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THE ORDER OF REFLECTION

JUAN P. AGUILERA

Abstract. Extending Aanderaa’s classical result that �1
1 < �

1
1 , we determine the order between any

two patterns of iterated Σ1
1- and Π1

1-reflection on ordinals. We show that this order of linear reflection is a
prewellordering of length�� . This requires considering the relationship between linear and some non-linear
reflection patterns, such as � ∧ �, the pattern of simultaneous Σ1

1- and Π1
1-reflection. The proofs involve

linking the lengths of α-recursive wellorderings to various forms of stability and reflection properties
satisfied by ordinals α within standard and non-standard models of set theory.

§1. Introduction. Let Lα denote the αth level of Gödel’s constructible hierarchy,
given by L0 = ∅, Lα+1 = all sets definable over Lα with parameters, and L� =⋃
α<� Lα at limit stages. In α-recursion theory, one lifts the usual notion of

“computation” over the natural numbers (or, equivalently, over L�) to Lα , for
sufficiently closed α. As became evident from early work by Kreisel, Kripke, Platek,
Sacks, Takeuti, and others (see e.g., Simpson [11]), facts about recursion on Lα can
be translated into facts about recursion on L� in various ways. In particular, the
termination of simple inductive definitions of sets of natural numbers is deeply
connected with the reflecting structure of L (see e.g., Cenzer [7] or Aczel and
Richter [3]). The purpose of this article is to study the order in which various
reflecting properties given in terms of iterated Σ1

1- and Π1
1-reflection first occur in

the constructible hierarchy.
A formula in the language of set theory is Σ1

1 if it contains only existential
second-order quantifiers (i.e., ranging over classes) followed by arbitrary first-order
quantifiers. An ordinal α is said to be Σ1

1-reflecting if whenever φ is a Σ1
1 formula in

the language of set theory and a1, ... , an are finitely many elements of Lα , then

Lα |= φ(a1, ... , an) implies ∃� < α (a1, ... , an ∈ L� ∧ L� |= φ(a1, ... , an)).

Given a class of ordinals X, an ordinal α is said to be Σ1
1-reflecting on X if one can

additionally demand that the ordinal � above belong to X. The least Σ1
1-reflecting

ordinal is denoted by �1
1 , and �1

1 is defined dually.
An ordinal α is said to be �-stable if Lα is a Σ1-elementary substructure of L� ;

in symbols:

Lα ≺1 L�.
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Given an ordinalα, writeα+ for the smallest admissible ordinal greater thanα. Aczel
and Richter [3] showed that�1

1 �= �1
1 and that a countable ordinalα is Π1

1-reflecting if,
and only if, it isα+-stable. Afterwards, Aanderaa [1] showed that�1

1 < �
1
1 . Gostanian

[8] showed that �1
1 is smaller than the least α which is (α+ + 1)-stable; moreover, he

showed that any α which is both (α+ + 1)-stable and locally countable is also Σ1
1-

reflecting. Later Gostanian and Hrbacek [9] employed Gostanian’s method to give
a new proof of Aanderaa’s theorem. A third, apparently folklore proof appears in
Simpson [11]. Aanderaa’s theorem is also an immediate consequence of Proposition
16 below.

Let us now generalize the definitions of �1
1 and �1

1 as follows:

Definition 1. The notion of a reflection pattern is given inductively: the empty
set is a reflection pattern; if s and t are reflection patterns, then so too are s ∧ t, �s ,
and �s .

Most of the time, we omit writing ∅ and instead write e.g., � for �∅ and � for
�∅.

Definition 2. A reflection pattern is linear if it contains no conjunctions, and
non-linear otherwise.

Definition 3. An ordinal is said to be ∅-reflecting if it is admissible. Let s and t
be reflection patterns. Inductively, an ordinal α is said to be �s-reflecting if it reflects
Σ1

1 statements on s-reflecting ordinals; it is said to be �s-reflecting if it reflects Π1
1

statements on s-reflecting ordinals; it is said to be s ∧ t-reflecting if it is both s-
reflecting and t-reflecting.

Thus, being �-reflecting is the same as being Σ1
1-reflecting, and we might use these

two terms interchangeably; however, the reader will soon realize that the shorthand
notation just introduced is immensely more convenient for longer reflection patterns.

The main problem of concern in this article is the ordering problem: given two
reflection patterns s and t, determine whether the least s-reflecting ordinal is smaller
than the least t-reflecting ordinal.

Definition 4. Let s and t be reflection patterns. We write s < t if the least s-
reflecting ordinal is smaller than the least t-reflecting ordinal. We write s ≤ t if the
least s-reflecting ordinal is smaller than or equal to the least t-reflecting ordinal.

Thus, instances of the ordering problem are e.g., determining whether

�� < ��(� ∧ �)

or whether

�� < �� ∧ ��.
Other related problems emerge. For instance, one may ask whether the least ��-
reflecting ordinal is the least �-reflecting ordinal which is also a limit of �-reflecting
ordinals. (Incidentally, the answer to all three questions is “no.”)

Definition 5. The order of reflection is the set of all reflection patterns,
prewellordered by ≤. The order of linear reflection is the subordering of the order of
reflection comprised of linear reflection patterns.
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In this article, we solve the ordering problem for linear reflection patterns: we
exhibit a way of assigning ordinals to linear patterns in a way that respects their
ordering; in particular, we show:

Theorem 6. The order of linear reflection is a prewellordering of length �� .

The proof requires analyzing the structure of the (full) order of reflection to a
certain extent. We shall see that all reflection patterns are witnessed for the first
time by ordinals between the least α which is α+-stable and the least α which is
(α+ + 1)-stable. In addition, we show:

Theorem 7. The order of linear reflection is cofinal in the order of reflection.

This raises the question of whether the (full) order of reflection also has length
�� . This turns out to be false:

Theorem 8. The pattern �� has rank �� in the order of reflection.

As part of the proof of Theorem 8, we compute the rank of every pattern below
�� in the order of reflection.

In the course of proving these theorems, we find various easier results which we
believe to be of independent interest; these are labelled “propositions.”

Convention. Even if not mentioned explicitly, every ordinal in this article is
assumed to be both countable and locally countable (i.e., for all � < α, there is
a surjection from � to � in Lα). These are the hypotheses for the theorems of
Gostanian and Aczel–Richter mentioned above, respectively.

§2. Stability and Gandy ordinals. For an admissible ordinal α, write

	α = sup
{
	 : 	 is the length of an α-recursive wellordering of a subset of α

}
,

where a subset of α is said to be α-recursive if it is Δ1-definable over Lα with
parameters. The value of 	α remains unchanged if one replaces “ α-recursive” by “
α-r.e.” in the definition. For every admissible α, 	α is easily seen to be a limit and
e.g., additively indecomposable. We always have 	α ≤ α+; an ordinal α is Gandy if
	α = α+. Gostanian [8] showed that �1

1 is the smallest ordinal which is not Gandy.
In fact, he showed that a locally countable ordinal is not Gandy if, and only if, it
is Σ1

1-reflecting. Abramson and Sacks [2] showed that (ℵL�)+ is Gandy, so not every
Gandy ordinal is locally countable.

The purpose of this section is to derive connections between reflecting properties
of ordinals and their degrees of stability. We begin with the following elementary
fact:

Lemma 9. Suppose α is (	α + 1)-stable. Then α is Σ1
1-reflecting.

Proof. Otherwise, 	α = α+ by Gostanian’s characterization of Σ1
1-reflection, so

α is (α+ + 1)-stable. By Gostanian’s result mentioned in the introduction, if α is
(α+ + 1)-stable, then it is Σ1

1-reflecting. 	
Since we know what the degree of stability of �1

1 is, viz. (�1
1)+, a possible first

question is that of the degree of stability of �1
1 .
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Proposition 10. �1
1 is not (	�1

1
+ 1)-stable.

Proof. Let 	 = 	�1
1
. Since 	 < (�1

1 )+, it is not admissible. As we observed
before, 	 is a limit ordinal; thus, the failure of admissibility must be due to an
instance of collection. Choose some Δ0 formula 
 such that for some �a ∈ L	 ,
L	 �|= 
(�a)-collection. To see that �1

1 is not (	 + 1)-stable, consider the formula φ
in the language of set theory asserting that there are sets A and B such that:

1. A and B are transitive sets satisfying V = L, A is admissible, A ∈ B , and there
is �a ∈ B such that B does not satisfy 
(�a)-collection;

2. for each (Ord ∩ A)-recursive linear ordering R ∈ B , either there is an infinite
descending sequence b through R with b ∈ A, or there is an ordinal � ∈ B and
an isomorphism f ∈ B from R to � ;

3. for each � ∈ B , there is an (Ord ∩ A)-recursive linear ordering R ∈ B and an
isomorphism f ∈ B from R to � .

