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Whilst the relationship between initial algebras and monads is well understood, the

relationship between final coalgebras and comonads is less well explored. This paper shows

that the problem is more subtle than might appear at first glance: final coalgebras can form

monads just as easily as comonads, and, dually, initial algebras form both monads and

comonads.

In developing these theories we strive to provide them with an associated notion of

syntax. In the case of initial algebras and monads this corresponds to the standard notion of

algebraic theories consisting of signatures and equations: models of such algebraic theories

are precisely the algebras of the representing monad. We attempt to emulate this result for

the coalgebraic case by first defining a notion of cosignature and coequation and then

proving that the models of such coalgebraic presentations are precisely the coalgebras of the

representing comonad.

1. Introduction

While the theory of coalgebras for an endofunctor is well developed, less attention has

been given to comonads. We feel this is a pity since the corresponding theory of monads

on Set explains the key concepts of universal algebra such as signature, variables, terms,

substitution, equations, and so on. Moreover, applications to base categories other than Set

have proved fruitful in many situations, for example, the study of S-sorted algebraic

theories as monads over SetS , the study of inequational theories as monads over

Pos (Robinson 1994), the study of categories with structure using monads over Graph or

Cat (Dubuc and Kelly 1983), the study of rewriting using monads over Pre or Cat (Lüth

1996; Lüth and Ghani 1997) and the study of higher order abstract syntax using monads

over Set� (Fiore et al. 1999) (where � is the skeleton of the category of finite sets).

We aim for a similar framework based on the theory of coalgebras and comonads that

explains the relationship between the coalgebraic duals of the syntactic concepts and their

semantic interpretation. Such a project is clearly beyond the scope of a single paper,

but, nevertheless, the constructions and applications contained within this paper lay the

groundwork, and suggest this is likely to be a fruitful area of further research.

¶ Research supported by EPSRC grant GRM96230/01: Categorical Rewriting: Monads and Modularity.
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In initial algebra semantics, one traditionally begins with a signature Σ and then, for

each set X of variables, defines the term algebra TΣ(X). Next, one defines substitution

and shows this operation to be associative with the variables acting as left and right

units. Finally, given equations E, one also defines the quotient algebra T〈Σ,E〉(X). The

generalisation of this treatment of universal algebra to cover not just sets with extra

structure but also algebraic structure over other mathematical objects can be achieved

by a categorical reformulation of these ideas. In the categorical framework (Kelly and

Power 1993), one first constructs from a signature Σ the free endofunctor FΣ, which

can be thought of as mapping an object X of variables to the terms of depth 1 with

variables from X. The term algebra TΣ can then be characterised as the the free monad

over FΣ. Being a monad gives TΣ a well-behaved notion of substitution, while being free

captures the inductive nature of the term algebra. By interpreting the equations of an

algebraic theory as a pair of monad morphisms between two free monads, the quotient

algebra induced by the equations is modelled as the coequaliser of the monad morphisms.

Crucially, the models of an algebraic theory are isomorphic to the Eilenberg–Moore cate-

gory of the monad representing the algebraic theory.

Our aim is to dualise this categorical treatment of universal algebra and, in particular,

derive coalgebraic duals of the key concepts just described. However, there is more than

one concept that can be dualised. As mentioned above, a signature Σ gives rise to a free

endofunctor FΣ, and the initial algebra of terms gives the free monad TΣ. One dualisation

is therefore to consider not initial algebras, but rather final coalgebras, while the other

dualisation considers not the free functor and monad over a signature, but rather the

cofree functor and comonad over the signature. Dualising the initial X + FΣ-algebra of

terms built over variables X to the final X + FΣ-coalgebra gives not just finite terms, but

the finite and infinite terms built over X. On the other hand, the final X × GΣ-coalgebra

(or initial X ×GΣ-algebra), where GΣ is the cofree endofunctor generated from Σ, defines

a comonad (and no terms, but something entirely different, as we will see below). In other

words, given a signature Σ, we can consider its free endofunctor FΣ, its cofree endofunctor

GΣ, and the following four mappings:

— the mapping sending X to the underlying object of the initial X + FΣ-algebra;

— the mapping sending X to the underlying object of the final X + FΣ-coalgebra;

— the mapping sending X to the underlying object of the initial X × GΣ-algebra;

— the mapping sending X to the underlying object of the final X × GΣ-coalgebra.

