) =df

{
Kj+1(qi(M)) (i 6 j)
Kj(qi(M)) (j < i)

qi(x) =df x

where j > 0.

Let [[]]q be defined by

[[Km(M)]]q =df Km(qm([[M]]q)) [[Sm(M,N)]]q =df Sm([[M]]q, [[N]]q)

[[Im]]q =df Im [[x]]q =df x

for every m > 0.

Lemma C.2. For every 0 6 m < n, qm ◦ qn−1 = qn ◦ qm.

Proof. We prove that (qm ◦ qn−1)(M) ≡ (qn ◦ qm)(M) for every 0 6 m < n, by structural

induction on M. We consider K.

If M ≡ Kj(N), then we have three cases:

— j < m: (qm ◦ qn−1)(M) ≡ qm(Kj(qn−1(N))) (because j < n− 1) ≡ Kj((qm ◦ qn−1)(N))

(because j < m) ≡ Kj((qn ◦ qm)(N)) (by the induction hypothesis); and (qn ◦ qm)(M) ≡
qn(Kj(qm(N))) ≡ Kj((qn ◦ qm)(N)) (because j < n).

— m 6 j < n−1: (qm ◦ qn−1)(M) ≡ qm(Kj(qn−1(N))) ≡ Kj+1((qm ◦ qn−1)(N)) ≡ Kj+1((qn ◦
qm)(N)) (by the induction hypothesis); and then (qn ◦ qm)(M) ≡ qn(Kj+1(qm(N)))

≡ Kj+1((qn ◦ qm)(N)) (because j + 1 < n).

— n − 1 6 j: (qm ◦ qn−1)(M) ≡ qm(Kj+1(qn−1(N))) ≡ Kj+2((qm ◦ qn−1)(N)) (because

m 6 j 6 j + 1) ≡ Kj+2((qn ◦ qm)(N)) (by the induction hypothesis); and (qn ◦
qm)(M) ≡ qn(Kj+1(qm(N))) ≡ Kj+2((qn ◦ qm)(N)) (because n 6 j + 1).

Recall that a context C is a term with a unique distinguished occurrence called the hole

and written []. C[M] denotes the term obtained by replacing the hole by the term M.

Recall that M . N if and only if there is a rule l → r and a context C such that M ≡ C[l]

and N ≡ C[r].

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 49

Let ΣT 0 be ΣT minus (SKm), m > 0. In Lemma C.3, we show that applying the [[]]q
transformation to the rules in ΣT 0 yields the rules shown in Figure 10. Call this group of

rules ΣT ′0.

Lemma C.3. For any rule M . N in ΣT 0, [[M]]q . [[N]]q is an instance of some rule of

group ΣT ′0 (in Figure 10).

Proof. By case analysis on the rule. In the following, we assume 0 6 m < n.

— The cases of rules (SmIn) and (SmSn) are trivial.

— Rule (SmKn). The left-hand side translates to Sm(Kn(qn([[M]]q)), [[P]]q), and the right-

hand side yields Kn−1(qn−1(Sm([[M]]q, [[P]]q))) ≡ Kn−1(Sm(qn([[M]]q), [[P]]q)) since m −
1 < n− 1.

— Rule (KmIn). The left-hand side translates to [[Km(In−1)]]q ≡ Km(qm(In−1)) ≡ Km(In)

because m 6 n− 1. And the right-hand side yields [[In]]q ≡ In.

— Rule (KmSn+1). The left-hand side translates to

[[Km(Sn(M,P))]]q ≡ Km(qm(Sn([[M]]q, [[P]]q))) ≡ Km(Sn+1(qm([[M]]q), qm([[P]]q)))

(because m 6 n− 1). And the right-hand side translates to [[Sn+1(Km(M),Km(P))]]q ≡
Sn+1(Km(qm([[M]]q)),Km(qm([[P]]q))).

— Rule (KmKn). The left-hand side translates to

[[Km(Kn−1(M))]]q ≡ Km(qm(Kn−1(qn−1([[M]]q))))

≡ Km(Kn((qm ◦ qn−1)([[M]]q))) ≡ Km(Kn((qn ◦ qm)([[M]]q)))

by Lemma C.2. And the right-hand side yields

[[Kn(Km(M))]]q ≡ Kn(qn(Km(qm([[M]]q)))) ≡ Kn(Km((qn ◦ qm)([[M]]q))).

Lemma C.4. We let the set of q-functions be the smallest set containing the identity

function on SKInT-terms and stable by composition with any qi, i > 0.

For every context C, there is a context [[C]]q and a q-function qC such that, for every

term t, [[C[t]]]q ≡ [[C]]q[qC(t)].

Proof. First observe that (*) for any context C, for any q-function q, there is a context

C′ and a q-function q′ such that q(C[t]) ≡ C′[q′(t)] for any term t. Indeed, this is clear if

q is the identity; when q is qi for some i, then this is an easy structural induction on C,

using Definition C.1; and otherwise, this is an easy induction on the length n of a given

presentation of q as composition of n qi functions.

Then we prove the lemma by structural induction on C. If C ≡ [], we take [[C]]q =df []

and qC equal to the identity function. If C ≡ Sm(M1,C2) or C ≡ Sm(C2,M1), then

[[C]]q =df Sm(M1, [[C2]]q) or Sm([[C2]]q,M1), respectively, and qC =df qC2
.

If C ≡ Km(C1), then let C′ be [[C1]]q , q
′ be qC1

(using the induction hypothesis), so

that [[C[t]]]q ≡ Km(qm([[C1[t]]]q)) ≡ Km(qm(C′[q′(t)])). By remark (*), there is a context C′′
and a q-function q′′ such that qm(C′[q′(t)]) ≡ C′2[q′′(t)], and we let [[C]]q =df Km(C′2) and

qC =df q
′′.

Lemma C.5. For any rule M . N in ΣT 0, for any context C, [[C[M]]]q rewrites in one

step to [[C[N]]]q by the rules of group ΣT ′0, respectively (see Figure 10).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 50

Proof. First, if M . N is any rule R in Figure 10, then qi(M) . qi(N) is also an instance

of some rule in Figure 10, which we shall call qi(R). For instance, qi([[SmIn]]q) splits into

three cases: [[Sm+1In+1]]q when i 6 m− 1; [[SmIn+1]]q when m− 1 < i 6 n− 1; and [[SmIn]]q
when n− 1 < i.

It follows that for any q-function q, for any rule M . N in Figure 10, q(M) . q(N) is

also an instance of some rule in Figure 10: this is by induction on the number of qi’s we

compose to get q.

Now let C be a context. By Lemma C.4, [[C[M]]]q ≡ [[C]]q[qC(M)] and [[C[N]]]q ≡
[[C]]q[qC(N)]. By the above, qC(M) . qC(N) is an instance of some rule in Figure 10.

Therefore [[C[M]]]q rewrites to [[C[N]]]q in one step.

Lemma C.6. The set of function symbols occurring in any sequence of rewrite steps in

the system ΣT ′0 of Figure 10 is finite.

Proof. For every term M, let F0(M) be the set of function symbols fn (Sn, Kn or In)

occurring in M. Let F(M) be the set of all symbols fm, where fn ∈ F0(M) for some

n > m. For any M, F(M) is clearly finite. Check that, if M rewrites in one step to N, then

F(N) ⊆ F(M). In any derivation M0 . M1 Mk , the set of function symbols

that occur is therefore included in
⋃
i>0 F(Mi) = F(M0), which is finite.

We shall now use the recursive path ordering (Dershowitz 1987), which we now define.

Recall that a quasi-ordering � is a reflexive and transitive relation, that its associated

equivalence relation ≈ is defined by u ≈ v if and only if u � v and v � u, and that its

strict part � is defined by u � v if u � v and v 6� u. Consider now a set of first-order

terms with a precedence (that is, an ordering) on function symbols �. Then it induces a

recursive path ordering on terms �rpo, together with associated relations �rpo and ≈rpo
as follows. Given two first-order terms s =df f(s1, . . . , sm) and t =df g(t1, . . . , tn), we have

s �rpo t if and only if

1 si �rpo t for some i, 1 6 i 6 m;

2 or f � g and s �rpo tj for all j, 1 6 j 6 n,
3 or f ≈ g and {|s1, . . . , sm|} �mulrpo {|t1, . . . , tn|}.
Then, a rewrite system R over a set of first-order terms is terminating if and only if there

exists a well-founded quasi-ordering � on the set of function symbols such that t �rpo u
for every rule t→ u in R (Dershowitz 1987).

The following lemma then follows.

Lemma C.7. Let � be the precedence defined by fi � gj if and only if i < j, for any

f, g ∈ {S,K, I}. Let >q denote the recursive path ordering �rpo.
For any rule M . N among [[(KmIn)]]q , [[(KmKn)]]q , and [[(KmSn+1)]]q , M >q N. In par-

ticular, any sequence of rewrite steps using only (KmIn), (KmKn) and (KmSn+1) terminates.

Proof. Notice that by our definition, K0 > K1 > K2 > . . . , that is, the ordering on

function symbols is the opposite of the natural ordering on integers. For any of the

mentioned rules R, [[R]]q is clearly decreasing for >q . Fix some sequence M0 . M1

Mk using only these rules. In the corresponding sequence [[M0]]q . [[M1]]q

[[Mk]]q (which is a valid rewrite sequence by Lemma C.5), the set of function symbols

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 51

F is finite by Lemma C.6. On this finite set, � is trivially well-founded. It follows that >q

is well-founded on F , and that both reductions terminate.

C.2. The S group

We now deal with the next three rule schemes, which form the S group:

(SmIn) Sm(In, P) . In−1

(SmKn) Sm(Kn(M), P) . Kn−1(Sm(M,P))

(SmSn) Sm(Sn(M,N), P) . Sn−1(Sm(M,P), Sm(N,P))

To ease our task, we first define a few auxiliary notations.

Definition C.8. An infinite sequence s over some alphabet A is any total function from

the set of non-negative integers to A.

We write si the letter at position i in s, which is s(i) by definition.

We denote by si..j the finite sequence of all letters si, si+1, . . . , sj; if i > j, we take by

convention si..j to be the empty word ε. We denote by si..∞ the infinite sequence of all

letters si, si+1, . . .

For any letter x, let xω be the infinite sequence consisting only of x. If s is a finite

sequence and s′ is an finite or infinite sequence, let s . s′ be the concatenation of s and s′.
Concatenation is associative and has ε as unit element.

The idea is to use a modified form of the M 7→ [[M]](s0, . . . , sn) interpretation, mapping

SKInT-terms to some well-founded domain instead of the set of λ-terms; this domain will

be the set N of non-negative integers. Moreover, there will be two major modifications.

First, instead of parameterizing the interpretation of M by an n-tuple of integers s0, . . . , sn,

we shall use an infinite sequence of integers, ending in 0; this is equivalent, but will

be easier to handle. Secondly, a few tweaks will be introduced in the form of auxiliary

functions Em, Km, Im.

Definition C.9. Let Γ be the set of all infinite sequences γ of non-negative integers

containing only finitely many non-zero integers. Every such sequence can be written as

the concatenation of some finite sequence γ0..k and of 0ω .

For every m > 0, let Em, Km and Im be functions from N to N. Finally, let δ be some

fixed element of Γ.

We define the function [[]]e from SKInT-terms and elements of Γ to non-negative

integers as follows. To save a few parentheses, we write [[M]]es . γ instead of [[M]]e(s . γ);

Em[[M]]eγ instead of Em([[M]]eγ), and similarly with Km; and parentheses are used to

promote an integer n to a sequence (n) containing exactly the integer n.

[[Sm(M,N)]]eγ =df [[M]]eγ0..m−1 . (Em[[N]]eγ0..m−1 . δ) . γm..∞
[[Km(M)]]eγ =df [[M]]eγ0..m−1 . (Kmγm) . γm+1..∞
[[Im]]eγ =df

∑
i>0,i6=m γi + Im(γm)

Finally, we define [[M]]eqγ as being [[[[M]]q]]eγ.

We say that a function f from N to N is super-linear if and only if f(n) > n for every

integer n.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 52

Define the ordering > on sequences pointwise, that is, γ > γ′ if and only if γi > γ′i for

every i > 0. Let γ > γ′ denote γ > γ′ and γ 6= γ′.
We say that a function f is monotonic if and only if a > b implies f(a) > f(b), where >

is defined on naturals or sequences appropriately.

