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THE TURING DEGREES BELOW GENERICS AND RANDOMS

RICHARDA. SHORE

Abstract. If x0 and x1 are both generic, the theories of the degrees below x0 and x1 are the same. The
same is true if both are random. We show that the n-genericity or n-randomness of x do not suffice to
guarantee that the degrees below x have these common theories. We also show that these two theories (for
generics and randoms) are different. These results answer questions of Jockusch as well as Barmpalias,
Day and Lewis.

§1. Introduction. There are two common notions of what it means for a real
number (which we identify with a binary string in Cantor space and so also a
subset of N) to be a “typical” real. One definition, of a “generic” real, is in terms
of category and so topological. The other, of a “random” real, is given in terms
of measure (usually Lesbegue). In each case, there is a specified collection of large
sets (comeager or measure 1) and their complements the small sets (meager or
measure 0). The typical reals are thought of as being in every large set (or no small
set). Of course, this is not literally possible as every singleton is a small set. A now
standard procedure is to restrict the sets being considered to some countable family
given in computability or definability theoretic terms and then require that a typical
real be in every large (no small) set in the family of interest.
As usual, this provides a hierarchy of notions based on the extent of the fam-
ily of sets being considered. This hierarchy begins with the levels of definability
given by formulas of first-order arithmetic (measured by quantifier complexity)
and corresponds in computability theoretic terms to ones describably recursively
(computably) in some iteration of the Turing jump, i.e., of the halting problem.
(Precise definitions are given below in Definitions 2.1–2.3.)
Our concerns here are with the computability theoretic properties of such typical
reals. More specifically, we are interested in the structure of relative complexity of
computation as specified by Turing reducibility. We say that one set A is Turing
computable from, or recursive in, another B, A ≤T B, if there is a (program for a)
TuringmachineΦe which, when equippedwith an oracle forB (i.e., a procedure that
answers all questions of the form “is n ∈ B” that the machine generates), computes
membership in A. The equivalence classes of sets under this transitive relation are
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called the (Turing) degrees. We want to analyze the structure of this relation on the
degrees computable from a typical set X for both notions of typicalness.
Our starting point is an old result of [9] that says that the first-order structure of the
degrees below a (fully, i.e., for all formulas of arithmetic) generic G is independent
of the choice ofG . This follows from either an application of classical 0− 1 laws for
category or by a standard analysis of genericity in terms of (Cohen like) forcing. In
either case, the only relevant fact is that the degree of a set (infinite binary string)
is invariant under finite changes. We denote this common theory (in the language
with just ≤T ) by Th(≤ G). Jockusch (personal communication) asked long ago if
any finite level n of genericity (as in Definition 2.1) suffices to guarantee that the
degrees below an n-generic set have the same first-order theory as those below a
fully generic set.
Now the analogous 0− 1 laws or forcing analysis (for Solovay like forcing) apply
to measure as well as category and so if R and R̂ are both fully random (again for
all levels of first-order arithmetic), the theories of the degrees below each of them
are the same. We call this common theory Th(≤ R). Barmpalias, Day and Lewis [1]
have recently extensively analyzed many degree theoretic properties of random reals
and the amount of randomness needed to guarantee each of them. They explicitly
ask the question for measure analogous to the one above for category (Question 8):
does some level n of randomness (as in Definition 2.2) suffice to guarantee that the
theory of the degrees below an n-random real is this common theory. They also ask
(Question 7) if the two common theories, Th(≤ G) and Th(≤ R), are the same.
We supply negative answers (as were expected) for all of these questions. We also
supply wholesale but precise information about the related theme of distinguishing
between different levels of genericity or randomness in terms of the structureD(≤ x)
of relative computability on sets recursive in such typical degrees x. Our theorems
are as follows:

Theorem 1.1. There are sentences ϕn such that, for n ≥ 2,D(≤ x) � ϕn for every
(n+1)-generic or (n+1)-random x but such thatD(≤ x) � ¬ϕn for some n-generics
and n-randoms.