Each of these four mappings is an instance of the scheme in Table 1. That is, there is

not one dualisation at play, but two orthogonal dualisations giving four concepts worthy

of our attention. The first of these mappings corresponds to the traditional initial algebra

semantics described above, while the essence of this paper is the consideration of the two

final coalgebra constructions. For both constructions, we prove that they indeed form

monads and comonads, respectively, and seek to understand their associated notion of

syntax. We show that the first dualisation corresponds to having a syntax containing not

just finite terms, but also infinite terms, while the second dualisation corresponds to a

notion of syntax based upon predicate transformers as used in programming language

semantics. In each instance we also sketch applications to more mainstream branches
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Table 1. Algebras and Coalgebras for an endofunctor.

Monads Comonads

Initial Algebras µY .X + FY µY .X × FY

Final Coalgebras νY .X + FY νY .X × FY

of computer science. The upper right-hand corner of Table 1 (initial algebras as a

comonad) remains unchartered for the time being; we leave its exploration to another

paper.

The rest of this paper is structured as follows. Section 2 contains preliminary definitions.

In Section 3, we review the presentation of finitary monads, which we seek to dualise in

the rest of the paper (the upper left-hand entry in Table 1). Sections 4 and 5 explore the

different possibilities of dualisation, with Section 4 exploring the lower left-hand of Table 1

and Section 5 containing our proposed comonadic syntax with associated representation

and correctness results (the right-hand side of Table 1). We conclude in Section 6 with

remarks on further work and comments on the relationship between our work and other

work in the literature.

2. Preliminary definitions and notation

We assume that the reader is familiar with standard category theory as can be found

in Mac Lane (1971). In order to abstract away from the category Set, we have had to

employ certain constructions that some readers may not be completely familiar with. We

give a short definition of these here; more details can be found in Mac Lane (1971) and

Adamek and Rosický (1994).

Locally presentable and accessible categories: Let κ be a regular cardinal. A diagram

D is κ-filtered iff every subcategory with less than κ objects and morphisms has a

compatible cocone in D. An object X of a category A is said to be κ-presentable iff

the hom-functor A(X, ) preserves κ-filtered colimits. A category is locally κ-presentable

(abbreviated as lκp) if it is cocomplete and has a set Nκ of κ-presentable objects such

that every object is a κ-filtered colimit of objects from Nκ. A category is κ-accessible

providing it is lκp, except that it only has κ-filtered colimits rather than all colimits. A

functor is κ-accessible iff it preserves κ-filtered colimits; we also say it has rank κ. The

discrete category on Nκ is denoted Nκ. The full subcategory of κ-presentable objects is

denoted Aκ. The inclusion functors are denoted Jκ : Nκ → Aκ and Iκ : Aκ → A, and

the category of κ-accessible functors from A to B by [A,B]κ.

Finite presentability is the categorical notion for finiteness. For example, for A = Set,

the finitely presentable sets are precisely finite sets, the set Nℵ0
can be taken to be the

natural numbers, which we denote �, and every set is the filtered colimit of the diagram

of all its finite subsets ordered by inclusion.

Kan extensions: Given a functor I : A → B and a category C, precomposition with I

defines a functor ◦ I : [B,C]→ [A,C]. The problem of left and right Kan extensions is
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the problem of finding left and right adjoints to ◦ I . More concretely, given a functor

F :A→ C, the left and right Kan extensions satisfy the natural isomorphisms

[B,C](LanIF,H) ∼= [A,C](F,H ◦ I) [B,C](H,RanIF) ∼= [A,C](H ◦ I, F).

Thus, one can view the left and right Kan extension of a functor F : A → C along I :

A→B as the canonical extensions of the domain of F to B. Kan extensions can be given

pointwise using colimits and limits, or more elegantly using ends and coends (see Mac Lane

(1971, Chapter X) for details).

3. Initial algebras and monads

We begin by recalling the well-known equivalence between (finitary) monads on the

category Set and universal algebra and then by indicating the generalisation of this

equivalence to locally presentable categories (Kelly and Power 1993; Robinson 1994).

We illustrate these ideas with one example using Set as the base category and another

using Cat as the base category — examples over other base categories can be found in

Robinson (1994) and Dubuc and Kelly (1983).

A signature declares the operations from which the terms are constructed. Usually, a

signature is given as a set of operations and a function assigning each operation an arity,

but we can equivalently consider it as a function Σ : �→ Set, assigning to each arity the

set of operations of that arity. In order to abstract away from the category of Set, we

need a notion of arity appropriate for different categories. The key observation is that

the usual arities in Set, that is, the natural numbers �, represent the finitely presentable

objects in Set. Hence a natural notion for arities in an lκp-category is the set Nκ. Hence,

a signature is a function Σ : Nκ → |A|, or, equivalently, a functor Σ :Nκ →A.