Notice that φ is a Σ1 formula, since the only unbounded quantifier is the one on
B. Moreover, it does not hold in L�1

1
, for the sets A and B would need to be of

the form Lα and L� , with α < � < �1
1 . Conditions (2) and (3) together imply that

� = 	α , but Gostanian’s characterization of �1
1 then implies � = α+, contradicting

condition (1). Finally, it does hold inL	+1, as witnessed byA = L�1
1

andB = L	 . To

see that (2) holds, recall a theorem of Gostanian [8, Theorem 3.2] by which ifα is Σ1
1-

reflecting, then every α-recursive linear ordering which is not a wellordering has an
infinite descending sequence inLα . Thus, every �1

1 -recursive linear ordering R either
has an infinite descending sequence in L�1

1
, or else is isomorphic to some ordinal

� < 	. One can construct an isomorphism witnessing this by transfinite recursion:
at stage � < � , one has defined f � � and sets f(�) equal to the R-least element not
in the range of f � �. Since this process takes �-many stages and R ∈ L�1

1 +1, such
an isomorphism belongs to L�1

1 +	 . Since 	 is additively indecomposable, it belongs

to L	 . The proof that (3) holds is similar. 	
In the proof of Proposition 10, one could also extend conditions (1)–(3) by

demanding that the set A satisfy any first-order property. This shows:

Proposition 11. Suppose α is the least Σ1
1-reflecting ordinal satisfying some first-

order property φ with parameters in α. Then, α is not (	α + 1)-stable.

The proof of the proposition concludes by arriving at the contradiction that there
is a smaller Σ1

1-reflecting ordinal satisfying the property φ. Thus, one can rephrase
the result as:

Proposition 12. Suppose α is (	α + 1)-stable and satisfies some first-order
property φ. Then, α is a limit of Σ1

1-reflecting ordinals satisfying φ.

Proof. The proof of the proposition is as in the comment directly preceding its
statement. The only additional observation needed is that the hypothesis implies
that α is Σ1

1-reflecting, by Lemma 9. 	

Definition 13. We denote by �1,�
1 the least Σ1

1-reflecting ordinal which is a limit
of Σ1

1-reflecting ordinals.
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Proposition 14. �1,�
1 is smaller than the least α which is (	α + 1)-stable.

Proof. Letα be as in the statement. By Proposition 12, it is a limit of Σ1
1-reflecting

ordinals. This fact is first-order expressible over α, since it is recursively inaccessible
(and thus Σ1

1-correct). By Proposition 12 again, α is a limit of Σ1
1-reflecting ordinals

which are limits of Σ1
1-reflecting ordinals. 	

One cannot improve the conclusion of Proposition 10 by replacing 	�1
1

+ 1 by 	�1
1
—

every Σ1
1-reflecting ordinal is stable to the supremum of its recursive wellorderings:

Proposition 15. Suppose α is Σ1
1-reflecting. Then α is 	α-stable.

Proof. Write 	 = 	α . Since 	 is a limit ordinal, it suffices to consider arbitrary
� < 	 and show that

Lα ≺1 L�.

Let a ∈ Lα and φ be a Σ1-formula such that L� |= φ(a). Without loss of generality,
assume that a is an ordinal. Let R be a α-recursive wellordering of length �. In
particular, R is α-r.e., so there is a Σ1 formula 
, such that for all x, y ∈ Lα ,

xRy ↔ Lα |= 
(x, y).

Let us assume for notational simplicity that 
 is defined without parameters. Given
an ordinal α′, let Rα′ be the binary relation given by

xRα′y ↔ Lα′ |= 
(x, y).

Since 
 is Σ1, we have Rα′ ⊂ R
 whenever α′ ≤ 
 ≤ α. In particular, Rα′ is
wellfounded for all α′ < α.

Because L� |= φ(a), there is a subset A of Lα such that

1. A codes a model (M,E) of KP + V = L;
2. M has a largest admissible ordinal 
 and (
, E) is isomorphic to (α,∈);
3. there is an ordinal � of M and a function f ∈M which is an isomorphism

between RM
 (i.e., R
 computed within M) and � , and LM� |= φ(a).

The existence of such an A can be expressed by a set-theoretic Σ1
1 formula over Lα

with parameter a (as well as any other parameters involved in the definition of R).
In particular, reference to α can be made overLα , since α = OrdLα . Thus, clause (2)
can be expressed in a Σ1

1 way over Lα by asserting the existence of a bijection h with
domain α and range (the set of codes of elements of) 
 such that for all �0, �1 < α,
�0 ∈ �1 if, and only if, h(�0)Eh(�1). Note that quantification over α is first-order
over Lα .

By Σ1
1-reflection, there is some α′ < α and someAα′ ⊂ Lα′ such that a ∈ Lα′ and

4. Aα′ codes a model (N,F ) of KP + V = L;
5. N has a largest admissible ordinal � and (�, F ) is isomorphic to (α′,∈);
6. there is an ordinal b of N and a function g ∈ N which is an isomorphism

between RN� and b, and LNb |= φ(a).

Here and for the rest of our lives, let us identify the wellfounded part of N with its
transitive collapse. Condition (5) implies that Lα′ ∈ N . By (6), there is an ordinal b
of N and an isomorphism g ∈ N fromRα′ to b. BecauseRα′ ⊂ R, it is wellfounded,
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and so b really is an ordinal. Now, Lb |= φ(a), and N has no admissible ordinals
above α′, so b < (α′)+ < α. Since φ is Σ1, we conclude that Lα |= φ(a), as was to
be shown. 	

We have shown that �1
1 is 	�1

1
-stable and not (	�1

1
+ 1)-stable. The proof of

Proposition 15 illustrates how one derives consequences of an ordinal being Σ1
1-

reflecting. We shall carry out many similar arguments in the future, perhaps omitting
some of the details that show up repeatedly. We note the following consequence of
Proposition 15:

Proposition 16. There is a Σ1
1-sentence φ such that Lα |= φ if, and only if, α is

Σ1
1-reflecting or Π1

1-reflecting.

Proof. Let φ be the sentence that asserts the existence of some A ⊂ Lα coding a
model (M,E) of KP + V = L containing α and such that

M |= Lα ≺1 L	α .

Clearly, every Π1
1-reflecting ordinal satisfies this sentence, as does every Σ1

1-reflecting
ordinal, by Proposition 15.

Suppose that Lα |= φ, as witnessed by (M,E). Suppose moreover that α is not
Σ1

1-reflecting, so that 	α = α+ by Gostanian’s characterization. Since α ∈M , a well-
known theorem of F. Ville (see e.g., Barwise [5] for a proof) implies that Lα+ ⊂M .
Given an arbitrary � < α+, we then have � ∈M and � < 	Mα , for otherwise 	Mα <
α+, which is impossible, since anyα-recursive wellordering of a subset ofα of length
	Mα would belong to M. By choice of M,

M |= Lα ≺1 L	α ,

and so M |= Lα ≺1 L� . However, being Σ1-elementary is absolute, so we really
do have Lα ≺1 L� and, since � was arbitrary, we have Lα ≺1 Lα+, so α is
Π1

1-reflecting. 	
An immediate consequence is Aanderaa’s classical result:

Corollary 17 (Aanderaa). �1
1 < �

1
1 .

Corollary 17 holds in a strong form:

Corollary 18. �1
1 reflects Σ1

1 sentences on Π1
1-reflecting ordinals.

Proof. Let φ be the sentence from Proposition 16. Then, if 
 is another Σ1
1

sentence, so is the conjunction φ ∧ 
. 	
Corollary 18 is not new; it also follows from the proof of Corollary 17 written

down in Simpson [11]. Our method for analyzing the order of reflection is to prove
results akin to Corollary 18. Now that we know the degree of stability of �1

1 , it is
natural to ask what the least ordinalα which is (	α + 1)-stable is. We shall eventually
see that it is rather small and in fact smaller than the successor of �1

1 in the order
of reflection. We finish this section with some related results that will not be used in
future sections.

Proposition 19. Suppose α is ��-reflecting. Then α is (	α + 1)-stable.
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Figure 1. Ordinals below the least ��-reflecting ordinal. The arrow from left to
right represents the “less than” relation.

Proof. This is similar to the proof of Proposition 15. Again, it is easy to see
that 	α is a limit. Let � = 	α + 1 and a ∈ Lα be such that L� |= φ(a), for some Σ1

formula φ. Let 
 be the Σ1
1 formula expressing that α is locally countable and there

is a set A ⊂ Lα coding a model (M,E) of KP + V = L with α ∈M and such that

M |= “L	α+1 |= φ(a).”