(These are the same ϕn for n-generic x and n-random x.)
Theorem 1.2. There is a sentence ϕ such that D(≤ x) � ϕ for every 3-random x
but D(≤ x) � ¬ϕ for every 3-generic x.
Now for n = 1, a sentence ϕ1 witnessing Theorem 1.1 is already known: ϕ1
says that there is no minimal degree. Theorem 2.7 implies that no 2-generic or
2-random bounds a minimal degree. On the other hand, some 1-generics and
1-randoms do ([3] and [12] for 1-generics; for 1-randoms, Chaitin’s Ω from [2] is of
degree0′ and soboundsaminimaldegreeby [15]; indeed,by [13] or [6] everydegree is
computed by some 1-random).Thisϕ1 is thenwhat onemight call a natural sentence
distinguishing between 1 and 2 genericity and randomness. It seems quite difficult
to find a wholesale collection of such “natural” sentences distinguishing between
all (or indeed any of) the higher levels of genericity and randomness in terms of the
first-order theory of the degrees below them. At the very least, they would have to be
of increasing quantifier complexity as, with a little care, the Cohen forcing argument
mentioned above shows that, for each n, the degrees below any n+2 generic have a
common n-quantifier theory. Thus, no n-quantifier formula (of degree theory) can
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distinguish between the degrees below an n + 2 generic and an n + 3 generic. The
situation is the same for Solovay like forcing and the levels of randomness by
[10, Theorem IV.2.2]. Our examples ϕn for n ≥ 2 are not only of increasing
complexity but are of a quite different sort than the natural one given here for n = 1.
All of the sentences we supply distinguishing among these degree structures are
based on interpreting arithmetic inside them.Thus,we rely on a fewbasic facts about
generics and randoms that allow us to apply the whole machinery of interpretations
of true arithmetic in degree structures that has been extensively developed over the
past few decades to answer these questions. Once we have explained how we can
interpret arithmetic in the structures and code sets in the interpretations, one will
understand that we can talk about many arithmetic properties of the degrees below
x inside D(≤ x). Thus the sentences ϕn essentially say that there is a definable
standard model of arithmetic in which there is a code for a set not recursive in 0(n)

(the nth iterate of the Turing jump). As noted in Remark 2.4, no (n + 1)-generic
or (n + 1)-random is recursive in 0(n). The fact that our interpretation allows us
to code the top degree itself, makes ϕn true in D(≤ x) for x (n + 1)-generic or
(n + 1)-random. On the other hand, we will see (based on Proposition 2.5 and
Definition 2.6) that only sets recursive in x′′ can be coded in the defined models of
arithmetic insideD(≤ x). Now there are n-generics and n-randoms x below 0(n) and
indeed ones with x(n) = x⊕ 0(n) ≤ 0(n). (Apply Remark 2.4 to the results for n = 1
from [9] for generics and the low basis theorem applied to a Π01 class of 1-randoms
for randoms as mentioned, e.g., in [5, Proposition 8.1.2].) The only degrees coded
below such n-generics or n-randoms are recursive in 0(n). Thus,ϕn is false inD(≤ x)
for n-generic or n-random x with x′′ = x⊕ 0′′ ≤ 0(n).
When it comes to distinguishing between Th(≤ G) and Th(≤ R), our sentence
ϕ simply says that there is a code for a 3-random set in D(≤ x). Here we rely on
the fact that if x is 3-generic then no 3-randoms can be computed from x′′. This
is simply the relativization to 0′′ (via Remark 2.4) of the fact that no 1-generic
computes a 1-random ([4]) plus the fact that, for x 3-generic, x′′ = x⊕ 0′′.

§2. Interpreting arithmetic and coding sets. We want to describe the coding of
arithmetic that we use in D(≤ x) for x at least 2-generic or 2-random. General
background information about coding and interpretations of arithmetic in degree
structures can be found in [19] and arguments similar to the ones described here
in [18]. First, however, our promised (standard) definitions of (n-)genericity and
(n-)randomness.
Definition 2.1. X is n-generic (over A) if for every Σ0n (Σ

A
n ) S ⊆ 2<� there is a

� ⊂ X such that � ∈ S or ∀� ⊇ �(� /∈ S).
Definition 2.2. X is n-random (over A) if for every uniformly Σ0n (Σ

A
n ) collection

Vk of open subsets of 2� of measure at most 2−k , X /∈ ∩Vk . (The Vk are specified by
uniformly Σ0n (Σ

