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Abstract

An oriented graph is called singular or nonsingular according as its adjacency matrix is singular or
nonsingular. In this note, by a new approach, we determine the singularity of oriented quasi-trees. The main
results of Chen et al. [‘Singularity of oriented graphs from several classes’, Bull. Aust. Math. Soc. 102(1)
(2020), 7–14] follow as corollaries. Furthermore, we give a necessary condition for an oriented bipartite
graph to be nonsingular. By applying this condition, we characterise nonsingular oriented bipartite graphs
Bm,n when min{m, n} ≤ 3.
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1. Introduction

An oriented graph D is obtained from an undirected graph by assigning a direction to
each edge. The adjacency matrix of D is the matrix A(D) = (aij) such that aij = 1 if
there is an arc from i to j or from j to i, and aij = 0 otherwise. The rank of D, denoted
by r(D), is the rank of its adjacency matrix A(D). Thus D is nonsingular if and only if
r(D) is equal to the order of D.

The chemical importance of the singularity of undirected graphs arises from
the Hückel molecular orbital model. If the molecular graph is singular, then the
corresponding chemical compound is highly reactive and unstable, or nonexistent
(see [6, 11]). In 1957, Collatz and Sinogowitz [3] posed the problem of characterising
all singular graphs. The eigenvalues of paths, cycles and complete graphs have been
determined explicitly (see [4]), and so the singular cases can be determined. Cvetković
and Gutman [5, 6] proved that if B is bipartite and has no cycles with length 0 (mod 4),
then r(B) = 2m(B), where m(B) is the matching number of B. This implies that B is
nonsingular if and only if it has a perfect matching. Guo et al. [8] determined all
nonsingular unicyclic graphs. Li et al. [12] characterised the singularity of line graphs
of unicyclic graphs with depth one. Gutman and Sciriha [9] presented a beautiful result
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showing that the line graph L(T) of a tree T is either nonsingular or has exactly one zero
eigenvalue. For bipartite graphs [7], bicyclic graphs [10] and tricyclic graphs [2]), the
rank sets of each type have been determined, but the characterisations of nonsingular
graphs remain open. A quasi-tree is a connected graph such that removal of a vertex
along with all its incident edges results in a tree. The problem of determining the
singularity of a quasi-tree seems hard and remains open.

There have been only a few investigations on the singularity of oriented graphs.
Monsalve and Rada [13] proposed the sink-source orientations, which preserve the
rank for an oriented graph, and thus are very useful in singularity problems. Based
on this, Zhang et al. [14] characterised the oriented graphs with rank no larger than
two. Chen et al. [1] determined the singularities of oriented graphs from three classes:
graphs in which cycles are vertex disjoint, graphs in which all cycles share exactly one
common vertex and graphs formed by cycles sharing a common path. In this note, we
propose a new approach by using characteristic polynomials and, as an application, the
singularity of an oriented quasi-tree is determined in Section 3. All the main results
in [1] follow as corollaries. In Section 4, we first give a necessary condition for an
oriented bipartite graph Bm,n to be nonsingular, then characterise all nonsingular cases
when min{m, n} ≤ 3.

2. Preliminaries

In this section, we make preparations for the main results. An oriented graph D is
connected if its underlying graph is connected. Two vertices are adjacent if they are
connected by an arc. We indicate an arc from u to v by writing uv. For a vertex v of D,
we denote by N+(v) (respectively, N−(v)) the set of vertices u such that vu (respectively,
uv) is an arc of D and write N(v) = N+(v) ∪ N−(v). The out-degree (respectively,
in-degree) of v is d+(v) = |N+(v)| (respectively, d−(v) = |N−(v)|). The degree of v in
D is d(v) = d+(v) + d−(v). If d(v) = 1, we call v a pendant vertex. We call v a sink
(respectively, source) vertex if d+(v) = 0 (respectively, d−(v) = 0) and a sink-source
vertex if d+(v)d−(v) = 0. Let D = (V(D), E(D)) be an oriented graph. An oriented
graph H = (V(H), E(H)) is called a subgraph of D if V(H) ⊆ V(D) and E(H) ⊆ E(D).