We extend the ordering > to functions pointwise, that is, f > g if and only if f(a) > g(a)

for every a in the common domain of f and g. Then, any family (fm)m>0 of functions is

said to be increasing if and only if, for all 0 6 i < j, fi < fj .

We shall assume the following properties in the following:

(P1) For every m > 0, Km, Im are super-linear.

(P2) For every m > 0, Em, Km, Im are monotonic.

(P3) (Em)m>0, (Km)m>0, (Im)m>0 are increasing families of functions.

These properties are easy to satisfy. Take, for instance, Em(x) = Km(x) = Im(x) =

x+ m+ 1.

Lemma C.10. For every term M, for every i ∈ N, and for every γ in Γ, [[M]]eγ > γi.

Proof. The proof is by structural induction on M, using only property (P1) (super-

linearity).

If M ≡ Sm(N,P), then [[M]]eγ = [[N]]eγ0..m−1 . (Em[[P]]eγ0..m−1 . δ) . γm..∞. For every i < m,

the claim follows by the induction hypothesis, applied to N and index i. For every i > m,

it follows by the induction hypothesis applied to N and index i+ 1.

If M ≡ Km(N), then [[M]]eγ = [[N]]eγ0..m−1 . (Kmγm) . γm+1..∞. For every i 6= m, the

claim follows by the induction hypothesis applied to N and index i. When i = m,

[[M]]eγ > Km(γm) (by the induction hypothesis) > γm (by super-linearity of Km).

If M ≡ Im, then [[M]]eγ =
∑

j>0,j 6=m γj + Im(γm). For every i 6= m, notice that since Im
is super-linear, Im(γm) > γm > 0, so [[M]]eγ >

∑
j>0,j 6=m γj > γi. And when i = m, we have

[[M]]eγ > Im(γm) > γm by super-linearity of Im.

Lemma C.11. For every term M, for every γ in Γ and for every i in N, the function

k 7→ [[M]]eγ0..i−1 . (k) . γi+1..∞ is monotonic.

Proof. The proof is by structural induction on M, using property (P2). This is clear if

M is Im. In the following, we assume k > n.

If M ≡ Sm(N,P), then there are two cases, depending on whether i > m or i < m. We

consider the latter case.

[[M]]eγ0..i−1 . (k) . γi+1..∞
= [[N]]eγ0..i−1 . (k) . γi+1..m−1 . (Em[[P]]eγ0..i−1 . (k) . γi+1..m−1 . δ) . γm..∞
> [[N]]eγ0..i−1 . (k

′) . γi+1..m−1 . (Em[[P]]eγ0..i−1 . (k) . γi+1..m−1 . δ) . γm..∞
by induction hypothesis on N

> [[N]]eγ0..i−1 . (k
′) . γi+1..m−1 . (Em[[P]]eγ0..i−1 . (k

′) . γi+1..m−1 . δ) . γm..∞
by the induction hypothesis on P , monotonicity of Em

and the induction hypothesis on N

= [[M]]eγ0..i−1 . (k
′) . γi+1..∞

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 53

Lemma C.12. For any γ in Γ, for any rule L . R in Figure 10, [[L]]eγ > [[R]]eγ. Moreover,

the inequality is strict except for rules among (KmIn), (KmKn) and (KmSn+1).

Proof. The proof is by case analysis on the rule, where we assume 0 6 m < n. For

the schemes with Sm, be aware that the interpretation shifts the indices of the associated

sequences. We consider a few cases only.

— [[KmKn]]q:

[[L]]eγ = [[Km(Kn(M))]]eγ

= [[Kn(M)]]eγ0..m−1 . (Kmγm) . γm+1..∞
= [[M]]eγ0..m−1 . (Kmγm) . γm+1..n−1 . (Knγn) . γn+1..∞
= [[Km(M)]]eγ0..n−1 . (Knγn) . γn+1..∞
= [[Kn(Km(M))]]eγ = [[R]]eγ

— [[SmIn]]q:

[[L]]eγ = [[Sm(In, P)]]eγ

= [[In]]eγ0..m−1 . (Em[[P]]eγ0..m−1 . δ) . γm..∞
=
∑

i6=n−1 γi + Em([[P]]eγ0..m−1 . δ) + In(γn−1)

>
∑

i6=n−1 γi + Em([[P]]eγ0..m−1 . δ) + In−1(γn−1)

since (Ii)i>0 is increasing

>
∑

i6=n−1 γi + In−1(γn−1)

since Em is non-negative

= [[In−1]]eγ = [[R]]eγ

Lemma C.13. If [[M]]eγ > [[N]]eγ (respectively, >) for every γ in Γ, then for every context

C, for every γ in Γ, [[C[M]]]eγ > [[C[N]]]eγ (respectively, >).

Proof. We only treat the case of >, since the case of > follows easily. The proof is by

structural induction on C. If C ≡ [], this is clear. Otherwise, we have several cases.

If C ≡ Sj(C1, P), we have [[C[M]]]eγ = [[C1[M]]]eγ0..j−1 . (Ej[[P]]eγ0..j−1 . δ) . γj..∞ >

[[C1[N]]]eγ0..j−1 . (Ej[[P]]eγ0..j−1 . δ) . γj..∞ (by the induction hypothesis) = [[C[N]]]eγ.

If C ≡ Sj(P ,C1), then [[C[M]]]eγ = [[P]]eγ0..j−1 . (Ej[[C1[M]]]eγ0..j−1 . δ) . γj..∞ and the

claim follows by the induction hypothesis, monotonicity of Ej and Lemma C.11.

If C ≡ Kj(C1), the claim follows directly from the induction hypothesis.

Lemma C.14. Let >e (respectively, >e) be defined by M >e N (respectively, >e) if and

only if for every γ in Γ, [[M]]eγ > [[N]]eγ (respectively, >).

Let >eq be (>e,>q)
lex, that is, the ordering defined by M >eq N if and only if M >e N,

or M >e N and M >q N.

Then, whenever M rewrites to N by some rule in ΣT ′0, we have M >eq N.

Let �eq be defined by M �eq N if and only [[M]]q >eq [[N]]q . If M rewrites to N by

some rule in ΣT 0, then M �eq N.

Proof. If M rewrites to N by some rule in ΣT ′0, then there exists a context C and a

rule L . R such that M ≡ C[L] and N ≡ C[R].

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 54

If this rule is among (KmIn), (KmKn) or (KmSn+1), then by Lemma C.12, L >e R. By

Lemma C.13, M >e N. By Lemma C.7, M >q N. So M >eq N.

If the rule is among (SmIn), (SmKn) or (SmSn), then by Lemma C.12, L >e R. By

Lemma C.13, M >e N, so M >eq N.

Now by Lemmas C.3 and C.5, if M rewrites to N by some rule in ΣT 0, then [[M]]q
rewrites to [[N]]q by some rule in ΣT ′0. So [[M]]q >eq [[N]]q , and hence M �eq N.

The �eq ordering is clearly well-founded for derivations (that is, the intersection of

�eq and the reduction pre-ordering .∗ is well-founded, see Dershowitz (1987)), so ΣT 0

terminates.

C.3. The (SKm) rules

We now apply another interpretation, which is very close to the [[]]e interpretation,

directly on SKInT-terms.

Definition C.15. Define the following interpretation mapping SKInT-terms and sequences

in Γ to integers as follows:

[[Sm(M,N)]]′γ =df [[M]]′γ0..m−1 . (E[[N]]′γ0..m−1 . δ) . γm..∞
[[Km(M)]]′γ =df [[M]]′γ0..m−1 . (γm ⊕ γm+1) . γm+2..∞
[[Im]]′γ =df Im(

∑
γ)

where δ is a fixed element of Γ, for example, 0ω , E is a unary function from N to N, ⊕ is

a binary function from N ×N to N, (Im)m∈N is a family of functions from N to N and∑
is a function mapping elements of Γ to N.

In the following, we shall assume that E, ⊕, Im and
∑

obey the following axioms:

(Q1)
∑
γ > γi for every i > 0.

(Q2) ⊕ is super-linear in both its arguments, namely m ⊕ n > m and m ⊕ n > n for all

m, n ∈ N.

(Q3) Im is super-linear for every m > 0.

(Q4)
∑

is monotonic, in that for every k′ > k, for every i ∈ N,
∑

(γ0..i−1 . (k
′) . γi+1..∞) >∑

(γ0..i−1 . (k) . γi+1..∞).

(Q5) ⊕ is monotonic in both arguments, namely k′ > k implies k′ ⊕ n > k ⊕ n and

m⊕ k′ > m⊕ k.
(Q6) E is monotonic.

(Q7) Im is monotonic for every m > 0.

(Q8) If γi > 0, then Im(
∑
γ) > Im+1(

∑
γ0..i−1 . γi+1..∞).

(Q9) In−1(
∑
γ0..m−1 . (γm ⊕ γm+1) . γm+2..∞) > In(

∑
γ) for every 0 6 m < n.

(Q10) (m⊕ n)⊕ p > m⊕ (n⊕ p) for all m, n, p ∈ N.

For instance, we may take

E(n) = n

m⊕ n = m+ n+ 1

Im(n) = n+ m+ 1∑
γ =

∑
i>0 γi.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 55

Lemma C.16. For every term M, for every i ∈ N, for every γ in Γ, [[M]]′γ > γi.

Proof. The proof is by structural induction on M, as for Lemma C.10. If M ≡ Im, this

is by (Q1) and (Q3). If M is of the form Sm(N,P), then this follows directly from the

induction hypothesis. If M is of the form KmN, then [[M]]′γ > γi for every i except m and

m+ 1, by the induction hypothesis; also [[M]]′γ > γm⊕ γm+1, which is > γm and > γm+1 by

(Q2), respectively.

Lemma C.17. For every term M, for every γ in Γ, for every i in N, the function

k 7→ [[M]]′γ0..i−1 . (k) . γi+1..∞ is monotonic.

Proof. The proof is by structural induction on M, as for Lemma C.11. When M ≡ Im,

we use axioms (Q4) and (Q7); when M ≡ Km(N), we apply the induction hypothesis, and

axiom (Q5) if i = m or i = m+ 1. When M is of the form Sm(N,P), we have two cases. If

i > m, then the result follows by the induction hypothesis. Otherwise, i < m and whenever

k′ > k

[[P]]′γ0..i−1 . (k
′) . γi+1..m−1 . δ > [[P]]′γ0..i−1 . (k) . γi+1..m−1 . δ

by the induction hypothesis on P , so

E[[P]]′γ0..i−1 . (k
′) . γi+1..m−1 . δ > E[[P]]′γ0..i−1 . (k) . γi+1..m−1 . δ

by axiom (Q6), so:

[[M]]′γ0..i−1 . (k
′) . γi+1..∞

= [[N]]′γ0..i−1 . (k
′) . γi+1..m−1 . (E[[P]]′γ0..i−1 . (k

′) . γi+1..m−1 . δ) . γm..∞
> [[N]]′γ0..i−1 . (k

′) . γi+1..m−1 . (E[[P]]′γ0..i−1 . (k) . γi+1..m−1 . δ) . γm..∞
by the above and the induction hypothesis on N

> [[N]]′γ0..i−1 . (k) . γi+1..m−1 . (E[[P]]′γ0..i−1 . (k) . γi+1..m−1 . δ) . γm..∞
by the induction hypothesis on N

= [[M]]′γ0..i−1 . (k) . γi+1..∞

Lemma C.18. For any γ in Γ, and any rule L . R in ΣT , [[L]]′γ > [[R]]′γ. Moreover, the

inequality is strict for rules (SKm), m > 0.

Proof. Rule (SKm) uses (Q2) and monotonicity, Rule (KmIn) uses (Q9), and Rule (KmKn)

uses (Q10) and monotonicity if n 6 m+ 1. We consider two other cases:

— Rule (SmIn):

[[Sm(In, P)]]′γ
= [[In]]

′γ0..m−1 . (E[[P]]′γ0..m−1 . δ) . γm..∞
= In(

∑
γ0..m−1 . (E[[P]]′γ0..m−1 . δ) . γm..∞)

> In+1(
∑
γ) by (Q8)

= [[In+1]]′γ.