A
n ) subsets Uk of 2

<� such that Z ∈ Vk ⇔ ∃� ⊂ Z(� ∈ Uk).)
Definition 2.3. X is generic (random) if it is n-generic (n-random) for every
n ∈ N. A degree x is (n-) generic or (n-)random if it contains a set which is (n-)generic
or (n-)random.
Remark 2.4. It is clear from the definitions that X is (n + 1)-generic or (n + 1)-

random if and only if it is 1-generic or 1-random, respectively, over 0(n). Thus, for
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example, as it is easy to see that no 1-generic or 1-random can be recursive, no
(n + 1)-generic or (n + 1)-random can be recursive in 0(n).

From now on we assume that x is 2-generic or 2-random. We begin our path
to coding sets and arithmetic into D(≤ x) with a specific highly effective form of
coding orderings of type � called nice effective successor structures introduced in
[16]. They have been used as well in [14] and [17] which contains (in §3) a good
presentation of the details. For our purposes all we need to know is that the scheme
provides a way of coding a sequence 〈dn〉 of independent degrees (i.e., no dn is below
the join of the rest of the degrees dm) by finitely many parameters q̄ which generate
(under ∨ and ∧) a partial lattice including the dn. We assume that the first element
q0 of q̄ is a bound on all the other elements needed to determine this partial lattice.
The crucial property of this coding is the following:

Proposition 2.5 (Shore [16]). Given a q̄ determining a nice effective successor
structure, the set of indices, relative to Q0 ∈ q0, for the degrees in the ideal generated
by the dn is Σ

Q0
3 and any set S such that S = {n|dn ≤ g0, g1} for any g0, g1 ≤ g with

q0 ≤ g is also ΣG3 . Moreover, for every S ∈ ΣZ3 with Q0 ≤T Z, the set of indices
relative to Z, for the ideal generated by {dn|n ∈ S} is ΣZ3 . (Note also that by the
independence of the dn, this ideal contains dn if and only if n ∈ S.)
Definition 2.6. With the notation as in Proposition 2.5, we say that the set S is
coded (with respect to the structure determined by q̄) by the degrees ḡ = 〈g0, g1, g2, g3〉
if S = {n|dn ≤ g0, g1} and S̄ = {n|dn ≤ g2, g3}. So if the ḡ, q̄ ≤ x then S ∈ ΔX3 , i.e.
S ≤T X ′′.

Next, we want to know that we can code these nice effective successor structures
in D(≤ x) and indeed below any y≤ x. We use the fact that the 1-generics are
downward dense below x and so any recursive partial lattice can be embedded
effectively below any 1-generic. (For random degrees the downward density is due
to [11] and for 2-randoms to [10].)

Theorem 2.7 (Jockusch [9] and Barmpalias, Day and Lewis [1]). The 1-generic
degrees are downward dense below x, i.e., ∀y ≤ x∃z ≤ y(y is 1-generic).
Theorem 2.8 (Greenberg and Montalbán [7]). For each recursive partial lattice

L and every 1-genericG , there is an embedding of L into the degrees belowG which is
uniformly recursive in G . So, in particular, every 1-genericG compute degrees q deter-
mining a nice effective successor structure in which the dn are uniformly recursive in q0.

Proposition 2.5 and Definition 2.6 say that only sets S ∈ ΔX3 can be coded by
degrees below x in nice effective successor structures given by q̄≤x. We want a
converse and so a characterization of which sets can be coded in D(≤ x). Again,
we rely on one fact about 2-generics and 2-randoms (due to [11] for randoms) and
one about coding.

Theorem 2.9 (Jockusch [9] and Kautz [10]). Our degree x is RRE (relatively
recursively enumerable), i.e., ∃y < x(x is r.e. in y).
Theorem 2.10 (Shore [16]). If b <T a, a is r.e. in b and I is a ΣB3 ideal in D(≤ b)
then there is an exact pair for I below a, i.e., g0, g1 < a such that I = {z|z ≤ g0, g1}.
Thus, for our x , the sets S which can be coded by ḡ ≤ x in some nice effective
successor structure given by a q̄ ≤ x are precisely the ones ΔX3 . Indeed, there is a
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y ≤ x (any in which x is RRE) such that the sets S so coded by ḡ ≤ x for downward
dense such q̄ ≤ y are also precisely the ones ΔX3 . Thus, we have our characterization.
Corollary 2.11. The sets S that are coded by degrees ḡ below x in some nice
effective successor structure given by q̄ ≤ x are precisely the S ≤T X ′′.