ThenLα |= 
. By hypothesis, there is a Σ1
1-reflecting 
 < α such thatL
 |= 
. Thus,


 is locally countable and there is a model (M,E) of KP + V = L with 
 ∈M and
such that

M |= “L	
+1 |= φ(a).”

By Ville’s theorem, L
+ ⊂M and, since 
 is Σ1
1-reflecting, 	
 < 
+. Hence, M

computes 	
 and 	
 + 1 correctly and so we really have L	
+1 |= φ(a). Since φ is
Σ1, we conclude Lα |= φ(a), as desired. 	

The preceding proof shows that if α is as in Proposition 19, then α is (	α + 2)-
stable, (	α)�-stable, etc. It shows that if f is a function on ordinals which is uniformly
Σ1-definable (with parameters in Lα) on e.g., multiplicatively indecomposable levels
of L containing all parameters, then α is f(	α)-stable.

As a consequence of Propositions 14 and 19, we obtain a negative answer to one
of the questions posed in the introduction.

Corollary 20. �1,�
1 is not ��-reflecting.

We state without proof a result implying that �1,�
1 is smaller than the least ��-

reflecting ordinal. Its proof is similar to that of Theorem 32 below.

Proposition 21. Let 
 denote the least ��-reflecting ordinal. For every � < 
, there
is some α < 
 which is both Σ1

1-reflecting and (	α + �)-stable.

Figure 1 summarizes the relationships between the ordinals considered so far. We
shall also see that

�� < ��.

§3. Reflection transfer theorems.

Definition 22. Let s and t be reflection patterns. We write s → t if every
(countable and locally countable) s-reflecting ordinal is t-reflecting. We write s ≡ t
if s → t and t → s .
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In this section, we will present some results on the transfer of reflection properties,
i.e., results of the form

s → t,

where s and t are reflection patterns. Some properties of the relation → follow
trivially from simple propositional reasoning. For instance,

�s → �,
�s → �,
s → s ∧ s, and

s ∧ t → s.

It is also obvious that the collection of reflection patterns forms a directed preorder
under the relation→. Moreover, if s → t, then �s → �t and �s → �t. These facts, as
well as generalizations thereof obtained by straightforward propositional reasoning
we shall use in the future without mention.

In the next lemmata we present a few reflection transfer results whose proofs,
although possibly not straightforward propositional reasoning, are still rather
elementary:

Lemma 23. Let s be a reflection pattern.

1. ��s → �s ;
2. ��s → �s .
Proof. If α is ��s-reflecting and Lα satisfies a Σ1

1 sentence φ, then, by definition,
there is a �s-reflecting 
 < α such that L
 |= φ. By �s-reflection, there is an s-
reflecting � < 
 such that L
 |= φ. Hence, α is �s-reflecting. The argument for
��s-reflection is similar. 	

For the next reflection transfer results, we need the following observation on the
definability of reflection patterns.

Lemma 24. Let s be a reflection pattern. Then, the property

α is �s-reflecting

is Σ1
1-definable over Lα . Similarly, the property

α is �s-reflecting

is Π1
1-definable over Lα .

Proof. We prove the first claim; the second one is similar. An admissible α
being �s-reflecting means that for every Π1

1 sentence φ with a parameter � < α, if
Lα |= φ(�), then there is � with � < � < α such that � is s-reflecting andL� |= φ(�).
By choosing a suitably universal Π1

1 formula, we can reduce �s-reflection to a single
sentence: it suffices to show that for a fixed Π1

1 sentence φ and a fixed parameter �,
the sentence

(
Lα |= φ(�)

)
→ ∃�

(
� < � < α ∧ “� is s-reflecting” ∧ L� |= φ(�)

)
(1)
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is uniformly equivalent to a Σ1
1 sentence, for then we can quantify over all � < α and

the resulting sentence is still Σ1
1.

The key observation for this is the fact that Π1
1 (and thus also Σ1

1) sentences with
parameters a0, ... , an about a structure of the form L� are equivalent to first-order
sentences with parameters a0, ... , an, � over any admissible L� , with � < � , and the
equivalence is uniform (see Aczel–Richter [3, Theorem 6.2] for a proof of this fact).
Hence, every recursively inaccessible ordinal is Σ1

1-correct and a straightforward
induction shows that whether an ordinal � is t-reflecting is computed correctly by
any L� whenever � < � and � is recursively inaccessible, for any reflection pattern t.
Since every Σ1

1- or Π1
1-reflecting ordinal is recursively inaccessible, (1) is equivalent

to the conjunction of

2. α is recursively inaccessible, and
3.

(
Lα |= φ(�)

)
→ ∃�

(
� < � < α ∧ Lα |=“ � is s-reflecting and L� |= φ(�)”

)
,

and both of these conjuncts are easily seen to be Σ1
1. 	

Lemma 25. Let s and t be reflection patterns.

1. �s ∧ �t → �(�s ∧ t);
2. �s ∧ �t → �(s ∧ �t);
3. �s → �(s ∧ �).

Proof. Recall that if an ordinal α is s-reflecting, for any nontrivial reflection
pattern s, then it is recursively inaccessible and, in fact, a limit of recursively
inaccessible ordinals. (1) then follows from the fact that being �s-reflecting is
expressible by a Π1

1 sentence 
. Thus, if α is �s ∧ �t-reflecting and satisfies some
Π1

1-sentence φ, then the conjunction φ ∧ 
 is also Π1
1, and any ordinal satisfying it

must be �s-reflecting.
(2) is similar. For (3), there are two cases: ifα is �-reflecting, then the result follows

from (2). If α is not �-reflecting, it is not α+-stable. Hence, there is a least � < α+

such that α is not �-stable, i.e., there is a Σ1-formula 
 and some parameter � < α
such that L� |= 
(�), but Lα �|= 
(�). The remainder of the proof is an adaptation
of the proof of Corollary 17 presented in Simpson [11]:

Let φ be the Σ1
1 statement expressing that there is a model (M,E) of KP + V = L

end-extending Lα+1 such that for some � ′ ∈M with � ′ < α+M , LM
�′ |= 
(�) and,

moreover, if � ′ is least such, thenM |=“ α is (<� ′)-stable.” Then Lα |= φ. By choice
of α, there is an s-reflecting ordinal 
 < α such thatL
 |= φ. This means that there is
a model (M,E) of KP + V = L end-extendingL
+1 such that for some � ′ ∈M with
� ′ < 
+M , LM

�′ |= 
(�) and, for the least such � ′, we haveM |=“ 
 is (<� ′)-stable.”
Since 
 is Σ1 and Lα �|= 
(�), � ′ must belong to the illfounded part of M. So 

is s-reflecting and, as in the proof of Proposition 16, 
 is �-reflecting. By taking
conjunctions as before, one sees that every Σ1

1 sentence satisfied by Lα is satisfied by
some (s ∧ �)-reflecting 
 < α, as was to be shown. 	

Example 26. We claim that

��� < ��.

To see this, notice that Lemma 25(1) and (2) implies that

� ∧ � ≡ � ∧ �� ≡ ��� ∧ � ≡ � ∧ ����,
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and thus that

��� < � ∧ �.

On the other hand, Lemma 25(3) implies that

�� ≡ �(� ∧ �),

and so

��� < � ∧ � < ��,

as claimed.

A natural question is whether one can strengthen � in the statement of Lemma
25(3) and, in particular, whether �1

1 is ���-reflecting. By generalizing the proof of
Lemma 25(3), we will soon see that the answer is “yes.”

Definition 27. Let s be a reflection pattern. An ordinal α is � -stable on s if
whenever L� satisfies a Σ1 sentence φ(Lα) with additional parameters in Lα , there
is an s-reflecting � < α such that L�+ |= φ(L�).

Stability to the next admissible on a reflection pattern can be characterized in
terms of reflection as follows:

Lemma 28. Let s be a reflection pattern. The following are equivalent:

1. α is α+-stable on s ;
2. α is �s-reflecting.

We omit the proof of Lemma 28, which is a simple adaptation of Aczel and
Richter’s characterization of �-reflection (see Aczel–Richter [3, Theorem 6.2]).

Theorem 29. Let s be a reflection pattern. Then �s → �(s ∧ �s).

Proof. The conclusion of the theorem follows from Lemma 25 if α is �s-
reflecting, so we may assume that it is not.