An oriented cycle is called directed if it contains no sink-source vertex. For an
oriented cycle C in D, if u, v ∈ V(C) and either uv ∈ E(D)\E(C) or vu ∈ E(D)\E(C),
then we say that uv is a chord of C. A cycle cover of an oriented graph D is a set
of pairwise vertex disjoint directed cycles which are subgraphs of D and contain all
vertices of D. Obviously there may exist no cycle cover for some oriented graphs.

Let D be an oriented graph of order n and A(D) be its adjacency matrix. Denote
by f (λ) =

∑n
i=0 aiλ

i the characteristic polynomial of A(D). The following lemma is our
main idea and will be used repeatedly throughout this note.

LEMMA 2.1. Let D be an oriented graph.

(i) If D has no cycle cover, then D is singular.
(ii) If D has a unique cycle cover, then D is nonsingular.
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PROOF. Clearly, D is nonsingular if and only if A(D) has no 0 eigenvalue, that is, if
and only if the coefficient a0 in its characteristic polynomial is nonzero. Actually, a0 is
the summation of ±1s and 0s, and each ±1 is the product of 1s (along with a sign) from
n pairwise distinct rows and columns, where n is the order of D. Recall that aij = 1 in
A(D) represents an arc between vertices i and j. It is clear that each ±1 corresponds to
a cycle cover of D. If D has no cycle cover, then a0 = 0. However, if D has a unique
cycle cover, then a0 is either 1 or −1. �

The following lemma can be found in [1], but it can also be viewed as a corollary
of Lemma 2.1, since an oriented graph containing sink-source vertices has no cycle
cover.

LEMMA 2.2 [1]. Let D be an oriented graph. If D has a sink-source vertex, then D is
singular. In particular, if D has a pendant vertex, then D is singular.

3. Oriented quasi-trees

Since the singularities of undirected trees and oriented trees have been determined,
it is natural to ask for the (oriented) graphs obtained from trees by adding one vertex
along with some incident edges or arcs. For undirected quasi-trees, the problem seems
hard and there is no general answer yet. We determine the singularity of oriented
quasi-trees. An example of a nonsingular oriented quasi-tree is depicted in Figure 1.

THEOREM 3.1. Let T be an oriented tree. If D is an oriented quasi-tree obtained from
T by adding a vertex x along with some incident arcs, then D is nonsingular if and only
if the following three conditions hold:

(i) T = v1v2 · · · vn is an oriented path;
(ii) {v1, vn} ⊆ N(x);
(iii) xv1v2 · · · vnx is a directed cycle.

PROOF. Sufficiency. Assume the three conditions hold for D. Observe that x lies in
each possible directed cycle of D, so it is easy to see that xv1v2 · · · vnx is a unique cycle
cover of D. Thus D is nonsingular by Lemma 2.1(ii).

Necessity. By Lemma 2.2, if T has at least three pendant vertices, then they are
adjacent to x. However, D has no cycle cover in such a case. Thus T has exactly two
pendant vertices, that is, it is an oriented path, say T = v1v2 · · · vn, such that {v1, vn} ⊆
N(x). Now it is easy to see that xv1v2 · · · vnx is the only possible cycle cover for D.
Since D must have at least one cycle cover by Lemma 2.1(i), xv1v2 · · · vnx must be a
directed cycle. This completes the proof. �

In [1], the authors considered three types of oriented graphs and determined their
singularities. Obviously, if D is an oriented graph such that all cycles share exactly one
common vertex or is formed by cycles sharing one common path, then D is an oriented
quasi-tree. By Theorem 3.1, the following two corollaries follow immediately.
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FIGURE 1. A nonsingular oriented quasi-tree, in which the arc v2x can be removed or the direction of v2x
can be reversed.

COROLLARY 3.2 [1, Theorem 4.1]. Let D be an oriented connected graph in which all
(≥ 2) cycles share exactly one common vertex. Then D is singular.

COROLLARY 3.3 [1, Theorem 5.1]. Let D be an oriented connected graph formed by
(≥ 2) cycles sharing a path. Then D is nonsingular if and only if it is obtained from a
directed cycle by adding a chord.

Chen et al. also considered oriented graphs in which cycles are pairwise vertex
disjoint. For an oriented graph D belonging to this class, we call two cycles adjacent
if there is a path connecting them using only vertices outside the cycles. By applying
Lemma 2.1, the singularity can also be determined easily.