Definition 3.1 (Signature). LetA be an lκp category. A signature is a functor Σ :Nκ →A,

and the object of e-ary operations of Σ is Σe
def
= Σ(e).

We now present two examples of such signatures, which we will later augment by the

appropriate equations.

Example 3.2 (Monoids). The signature ΣM : �→ Set for the theory of monoids is defined

as ΣM(0) = {e},ΣM(2) = {m}, and ΣM(n) = � for all other n ∈ �. Thus ΣM declares one

operation e of arity 0 (a constant) and one binary operation m.

Example 3.3 (Categories with 	). Categories with a terminal object can be seen as

algebraic over Cat. The signature Σ	 must declare the terminal object, and for each

object X, the unique map !X : X → 	. Since the terminal object does not depend upon

any data, its arity is the empty category 0. Since the map !X depends upon exactly one

object, its arity is the one object category 1. Thus Σ	(0) = 1, Σ	(1) = (◦ → ◦) (that

is, the category with two objects and one arrow), while Σ	(c) = 0 for all other finitely

presentable categories c. Notice that the signature only declares operations; the equations

will make the map unique, and force its domain to be X and its codomain to be 	.
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We now turn to the construction of an endofunctor over a signature Σ. Working over

Set, for example, see Turi (1996), one defines a functor

FΣ(X) =
∐

f∈Σ(n)

Xn,

which calculates the terms of depth 1 whose variables come from the set X. For example,

given the signature of Example 3.2, the associated endofunctor is FM(X) = 1 + X2.

Unfortunately, it is unclear how to generalise this construction of an endofunctor from

a signature to categories other than Set, and hence we take an alternative approach.

Recall that, by definition, the left Kan extension is the left adjoint to the restriction

LanJκ 
 ◦ Jκ : [Nκ,A]→ [Aκ,A], so we define

FΣ(X) = (LanJκΣ)X. (1)

The standard formula for left Kan extensions shows that, in the case A = Set, both

definitions of FΣ agree. For instance, in Example 3.2, and using the classic coend formula

(LanJℵ0
ΣM)X =

∐

n∈�

Setℵ0(n,X)× ΣM(n)

= Set(0, X)× 1 + Set(2, X)× 1

= 1 + X2.

Notice that the domain of FΣ is Aκ and not A, and hence FΣ is not an endofunctor.

However, an endofunctor F : A→A is κ-accessible iff it is (isomorphic to) the left Kan

extension of its restriction to Aκ. Thus there is an equivalence (2) between κ-accessible

endofunctors on A and functors Aκ → A. Consequently, we can regard FΣ as a κ-

accessible endofunctor.

[A,A]κ

◦ Iκ �
	�

LanIκ

[Aκ,A] (2)

To recap, we have presented an abstract definition of signature Σ over an lκp-category

and a construction of the associated endofunctor FΣ over the signature. In the case of

Set, these definitions and constructions agree with the usual definitions. The associated

term algebra TΣ :A→A is then the free monad over the endofunctor FΣ, which can be

constructed in a number of ways.

Lemma 3.4. Let F be a κ-accessible endofunctor over an lκp-category A. Then the free

monad T over F satisfies the following:

1 For every X in A, TX is the carrier of the initial X + F-algebra.

2 The forgetful functor U : F−Alg→A from the category of F-algebras to A has a left

adjoint L, and T ∼= UL.

3 T is the initial algebra of the functor 1 + F ◦ : [A,A]→ [A,A].

4 Regarding F as an endofunctor with domain Aκ, T is the colimit of the sequence Si

S0 = Iκ Sn+1 = Iκ + F � Sn Sλ = colim
i<λ

Si (3)

and the composition of F, E :Aκ→A is given as F � E def
= (LanIκF ◦ E).
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Proof. Most of the proofs are standard and can be found in Kelly and Power (1993)

and Kelly (1980). However, note that in the last of the claims, to calculate the free monad,

we start forming the sequence of endofunctors Si and we do not need to go further than

the κ-filtered colimit colimi<κSi because F is κ-filtered. Hence T is κ-accessible, and thus

shares the same rank as F .

When we come to the dual of this construction in Section 5, a construction like the

above will not be possible since one would be interested in the limit of a co-chain, and

there is no reason for an accessible endofunctor to preserve such limits. The effect is that

the rank of the cofree comonad over an accessible endofunctor may increase. This change

of rank underlies the technical difficulties that will arise in Section 5.