Since α is not �s-reflecting, it is not α+-stable on s, so there is a least � < α+ and
a Σ1-formula ∃x φ(y, x) such that L� |= ∃x φ(Lα, x) and whenever � < α and � is
s-reflecting, then L�+ �|= ∃x φ(L�, x). Let 
 be the formula expressing that there is
a model M of KP + V = L such that

1. M contains α.
2. M |= “ ∃x φ(Lα, x) and, letting � be least such thatM |= φ(Lα, a) for some
a ∈ L� , α is <�-stable on s.”

Since α is �s-reflecting, there is an s-reflecting 
 < α with L
 |= 
, as witnessed
by some model N which end-extends L
+ . Let � be N-least such that N |= ∃x ∈
L� φ(L
, x). Then, we cannot have � < 
+, for otherwise 
 is an s-reflecting ordinal
such that L
+ |= ∃x φ(L
, x), contradicting the choice of φ. Thus, � belongs to the
illfounded part of N and, in N, 
 is<�-stable on s. Since 
 is recursively inaccessible
(this can be assumed also if s = ∅), N is correct about s-reflection below 
, so an
argument as before shows that 
 is 
+-stable on s and thus �s-reflecting. 	
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Example 30. By repeatedly applying Theorem 29, we obtain

� ≡ �� ≡ ��� ≡ ··· .
This implies the inequality

�n < �,

for every n ∈ N, which strengthens Corollary 17.

The following strengthening of Proposition 15 is proved similarly:

Lemma 31. Suppose α is �s-reflecting. Then, it is 	α-stable on s.

Proof. Let �(Lα) be a Σ1 sentence with parameters in Lα , say, of the form
∃x �0(x,Lα). Let � < 	α and b ∈ L� be such that L	α |= �0(b, Lα). Since � < 	α ,
there is an α-recursive wellorder R of length �. Let 
 be the sentence asserting the
existence of a model M of KP such that

1. M end-extends Lα+1 andM |= “ α+ exists”;
2. in M, R is isomorphic to an ordinal �0 and there is b0 ∈ LM�0 such that LM�0 |=
�0(b0, Lα).

Then Lα |= 
. Moreover, 
 is Σ1
1 so, by reflection, there is an s-reflecting 
 < α

such that L
 |= 
, as witnessed by some model N which end-extends L
+. Now,
in N, LN


+
|= �0(b0, L
) for some b0 ∈ LN�0 , where �0 is some N-ordinal isomorphic

to R
 . However, R
 ⊂ R, since R is α-recursive, and �0 is Σ0, so we really have
L
+ |= �(L
), as desired. 	

The following theorem, although perhaps odd-looking at first, is crucial for our
analysis of the order of reflection.

Theorem 32. Let s be a reflection pattern. Suppose α is ��s-reflecting but not
�-reflecting. Then α is �s-reflecting.

Proof. Suppose α is �-reflecting on �s-reflecting ordinals but not �-reflecting.
Let 
 be the statement expressing that whenever (M,E) is an end-extension of
Lα+1 satisfying KPi,1 then M |=“ α is not �s-reflecting.” This sentence is Π1

1 and
thus cannot be satisfied by Lα , for otherwise it would be reflected to a �s-reflecting
ordinal. But clearly L� cannot satisfy 
 if � is �s-reflecting.

Thus, Lα �|= 
, so there is a model M of KPi end-extending Lα+1 such that

M |= “α is �s-reflecting.”

For ordinals 
 < α, whether 
 is t-reflecting is computed correctly by M, for any
reflection pattern t. By Lemma 31 applied within M,

M |= “α is 	α-stable on s.”

Let φ be a Π1
1 statement, and a ∈ Lα be a parameter such that Lα |= φ(a).

By Barwise–Gandy–Moschovakis [6], there is a Σ1 formula φ∗ such that for all
admissible � with a ∈ L� ,L� |= φ(a) if, and only if,L�+ |= φ∗(a,L�); thus,Lα+ |=
φ∗(a,Lα). Let b ∈ Lα+ be a witness for φ∗ and let � < α+ be large enough so that

1KPi is the extension of KP by an axiom asserting that every set is contained in an admissible set.
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b ∈ L� . Since α is not �1
1 -reflecting (in the real world), 	α = α+, and thus

� < 	Mα .

Since φ∗ is Σ1,

M |= “L	α |= φ∗(a,Lα), ”

so by the 	α-stability of α on s within M, there is an s-reflecting 
 < α such that

M |= “L
+ |= φ∗(a,L
).”

Since 
+ < α, we really do have

L
+ |= φ∗(a,L
),

and so L
 |= φ(a). This completes the proof of the theorem. 	
Remark 33. Theorem 32 essentially states that

��s → � ∨ �s.

Indeed, this is how we would have stated it had we included disjunctions in the
recursive definition of “reflection pattern.” We have chosen not to do so, however.

Remark 34. The assumption that α is not �-reflecting cannot be removed from
the statement of Theorem 32. To see this, let s be the pattern �. By Lemma 25(1),
� ∧ �→ ���. However, the least � ∧ �-reflecting ordinal is not ��-reflecting, for

� ∧ � < � ∧ �(� ∧ �) ≡ � ∧ ��,

where the equivalence follows from Lemma 25(1).

Remark 35. By analogy with Theorem 29, one might expect that Theorem 32
can be improved to conclude, under the same assumptions, that α is �(�s ∧ s)-
reflecting. However, this is not the case, for let s = �, so the hypothesis yields that
α is ���-reflecting. However, by Lemma 25(3),

��� ≡ ��,

and we have seen in Example 26 that

�� < ��� < � ∧ �,

so we cannot conclude that α is �(� ∧ �)-reflecting.

Example 36. By Lemma 25(1), the least �� reflecting ordinal is not �-reflecting.
Hence, by combining Theorems 29 and 32, one sees that the least �� reflecting
ordinal is �� ∧ ��-reflecting, �� ∧ ���-reflecting, and so on. As a useful exercise,
the reader might want to verify that �� is smaller than both �� and � ∧ � and
conclude that � and �� have order-types � and � + 1 in the order of reflection.

Example 37. Let us present a proof of the inequality

�(� ∧ �(� ∧ �)) < ��.
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We apply Theorem 29 three times:

�� ≡ �(� ∧ �)

≡ �(� ∧ �(� ∧ �))

≡ �(� ∧ �(� ∧ �) ∧ �(� ∧ �(� ∧ �))),

so �� is a limit of �(� ∧ �(� ∧ �))-reflecting ordinals.

The preceding example involved an equivalence of reflection patterns obtained by
applying Theorem 29 multiple times. This type of computation will occur frequently
in latter sections.

We finish this section with a final reflection transfer theorem. It is a strengthening
of Theorem 32 which clarifies the hypothesis on α not being �-reflecting. We state it
separately, however, since the proof is longer and the result is not used afterwards.

Theorem 38. Suppose α is ��(t ∧ �s)-reflecting. Then, one of the following holds:

1. α is �s-reflecting; or
2. α is �(t ∧ �s)-reflecting.

Proof. Suppose α is ��(t ∧ �s)-reflecting but not �s-reflecting. Let � be a Σ1
1

sentence with parameters in Lα such that

Lα |= �;

we need to find a (t ∧ �s)-reflecting 
 < α such that

L
 |= �.

By Barwise–Gandy–Moschovakis [6], there is a Π1 formula �∗(a) such that for every
admissible � containing the parameters of �, L� |= � if, and only if, L�+ |= �∗(L�).
In particular,

Lα+ |= �∗(Lα).

Since α is not �s-reflecting, there is a least � < α+ such that α is not �-stable on
s. Because �∗ is Π1,

L� |= �∗(Lα).

Let φ be the sentence asserting the non-existence of a model M of KPi + V = L
end-extending Lα+1 in which α is �(t ∧ �s)-reflecting. This is a Π1

1 sentence and
thus cannot be satisfied by any ��(t ∧ �s)-reflecting ordinal and, in particular, by
α. Thus, there is a model M of KPi + V = L end-extending Lα+1 and such that

M |= “α is �(t ∧ �s)-reflecting.”

Let � be the sentence asserting the existence of a model N of KP + V = L such that

1. N contains α;
2. in N, letting � be least such that α is not �-stable on s, we have

N |= “L� |= �∗(Lα).”
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Since � < α+ and M must end-extend Lα+, � ∈M and M is correct about � being
the least ordinal at which α fails to be stable on s. Thus, we have

M |= “Lα |= �, ”

as witnessed, say, byLM
α+. Within M, α is �(t ∧ �s)-reflecting and thus there is some


 < α such that

M |= “L
 |= �, ”

and so we really do have

L
 |= �.

Moreover, M is correct about reflection below α, so we may assume that 
 is
(t ∧ �s)-reflecting. By the definition of �, there is a model N of KP + V = L such
that

1. N contains 
;
2. in N, letting � be least such that 
 is not �-stable on s, we have

N |= “L� |= �∗(L
).”