COROLLARY 3.4 [1, Theorem 3.1]. Let D be an oriented connected graph in which
cycles are vertex disjoint. Then D is nonsingular if and only if it satisfies all the
following conditions:

(i) D has no pendant vertices;
(ii) each oriented cycle in D is directed;
(iii) two oriented cycles are adjacent in D if and only if they are connected by an arc.

PROOF. The sufficiency is confirmed by Lemma 2.1(ii) immediately since all the
directed cycles form a unique cycle cover for D. For the necessity, each vertex must
be in some oriented cycle by Lemma 2.1(i). Thus D has no pendant vertices, and two
oriented cycles are adjacent in D if and only if they are connected by an arc. Now all
the oriented cycles form the only possible cycle cover for D. They must be directed
since D must have at least one cycle cover. �

4. Oriented bipartite graphs

As noted in Section 1, an undirected bipartite graph having no cycles with length
0 (mod 4) is nonsingular if and only if it has a perfect matching. However, the
singularity of a general bipartite graph has not been determined. In this section,
we give a necessary condition for an oriented bipartite graph to be nonsingular. By
applying this result, we characterise all the nonsingular oriented graphs Bm,n when
min{m, n} ≤ 3.

LEMMA 4.1. Let Bm,n be an oriented bipartite graph. If Bm,n is nonsingular, then m = n.
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PROOF. Let X and Y be the two bipartite sets of Bm,n with |X| = m and |Y | = n. By
Lemma 2.1(i), Bm,n has at least one cycle cover. Let C = {C1, C2, . . . , Ck} be such a
cycle cover. Then for each i ∈ {1, 2, . . . , k}, Ci is an even cycle since Bm,n is a bipartite
graph. Thus Ci covers the same number of vertices from X and Y. Since C is a set of
vertex disjoint directed cycles covering all the vertices, it follows that |X| = |Y | and the
proof is done. �

COROLLARY 4.2. Let Bm,n be an oriented bipartite graph.

(i) If min{m, n} = 1, then Bm,n is singular.
(ii) If min{m, n} = 2, then Bm,n is nonsingular if and only if it is a directed cycle C4.

PROOF. For (i), we can also use Lemma 2.2 since Bm,n is actually an oriented tree. For
(ii), the sufficiency is obvious since C4 itself is the unique cycle cover.

For the necessity, if Bm,n is nonsingular, then m = n = 2 by Lemma 4.1. Thus Bm,n
must be a directed cycle C4 since it must have at least one directed cycle by Lemma
2.1(i). �

Finally, we characterise all the nonsingular oriented bipartite graphs Bn,m with
min{m, n} = 3.

THEOREM 4.3. Let Bm,n be an oriented bipartite graph. If min{m, n} = 3, then Bm,n is
nonsingular if and only if m = n = 3 and it contains a directed cycle C6.

PROOF. Necessity. We have m = n = 3 by Lemma 4.1. Further by Lemma 2.1(i), B3,3
contains a cycle cover C. Recall that the directed cycles in C are vertex disjoint. Since
the length of a cycle is at least 4 in a bipartite graph, we know that a cycle cover of
B3,3 contains only a directed cycle C6, that is, C = {C6} for each cycle cover of B3,3.

Sufficiency. Denote X = {x1, x2, x3}, Y = {y1, y2, y3} and let C6 = x1y1x2y2x3y3x1 be a
directed cycle. Let C′6 be any other directed cycle with length 6 distinct with C6. Since
B3,3 contains at most 9 arcs, C′6 and C6 share at least 3 common arcs. We consider the
following two cases.

Case 1: 3 arcs in E(C6) ∩ E(C′6) form a directed path of order 4. Then it is easy to
check that C′6 is exactly the same directed cycle as C6.

Case 2: E(C6) ∩ E(C′6) is a disjoint union of 3 arcs. Assume without loss of generality
that E(C6) ∩ E(C′6) = {x1y1, x2y2, x3y3}. Since C′6 is distinct from C6, it is easy to see
that x1y1x3y3x2y2x1 is the only possible choice for C′6. As C′6 can be obtained from
C6 by applying two interchanges (x2 ↔ x3 and y2 ↔ y3), their corresponding terms in
the determinant of A(B3,3) have the same sign. That is, a0 = ±2 in the characteristic
polynomial. Thus B3,3 is nonsingular. �
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