We obtain the two adjunctions in (4), which compose to give an adjunction F 
 U

between signatures and monads, where Monκ(A) is the category of κ-accessible monads

over A

[Nκ,A]

LanJκ �
⊥�
◦ Jκ

[Aκ,A]

H �
⊥�
V

Monκ(A) (4)

The sequence Si in (3) in Lemma 3.4 is called the free algebra sequence (Kelly 1980),

and can be seen as a uniform calculation of the initial X + F algebra. As an example

of this construction, consider the signature ΣM . As we have seen, LanJκΣM(X) = 1 + X2.

The free algebra sequence then specialises to S0X = X and

Sn+1(X) = X +
∐

e∈�

A(e, Sn(X))× ΣM(e) = X + 1 + Sn(X)2,

from which we can see Sn as defining the terms of depth at most n, for example, S0(X)

contains the variables X, and S1(X) contains the variables X, the canonical element of

1 representing the unit of the monoid and a pair of elements of S0(X), which can be

thought of as the multiplication of these elements.

Within this framework, to give equations is to give another signature E and two natural

transformations σ, τ : E→UFB. One should regard E as giving the shape of the equations,

and σ and τ as the actual equations.

Example 3.5. Given the monoids example, there are three equations we wish to assert: left

unit, right unit (both unary) and associativity (ternary). Hence we set E(3) = {a}, E(1) =

{l, r} and E(n) = � for all other n. The natural transformations σ and τ define the left,

and the right hand side of equations, respectively:

σ(l) = m(e, x) σ(r) = m(x, e) σ(a) = m(x, m(y, z))

τ(l) = x τ(r) = x τ(a) = m(m(x, y), z)

For Example 3.3, we need three equations: one equation to force the uniqueness of

!X : X → 	, that is, !Y · f =!X for all f : X→Y , and two further equations to correctly

state the source and target of !X . See Dubuc and Kelly (1983) for details.

The advantage of this definition of equations is that it allows an elegant derivation of

the representing monad for an algebraic theory: given such a theory σ, τ : E→UFB, under
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adjunction (4), we have two monad morphisms σ′, τ′ whose coequaliser is the representing

monad T . This construction makes sense, because the category of models of the algebraic

theory is isomorphic to the Eilenberg–Moore category of the representing monad.

In (4), both adjunctions are monadic and their composition is of descent type, which

means that each component of the counit εB :FUB → B is a coequaliser. This means that

every κ-accessible monad T on A is a coequaliser in the category of κ-accessible monads

over A of two free monads over two signatures B,E :N→A. Equivalently, every such

monad is represented by equations in this general sense.

4. Final coalgebras and monads

Given a signature Σ, we have constructed the term algebra TΣ as the free monad over Σ.

Concretely, TΣX is the carrier of the initial X + FΣ-algebra, which, when specialised to

Set, corresponds to the set of finite terms whose variables are in X.

In this section we investigate the map T∞Σ sending an object X to the carrier of the

final X + FΣ-coalgebra, comment on the notion of syntax inherent in this construction,

and apply our results to simplify some recent developments in the semantics of lazy

datatypes in functional programming. A more general, and in our opinion more elegant,

version of Lemma 4.2 appears in Aczel et al. (2001), although the result first appeared in

Moss (1999). Nevertheless, we include our proof since it is significantly different in style

to those mentioned above.

The first observation in comparing µY .X +FY with νY .X +FY was by Barr, showing

that the final coalgebra of an endofunctor on Set can be regarded as a Cauchy completion

of the initial algebra (Barr 1993). Thus, if F arises from a signature, and hence µY .X+FY

is the usual term algebra, then νY .X + FY is easily seen to be the set of terms of finite

and infinite depth. Barr’s result was extended to lfp categories in Adamek (2000). The

goal of this section is to ascertain the structure possessed by the map sending X to

the carrier of the final X+FΣ-coalgebra. Our answer is that this map also forms a monad.

In proving this result we use the following result (Adamek 2000).

Lemma 4.1. Assume that A is lfp, that the unique map ! : 0 → 1 is a strong mono-

morphism, that F preserves monos and ωop-chains, and that there is a map p : 1 → F0.

Then for each object X ∈ A, we have A(X, µF) and A(X, νF) are metric spaces with the

latter being the Cauchy completion of the former.

We use this result to prove our main lemma.