Next, we want to move from simply coding sets to coding them in standard
models of arithmetic given definably inD(≤ x). This will enable us to talk about the
coded sets with the full apparatus of arithmetic and so to say for example that one
of them is not recursive in 0(n) (our sentence ϕn) or is 3-random (our sentence ϕ)
as these facts are clearly definable in first-order arithmetic.
The first step here is to specify schemes giving an interpretation of arithmetic
in D(≤ x). We need a coding scheme S(p), i.e., formulas ϕD(x, p), ϕ+(x, y, p),
ϕ×(x, y, p), and ϕ<(x, y, p) that provide, for each choice p of parameters from
D(≤ x), an interpretation of the language of arithmetic in D(≤ x) with +,×,≤
defined onD = {w|C � ϕD(w)} by the respective formulas to give a structureM(p)
for the languageof arithmetic. (See [8] for a general explanation of interpretations of
one structure in another. Descriptions of ones designed specifically for interpreting
arithmetic in degree structures can be found in [14].) We also include a correctness
condition ϕC (p̄) which says (at least) thatM(p) is a model of some standard finite
axiomatization of arithmetic.
To carry our coding results over to the definable models of arithmetic, we also
require that the parameters p̄ have an initial segment q̄ determining a nice effective
successor structure as above such that the set {dn} determined by q̄ is (in the obvious
order) an initial segment of the domainD ofM(p̄). Providing the translation of the
axioms of arithmetic is a general fact about interpretations as is saying that d0 is
the 0 of the structure. Saying that the dn form an initial segment is phrased by using
the definition of the way dn+1 is generated (in terms of ∨ and ∧) from the degrees
in q̄. We also want to add a condition to ϕC that guarantees that the modelsM(p̄)
for p̄ in D(≤ x) which satisfies it are all standard.
The primary tool for achieving all of these results is Slaman–Woodin forcing
([20]). In the setting of all the degrees D this forcing is used to code arbitrary
countable sets and relations on the degrees by fixed formulas (with free variables)
that depend only on the arity of the relation. As one substitutes arbitrary degrees for
the free variables, the formulas define all countable relations of the corresponding
arity. In proper substructures of D such as our D(≤ x), one has to take care to see
which relations are coded in this way within the structure. The basic arguments in
[20] immediately show that 2-genericity (relative to a listing of the relation itself)
suffices. We need a bit more.

Theorem 2.12 (Greenberg andMontalbán [7]). There is anm ∈ N and a sequence
�n(z̄, ȳ) of formulas of degree theory with |z̄| = n and |ȳ| = m + 1 with the following
property. Suppose that l ∈ N, the setC uniformly computes both the sequence {Ci |i ∈
N} of sets and the kj -ary relations Rj on {deg(Ci)|i ∈ N} as represented by the sets
{〈i1, . . . , ikj

〉 |Rj(deg(Ci1 ), . . . ,deg(Cik ))} for j ≤ l andG is 1-generic over C . Then
there are, for j ≤ l , Pj (of length m) computable from G ⊕ C such that, for each
j ≤ l , Rj(z) ⇔ �kj (z, c,pj). (As usual, c =deg(C ) and similarly for the sets in the
P̄j .) Moreover,�kj (z, c,pj) holds (in D) if and only if it holds in any (equivalently all )
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ideals (i.e., subsets ofD closed downward and under join) containing c and the degrees
in pj .