Indeed, by Lemma C.16, [[P]]′γ0..m−1 . δ > 0, hence by (Q6) E[[P]]′γ0..m−1 . δ > 0, so

that (Q8) is indeed applicable.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 56

— Rule (SmSn):

[[Sm(Sn(M,N), P)]]′γ
= [[Sn(M,N)]]′γ0..m−1 . (E[[P]]′γ0..m−1 . δ) . γm..∞
= [[M]]′γ0..m−1 . (E[[P]]′γ0..m−1 . δ) . γm..n−2

. (E[[N]]′γ0..m−1 . (E[[P]]′γ0..m−1 . δ) . γm..n−2 . δ)

. γn−1..∞
= [[Sm(M,P)]]′γ0..n−2

. (E[[N]]′γ0..m−1 . (E[[P]]′γ0..m−1 . δ) . γm..n−2 . δ)

. γn−1..∞
= [[Sm(M,P)]]′γ0..n−2 . (E[[Sm(N,P)]]′γ0..n−2 . δ) . γn−1..∞
= [[Sn−1(Sm(M,P), Sm(N,P))]]′γ

Lemma C.19. Let �⊕ (respectively, �⊕) be defined by M �⊕ N (respectively, �⊕) if and

only if for every γ in Γ, [[M]]′γ > [[N]]′γ (respectively, >).

Let �⊕eq be (�⊕,�eq)lex, that is, the ordering defined by M �⊕eq N if and only if

M �⊕ N, or M �⊕ N and M �eq N.

Then, whenever M rewrites to N by some rule in ΣT , we have M �⊕eq N.

Proof. Since by Lemma C.17 the [[]]′ interpretation passes to the context, it follows

from Lemma C.18 that M �⊕ N if M rewrites to N by some rule in ΣT 0 (and then by

Lemma C.14, M �eq N) and that M �⊕ N if M rewrites to N by (SKm), for some m > 0.

Since �eq is well-founded for derivations (that is, the intersection of �eq and the

reduction pre-ordering is well-founded, see Dershowitz (1987)), ΣT terminates.

C.4. The η rule

We shall use the following theorem.

Theorem C.20 (Dershowitz, 1987). Let .1 and .2 be two rewrite relations. .1 is said to

quasi-commute over .2 if and only if for every pair of rewrite steps of the form

u .1 v .2 w

there is a sequence of rewrite steps from u to w of the form

u .2 v
′ .∗12 w

where .∗12 denotes any finite number of .1 and .2 steps, that is, .∗12 is the reflexive-transitive

closure of the union .12 of .1 and .2.

Then .12 terminates if and only if both .1 and .2 terminate.

Lemma C.21. Let η denote the rewrite relation generated by all rules (ηSm), m > 0. Then

η quasi-commutes over ΣT . More precisely, let .(η) denote one-step reduction by η, and

.ΣT denote one-step reduction by ΣT . Then, whenever

M .(η) N .ΣT P

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 57

we have

M .+
ΣT N

′ .∗(η) P .

Proof. Consider a given rewrite

M .(η) N .ΣT P .

M is of the form C[Sm+1(Km(Q), Im)]. Also, N ≡ C[Q] and also N = C′[Lσ], P = C′[Rσ]

for some instance of a rule L . R in ΣT by some substitution σ.

If the ΣT and η-redexes are side-by-side, namely, neither C nor C′ is a sub-context of

the other, then we have

M .ΣT N
′ .(η) P

for some term N ′.
If the η-contractum Q contains the ΣT -redex, namely if C is included in C′ (or possibly

equal to it), then again

M .ΣT N
′ .(η) P

for some term N ′. In fact, if C′ ≡ C[C1], then N ′ =df C[Sm+1(Km(C1[Rσ]), Im)].

If the ΣT -redex is above the η-redex, namely if C′ is included in C, that is, C ≡ C′[C1]

for some context C1, then N ≡ C[Q] ≡ C′[C1[Q]] and, on the other hand, N ≡ C′[Lσ], so

Lσ ≡ C1[Q]. We then have two cases. The first case is that the distinguished occurrence

of Q is at or below some variable position in L, and then there is another substitution σ′
such that Lσ′ ≡ C1[Sm+1(Km(Q), Im)], so

M .ΣT N
′ .∗(η) P

where N ′ =df C′[Rσ′] and P is obtained by contracting the residuals of the occurrence of
Sm+1(Km(Q), Im) in N ′ by η. The second case is that Lσ ≡ C1[Q] but there is an overlap
between the left-hand side L and the term Q (this is a kind of critical pair, between the
inverse relation η−1 and ΣT). We have seven critical pairs to consider, each corresponding
to a rule in ΣT . In the following, we assume 0 6 i < j. Each critical pair then decomposes
into 2 or 3 sub-cases, where we consider one of them here.

case i < m

Si(Kj(M), P)

η

*

(SiKj)

jSi(Sm+1(

Km(Kj(M)),

Im), P)

Kj−1(Si(M,P)). .
(SiSm+1), (SiKm),

(SiKj), (SiIm) j
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

.

η

*

Sm(Km−1(Kj−1(Si(M,P))),

Im−1)

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 58

case i > m

Si(Kj(M), P)

η

*

(SiKj)

jSi(Sm+1(

Km(Kj(M)),

Im), P)

Kj−1(Si(M,P)). .
(KmKj+1),

(Sm+1Kj+1), (SiKj) j
. . . .

. . . .
. . . .

. . . .
. . . .

. . . .
. . . .

.

η

*

Kj−1(Si(Sm+1(Km(M), Im), P))

Notice that one consequence of the latter Lemma is postponement of η after ΣT . Write

.ΣTη
for the notion of reduction induced by ΣTη , and .ΣT for that induced by Σ, then

we have the following lemma.

Lemma C.22. If M .∗ΣTη
P , then M .∗ΣT N .∗(η) P for some term N.

Proof. Define a reduction relation R ; R′ on reductions as follows: given a reduction

R of the form

M .∗ΣT M0 .
∗
(η) M1 .(η) N1 .ΣT P1 .

∗
ΣTη

P ,

by Lemma C.21 there is a term N ′1 such that M1 .
+
ΣT N ′1 .∗(η) P1, and we produce the

following reduction R′:

M .∗ΣT M0 .
∗
(η) M1 .

+
Σ N

′
1 .
∗
(η) P1 .

∗
ΣTη

P .

Since ΣT terminates (Lemma 4.12, proof in Appendix C), we may define ν(Q) for every

term Q as the length of the longest ΣT -reduction starting from Q. Given a reduction R

as above, let w(R) be the couple (m, n), where m is ν(M0) and n is the number of η steps

from M0 to N1; if R is not a ;-redex, let w(R) be (0, 0). Observe that when R ; R′ as

above, w(R) is lexicographically strictly greater than w(R′), so ; terminates. We conclude

by observing that ;-normal SKInTη-reductions are of the form M .∗ΣT N .∗(η) P .

Proof of Lemma 4.12. ΣT terminates by Lemma C.19. ΣTη terminates by Theorem C.20,

using the facts that ΣT terminates and that η terminates (trivially, because η makes the

size of terms decrease strictly).

Appendix D. Strong normalization of typed SKInT

Lemma D.1. The typed λ⊕-calculus has the subject reduction property, that is, whenever

` s : θ and s .∗ t, we have ` t : θ.

Proof. This is standard for rule (β), and obvious for rules (⊕−), (⊕), (ε) and (ι).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 59

Lemma D.2. For every typed SKInT-term M, for all λ⊕-terms s0, . . . , sn−1 of the right

types, s0, . . . , sn−1 are proper subterms of [[M]]•(s0, . . . , sn−1). Moreover,

[[M]]•(s0, . . . , sn−1) ≡ [s0/x0, . . . , sn−1/xn−1][[M]]•(x0, . . . , xn−1)

for all n distinct variables x0, . . . , xn−1.

Proof. The proof is an easy induction on the definition of [[M]]•(s0, . . . , sn−1). The only

difficulty lies in checking that s0, . . . , sn−1 indeed occur as subterms of [[M]]•(s0, . . . , sn−1):

it is precisely the purpose of terms like s⊕ t to represent t while keeping s around.

We then have the following lemma.

Lemma D.3. If si .
∗ s′i (respectively, si .

+ s′i) for some i, 0 6 i 6 n− 1, then:

[[M]]•(s0, . . . , si−1, si, si+1, . . . , sn−1) .∗ [[M]]•(s0, . . . , si−1, s
′
i, si+1, . . . , sn−1)

(respectively, .+).

Another monotonicity property is given by the following lemma. We assume that typed

SKInT-terms are given in a fixed typing context Γ. Then all typed SKInT-terms have a

unique type.

Lemma D.4. Let �λ be defined by M �λ N if and only if M and N have the same type,

and for all s0, . . . , sn−1 of the right types, [[M]]•(s0, . . . , sn−1) .+ [[N]]•(s0, . . . , sn−1) in the

typed λ⊕-calculus.

For every context C such that C[M] is typable, if M �λ N, then C[M] �λ C[N].

Proof. The proof is an easy induction on the context C.

We can now proceed to examine how each rule in SKInTη translates by the [[]]•
translation.

We say that a rule L → R is decreasing if and only if, for all s0, . . . , sn−1 of the

right types, [[L]]•(s0, . . . , sn−1) .+ [[R]]•(s0, . . . , sn−1). We say that it is non-increasing if

[[L]]•(s0, . . . , sn−1) .∗ [[R]]•(s0, . . . , sn−1) for all s0, . . . , sn−1 of the right types.

Lemma D.5. The following table summarizes the relationship between left- and right-hand

sides of the reductions of SKInT:

(SIm) : �λ −
(SKm) : �λ −
(SmIp) : �λ �eq
(SmKp) : �λ �eq
(SmSp) : �λ �eq
(KmIp) : �λ �eq
(KmKp) : �λ �eq
(KmSp) : �λ �eq
(ηSm) : �λ �eq .

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 60

Proof. Each rule follows by analysis. Rules (SKm), (KmKp) and (ηSm) follow by

Lemma D.3, Rule (SmIp) follows because ⊕ is right-associative and the sequence sm⊕ . . .⊕
sp−1 is not empty, and Rule (KmIp) follows because ⊕ is right-associative.

We consider two cases:

— Rule (SmKp) is non-increasing for every 0 6 m < p.

[[Sm(Kp(M), P)]]•(s0, . . . , sn−1)

≡ [[Kp(M)]]•(s0, . . . , sm−1,

ε(λzm . . . λzq−1.[[P]]•(s0, . . . , sm−1, zm, . . . , zq−1)),

sm, . . . , sn−1)

≡ [[M]]•(s0, . . . , sm−1,

ε(λzm . . . λzq−1.[[P]]•(s0, . . . , sm−1, zm, . . . , zq−1)),

sm, . . . , sp−2, sp−1 ⊕ sp, sp+1, . . . , sn−1)

≡ [[Sm(M,P)]]•(s0, . . . , sp−2, sp−1 ⊕ sp, sp+1, . . . , sn−1)

≡ [[Kp−1(Sm(M,P))]]•(s0, . . . , sn−1)

— Rule (KmSp+1) is non-increasing for every 0 6 m < p.

[[Km(Sp(M,N))P]]•(s0, . . . , sn−1)

≡ [[Sp(M,N)]]•(s0, . . . , sm−1, sm ⊕ sm+1, sm+2, . . . , sn−1)

≡ [[M]]•(s0, . . . , sm−1, sm ⊕ sm+1, sm+2, . . . , sp,

ε(λzp . . . λzq−1.[[N]]•(s0, . . . , sm−1, sm ⊕ sm+1, sm+2, . . . , sp, zp, . . . , zq−1)),

sp+1, . . . , sn−1)

≡ [[Km(M)]]•(s0, . . . , sp,
ε(λzp . . . λzq−1.[[N]]•(s0, . . . , sm−1, sm ⊕ sm+1, sm+2, . . . , sp, zp, . . . , zq−1)),

sp+1, . . . , sn−1)

≡ [[Km(M)]]•(s0, . . . , sp,
ε(λzp . . . λzq−1.[[Km(N)]]•(s0, . . . , sp, zp, . . . , zq−1)),

sp+1, . . . , sn−1)

≡ [[Sp+1(Km(M),Km(N))]]•(s0, . . . , sn−1)

Therefore, the typed SKInT and SKInTη-calculi terminate (are strongly normalizing) if

�λ is well-founded, and, in particular, if the typed λ⊕-calculus is strongly normalizing:

Lemma D.6. The typed λ⊕-calculus is strongly normalizing.