Since 
 is �s-reflecting, it is 
+-stable on s, and thus � cannot be a true ordinal
smaller than 
+. By Ville’s Theorem, N must end-extend L
+. Because �∗ is Π1, it
follows that

L
+ |= �∗(L
),

and thus, that

L
 |= �,

as was to be shown. 	
Remark 39. Theorem 38 could alternatively be stated as

��(t ∧ �s) → �s ∨ �(t ∧ �s).

§4. Linear patterns. The purpose of this section is to prove some results con-
cerning the order of linear reflection. Let us begin with the following “contraction”
lemma, which will be crucial. It will be used frequently throughout the remainder
of the article, sometimes without mention.

Lemma 40 (Contraction). Suppose s is a reflection pattern. Then,

����s → ��s.

Proof. Suppose α is ����s-reflecting. For every Σ1
1-sentence φ satisfied by Lα ,

one can find some ���s-reflecting � < α such thatL� |= φ and � is not �-reflecting.
(To see this, use ���s-reflection to find some ���s-reflecting ordinal �0 such that
L�0 |= φ. If �0 is not �-reflecting, then we are done. Otherwise, �0 is �-reflecting
and ���s-reflecting, thus ����s-reflecting by Lemma 25. Hence, there is some ���s-
reflecting �1 < �0 such thatL�1 |= φ. Proceeding this way, one eventually finds some
���s-reflecting �n such that L�n |= φ and �n is not �-reflecting. Then � = �n is as
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desired.) By Theorem 32, � is ��s-reflecting. By Lemma 23, � is �s-reflecting, as
desired. 	

Remark 41. Although this issue shall not arise again in this article, we caution
the reader that, in contrast to Lemma 40, in general not every ����s-reflecting
ordinal is ��s-reflecting. For example, the least ordinal which is

� ∧ �����-reflecting

is not ���-reflecting. A proof of this fact would require digressing significantly, so
we omit it.

Our first result in this section concerns the length of the order of linear reflection.

Theorem 42. The length of the order of linear reflection is �� .

Proof. Recursively, we assign ordinals to reflection patterns without conjunc-
tion: we assign the ordinal �n to the pattern

�n.

In particular, the ordinal 1 is assigned to the empty pattern. If s and t are (possibly
empty) patterns to which ordinals o(s) and o(t) have been assigned, we assign the
ordinal

o(s) + o(t)

to the pattern

t�s.

We have to check that this assignment is well defined, in the sense that s ≡ t if and
only if o(s) = o(t). Note that if 0 < n < m, then, on the one hand,

α + �n + �m = α + �m,

while, on the other,

�m�s → �m–n�n�s

→ �m–n(�n�s ∧ �) by Lemma 25(3)

→ �m–n(�n�s ∧ ��n�s) by Lemma 25(1)

→ �m–n(�n(�s ∧ ��n�s) ∧ ��n�s) by Lemma 25(2)

→ �m(�s ∧ ��n�s)
→ �m�s ∧ �m��n�s
→ �m�s.

Thus, every �m�s-reflecting ordinal is also �m��n�s-reflecting when n < m; the
converse is also true, by Lemmas 23 and 40. By Lemma 23 and Theorem 29, we have

��n� ≡ ��m�,

https://doi.org/10.1017/jsl.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.3


1570 JUAN P. AGUILERA

for any pair of nonzero numbers n and m. It follows that every linear pattern of
reflection is equivalent to one of the form

�m�k0��k1� ··· ��kl , (2)

with 0 < k0 ≤ k1 ≤ ··· ≤ kl , and moreover there is a unique choice of such
m, l, k0, ... , kl . Observe that transforming a linear reflection pattern into one of
the form (2) preserves the assigned ordinal. We conclude that if s and t are two
linear patterns of reflection and s ≡ t, then o(s) = o(t). Similarly, if o(s) = o(t),
then s and t are each equivalent to the same pattern of the form (2) and hence to
each other, thus proving the claim that the assignment of ordinals is well defined.

Now that we know that the assignment is well defined, we can prove that for all
linear patterns s and t, we have s < t if, and only if, o(s) < o(t). If o(s) < o(t),
let � be so that o(s) + � = o(t) and let r be a pattern so that o(r) = �. Then,
o(r�s) = o(t), so that r�s ≡ t. It follows that every t-reflecting ordinal is a limit of
s-reflecting ordinals.

Conversely, suppose that s < t. We cannot have o(s) = o(t), as this would
contradict well-definedness; we cannot have o(t) < o(s), as this would contradict
the conclusion of the previous paragraph. Therefore, we must have o(s) < o(t). 	

By comparing the ordinals associated to linear reflection patterns in the proof of
Theorem 42, we can determine which one is greater.

Example 43. Let

s = �4�2��2 = �4��0��1��0��0,

t = �3��3�5 = �0��0��0��1��0��0��5,

r = �4��3.

Then

o(s) = 1 + 1 + � + 1 + �4 = �4,

o(t) = �5 + 1 + 1 + � + 1 + 1 + 1 = �5 + � + 3,

o(r) = �3 + �4 = �4,

so s < t and s ≡ r.
The second result of this section is that the linear patterns are cofinal in the order

of reflection.

Theorem 44. The sequence {�n : n ∈ N} is cofinal in the order of reflection.

Proof. To prove the theorem, we shall prove that for every reflection pattern s
there is some n ∈ N such that whenever n ≤ k, for every reflection pattern t, every
�(�k ∧ t)-reflecting ordinal is also�(�k ∧ t ∧ s)-reflecting. If s is a reflection pattern,
then for such an n we have s < �n+1 (this follows by taking t to be trivial), so the
theorem will follow.

This is done by induction on the construction of s. The case that s is of the
form �s ′ is immediate from Theorem 29. Suppose s is of the form s1 ∧ s2. Use the
induction hypothesis to find n1, n2 ∈ N such that whenever n1 ≤ k1 and n2 ≤ k2, for
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every reflection pattern t,

�(�k1 ∧ t) ≡ �(�k1 ∧ t ∧ s1),

and

�(�k2 ∧ t) ≡ �(�k2 ∧ t ∧ s2).

Let n = max{n1, n2} and n ≤ k. Then, we have

�(�k ∧ t) ≡ �(�k ∧ t ∧ s1) ≡ �(�k ∧ t ∧ s1 ∧ s2).

Finally, suppose that s = �s ′. Use the induction hypothesis to find n ∈ N such that
whenever n ≤ k, for every reflection pattern t, every �(�k ∧ t)-reflecting ordinal is
also �(�k ∧ t ∧ s ′)-reflecting. Then,

�(�k+1 ∧ t) ≡ �(��k ∧ t) ≡ �
(
�(�k ∧ s ′)∧ t

)
≡ �(�k+1 ∧�s ′∧ t) ≡ �(�k+1 ∧ t∧ s),

as desired. 	

§5. The reflection order below �2. In this section, we describe the order
of reflection below �2. Below, we express concatenation of patterns by direct
juxtaposition, so that e.g., if s = � ∧ �, then

ss = � ∧ �(� ∧ �).

(We emphasize that ss does not mean (� ∧ �)(� ∧ �), among other reasons, because
this expression has not been defined.) Clearly, if t0 → t1, then st0 → st1 for any s.

Definition 45. Let k ∈ N and s be a reflection pattern. We write ck0 s = s ;
inductively,

ckn+1s = � ∧ �k��ckn s.

We write ckn for ckn s , where s is the empty pattern.

We remark that, in particular, c0
n = (��)n.

Lemma 46. For every n, k ∈ N and every reflection pattern s, we have

� ∧ �k+1s → �ckn s.
Proof. By Lemma 25,

� ∧ �k+1s ≡ � ∧ �(� ∧ �ks) ≡ � ∧ �(��s ∧ �ks) ≡ � ∧ �(� ∧ �k(s ∧ ��s)).

We show by induction on n that

� ∧ �ck1 s ≡ � ∧ �ck1 ckn s.
Suppose that

� ∧ �ck1 s ≡ � ∧ �ck1 ckn s.
After some applications of Lemma 25, we have

� ∧ �ck1 ckn s ≡ � ∧ �(� ∧ �k��ckn s)
≡ ��(� ∧ �k��ckn s) ∧ �(� ∧ �k��ckn s)
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≡ ��(� ∧ �k��ckn s) ∧ �(� ∧ �k��ckn s ∧ ��(� ∧ �k��ckn s))

≡ � ∧ �(� ∧ �k��ckn s ∧ ��(� ∧ �k��ckn s))

≡ � ∧ �(� ∧ �k(��ckn s ∧ ��(� ∧ �k��ckn s))).