Greenberg andMontalbán [7] show that this suffices, e.g., to give an interpretation
of arithmetic and a correctness condition that guarantees that any interpretation
M(p̄) with p̄ satisfying the correctness condition is standard as long as one is
working in a D(≤ x) such that the 1-generic degrees are downward dense below
x. (So in particular, the theory of D(≤ x) for any such x computes that of true
arithmetic.) As we need to control the sets coded in such models as well, we restrict
the class of structures considered by requiring that the domains of the models
(or at least their standard part) form a nice effective successor structure.
Given any z < x, by Theorem 2.7, there are u < v < z such that u is 1-generic
and v is 1-generic over u (i.e., v is the degree of the join of U ∈ u and a G which
is 1-generic over U ). (One simply takes a V ≤T Z which is 1-generic and chooses
U = V [0].) Then by Theorem 2.8 one can choose degrees q̄ < uwhich specify a nice
effective successor structure with its dn uniformly recursive in q0. Theorem 2.12 then
says we can code any k-ary relations on the dn which are uniformly recursive in q0
by the corresponding �k by choosing degrees below v to substitute for the variables
of �k and that the relation will be correctly defined in D(≤ x) by this formula and
these parameters. In particular, we can extend q̄ to a sequence p̄ of degrees below v
so that they determine a model of arithmeticM(p̄) defined in D(≤ x) and indeed
in D(≤ v) and extend our correctness condition to describe the needed facts about
the nice effective successor structure given by q̄ and which has the dn as an initial
segment of its domain. (We can explicitly say that d0 is the 0 ofM(p̄). Then we
can use Slaman–Woodin forcing to say that there is a set containing d0 which is
closed under the operations generating the dn and that this set is an initial segment
ofM(p̄) with successor given by the generation process for the dn.)
All that remains now to specify our definable interpretation of arithmetic is to
extend the correctness condition to guarantee that the models so defined are all
standard. This is already handled in [7] using the method of comparison maps
and the downward density of the 1-generics. No additional issues arise because
of our added requirement that an initial segment of the domain of the model be
a nice effective successor structure determined by an initial segment q̄ of p̄. One
simply requires that, for any other structureM(w) with w < q0, there are formulas
(given by Slaman–Woodin coding using parameters below x) that define one-one
order preserving maps from every initial segment ofM(p̄) onto one ofM(w). Our
arguments already show that standard models of the formM(p̄) in our class exist
with p̄ below any given u < v < x. As the required maps between initial segments
of such models and any model are all finitary, they are all definable below v by
Theorem 2.12. Thus, we have the required definable class of standard models with
defining parameters downward dense below x.
We can now complete the proofs of Theorems 1.1 and 1.2.
Our previous analysis of which sets can be coded in the models we have described
shows that all are ΔX3 and there are such models (below u < v < y where u and v are
as we have just described and y is such that x is RRE in it) in which all ΔX3 sets can
be coded. It follows that there is a set S �T 0(n) coded in such a model in D(≤ x)
if and only if X ′′ �T 0(n). As we have noted in Remark 2.4, this condition holds for
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every (n+1)-generic and (n+1)-randomX for n ≥ 2. Thus,ϕn is true for every such
X . On the other hand, as explained above, there are n-generic and n-randomX such
that X ′′ ≡T X ⊕ 0′′ ≤T 0(n) for every n ≥ 2. For such X , every S coded in D(≤ x)
is recursive in 0(n), i.e., ϕn fails in D(≤ x) for such x. This proves Theorem 1.1.
As for Theorem 1.2, if X is 3-random, there is clearly a 3-random set (namely X
itself) coded in one of ourM(p̄) in D(≤ x). On the other hand, we have already
noted above that no 3-random can be computed from X ′′ for any 3-generic X and
so ϕ is false in D(≤ x) for every 3-generic x as required to prove Theorem 1.2.
As a final point, we remark that while Th(≤ G) and Th(≤ R) are different
theories, they have the same Turing (even 1− 1) degree. As noted above, [7] shows
that the downwarddensity of the 1-generics suffices to prove that they each compute
(even in a 1− 1 way) 0(�) or, equivalently, Th(N), the true theory of arithmetic. On
the other hand, the fact ( [9] for generics and the uniformity present in Theorem
III.2.1 of [10]) that there are generics and randoms X such that X (�) ≡T 0(�) (and
indeed with the same 1− 1 degree), shows that each of Th(≤ G) and Th(≤ R) are
even 1− 1 reducible to 0(�) and Th(N).
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DMS-1161175, the Isaac Newton Institute and the John Templeton Foundation.
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