Proof. This follows the standard approach of reducibility. Say that a λ⊕-term is neutral

if and only if it is not a λ-abstraction. A term t is A-reducible if and only if either A

is a base type and t is strongly normalizing, or A = B ⇒ C and for every B-reducible

term u, t(u) is C-reducible. For every strongly normalizing term t, let ν(t) be the length

of the longest reduction starting from t. Let the size |t| of t be defined as: |x| =df 1,

|s(t)| =df |s|+ |t|+ 1, |λxA · t| =df |ε(t)| =df |ι(t)| =df 1 + |t|, |s⊕ t| =df |s|+ |t|+ 1.

We define the usual properties for candidates of reducibility, which are shown to hold

by simultaneous structural induction on the type A:

(CR1) If s is A-reducible, then s is strongly normalizing.

(CR2) If s is A-reducible and s . t, then t is A-reducible.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 61

(CR3) If s is neutral, and for every t such that s . t, t is A-reducible, then s is, too.

We now have:

(i) Every variable x is A-reducible, for every type A. This is by (CR3), since x is neutral

and normal.

(ii) Then, if s is (B ⇒ C)-reducible and t is B-reducible, then s(t) is C-reducible: this is

by definition.

(iii) If s is strongly normalizing and t is B-reducible, then s⊕ t is B-reducible. Indeed, we

show this by induction on (ν(s), |s|, ν(t)) ordered lexicographically (ν(t) is well-defined

by (CR1)). Consider any one-step reduct u of s⊕ t. If this is by (⊕−) at the top, u ≡ t
is B-reducible. If this is by (⊕) at the top, then s must be of the form s1 ⊕ s2, and

u ≡ s1⊕ (s2⊕ t); since ν(s) > ν(s2) and |s| > |s2|, the induction hypothesis is applicable,

so s2⊕ t is B-reducible; since ν(s) > ν(s1) and |s| > |s1|, the induction hypothesis again

applies, so that s1 ⊕ (s2 ⊕ t) is B-reducible. If the reduction took place inside s, then

s . s′ and u ≡ s′ ⊕ t: since ν(s) > ν(s′), the induction hypothesis applies and shows

that u is B-reducible. Finally, if the reduction took place in t, then t . t′, ν(t) > ν(t′)
and by induction u is therefore B-reducible again. In any case, every one-step reduct

of s⊕ t is B-reducible; since s⊕ t is neutral, by (CR3) it is B-reducible.

(iv) If s is B-reducible, then ε(s) is B-reducible. We show this by induction on ν(s) (which

is well-defined by (CR1)). Consider any one-step reduct u of ε(s): either u ≡ s (by (ε))

or u ≡ ε(s′) with s . s′; in the first case, u is B-reducible by assumption, in the second

case this is by induction. Since ε(s) is neutral, it is B-reducible by (CR3). Similarly,

we show that ι(s) is B-reducible as soon as s is.

(v) If [t/x]s is C-reducible for every B-reducible term t, then λxB · s is (B ⇒ C)-reducible.

Indeed, let t be any B-reducible term t. We show that (λxB · s)(t) is C-reducible by

induction on (ν(s), |s|, ν(t)) ordered lexicographically. Indeed, (λxB · s)(t) may reduce

either to [t/x]s, which is C-reducible by assumption, or to (λxB · s′)(t) with s . s′, or to

(λxB · s)(t′) with t . t′, or to s′(t) provided that s ≡ s′(x) with x not free in s′, the last

three being C-reducible by the induction hypothesis. Since (λxB · s)(t) is neutral, by

(CR3) it is C-reducible. Since t is arbitrary, by definition λxB · s is (B ⇒ C)-reducible.

We now show that for any k ∈ N, for any reducible terms t1, . . . , tk , if [t1/x1, . . . , tk/xk]t

is typable of type A, then it is A-reducible. If t ∈ {x1, . . . , xk}, this is obvious. If t is any

other variable, this is by (i). If t is an application, this is by (ii). If t is of the form t1 ⊕ t2,

with t1 B-reducible for some type B and t2 A-reducible, then by (CR1) t1 is strongly

normalizing, and by (iii) t is A-reducible. When t is of the form ε(t1) or ι(t1), this is by (iv).

If t is an abstraction λxB · s, with [u/x, t1/x1, . . . , tk/xk]s C-reducible for every B-reducible

term u by induction, then by (v) [t1/x1, . . . , tk/xk](λxB · s) is (B ⇒ C)-reducible.

For k = 0, it follows that every typed λ⊕-term of type A is A-reducible, and hence

strongly normalizing.

It follows that the typed SKInT and SKInTη-calculi are strongly normalizing. For

SKInTη , notice that an alternate proof would be to use Theorem C.20 and the following

Lemma.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 62

Lemma D.7. η quasi-commutes over SKInT. More precisely, let .(η) denote one-step

reduction by η, then whenever M .(η) N . P , we have M .+ N ′ .∗(η) P .

Proof. This is as for Lemma C.21, but with one additional case.

Appendix E. Standardization

Induction on terms viewed as trees of spines is defined formally as well-founded induction

on the strict ordering �, defined by S[u1, . . . , un] � ui for any i, 1 6 i 6 n.
For convenience, we shall also consider partial spines P , which are sequences of

operators Sm or Km, m > 0. A spine is just the concatenation P Im or Px for some partial

spine P . In general, we define P (M)[M1, . . . ,Mn] as follows (letting ε denote the empty

partial spine):

ε(M)[] =df M

(SmP
′)(M)[M1, . . . ,Mn] =df Sm(P ′(M)[M1, . . . ,Mn−1],Mn)

(KmP
′)(M)[M1, . . . ,Mn] =df Km(P ′(M)[M1, . . . ,Mn]).

Lemma E.1. If N .std∗ M1 . M2, then N .std∗ M2.

Proof. The proof is by induction on M1, ordered by �.

If the reduction from M1 to M2 is not a spine reduction, then M1 ≡ S[M11, . . . ,M1n],

M2 ≡ S[M21, . . . ,M2n], where for some i (1 6 i 6 n), M1i . M2i, and for all other j,

M1j ≡M2j . Now, by definition the standard reduction from N to M1 can be decomposed

as the spine reduction N .s∗ M0 ≡ S[M01, . . . ,M0n] plus standard reductions M0j .
std∗ M1j ,

1 6 j 6 n. Since M1 � M1i, and M0i .
std∗ M1i . M2i, by the induction hypothesis there

is a standard reduction M0i .
std∗ M2i. For all j 6= i, we already have standard reductions

M0j .
std∗ M1j ≡ M2j . Together with the spine reduction N .s∗ M0 ≡ S[M01, . . . ,M0n], this

builds a standard reduction N .std∗ M2, as claimed. (This is the only place in the proof

where we need to use the induction hypothesis.)

Examine the cases where the reduction from M1 to M2 is a spine reduction. Consider the

contracted spine redex in M1, and do a case analysis on the rule used. We decompose the

standard reduction from N to M1 as the spine reduction N .s∗ M0 ≡ S[M01, . . . ,M0n] plus

standard reductions M0j .
std∗ M1j , 1 6 j 6 n, with M1 ≡ S[M11, . . . ,M1n]. We consider

several cases.

— Rule (SIm). then the spine S is of the form PSmIm, and n > 1. Letting M11 ≡
S ′′[Q1, . . . , Qp], we have M2 ≡ (PS ′′)[Q1, . . . , Qp,M12, . . . ,M1n], where PS ′′ denotes the

concatenation of the partial spine P and the spine S ′′. Now because of the form

of M11, and because M01 .std∗ M11 by assumption, we can decompose the latter

standard reduction as a spine reduction M01 .
s∗ S ′′[P1, . . . , Pp] plus standard reductions

Pk .
std∗ Qk , 1 6 k 6 p.

We then build a spine reduction:

N .s∗ M0 ≡ (PSmIm)[M01, . . . ,M0n]

.s P (M01)[M02, . . . ,M0n]

.s∗ P (S ′′[P1, . . . , Pp])[M02, . . . ,M0n]

≡ (PS ′′)[P1, . . . , Pp,M02, . . . ,M0n]

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 63

by definition. By assumption Pk .
std∗ Qk (1 6 k 6 p) and M0j .

std∗ M1j (2 6 j 6 n).

This defines a standard reduction N .std∗ (PS ′′)[Q1, . . . , Qp,M12, . . . ,M1n] ≡M2.

— Rule (SmSn). Then S is of the form PSmSnS
′′, with 0 6 m < n, for some partial spine

P and some spine S ′′ (of arity, say, n1), and

M2 ≡ (PSn−1SmS
′′)[M11, . . . ,M1n1

,M1(n1+2),

Sm(M1(n1+1),M1(n1+2)),

M1(n1+3), . . . ,M1n]

Now build a spine reduction:

N .s∗ M0 ≡ (PSmSnS
′′)[M01, . . . ,M0n]

.s (PSn−1SmS
′′)[M01, . . . ,M0n1

,M0(n1+2),

Sm(M0(n1+1),M0(n1+2)),

M0(n1+3), . . . ,M0n].

By assumption, we also have standard reductions from M0j to M1j for 1 6 j 6 n1, for

j = n1 + 2, and for n1 + 3 6 j 6 n. So to get a standard reduction from N to M2, it

just remains to show that Sm(M0(n1+1),M0(n1+2)) .
std∗ Sm(M1(n1+1),M1(n1+2)).

Since M0(n1+1) .
std∗ M1(n1+1), we can decompose this standard reduction into a spine

reduction M0(n1+1) .
s∗ S ′[P1, . . . , Pp], followed by standard reductions Pk .

std∗ Qk ,
1 6 k 6 p, such that M1(n1+1) ≡ S ′[Q1, . . . , Qp]. Therefore Sm(M0(n1+1),M0(n1+2)) .

s∗
(SmS

′)[P1, . . . , Pp,M0(n1+2)]; and since Pk .
std∗ Qk (1 6 k 6 p) and M0(n1+2) .

std∗ M1(n1+2),

it follows that Sm(M0(n1+1),M0(n1+2)) .
std∗ Sm(M1(n1+1),M1(n1+2)). This finishes the proof

of the claim in this case.

— Rule (KmKn). Then S is of the form PKmKn−1S
′′, with 0 6 m < n, P a partial spine, and

S ′′ a spine; and M2 ≡ (PKnKmS
′′)[M11, . . . ,M1n]. We then build the spine reduction

N .s∗ M0 ≡ (PKmKn−1S
′′)[M01, . . . ,M0n] .

s (PKnKmS
′′)[M01, . . . ,M0n], followed by

the standard reductions M0j .
std∗ M1j , 1 6 j 6 n, yielding a standard reduction

N .std∗ (PKnKmS
′′)[M11, . . . ,M1n] ≡M2.

Appendix F. Weak normalization of Σ and SKIn

Let .I denote one-step reduction by the I group.

Lemma F.1. If M is SKT -normal, and M .I N, then N is SKT -normal.

Proof. Consider each rule in turn.

Rule (SmIn): let M be C[Sm(In, P)], and N be its contractum C[In−1]. A straightforward

structural induction on the context C shows that N is SKT -normal.

Rule (KmIn): let M be C[Km(In−1)], and N be its contractum C[In]. Another straight-

forward structural induction on C shows that N is SKT -normal.

Rule (KmS′m+1), finally.

Assume M ≡ C[Km(Sm(Q,R))], N ≡ C[Sm+1(Km(Q), ↓(Km(R)))], where C is the context

under which contraction occurs. We prove the claim by structural induction on C.