After some additional manipulations, we have

��(� ∧ �k��ckn s) ≡ ��(� ∧ �k��ckn s) ∧ ��(�k��ckn s)

≡ ��(� ∧ �k��ckn s) ∧ ����ckn s
≡ ��(� ∧ �k��ckn s) ∧ ��ckn s
≡ ��ckn s ∧ ��(� ∧ �k��ckn s),

where the second equivalence follows from Lemma 23 and the third follows from
Lemma 40. Putting this together with the previous computation,

� ∧ �ck1 ckn s ≡ � ∧ �(� ∧ �k(��ckn s ∧ ��(� ∧ �k��ckn s)))

≡ � ∧ �(� ∧ �k��(� ∧ �k��ckn s))

≡ � ∧ �(� ∧ �k��ckn+1s)

≡ � ∧ �(ck1 c
k
n+1s),

as desired. The chain of equivalences at the beginning of the proof shows that
every � ∧ �k+1s-reflecting ordinal is also �ck1 s-reflecting (the converse is not true
in general), and the equivalence just proved by induction shows that it is therefore
�ckn s-reflecting for any n, as desired. 	

Corollary 47. For every n, k ∈ N, every l ≤ k, and every reflection pattern s, we
have

� ∧ �k+1s → �k+1��clns.

Proof. By Lemma 46,

� ∧ �k+1s → �ckn+1s.

By definition,

�ckn+1s ≡ �(� ∧ �k��ckn s);

in particular,

� ∧ �k+1s → �k+1��ckn s.

Applying Lemma 23 n times to see that

ckn s → clns,

from which the result follows. 	
Lemma 48. For every k ∈ N, every n0, ... , nk ∈ N, and every reflection pattern s,

we have

� ∧ �k+1s → �k+1��c0
n0
c1
n1
... cknk s.
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Proof. Observe that every reflection pattern of the form ��clm, for l, m ∈ N, is of
the form t′��. Thus, Lemma 40 implies that

��clm��s ≡ ��clms.
The result then follows from applying Corollary 47 repeatedly. 	

Definition 49. A reflection pattern is 2 -normal or simply normal 2 if it is of the
form

�nc0
n0
c1
n1
... cknk ,

for some natural numbers k, n, n0, n1, ... , nk . If w is the reflection pattern above, we
define

o(w) = �k+1 · nk + �k · nk–1 + ··· + � · n0 + n.

We shall see that normal patterns have very nice properties.

Lemma 50. Suppose s is a normal reflection pattern. Then,

�� → �s.
Proof. Let

s = �nc0
n0
c1
n1
... cknk .

Suppose first n0 �= 0. By Theorem 29,

�� → �(� ∧ �max{n,k+1}).

By Lemmas 23 and 48,

�(� ∧ �max{n,k+1}) → �(� ∧ �n��c0
n0–1c

1
n1
... cknk ),

as desired. Suppose now that n0 = 0 and let l be least such that nl �= 0 (if there is no
such l, the lemma follows from Theorem 29). Thus,

s = �nclnl ... c
k
nk

= �n(� ∧ �l��clnl –1 ... c
k
nk

).

As before,

�� → �(� ∧ �l��clnl –1c
1
n1
... cknk ).

By Theorem 29,

�(� ∧ �l��clnl –1c
1
n1
... cknk ) → ��n(� ∧ �l��clnl –1c

1
n1
... cknk ).

as desired. 	
Lemma 51. Suppose �t and �s are normal reflection patterns such that o(�t) ≤

o(�s). Then, every �s-reflecting ordinal is either �t-reflecting or �-reflecting.

Proof. Let

�t = �nc0
n0
c1
n1
... cknk ,

2The “ 2” refers to the fact that—as we shall see—restricting to these suffices for computing the order
of reflection below �2.
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and

�s = �mc0
m0
c1
m1
... clml ,

where n and m are nonzero. Without loss of generality, we assume that nk and
ml are also nonzero. It follows that k ≤ l . Suppose that o(�t) < o(�s). It will be
convenient, for illustrative purposes, to consider the case that k < l first. If so, it
suffices to show that every �(� ∧ �l )-reflecting ordinal which is not �-reflecting is
(�t)-reflecting, for then the result follows from Theorem 32 and contraction. By
Lemma 48,

�(� ∧ �l ) → �(� ∧ �l��c0
n0
c1
n1
... cknk ).

By Lemma 25,

�(� ∧ �l��c0
n0
c1
n1
... cknk ) → �(��c0

n0
c1
n1
... cknk ),

and, by Theorem 29,

�(��c0
n0
c1
n1
... cknk ) → �(��nc0

n0
c1
n1
... cknk ),

so that, if a �(� ∧ �l )-reflecting ordinal is not �-reflecting, then it is

�(�nc0
n0
c1
n1
... cknk )-reflecting,

by Theorem 32, i.e., �t-reflecting.
The case k = l is not very different: let i ≤ k be greatest such that ni < mi and

notice that

cimi = cimi –ni c
i
ni
.

Thus,

�t = �nc0
n0
c1
n1
... ci–1

ni–1
t′,

where t′ = cini ... c
k
nk

; and

�s = �mc0
m0
c1
m1
... cimi –ni t

′.

It suffices to show that every�(� ∧ �i��t′)-reflecting ordinal which is not�-reflecting
is �t-reflecting, for then the result follows from Theorem 32 and contraction. Lemma
48 (with ��t′ being the s in the statement) shows that

�(� ∧ �i��t′) → �(� ∧ �i��c0
n0
c1
n1
... ci–1

ni–1
��t′).

By Lemma 25,

�(� ∧ �i��c0
n0
c1
n1
... ci–1

ni–1
��t′) → �(��i��c0

n0
c1
n1
... ci–1

ni–1
��t′).

By contraction,

�(��i��c0
n0
c1
n1
... ci–1

ni–1
��t′) → �(����c0

n0
c1
n1
... ci–1

ni–1
��t′)

→ �(��c0
n0
c1
n1
... ci–1

ni–1
��t′)

→ �(��c0
n0
c1
n1
... ci–1

ni–1
t′).
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By Theorem 29,

�(��c0
n0
c1
n1
... ci–1

ni–1
t′) → �(��nc0

n0
c1
n1
... ci–1

ni–1
t′),

so that if a �(� ∧ �i��t′)-reflecting ordinal is not �-reflecting, then it is

�(�nc0
n0
c1
n1
... ci–1

ni–1
t′)-reflecting,

by Theorem 32, as desired. 	
Although Lemma 51 does not directly provide any equivalences between reflection

patterns, it leads to some when coupled with previous techniques.

Lemma 52. Suppose s0, s1, ... , sn are normal reflection patterns, all of the form �v.
Suppose moreover that o(si) ≤ o(sn) for all i ≤ n. Then,

�sn ≡ �(s0 ∧ s1 ∧ ··· ∧ sn) ≡ �s0 ∧ �s1 ∧ ··· ∧ �sn.

Proof. We restrict to the case n = 1 and let s0 = t and s1 = s , since the general
case is similar. We prove �s ≡ �(s ∧ t), since clearly every �(s ∧ t)-reflecting
ordinal is (�s ∧ �t)-reflecting, and every (�s ∧ �t)-reflecting ordinal is �s-reflecting.
Suppose α is �s-reflecting and let φ be a Σ1

1-sentence satisfied by Lα . We must find
some (s ∧ t)-reflecting � < α such that L� |= φ. By Lemma 51, it suffices that � be
s-reflecting and not �-reflecting. � is found as in the proof of Lemma 40:

By �s-reflection, there is some s-reflecting ordinal �0 such that L�0 |= φ. If �0

is not �-reflecting, then we are done. Otherwise, �0 is �-reflecting and s-reflecting,
thus (because s is of the form �v) �s-reflecting by Lemma 25. Hence, there is some
s-reflecting �1 < �0 such that L�1 |= φ. Proceeding this way, one eventually finds
some s-reflecting �n such that L�n |= φ and �n is not �-reflecting. Then � = �n is as
desired. 	

Lemma 53. Suppose t is a normal reflection pattern. Then � ∧ t is equivalent to a
normal reflection pattern.

Proof. Put t = �kc0
m0
c1
m1
... clml . The lemma is immediate unless k �= 0 and there

is some least i ≤ l such that mi �= 0. Thus,

t = �kcimi c
i+1
mi+1
... clml

= �k(� ∧ �i��cimi –1c
i+1
mi+1
... clml ).

Let

s = ck+i
mk+i
ck+i+1
mk+i+1

... clml ,

so that

t = �k(� ∧ �i��cimi –1c
i+1
mi+1
... ck+i–1

mk+i–1
s).