If C is empty, then we prove that: (1) if Km(Sm(Q,R)) is SKT -normal, then the term

Sm+1(Km(Q), ↓(Km(R))) is also SKT -normal. Notice that if the latter contains a SKT -

redex, then it must be Km(Q), so (1) follows from the claim that: (2) Km(Q) is not an

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 64

SKT -redex. Now we reason by cases on Q. If Q is of the form Ij , then Km(Q) is not an

SKT -redex. If Q is of the form Sj(Q1, Q2), then, by assumption, Sm(Q,R) is SKT -normal,

so in particular j 6 m (otherwise rule (SmSj) would apply). Then Km(Q) ≡ Km(Sj(Q1, Q2))

is not an SKT -redex. However, if Q is of the form Kj(Q1), then by assumption Sm(Q,R)

is SKT -normal, so in particular j < m (otherwise rule (SmKj), if j > m, or rule (SKj) if

j = m would apply). Then Km(Q) ≡ Km(Kj(Q1)) is not an SKT -redex. This proves (2),

and hence (1).

If C is of the form Sj([],M2), then since M ≡ Sj(Km(Sm(Q,R)),M2) is SKT -normal,

j > m; otherwise, if j < m, then rule (SjKm) would apply, and if j = m, then rule (SKm)

would apply. Now N ≡ Sj(Sm+1(Km(Q), ↓(Km(R))),M2). By the induction hypothesis,

Sm+1(Km(Q), ↓(Km(R))) is SKT -normal, so the only possible SKT -redex in N is N itself.

However, since j > m, it follows that j > m + 1, hence N is not an SKT -redex. This

proves the claim in this case.

If C is of the form Kj([]), then, since M ≡ Kj(Km(Sm(Q,R))) is SKT -normal, we must

have j > m; otherwise rule (KjKm+1) would apply. Then

N ≡ Kj(Sm+1(Km(Q), ↓(Km(R)))).

By the induction hypothesis, Sm+1(Km(Q), ↓(Km(R))) is SKT -normal, so the only possible

SKT -redex in N is N itself. However, j > m, so j > m+ 1, and therefore N cannot be an

SKT -redex (although, if j = m+ 1, it is a (KjSj+1)-redex).

In all other cases, the only SKT -redex in N must again be N itself, by the induction

hypothesis. But if N is an SKT -redex, then M would be an SKT -redex as well (by the

same rule); but this is ruled out by assumption.

We now give an algorithm to compute ↓(Km(N)) when N is SKT -normal.

Lemma F.2. For each m > 0, let Qm be the function defined as follows:

Qm(x) =df Km(x)

Qm(Ij) =df Km(Ij)

Qm(Kj(N1)) =df

{
Kj+1(Qm(N1)) (m 6 j)
Km(Kj(N1)) (m > j)

Qm(Sj(N1, N2)) =df

{
Sj+1(Qm(N1), Qm(N2)) (m < j)

Km(Sj(N1, N2)) (m > j)

Whenever N is SKT -normal, Qm(N) =df ↓(Km(N)).

Proof. Clearly, Km(N) SKT -reduces to Qm(N). Then, we only have to show that Qm(N)

is SKT -normal, in which case Qm(N) and SKT (Km(N)) will be SKT -normal forms of

the same term – namely Km(N) – and therefore will be equal, by confluence of SKT .

We show that:

(1) Qm(N) is SKT -normal whenever N is, by structural induction on N.

Simultaneously, we shall show that:

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 65

(2) i(Qm(N)) 6 max(m, i(N)) + 1, where the i function is defined by:

i(x) =df 0

i(Ij) =df 0

i(Kj(N1)) =df j + 1

i(Sj(N1, N2)) =df j

(1) and (2) are clear when N is of the form x (a variable) or Ij .

We consider the case when N is of the form Kj(N1). We observe that:

(3) j > i(N1)

(because N is SKT -normal, and in particular not an SKT -redex; we invite the reader to

check all cases). We then have two sub-cases:

(4) If m 6 j, then Qm(N) ≡ Kj+1(Qm(N1)), where by the induction hypothesis (1), Qm(N1)

is SKT -normal, so that the only possible redex in Qm(N) is Qm(N) itself. However,

by the induction hypothesis (2), i(Qm(N1)) 6 max(m, i(N1)) + 1 6 max(m, j) + 1 (by

(3)) 6 j + 1 (by (4)), so Qm(N) ≡ Kj+1(Qm(N1)) cannot be an SKT -redex (we let

the reader check that this is implied by the fact that i(Qm(N1)) 6 j + 1), so Qm(N) is

SKT -normal. This shows (1).

Then, i(Qm(N)) = j + 2 = i(N) + 1 (by definition of i(N)) 6 max(m, i(N)) + 1, so (2)

holds.

(5) If m > j, then Qm(N) ≡ Km(Kj(N1)) ≡ Km(N). By assumption, N is SKT -normal, so

the only possible redex in Qm(N) is Qm(N) itself. But this is not the case, by (5). So (1)

holds.

Furthermore, i(Qm(N)) = m+ 1 6 max(m, i(N)) + 1, so (2) holds.

Lemma F.3. Define the following measure on terms (basically, its size, not counting Km

nodes):

κ(x) =df 1

κ(Im) =df 1

κ(Km(M)) =df κ(M)

κ(Sm(M,N)) =df κ(M) + κ(N) + 1.

Then κ(Qm(N)) = κ(N).

Proof. The proof is a straightforward structural induction on N.

Lemma F.4. Define the following weight function:

W (x) =df 1

W (Im) =df 1

W (Km(M)) =df κ(M) +W (M)

W (Sm(M,N)) =df W (M) +W (N).

Then W (Qm(M)) 6W (Km(M)).

Proof. The proof is by structural induction on M.

If M ≡ Kj(N1) with m 6 j, then W (Qm(M)) = W (Kj+1(Qm(N1))) = κ(Qm(N1)) +

W (Qm(N1)) = κ(N1)+W (Qm(N1)) (by Lemma F.3) 6 κ(N1)+W (Km(N1)) (by the induction

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 66

hypothesis) = 2κ(N1)+W (N1), while W (Km(M)) = κ(M)+W (M) = κ(N1)+W (Kj(N1)) =

2κ(N1) +W (N1).

If M ≡ Sj(N1, N2) with m < j, then W (Qm(M)) = W (Sj+1(Qm(N1), Qm(N2))) =

W (Qm(N1)) + W (Qm(N2)) 6 W (Km(N1)) + W (Km(N2)) (by the induction hypothesis)

= κ(N1) +κ(N2) +W (N1) +W (N2), while W (Km(M)) = κ(M) +W (M) = κ(N1) +κ(N2) +

1 +W (N1) +W (N2), so W (Qm(M)) < W (Km(M)).

In all other cases, Qm(M) ≡ Km(M), so W (Qm(M)) = W (Km(M)).

Lemma F.5. The rewrite relation .I terminates on SKT -normal terms.

Proof. First, we claim that if Q is an I-redex and R is its contractum, thenW (Q) > W (R)

and κ(Q) > κ(R). Indeed, consider each rule in turn:

— Rule (SmIn): Then Q ≡ Sm(In, P), R ≡ In−1. So W (Q) = 1 + W (P) > 1 = W (R);

indeed, an easy structural induction on P shows that W (P) > 0 for every term P .

Also, κ(Q) = 2 + κ(P) > 1 = κ(R).

— Rule (KmIn): Then Q ≡ Km(In−1), R ≡ In, W (Q) = κ(In−1) +W (In−1) = 2 > 1 = W (R).

And κ(Q) = 1 = κ(R).

— Rule (KmS′m+1): Q is of the form Km(Sm(M,N)), with R ≡ Sm+1(Km(M), ↓(Km(N))). So

W (Q) = κ(Sm(M,N))+W (Sm(M,N)) = κ(M)+κ(N)+1+W (M)+W (N), whileW (R) =

W (Km(M)) + W (↓(Km(N))) = κ(M) + W (M) + W (↓(Km(N))) = κ(M) + W (M) +

W (Qm(N)) (by Lemma F.2, since N is SKT -normal) 6 κ(M) + W (M) + W (Km(N))

(by Lemma F.4) = κ(M) + κ(N) +W (M) +W (N), which is therefore strictly less than

W (Q). Moreover, κ(Q) = κ(M) + κ(N) + 1, while κ(R) = κ(M) + κ(Qm(N)) + 1 =

κ(M) + κ(N) + 1 = κ(Q) (by Lemma F.3).

Now if Q .I R, a straightforward structural induction on the context under which

the contraction occurs shows that again W (Q) > W (R) and κ(Q) > κ(R). Since > is

well-founded, this entails that .I terminates.

Let us call a Σ-reduction SKT -eager if and only if it is of the form:

M0 . M1 . M2 Mi

where, if the reduction from Mi to Mi+1 is by some rule not in SKT , then Mi is

SKT -normal – that is, all SKT -redexes are contracted prioritarily.

Proof of Lemma 5.2. We show that any SKT -eager Σ-reduction terminates; and in fact

that these reductions are all of the form M .∗SKT P .∗I Q.

Consider a maximal SKT -eager reduction (see above). Let i0, i1, . . . , ij , . . . be the sequence

of indices i (in increasing order) such that Mij , j > 0, are the SKT -normal terms in the

sequence. This sequence may be finite, infinite, or even empty.

Since SKT terminates (as a subsystem of ΣT), there is an i such that Mi is SKT -normal,

so i0 exists (that is, the sequence is non-empty). Moreover, we claim that:

(1) Mi0 .I Mi1 .II Mij .I

More formally, we claim that Mij .I Mij+1
for every j > 0. Indeed, consider the first

rewrite step from Mij to Mij+1
: if it is by (SmIn) or by (KmIn), then Mij+1 is SKT -normal

by Lemma F.1, so ij+1 = ij + 1 (since Mij+1
is the next SKT -normal term after Mij in the

sequence by definition), so (1) holds in this case. And if the first rewrite step from Mij is

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 67

by rule (SmKm+1), then let N be the term obtained from Mij by applying rule (SmK′m+1)

at the same position: by definition,

(2) Mij .I N.

Moreover, we can compute N by first rewriting by (SmKm+1) (getting Mij+1, clearly), and

then taking the SKT -normal form (by Lemma F.1), so N ≡ ↓(Mij+1); but by definition

Mij+1
is also an SKT -normal form of Mij+1, so by confluence Mij+1

≡ N, and therefore

by (2), Mij .I Mij+1
.

By Lemma F.5, the sequence (1) is finite, and stops at Mij for some j. It follows that the

initial maximal SKT -eager sequence stops at index ij , and is therefore finite. This proves

the claim.

Lemma F.6. For every M ∈ Tk , m > 0, for all λ-variables x0, . . . , xn−1, the variable xi is

free in [[M]]◦(x0, . . . , xn−1) whenever k 6 i < n.

Proof. The proof is by structural induction on M. We consider the case where M ≡
Km(N), with k > m and M ∈ Tk−1, then:

1 if n > m, then

[[M]]◦(x0, . . . , xn−1) ≡ [[M]]◦(x0, . . . , xm−1, xm+1, . . . , xn−1)

and for every i such that k 6 i < n, in particular i > m + 1, and by the induction

hypothesis xi is free in the right-hand side, and hence in the left-hand side;

2 if n 6 m, then k > n, so there is no i such that k 6 i < n.

Lemma F.7. For every M ∈ Tk , if Pi .
∗ Qi in the λ-calculus for every 0 6 i < n, and

Pi .
+ Qi for some i > k, then

[[M]]◦(P0, . . . , Pn−1) .+ [[M]]◦(Q0, . . . , Qn−1).

And similarly if we replace . by .η .

Proof. Check that [[M]]◦(P0, . . . , Pn−1) .∗ [[M]]◦(Q0, . . . , Qn−1), by replaying the proof of

Lemma A.1. By Lemma F.6, and the easily proved fact that

[[M]]◦(P0, . . . , Pn−1) ≡ [P0/x0, . . . , Pn−1/xn−1][[M]]◦(x0, . . . , xn−1),

Pi occurs at some position in [[M]]◦(P0, . . . , Pn−1), namely all the positions where xi occurs

free in [[M]]◦(x0, . . . , xn−1). It follows that the reduction takes at least one step.

Lemma F.8. Every syntactically safe context is safe.