If all the displayed mj are zero, then the result follows easily; otherwise, by Lemma
25 and contraction,

t ≡ �k(� ∧ �i��cimi –1c
i+1
mi+1
... ck+i–1

mk+i–1
��s).
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By Lemma 25,

� ∧ t ≡ � ∧ �k(� ∧ �i��cimi –1c
i+1
mi+1
... ck+i–1

mk+i–1
��s)

≡ � ∧ �k(�i��cimi –1c
i+1
mi+1
... ck+i–1

mk+i–1
��s)

≡ � ∧ �k+i��cimi –1c
i+1
mi+1
... ck+i–1

mk+i–1
��s).

By Lemma 48 on the one hand and Lemma 23 and contraction on the other,

� ∧ �k+i��s ≡ � ∧ t, (3)

but the reflection pattern on the left-hand side is readily seen to be equivalent to a
normal one. 	

Theorem 55 below is our main technical result. Before stating it, we introduce the
notion of a pattern being quasi-normal.

Definition 54. The notion of a reflection pattern being quasi-normal is defined
recursively: every normal reflection pattern is quasi-normal. Suppose that

1. s is a quasi-normal reflection pattern which is not normal, or s is a normal
reflection pattern of the form �s ′, and

2. t is a quasi-normal reflection pattern which is not normal, or t is a normal
reflection pattern of the form �t′.

Then s ∧ t and �t are quasi-normal reflection patterns.

Theorem 55. Let s be a reflection pattern in which the string �� does not occur.
Then, s is equivalent to a quasi-normal reflection pattern.

Proof. We shall prove the following claims:

1. If s is a normal reflection pattern, then so too is �s and, if s is of the form �s ′,
�s is also equivalent to a normal reflection pattern.

2. If s and t are normal reflection patterns, and at least one of them is not of the
form �v, then s ∧ t is equivalent to a normal reflection pattern.

3. If s is a quasi-normal reflection pattern which is not normal, then �s and � ∧ s
are equivalent to normal reflection patterns, provided the string �� does not
occur in them.

Let us derive the conclusion of the theorem from (1)–(3) by induction on the
construction of s. Suppose s is quasi-normal. Then so too is �s by definition.
Suppose s is quasi-normal and the string �� does not occur in �s . If s is not normal,
then �s is normal by (3). Otherwise, if s is normal, then, since �� does not occur
in s, s must be of the form �s ′, and thus �s is normal by (1). Lastly, suppose that
s and t are quasi-normal reflection patterns. If none of them is normal, then s ∧ t
is quasi-normal by definition. Otherwise, say t is normal and s is not. If t is of the
form �t′, then s ∧ t is quasi-normal by definition. Otherwise, t ≡ � ∧ t, so that

s ∧ t ≡ � ∧ s ∧ t.

� ∧ s is normal by (3) and thus s ∧ t is normal by (2). Finally, if both s and t are
normal, then either they are both of the form �u, so that s ∧ t is quasi-normal by
definition, or s ∧ t ≡ � ∧ s ∧ t is normal by (2).
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We begin with the proof of (1). Clearly, if s is equivalent to a normal reflection
pattern, then so too is �s . We only need to consider the string �s in the case that s
is of the form

�mc0
m0
c1
m1
... clml ,

where m is nonzero. Then, it is easy to see that

��mc0
m0
c1
m1
... clml ≡ ��c

0
m0
c1
m1
... clml

≡ c0
m0+1c

1
m1
... clml .

This proves (1).
To prove (2), let

s = �mc0
m0
c1
m1
... clml

be as above, and let

t = �nc0
n0
c1
n1
... cknk .

We need to show that s ∧ t is equivalent to a normal reflection pattern. By the case
hypothesis, at least one of m and n is zero, so that

s ∧ t ≡ � ∧ s ∧ t.

Write n = n–1 andm = m–1 and let i and j be least such that ni andmj are nonzero,
respectively. There are four cases to consider. The first one is that in which both i
and j are equal to 0. Then, there are reflection patterns u and v, both normal, such
that

t = ��u

and

s = ��v.

The conclusion then follows from Lemma 52.
We now consider the case that both i and j are nonzero. The remaining cases, in

which one of them is 0 and the other one is not, are treated similarly, and we leave
them to the reader. We need to show that the pattern

s ∧ t ≡ � ∧ s ∧ t ≡ (� ∧ s) ∧ (� ∧ t)

is normal. It was shown as part of Lemma 53 (see Equation (3)) that if s is normal,
then � ∧ s has the form

� ∧ �p��cpmp–1 ... c
l
ml
,

for some suitably chosen p ∈ N. Similarly, � ∧ t has the form

� ∧ �q��cqnq–1 ... c
k
nk
,

for some suitably chosen q ∈ N. Put u = cpmp–1 ... c
l
ml

and v = cqnq–1 ... c
k
nk

, so

� ∧ s ≡ � ∧ �p��u
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and

� ∧ t ≡ � ∧ �q��v.

By Lemma 52 one of u and v, say w, has the property that

��w ≡ �(�u ∧ �v).

Let r = max{p, q}. 	
Claim 56. � ∧ �r��w ≡ s ∧ t.
Proof. We have to show that

� ∧ �r��w ≡ � ∧ �p��u ∧ �q��v.

By direct computation, using the usual tools:

� ∧ �r��w ≡ ��r��w ∧ �r��w
≡ ����w ∧ �r��w
≡ ��w ∧ �r��w
≡ �(�u ∧ �v) ∧ �r��w
≡ � ∧ �r(��w ∧ �(�u ∧ �v))

≡ � ∧ �r��w ∧ �r��u ∧ �r��v.

Since w is either u or v, we have

� ∧ �r��w ∧ �r��u ∧ �r��v ≡ � ∧ �r��u ∧ �r��v.

Now, on the one hand, r = max{p, q} and this implies that

� ∧ �r��u ∧ �r��v → � ∧ �p��u ∧ �q��v.

On the other hand,

� ∧ �p��u ∧ �q��v → �(�p��u ∧ �q��v)
→ �(�r��u ∧ �r��v),

where the last implication follows by Theorem 29. Since r is one of p and q, we have

� ∧ �p��u ∧ �q��v → (�(�r��u ∧ �r��v) ∧ �r).

With one last computation, we obtain:

�(�r��u ∧ �r��v) ∧ �r → �(�r��u ∧ �r��v) ∧ �r�(�r��u ∧ �r��v)
→ � ∧ �r�(�r��u ∧ �r��v)
→ � ∧ �r��r��u ∧ �r��r��v
→ � ∧ �r��u ∧ �r��v
→ �(�r��u ∧ �r��v) ∧ �r,

so that

�(�r��u ∧ �r��v) ∧ �r ≡ � ∧ �r��u ∧ �r��v ≡ � ∧ �p��u ∧ �q��v.
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We have shown that

� ∧ �r��w ≡ � ∧ �r��u ∧ �r��v
≡ � ∧ �p��u ∧ �q��v,

as had been claimed. 	
Since w is a normal reflection pattern by assumption, Lemma 53 implies that

� ∧ �r��w is equivalent to a normal reflection pattern. This proves (2).
It remains to prove claim (3). Let s be a quasi-normal reflection pattern which

is not normal. We prove that � ∧ s is equivalent to a normal reflection pattern by
induction on the construction on s. Suppose that s = �t and � ∧ t is equivalent to
a normal reflection pattern. Since

� ∧ s ≡ � ∧ �(� ∧ t)

and � ∧ t is equivalent to a normal reflection pattern, �(� ∧ s) is too, so the result
follows from (2). Suppose that s = t0 ∧ t1, and that � ∧ t0 and � ∧ t1 are equivalent
to normal reflection pattern. Then

� ∧ s ≡ (� ∧ t0) ∧ (� ∧ t1),

so the result follows again from (2).
The proof that �s is equivalent to a normal reflection pattern is not quite by

induction, but it is similar. By the definition of “quasi-normal,” s is of the form

�k(s0 ∧ s1 ∧ ··· ∧ sn),

for some k (possibly zero) and some s0, s1, ... , sn, each of which is either normal or
quasi-normal but not normal. We may assume without loss of generality that none
of the si is a conjunction (otherwise we could have split it into s0

i and s1
i ). None of

the si can be of the form �s ′i , because the definition of “quasi-normal pattern,” does
not allow taking conjunctions of patterns of the form �s ′, so if si were of the form
�s ′i , then the conjunction

s0 ∧ s1 ∧ ··· ∧ sn
would have to be trivial, and thus we would have

s = �ksi ,

contradicting the hypothesis that s is not normal. We conclude that each si is
necessarily of the form �s ′i .