Proof. That the empty context [] is safe is clear. We consider the case where C ≡
Sm(C1, P) with C1 syntactically safe, and hence safe by induction, then M �◦ N implies

C1[M] �◦ C1[N]. We then have two cases. If n > m, then

[[C[M]]]◦(P0, . . . , Pn−1)

≡ [[C1[M]]]◦(P0, . . . , Pm−1, [[P]]◦(P0, . . . , Pm−1), Pm, . . . , Pn−1)

.+
η [[C1[N]]]◦(P0, . . . , Pm−1, [[P]]◦(P0, . . . , Pm−1), Pm, . . . , Pn−1) since C1[M] �◦ C1[N]

≡ [[C[N]]]◦(P0, . . . , Pn−1).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 68

If n < m, then

[[C[M]]]◦(P0, . . . , Pn−1)

≡ λxn . . . λxm−1.

[[C1[M]]]◦(P0, . . . , Pn−1, xn, . . . , xm−1, [[P]]◦(P0, . . . , Pn−1, xn, . . . , xm−1))

.+
η λxn . . . λxm−1.

[[C1[N]]]◦(P0, . . . , Pn−1, xn, . . . , xm−1, [[P]]◦(P0, . . . , Pn−1, xn, . . . , xm−1))

since C1[M] �◦ C1[N]

≡ [[C[N]]]◦(P0, . . . , Pn−1).

In any case, C[M] �◦ C[N].

Lemma F.9. If C[M] is Σ-normal, C is syntactically safe.

Proof. Let Sm denote the set of SKIn-terms M such that Sm(M,N) is Σ-normal for

every Σ-normal term N, and Km denote the set of SKIn-terms M such that Km(M) is

Σ-normal. By examination of the rules in Σ, we have:

— Sk(M,N) ∈ Sm if and only if m > k and M ∈ Sk and N is Σ-normal;

— Kk(M) ∈ Sm if and only if m > k and M ∈ Kk;

— Ik ∈ Sm if and only if m > k;
— x ∈ Sm, for every variable x;

— Sk(M,N) ∈ Km if and only if m > k and M ∈ Sk and N is Σ-normal;

— Kk(M) ∈ Km if and only if m > k and M ∈ Kk;

— Ik ∈ Km if and only if m > k;

— x ∈ Km, for every variable x.

A quick check shows that P ∈ Km implies P ∈ Sm and that P ∈ Sm implies P ∈ Km+1:

both results are by case analysis on P . So:

(i) Km ⊆ Sm for every m > 0, and

(ii) Sm ⊆ Km+1, m > 0.

It follows that Km and Sm form increasing sequences of sets, in particular,

(iii) Sm ⊆ Sp for every m 6 p.
Moreover, by examination of the rules of Σ

(iv) M ∈ Sm if and only if Sm(M,N) is Σ-normal for some N.

Indeed, this hinges on the fact that Sm(M,N) is a Σ-redex if and only if M is of the form

Ip, Sp(M1,M2), or Kp(M1), p > m, and this condition is independent of N.

We claim that

(v) if M ∈ Sm, then M ∈ Tm.

This is by structural induction on M. If M is of the form Sk(M1,M2), then by assumption

m > k and M1 ∈ Sk; by (iii), M1 ∈ Sm+1, so by the induction hypothesis M1 ∈ Tm+1,

therefore M ∈ Tm. If M is of the form Kk(M1), then by assumption m > k and M1 ∈ Kk;

by (i), M1 ∈ Sk , so by (iii), M1 ∈ Sm−1, therefore by the induction hypothesis M1 ∈ Tm−1;

it follows that M ∈ Tm. If M ≡ Ik , then m > k, so M ∈ Tm. If M is a variable, then

M ∈ Tm by definition.

We now prove the Lemma by structural induction on C. The only interesting case is

when C is of the form Sm(P ,C1), where C1[M] is Σ-normal, so C1 is syntactically safe by

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 69

induction. Since Sm(P ,C1[M]) is Σ-normal, by (iv) P ∈ Sm, so by (v) P ∈ Tm. It follows

that C ≡ Sm(P ,C1) is syntactically safe.

Appendix G. Confluence of SKIn

Recall that SKT is ΣT minus the rules involving Im, and that I is the set of rules:

(KmIn) Km(In−1) . In
(SmIn) Sm(In, N) . In−1

(KmS′m+1) Km(Sm(M,N)) . Sm+1(Km(M), ↓(Km(N)))

where 0 6 m < n, and ↓(P) denotes the unique SKT -normal form of P .

We first need a way of computing the SKT -normal form of a given term. We build

on the definition of N 7→ Qm(N) (Lemma F.2), and give the definitions in the following

lemma.

Lemma G.1. For each m > 0, let Em be the function defined as follows:

Em(x, P) =df Sm(x, P)

Em(Ij , P) =df Sm(Ij , P)

Em(Kj(N1), P) =df


Kj−1(Em(N1, P)) (m < j)

N1 (m = j)

Sm(Kj(N1), P) (m > j)

Em(Sj(N1, N2), P) =df

{
Sj−1(Em(N1, P), Em(N2, P)) (m < j)

Sm(Sj(N1, N2), P) (m > j)

Whenever N and P are SKT -normal, Em(N,P) ≡ ↓(Sm(N,P)).

Proof. Let .SKT be one-step reduction by rules in SKT . Clearly, Sm(N,P) .∗SKT
Em(N,P), so we just have to prove that Em(N,P) is SKT -normal. In fact, we show

by structural induction on N that

(1) Em(N,P) is SKT -normal whenever N and P are, and

(2) i(Em(N,P)) 6 max(m, i(N)− 1).

Recall that i is defined by i(x) =df 0, i(Ij) =df 0, i(Kj(N1)) =df j + 1, i(Sj(N1, N2)) =df j

(Lemma F.2), that Kj(N) is SKT -normal if and only if N is and j > i(N), and that

Sj(N,P) is SKT -normal if and only if N and P are, and j > i(N); these are facts that we

have already used in Lemma F.2.

If N is a variable, of the form Ij , or Sj(. . . ,) with m > j, or Kj(. . .) with m > j,

then Em(N,P) = Sm(N,P) is clearly SKT -normal (showing (1)), and i(Em(N,P)) = m 6
max(m, i(N)− 1) (showing (2)).

If N ≡ Kj(N1) with m = j, then Em(N,P) ≡ N1 is clearly SKT -normal, hence (1) holds.

Moreover, since N is SKT -normal by assumption, j > i(N1), so i(Em(N,P)) = i(N1) 6
j = m 6 max(m, i(N)− 1).

If N ≡ Kj(N1) with m < j, then Em(N,P) ≡ Kj−1(Em(N1, P)). By the induction

hypothesis, Em(N1, P) is SKT -normal and i(Em(N1, P)) 6 max(m, i(N1)−1) 6 max(m, j−1)

(since j > i(N1), by SKT -normality of N) = j−1 (since m < j). In particular, Em(N,P) =

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 70

Kj−1(Em(N1, P)) is SKT -normal; this shows (1). Moreover, i(Em(N,P)) = j = max(m, j) =

max(m, i(N)− 1), showing (2).

If N ≡ Sj(N1, N2) with m < j, then Em(N,P) ≡ Sj−1(Em(N1, P), Em(N2, P)). By

the induction hypothesis, Em(N1, P) is SKT -normal, Em(N2, P) is SKT -normal, and

i(Em(N1, P)) 6 max(m, i(N1) − 1) 6 max(m, j − 1) (since j > i(N1), by SKT -normality of

N) = j − 1 (since m < j). In particular, Em(N,P) = Sj−1(Em(N1, P), Em(N2, P)) is SKT -

normal; this shows (1). And i(Em(N,P)) = j − 1 = max(m, j − 1) = max(m, i(N)− 1), thus

showing (2).

Lemma F.2 and Lemma G.1 together give us the following method for computing the

SKT -normal form of a term.

Corollary G.2. For all terms M and N:

↓(x) ≡ x

↓(Im) ≡ Im
↓(Km(M)) ≡ Qm(↓(M))

↓(Sm(M,N)) ≡ Em(↓(M), ↓(N)).

Now call I0 the set of all rules (KmS′m+1), m > 0. Let .I0 denote one-step reduction by

I0, and .+
I0

be its transitive closure.

Lemma G.3. If M is SKT -normal and M .I0 N, then Qm(M) .+
I0
Qm(N).

Proof. The proof is by structural induction on the context under which the reduction

occurs in M.

If M ≡ Sj(M1,M2), N ≡ Sj(N1,M2), with M1 .I0 N1, and m < j, then Qm(M) ≡
Sj+1(Qm(M1), Qm(M2)) .+

I0
Sj+1(Qm(N1), Qm(M2)) (by the induction hypothesis), and this is

just Qm(N).

If M ≡ Sj(M1,M2), N ≡ Sj(M1, N2), with M2 .I0 N2, and m < j, then Qm(M) ≡
Sj+1(Qm(M1), Qm(M2)) .+

I0
Sj+1(Qm(M1), Qm(N2)) (by the induction hypothesis), and this is

exactly Qm(N).

If M ≡ Kj(M1), N ≡ Kj(N1), with M1 .I0 N1, and m 6 j, then Qm(M) ≡ Kj+1(Qm(M1))

.+
I0

Kj+1(Qm(N1)) (by the induction hypothesis) ≡ Qm(N).

In all other cases where the enclosing context is not empty, we have Qm(M) ≡ Km(M) .I0
Km(N) ≡ Qm(N).

Finally, when M is itself the reduced I0-redex, we have M ≡ Kj(Sj(M1,M2)), and

N ≡ Sj+1(Kj(M1), Qj(M2)) for some j > 0. There are three cases, corresponding to when

m < j, m = j and m > j. We consider the first:

Qm(M) ≡ Kj+1(Sj+1(Qm(M1), Qm(M2)))

.I0 Sj+2(Kj+1(Qm(M1)), ↓(Kj+1(Qm(M2))))

≡ Sj+2(Kj+1(Qm(M1)), ↓(Kj+1(↓(Km(M2))))) (by Lemma F.2)

≡ Sj+2(Kj+1(Qm(M1)), ↓(()Kj+1(Km(M2))))

≡ Sj+2(Kj+1(Qm(M1)), ↓(()Km(Kj(M2)))) (by rule (KmKj+1))

≡ Sj+2(Kj+1(Qm(M1)), Qm(Qj(M2))) (by Corollary G.2)

≡ Qm(Sj+1(Kj(M1), Qj(M2))) ≡ Qm(N)

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 71

Lemma G.4. If M and P are SKT -normal and M .I0 N, then Em(M,P) .∗I0 Em(N,P).

Proof. The proof is by structural induction on the context under which the reduction

occurs in M.

If M ≡ Sj(M1,M2), N ≡ Sj(N1,M2), with M1 .I0 N1, and m < j, then Em(M,P) ≡
Sj−1(Em(M1, P), Em(M2, P)) .∗I0 Sj−1(Em(N1, P), Em(M2, P)) (by the induction hypothesis)

≡ Em(N,P).

If M ≡ Sj(M1,M2), N ≡ Sj(M1, N2), with M2 .I0 N2, and m < j, then Em(M,P) ≡
Sj−1(Em(M1, P), Em(M2, P)) .∗I0 Sj−1(Em(M1, P), Em(N2, P)) (by the induction hypothesis)

≡ Em(N,P).

If M ≡ Kj(M1), N ≡ Kj(N1), with M1 .I0 N1, and m < j, then Em(M,P) ≡
Kj−1(Em(M1, P)) .∗I0 Kj−1(Em(N1, P)) (by the induction hypothesis) ≡ Em(N,P).

If M ≡ Kj(M1), N ≡ Kj(N1), with M1 .I0 N1, and m = j, then Em(M,P) ≡M1 .I0 N1 ≡
Em(N,P).

In all other cases where the enclosing context is not empty, Em(M,P) ≡ Sm(M,P) .I0
Sm(N,P) ≡ Em(N,P).

Finally, when M is itself the reduced I0-redex, we have M ≡ Kj(Sj(M1,M2)), and

N ≡ Sj+1(Kj(M1), Qj(M2)) for some j > 0. There are three cases:

— If m < j, then

Em(M,P) ≡ Kj−1(Sj−1(Em(M1, P), Em(M2, P)))

.I0 Sj(Kj−1(Em(M1, P)), ↓(Kj−1(Em(M2, P))))

≡ Sj(Kj−1(Em(M1, P)), ↓(Kj−1(↓(Sm(M2, P))))) (by Lemma G.1)

≡ Sj(Kj−1(Em(M1, P)), ↓(Kj−1(Sm(M2, P))))

≡ Sj(Kj−1(Em(M1, P)), ↓(Sm(Kj(M2), P))) (by rule (SmKj))

≡ Sj(Kj−1(Em(M1, P)), Em(Qj(M2), P)) (by Corollary G.2)

≡ Em(Sj+1(Kj(M1),Kj(M2)), P) ≡ Em(N,P)

— If m = j, then Em(M,P) ≡ Sm(M1,M2), and Em(N,P) ≡ Sm(M1, Em(Qm(M2), P)) ≡
Sm(M1,M2). Indeed, Em(Qm(M2), P) ≡ Em(↓(Km(M2)), P) (since M2 is SKT -normal)

≡ ↓(Sm(↓(Km(M2)), P)) (since P is SKT -normal) ≡ ↓(Sm(Km(M2), P)) ≡ ↓(M2) (by rule

(SKm)) ≡M2 (since M2 is SKT -normal).

— If m > j, then Em(M,P) ≡ Sm(M,P) .I0 Sm(N,P) ≡ Sm(Sj+1(Kj(M1),Kj(M2)), P)

≡ Em(Sj+1(Kj(M1),Kj(M2))) (since m > j + 1) ≡ Em(N,P).

Lemma G.5. If N .I0 P , then Em(M,N) .∗I0 Em(M,P).

Proof. The proof is a straightforward induction on the structure of M.

Lemma G.6. If M . N by rule (KjSj+1) for some j > 0, then ↓(M) .∗I0 ↓(N).

Proof. The proof is by structural induction on the context under which reduction takes

place inside M.

If M ≡ Sm(M1,M2), N ≡ Sm(N1,M2) with M1 . N1 by rule (KjSj+1), then ↓(M) ≡
Em(↓(M1), ↓(M2)). By the induction hypothesis, ↓(M1) .∗I0 ↓(N1). By Lemma G.4, it follows

that Em(↓(M1), ↓(M2)) .∗I0 Em(↓(N1), ↓(M2)), that is, ↓(M) .∗I0 ↓(N).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 72

If M ≡ Sm(M1,M2), N ≡ Sm(M1, N2) with M2 . N2 by rule (KjSj+1), then ↓(M) ≡
Em(↓(M1), ↓(M2)). By the induction hypothesis, ↓(M2) .∗I0 ↓(N2). By Lemma G.5, it follows

that Em(↓(M1), ↓(M2)) .∗I0 Em(↓(M1), ↓(N2)), that is, ↓(M) .∗I0 ↓(N).

If M ≡ Km(M1), N ≡ Km(N1) with M1 . N1 by rule (KjSj+1), then ↓(M) ≡ Qm(↓(M1)).

By the induction hypothesis, ↓(M1) .∗I0 ↓(N1). By Lemma G.3, it follows that Qm(↓(M1)) .∗I0
Qm(↓(N1)), that is, ↓(M) .∗I0 ↓(N).

Corollary G.7. Let SK denote the group of rules SKT plus (KmSm+1), m > 0, (alternatively,

all rules in Σ except (KmIn) and (SmIn), 0 6 m < n).

Then SK is confluent.

Proof. The proof is by Hardin’s interpretation method (Hardin 1989): whenever M

rewrites to M1 and to M2 in any finite number of SK-steps, it follows by Lemma G.6

and a straightforward induction on the length of reductions that ↓(M) .∗I0 ↓(M1) and

↓(M) .∗I0 ↓(M2). But I0 is trivially confluent, since it is a left-linear rewrite system with-

out critical pairs (Huet 1977), so ↓(M1) and ↓(M2) have a common I0-reduct N. But

N is now a common SK-reduct of M1 and M2, since I0-reductions can be simulated

in SK .

Observe, by the way, that SK does not terminate, even in the typed case – although

reducing SKT -redexes first, then I0-redexes, always terminates by Lemma 5.2.

Lemma G.8. Σ is confluent.

Proof. We use Hardin’s interpretation method again. Let I1 be the group of rules (SmIn)

and (KmIn), 0 6 m < n. S is clearly terminating (the size of terms decreases) and confluent

(no critical pair). The remaining rules of Σ are just those of SK .

A quick check shows that

(i)

M
I1 - M1

M2

SK

?
..................

I∗1
- N

I∗1SK
=

?

................

where I∗1SK
= denotes any number of I1 steps followed by zero or one applications

of a rule in SK , and I∗1 is the reflexive-transitive closure of I1. Indeed, there are five

critical pairs between I1 and SK , and they all join by just using I∗1 (not SK); that

we need at most one application of a rule in SK follows from the fact that I1 is

right-linear. There are five critical pairs, of which the following is an example, with

0 6 m < n < p:

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 73

(2)

Km(Sn−1(Ip−1, P))

	

(KmSn) (Sn−1Ip−1)

R
Sn(Km(Ip−1), P) Km(Ip−2)

..............
(KmIp), (SnIp)

R 	..
..

..
..

..
..

..

(KmIp−1)

Ip−1

Since I1 terminates (trivial), we may define ν1(M) as the length of the longest I1-

reduction starting from M. By induction on ν1(M), we get

(ii)

M
I∗1 - M1

M2

SK

?
..................

I∗1
- N

I∗1SK
=

?

................

Indeed, this is obvious if the length of the top I∗1 -reduction is zero, and otherwise this

follows by the following pasting:

M
I1 - M ′1

I∗1 - M1

(by confluence of I1)

(by (i)) N1

I∗1
?

................
..

I∗1
- N2

I∗1
?

................

(by induction hypothesis)

M2

SK

?
...

I∗1
- M ′2

SK=

?

................
..

I∗1
- N

I∗1SK
=

?

................

The induction hypothesis applies, since ν1(N1) 6 ν1(M ′1) < ν1(M).

Let .SK be one-step reduction by rules in the SK group. Whenever M .SK N, we have

the I1-normal form I1(M) of M reduces to that, I1(N), of N in at most one application

of a rule in SK , by (ii). A straightforward induction on the lengths of reductions then

shows that if M .∗Σ M1 and M .∗Σ M2, then I1(M) .∗SK I1(M1) and I1(M) .∗SK I1(M2). By

Corollary G.7, I1(M1) and I1(M2) must then have a common SK-reduct, which is then

also a common Σ-reduct of M1 and M2.

Lemma G.9. SKIn is confluent.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 74

Proof. We can use the same proof as for Lemma G.8, replacing I1 by I2, which is

I1 plus (SIm), m > 0. The argument is the same, we just have two additional critical

pairs.

Appendix H. The L Translation

Lemma H.1. If z and z′ are distinct variables, and z is not free in N, then:

1 [P/z]Lz′(N) ≡ Lz′(N);

2 [P/z]L(N) ≡ L(N).

Proof. Observe that 2 follows from 1. We prove 1 by structural induction on N. If N is a

variable x, then x 6≡ z by assumption, so [P/z]Lz′(N) ≡ [P/z](x(z′)) ≡ x([P/z]z′) ≡ x(z′)
(since z 6≡ z′) ≡ Lz′(N).

If N is an application N1(N2), then [P/z]Lz′(N) ≡ ([P/z]Lz′(N1))([P/z]L(N2)) ≡
Lz′(N1)(L(N2)) (by the induction hypothesis) ≡ Lz′(N).

If N is an abstraction λx.N1, then [P/z]Lz′(N) ≡ λx.[P/z]Lz′(N1) ≡ λx.Lz′(N1) (by the

induction hypothesis) ≡ Lz′(N).

Lemma H.2. For every variable z not free in N, for every term P :

[P/z]Lz(N) ≡ LP (N).

Proof. The proof is by structural induction on N.

If N is a variable x, then [P/z]Lz(x) ≡ [P/z](x(z)) ≡ x(P), since z is not free in x, and

the latter is just LP (N).

If N is an application N1(N2), then [P/z]Lz(N1(N2)) ≡ [P/z](Lz(N1)(L(N2))) ≡
([P/z]Lz(N1))([P/z]L(N2)) ≡ LP (N1)([P/z]L(N2)) (by the induction hypothesis)≡ LP (N1)

(L(N2)) (by H.1 2) ≡ LP (N).

And if N is an abstraction λx.N1, then [P/z]Lz(N) ≡ λx.[P/z]Lz(N1) ≡ λx.LP (N1) (by

the induction hypothesis) ≡ LP (N).

Lemma H.3. For all λ-terms M1, M2:

1 [L(M2)/x]LP (M1) .∗ LP ([M2/x]M1)) in the λV -calculus, for every P having no variable

in common with M1;

2 [L(M2)/x]L(M1) .∗ L([M2/x]M1) in the λV -calculus.

Proof. Again, 2 follows from 1. We prove 1 by structural induction on M1.

If M1 ≡ x, then [L(M2)/x]LP (M1) ≡ [L(M2)/x](x(P)) ≡ L(M2)(P) (since P has no

variable in common with M1, in particular x is not free in P) ≡ (λz.Lz(M2))(P) . LP (M2)

(by Lemma H.2) ≡ LP ([M2/x]M1).

If M1 is another variable y, then [L(M2)/x]LP (M1) ≡ [L(M2)/x](y(P)) ≡ y(P) (since

P has no variable in common with M1, and hence y is not free in P) ≡ LP (y) ≡
LP ([M2/x]M1).

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 75

If M1 is an application M3(M4), then

[L(M2)/x]LP (M1) ≡ [L(M2)/x](LP (M3)(L(M4)))

≡ ([L(M2)/x]LP (M3))([L(M2)/x]L(M4))

.∗ LP ([M2/x]M3)(L([M2/x]M4)) (by the induction hypothesis)

≡ LP (([M2/x]M3)([M2/x]M4))

≡ LP ([M2/x]M1).

And if M1 is a λ-abstraction λy.M3, then

[L(M2)/x]LP (M1) ≡ [L(M2)/x](λy.LP (M3))

≡ λy.[L(M2)/x]LP (M3)

.∗ λy.LP ([M2/x]M3) (by the induction hypothesis)

≡ LP ([M2/x]M1).

Lemma H.4. If M . N in the λ-calculus, then

1 LP (M) .+ LP (N) in the λV -calculus, for every P having no variables in common with

M;

2 L(M) .+ L(N) in the λV -calculus.

Proof. Again, 2 follows from 1, so we prove 1 by structural induction on the context

under which the contraction occurs.

Let us examine the base case, where M is itself the contracted redex. So M is a β-redex

(λx.M1)(M2), then N ≡ [M2/x]M1, and LP (M) ≡ (λx.LP (M1))(L(M2)) rewrites in one (βV)

step (since L(M2) ≡ λz · Lz(M2) is a value) to [L(M2)/x]LP (M1), which rewrites in zero

or more (βV) steps to LP ([M2/x]M1) by Lemma H.3 (2), that is, to LP (N).

In the induction case, we have three sub-cases.

If (Case 1) M is of the form M1(M2), with M1 . N1 and N ≡ N1(M2), then LP (M) ≡
LP (M1)(L(M2)) .+ LP (N1)(L(M2)) (by induction hypothesis) ≡ LP (N).

If (Case 2) M is of the form M1(M2) with M2 . N2 and N ≡M1(N2), then the argument

is similar, except that apply the induction hypothesis to show that L(M2) .+ L(N2).

Finally, if (Case 3) M is of the form λx.M1, M1 . N1 and N ≡ λx.N1, then LP (M) ≡
λx.LP (M1) .+ λx.LP (N1) (by induction hypothesis) ≡ LP (N).

Proof of Theorem 6.3. We first claim that, if M . N in the λ-calculus, then L∗(M) .∗
L∗(N) in SKInT. Indeed, L(M) .+ L(N) in λV , by Lemma H.4 (2), so L∗(M) .∗ L∗(N) by

Lemma 6.1 (2). It follows that M .∗ N also implies L∗(M) .∗ L∗(N), by induction on the

length of reductions. It is then immediate that M = N implies L∗(M) = L∗(N).

We have a subject reduction property for the types Tz and V given by the following

lemma.

Lemma H.5. If s ∈ Tz and s .∗η t in the λη-calculus, then t ∈ Tz . If u ∈ V and u .∗η v in

the λη-calculus, then v ∈ V .