With an application of Theorem 29, we see that

�(s0 ∧ s1 ∧ ··· ∧ sn) → �s
→ �(�ks0 ∧ �ks1 ∧ ··· ∧ �ksn)
→ �(s0 ∧ s1 ∧ ··· ∧ sn),

where the last implication follows from the fact that each si is of the form �s ′i . Hence,

�s ≡ �(s0 ∧ s1 ∧ ··· ∧ sn).
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If each si is normal, then �s is equivalent to a normal reflection pattern by Lemma
52. Otherwise, say si is not normal. Certainly it is quasi-normal, so—by the same
argument—it must be of the form �ki (s0

i ∧ s1
i ... s

ni
i ) for some ki and some patterns

s0
i , s

1
i , ... , s

ni
i , all of the form �s ′. As before, we obtain

�s ≡ �(s0 ∧ ··· ∧ si–1 ∧ s0
i ∧ s1

i ∧ ··· ∧ snii ∧ si+1 ∧ ··· ∧ sn).

Continuing this way, we eventually see that �s is equivalent to a reflection pattern of
the form �(t0 ∧ t1 ∧ ··· ∧ tn) for some n, where each ti is a normal reflection pattern
of the form �t′, so that the result follows from Lemma 52. This proves (3) and
completes the proof of the theorem.

With little more work, we can show that quasi-normal patterns which are not
normal play no role in computing the rank of a normal pattern in the order of
reflection. To do this, we assign ordinals to these patterns:

Definition 57. Recursively, we extend o(·) to quasi-normal reflection patterns
which are not normal.

1. Let s and t be normal patterns, both of the form �u. Then o(s ∧ t) is defined
to be max{o(s), o(t)}.

2. Suppose s is quasi-normal but not normal. Then o(�s) = o(s) + 1.
3. Suppose t is quasi-normal but not normal and s is quasi-normal and of the

form �s ′. Then o(s ∧ t) = max{o(s), o(t)}.

Lemma 58. Suppose s is a quasi-normal reflection pattern which is not normal.
Then, o(s) is a successor ordinal.

Proof. This is immediate from the definition. 	
Lemma 59. Suppose s is a quasi-normal reflection pattern and t is a normal reflection

pattern such that o(s) = o(t). Then, every t-reflecting ordinal is either �-reflecting or
s-reflecting.

Proof. This is proved by induction on the construction of s. If s is a conjunction
of two normal reflection patterns, both of the form �u, then the lemma follows
from Lemma 51. If s is of the form s0 ∧ s1, where, say, s1 is not normal, then
o(s) = max{o(s0), o(s1)}. Both o(s0) and o(s1) are successor ordinals, so the normal
reflection patterns t0 and t1 such that o(t0) = o(s0) and o(t1) = o(s1) are both of the
form �t′. Assume without loss of generality that o(s0) < o(s1). By Lemma 51, every
t1-reflecting ordinal is either �-reflecting or t0-reflecting. By the induction hypothesis
applied to each of s0 and s1, every t1-reflecting ordinal is either �-reflecting or both
s0-reflecting and s1-reflecting.

Finally, if s is of the form �s ′, for some s ′ which is quasi-normal but not normal,
then t is of the form �t′, for some t′. By induction hypothesis, every t′-reflecting
ordinal is either �-reflecting or s ′-reflecting. Suppose α is t-reflecting but not �-
reflecting. There are two cases: if α is �-reflecting on ordinals which are t′-reflecting
but not �-reflecting, then α is �-reflecting on ordinals which are s ′-reflecting, by
induction hypothesis, so α is �s ′-reflecting.

The other case is a bit subtler: suppose α is �(� ∧ t′)-reflecting. s ′ is quasi-normal
but not normal, so o(s ′) is a successor ordinal, and thus t′ is of the form �t′′. It
follows thatα is �(�t′ ∧ t′)-reflecting and in particular ��t′-reflecting. We claim that
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α is �-reflecting on ordinals which are �-reflecting on ordinals which are t′-reflecting
but not �-reflecting. To see this, let φ be any Π1

1 sentence satisfied by Lα and find
a �t′-reflecting ordinal � < α such that L� satisfies φ. Now, let 
 be a Σ1

1 sentence
satisfied by L� . We must find some � < � which is t′-reflecting and not �-reflecting
and such that L� |= 
. By �t′-reflection, there is some �0 < � which is t′-reflecting
and such that L�0 |= 
. If �0 is not �-reflecting, then we are done. Otherwise, �0
is �-reflecting and t′-reflecting, thus �t′-reflecting. Hence, there is �1 < �0 which is
t′-reflecting and such that L�1 |= 
. Since there cannot be an infinite descending
sequence of ordinals, this procedure eventually produces a � as desired. Thus, α is
�-reflecting on ordinals which are �-reflecting on ordinals which are s ′-reflecting
(by induction hypothesis), i.e., α is ��s ′-reflecting. Since α is not �-reflecting (by
assumption), it is �s ′-reflecting, by Theorem 32, as desired. 	

Corollary 60. Suppose s is a quasi-normal reflection pattern and t is a normal
reflection pattern such that o(s) = o(t). Then, the least s-reflecting ordinal is the least
t-reflecting ordinal.

Proof. Let us assume that s is not normal, for otherwise the result is trivial.
That the least t-reflecting ordinal is s-reflecting follows from Lemma 59 and the
observation that the least t-reflecting ordinal is not �-reflecting, by Lemmas 25 and
58. That the least s-reflecting ordinal is t-reflecting is immediate from the definition
of o(s). 	

Theorem 61. �� has order-type �� in the order of reflection.

Proof. If a reflection pattern contains the string ��, then naturally, it cannot be
strictly smaller than ��. If it does not contain the string ��, then it is equivalent to
a quasi-normal reflection pattern by Theorem 55. By Corollary 60, the least ordinal
which reflects according to a quasi-normal reflection pattern is the least ordinal
which reflects according to some normal reflection pattern, and these ordinals are
all smaller than the least ��-reflecting ordinal, by Lemma 50. Thus, the rank of ��
in the order of reflection is the order-type of the set of normal reflection patterns.
An easy induction using Lemma 48 shows that, for normal reflection patterns u and
v, u < v if, and only if, o(u) < o(v), so the result follows. 	

§6. Concluding remarks and questions. The most obvious open problem is that
of the length of the order of reflection:

Question 62. What is the length of the order of reflection?

While we do not have an answer, the following proposition, which contrasts with
the fact that �1

1 is the least ordinal α which is α+-stable, provides a (non-recursive)
upper bound:

Proposition 63. Let s be a reflection pattern and suppose α is an ordinal such that

Lα ≺1 Lα++1.

Then, α is s-reflecting.
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Proof. Since

Lα ≺1 Lα+ ,

it follows that α is �-reflecting. By Gostanian’s theorem [8] mentioned in the
introduction, α is �-reflecting. Inductively, suppose α is s-reflecting and let 
 be a
Σ1

1 sentence such that

Lα |= 
.

Choose a Π1 sentence 
∗ such that for all admissible � containing all relevant
parameters,

L� |= 
,

if, and only if,

L�+ |= 
∗(L�),

so that, in particular,

Lα+ |= 
∗(Lα).

Then, from the point of view of Lα++1, there are admissible sets Lα and Lα+ such
that

1. α is s-reflecting (this is a first-order statement about Lα+),
2. Lα+ |= 
∗(Lα).

Thus, by stability, there are admissible sets L� and L�+ in Lα such that � is s-
reflecting and L�+ |= 
∗(L�). Hence, α is �s-reflecting. A similar argument shows
that α is �s-reflecting. A simple induction thus shows that α is s-reflecting for every
reflection pattern. 	

The length of the order of reflection is thus at most the least ordinal α such that

Lα ≺1 Lα++1.

Moreover, surely each inequality between reflection patterns is provable in any
theory that proves the existence of the corresponding ordinals. This suggests strongly
that the length of the order of reflection is smaller than the proof-theoretic ordinal
of the subsystem Π1

2-CA 0 of analysis and in fact smaller than the ordinal described
in Rathjen [10], though we do not have a proof of this.

In regard to lower bounds, the reader may consult [4] for an example of a chain
of length ε0 in the order of reflection. The construction in [4] uses Theorem 38.
The facts that � and �2 have ranks � and �� in the order of reflection suggest that
perhaps the bound is optimal.

Question 64. Is the rank of �3 in the order of reflection ��
�

?

It was shown in [4] that the rank of �3 is at least ��
�

. A related project concerns
studying reflection patterns with focus on the implication ordering:

Question 65. What is the structure of the set of reflection patterns under the
ordering →?
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