Proof. The proof is by induction on the length of reductions, then on the context under

which contraction occurs. We first establish a few auxiliary claims.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 76

1 For all x ∈ X, s ∈ Tz , u ∈ V , v ∈ V , [v/x]s is in Tz , and [v/x]u is in V ; this is by mutual

induction on the structure of s and u, noticing that we replace x ∈ X ⊆ V by a term in

V .

2 For all s ∈ Tz , u ∈ V , z is the only variable in Z free in s, and no variable in Z is free

in u. This is straightforward.

3 For all z, z′ ∈ Z , s ∈ Tz′ , [z/z′]s ∈ Tz . This is an easy structural induction on s, using 2

to show that [z/z′]u ≡ u for every immediate subterm u ∈ V of s.

We now claim that, whenever s ∈ Tz is a λη-redex, and t is its reduct, we have t ∈ Tz .
There are several cases. If s ≡ (λz′.s′)(z) with s′ ∈ Tz′ , then t ≡ [z/z′]s′ (by (β)) is in Tz by

3. If s ≡ (λx.s′)(v) with s′ ∈ Tz and v ∈ V , then t ≡ [v/x]s′ (by β), therefore t ∈ Tz by 1.

If s is an η-redex, then s is of the form λx.t(x) with t ∈ Tz , so t ∈ Tz , obviously.

Similarly, we claim that, whenever u ∈ V is a λη-redex, and v is its reduct, then v ∈ V .

There is only one case: u must be an η-redex, u ≡ λz.v(z) with v ∈ V , so v ∈ V , trivially.

It follows that whenever s ∈ Tz and s .η t, then t ∈ Tz , and whenever u ∈ V and u .η v,

then v ∈ V . This is by induction on the depth of the contracted redex. We have just dealt

with the base case, and the induction case is trivial.

The Lemma then follows by induction on the length of the reduction.

Lemma H.6. If s ∈ Tz and s .∗ t in the λ-calculus, then L−1
z (s) .∗ L−1

z (t) in the λ-calculus.

If u ∈ V and u .∗ v in the λ-calculus, then L−1(u) .∗ L−1(v) in the λ-calculus.

Proof. We first claim that

(1) for all z, z′ ∈ Z , for all s ∈ Tz′ , L−1
z′ (s) ≡ L−1

z ([z/z′]s).
This is an easy structural induction on s, using the fact that z′ is not free in any term in

V (Lemma H.5, claim 2)).

We then claim that

(2) [L−1(v)/x]L−1
z (t) ≡ L−1

z ([v/x]t), and [L−1(v)/x]L−1(u) ≡ L−1([v/x]u), for all t ∈ Tz ,
x ∈ X, and u, v ∈ V .

This is by mutual structural induction on t and u. If t is of the form u(z) with u ∈ V , then

[L−1(v)/x]L−1
z (t) ≡ [L−1(v)/x]L−1(u)

≡ L−1([v/x]u) (by induction)

≡ L−1
z (([v/x]u)(z))

≡ L−1
z (([v/x]u(z)))

≡ L−1
z ([v/x]t) (since x 6≡ z).

If t is of the form s(u) with s ∈ Tz , u ∈ V , then

[L−1(v)/x]L−1
z (t) ≡ [L−1(v)/x](L−1

z (s)(L−1(u)))

≡ L−1
z ([v/x]s)(L−1([v/x]u)) (by induction)

≡ L−1
z ([v/x]t).

If t is of the form λy.s with s ∈ Tz , then [L−1(v)/x]L−1
z (t) ≡ [L−1(v)/x]λy.L−1

z (s) ≡
λy.L−1

z ([v/x]s) (by induction) ≡ L−1
z (λy.[v/x]s) ≡ L−1

z (t). On the other hand, if u ∈ V
is of the form λz.t with t ∈ Tz , then [L−1(v)/x]L−1(u) ≡ [L−1(v)/x]L−1

z (t) ≡ L−1
z ([v/x]t)

(by induction) ≡ L−1(λz.([v/x]t)) ≡ L−1(λz.[v/x]t). If u is a variable y in X, different

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 77

from x, then [L−1(v)/x]L−1(u) ≡ y ≡ L−1(y) ≡ L−1([v/x]u). Finally, if u ≡ x, then

[L−1(v)/x]L−1(u) ≡ L−1(v) ≡ L−1([v/x]u).

If s ∈ Tz is a β-redex, then there are two cases. If s ≡ (λz′.s′)(z) with s′ ∈ Tz′ , then

L−1
z (s) ≡ L−1(λz′.s′) ≡ L−1

z′ (s′) ≡ L−1
z ([z/z′]s′) by (1). If s ≡ λx.t(v) with t ∈ Tz and v ∈ V ,

then L−1
z (s) ≡ (λx.L−1

z (t))(L−1(v)) . [L−1(v)/x]L−1
z (t) ≡ L−1

z ([v/x]t) by (2).

On the other hand, no term in V can be a β-redex. The Lemma then follows by a

straightforward induction on reduction lengths, and when this length is 1, by induction

on the depth at which the contracted redex occurs. We have just dealt with the base case,

and the induction case is trivial.

Acknowledgments

Thanks are due to R. Burstall, A. Compagnoni, G. Dowek, E. Goubault, P. Hancock, M.

Hyland, Z. Luo, J. McKinna and G. Plotkin for encouragement and useful comments.

The first author was funded by an EPSRC fellowship, and his work reported here was in

part carried out at the University of Cambridge Computer Laboratory.

This paper uses Paul Taylor’s commutative diagram macro package (available at ftp://

ftp.dcs.qmw.ac.uk/pub/tex/contrib/pt/diagrams).

References

Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J. (1991) Explicit substitutions. Journal of

Functional Programming 1 (4) 375–416.

Barendregt, H. (1984) The Lambda Calculus, Its Syntax and Semantics. Studies in Logic and the

Foundations of Mathematics 103 North-Holland Publishing Company, Amsterdam.

Bierman, G. and de Paiva, V. (1992) Intuitionistic necessity revisited. In: Logic at Work, Amsterdam,

the Netherlands.

Church, A. (1940) A formulation of the simple theory of types. Journal of Symbolic Logic 5 56–68.

Church, A. (1956) Introduction to Mathematical Logic, Princeton University Press.

Curien, P.-L. (1993) Categorical Combinators, Sequential Algorithms and Functional Programming,

Pitman, second edition.

Curry, H. B. and Feys, R. (1958) Combinatory Logic, volume 1, North Holland.

Dershowitz, N. (1987) Termination of rewriting. Journal of Symbolic Computation 3 69–116.

Diller, A. (1988). Compiling Functional Languages, J. Wiley.

Dougherty, D. J. (1993) Higher-order unification via combinators. Theoretical Computer Science

114 (2) 273–298.

Dowek, G., Hardin, T. and Kirchner, C. (1995) Higher-order unification via explicit substitutions.

In: Proceedings of the 10th Annual IEEE Symposium on Logics in Computer Science (LICS’95)

366–374.

Gentzen, G. (1969) Investigations into logical deduction. In: Szabo, M. E. (ed.) The Collected Works

of Gerhard Gentzen, North Holland.

Girard, J.-Y., Lafont, Y. and Taylor, P. (1989) Proofs and Types, Cambridge University Press.

Goguen, H. (1995) Typed operational semantics. In: Proceedings of the 2nd International Con-

ference on Typed Lambda-Calculi and Applications (TLCA’95). Springer-Verlag Lecture Notes in

Computer Science 902 186–200.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

H. Goguen and J. Goubault-Larrecq 78

Goguen, H. and Luo, Z. (1993) Inductive data types: Well-ordering types revisited. In: Huet, G.

and Plotkin, G. (eds.) Logical Environments, Cambridge University Press 198–218.

Gonthier, G., Abadi, M. and Lévy, J.-J. (1992a) The geometry of optimal lambda reduction.

In: Conference record of the 19th ACM Symposium on Principles of Programming Languages

(POPL’92), ACM Press 15–26.

Gonthier, G., Abadi, M. and Lévy, J.-J. (1992b) Linear logic without boxes. In: Proceedings of the

7th Annual IEEE Symposium on Logics in Computer Science (LICS’92) 223–234.

Goubault-Larrecq, J. (1996a) On computational interpretations of the modal logic S4 I. Cut

elimination. Technical Report 1996-35, Universität Karlsruhe.

Goubault-Larrecq, J. (1996b) On computational interpretations of the modal logic S4 II. The

λevQ-calculus. Technical Report 1996-34, Universität Karlsruhe.

Goubault-Larrecq, J. (1997) On computational interpretations of the modal logic S4 IIIb. Conflu-

ence, termination of λevQH . Research Report RR-3164, INRIA.

Goubault-Larrecq, J. (1998a) A few remarks on SKInT. Research Report RR-3475, INRIA.

(Submitted.)

Goubault-Larrecq, J. (1998b) A proof of weak termination of typed λσ-calculi. In: Proceedings

of the TYPES’96 Workshop, Aussois, France. Preliminary version as INRIA Research Report

RR-3090, January 1997.

Goubault-Larrecq, J. and Mackie, I. (1997) Proof Theory and Automated Deduction, Applied Logic

Series 6, Kluwer. ISBN 0-7923-4593-2.

Griffin, T. G. (1990) A formulas-as-types notion of control. In: Conference record of the 17th Annual

ACM Symposium on Principles of Programming Languages (POPL’90), San Francisco, California

47–58.

Hardin, T. (1989) Confluence results for the pure strong categorical logic CCL. Lambda-calculi as

subsystems of CCL. Theoretical Computer Science 65 (3) 291–342.

Hardin, T. and Lévy, J.-J. (1989) A confluent calculus of substitutions. In: France-Japan A.I. and

Computer Science Symposium.

Hindley, J. R. (1977) Combinatory reductions and lambda reductions compared. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik 23 169–180.

Huet, G. (1977) Confluent reductions: Abstract properties and applications to term rewriting

systems. In: 18th Annual Symposium on Foundations of Computer Science (FOCS’77), IEEE

30–45.

Hughes, J. (1982) Supercombinators, a new implementation method for applicative languages.

Conference Record of the 1982 ACM Symposium on Lisp and Functional Programming (LFP’82)

1–10.

Johnsson, T. (1984) Efficient compilation of lazy evaluation. ACM Conference on Compiler Con-

struction 58–69.

Kamareddine, F. and Rı́os, A. (1997) Extending a λ-calculus with explicit substitution which

preserves strong normalisation into a confluent calculus on open terms. Journal of Functional

Programming 7 (4) 395–420.

Kennaway, R. and Sleep, R. (1988) Director strings as combinators. ACM Transactions on

Programming Languages and Systems 10 (4) 602–626.

Lambek, J. and Scott, P. J. (1989) Introduction to Higher Order Categorical Logic, Cambridge

University Press.

Lamping, J. (1990) An algorithm for optimal lambda-calculus reductions. In: Conference record

of the 17th ACM Symposium on Principles of Programming Languages (POPL’90), ACM Press

16–30.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

Sequent combinators: a Hilbert system for the lambda calculus 79

Melliès, P.-A. (1995) Typed λ-calculi with explicit substitutions may not terminate. In: Proceedings

of the 2nd International Conference on Typed Lambda-Calculi and Applications (TLCA’95).

Springer-Verlag Lecture Notes in Computer Science 902 328–334.

Murthy, C. R. (1991) Classical proofs as programs: How, when and why. In: Proceedings of the

First Annual Symposium on Constructivity in Computer Science.

Peyton-Jones, S. (1986) The Implementation of Functional Programming Languages, Prentice-Hall.

Plotkin, G. D. (1975) Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science

1 (2) 125–159.

Turner, D. A. (1979) A new implementation technique for applicative languages. Software – Practice

and Experience 9 31–49.

Wand, M. and Friedman, D. P. (1986) The mystery of the tower revealed: A non-reflexive description

of the reflexive tower. In: Conference Record of the 1982 ACM Symposium on Lisp and Functional

Programming (LFP’86) 298–307.

Yokouchi, H. (1989) Church–Rosser theorem for a rewriting system on categorical combinators.

Theoretical Computer Science 65 (3) 271–290.

https://doi.org/10.1017/S0960129599002911 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002911