Lemma 4.2. Let F be a polynomial endofunctor and let A satisfy the premises of

Lemma 4.1. Then the map T∞ assigning an object X to the carrier of the final X + F-

coalgebra carries the structure of a monad.

Proof. We actually prove the lemma for the case A = Set, since the general case

involves slightly clumsy reasoning with hom-sets and is entirely analogous. We prove that

T∞ is a monad by constructing a Kleisli structure for it, namely by defining the following

operations:
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(i) for each object X, an arrow η∞X : X → T∞X;

(ii) for each pair of objects X,Y a function sX,Y : A(X,T∞Y ) → A(T∞X,T∞Y ) such

that

sX,X(η∞X ) = 1T∞X sX,Z (sY ,Zg ◦ f) = sY ,Zg ◦ sX,Y f sX,Y (f) ◦ η∞X = f.

First define η∞X = εX ◦ ηX where η is the unit of the free monad on F and εX is the unique

comparison map between the initial X + F-algebra and the final X + F-coalgebra†. Next

define sX,Y (f) as in (5), where h : FT∞Y → T∞Y is the obvious map derived from the

structure map of T∞Y .

X
ηX � TX

εX � T ∞X
�������f � ��������

s(f
) =!
∗
[f,
h]

T∞Y

![f,h]
�

(5)

Then [f, h] : X + FT∞Y → T∞Y endows T∞Y with an X + F-algebra structure, and

hence induces a unique map ![f,h] : TX → T∞Y from the initial X + F-algebra. Diagram

chasing shows that ![f,h] is uniformly continuous with respect to the relevant metrics, and

hence by Lemma 4.1 there is an extension !∗[f,h] that can be taken to be sX,Y (f). The first

equation follows, since by uniqueness, ![η∞X ,h] = εX and the extension of εX is the identity.

The equation sX,Z (sY ,Zg ◦ f) = sY ,Zg ◦ sX,Y f holds if their restrictions via εX are the same,

which in turn holds if they arise from the same algebra structure on T∞Z . This holds

because the two algebra structures are both inherited from the map sY ,Z (g)◦f : X → T∞Z .

The last equation follows since sX,Y (f) ◦ η∞X = sX,Y (f) ◦ εX ◦ ηX =![f,h] ◦ ηX = f.

Notice that Lemma 4.2 indicates that there is no need to develop a new syntax for the

monad T∞Σ since the canonical syntax should be the finite and infinite depth terms of the

associated monad TΣ. Unlike the monad T , T∞ has a larger rank than F .

Lemma 4.3. Let F be a polynomial endofunctor on Set. Then the monad T∞ given by

Lemma 4.2 has rank ℵ1.

Proof. The lemma can be proved directly using the interchange law between limits and

filtered colimits (Mac Lane 1971, Theorem IX.2.1).

Incorporating equations into this coalgebraic setting or, more precisely, defining the

quotient of T∞(X) by a system of equations is not straightforward. Indeed, the following

example shows that equational theories that have a consistent initial semantics may have

an inconsistent final semantics. Consider an algebraic theory consisting of a unary symbol

A, a constant B and the equation A(x) = x. The initial algebra semantics of this algebraic

theory maps a set X to the set X + 1 since, after quotienting by the equations, all that is

left is the variables and the constant B. But, in the final coalgebra, there are infinite terms,

† Actually, applying Lemma 4.1 requires that X + F0 be non-empty, which is the case when X �= 0. Thus the

maps η∞0 and s0,Y and their properties must be established separately, but this all follows trivially from the

initiality of 0.
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and hence we have x = A(x) = A2(x) = · · · = Aω . Hence we can prove that, for another

variable y, we have y = Aω , and hence that x = y. Since these variables are arbitrary,

this allows us to prove that any two terms are equal, and hence that the associated

equational theory is inconsistent. Controlling this phenomenon is an area of ongoing

research.

We finish this section with an application of this result to reasoning in functional

programming.

The generic approximation lemma

The generic approximation lemma (Hutton and Gibbons 2001) is a proof principle for

reasoning about functions in a lazy functional programming language (such as Haskell).

It pertains to lists and states that two potentially infinite lists xs and ys are equal iff

∀n.approx n xs = approx n ys, where approx is defined by

approx (n+1) [] = []

approx (n+1) (x:xs) = x:(approx n xs)

Note the lack of a base case: approx 0 x is ⊥ (that is, the denotation of undefined) in the

denotational model, but because of non-strictness, approx n x (with n > 0) is defined.

This principle can be applied to other datatypes such as trees:

data Tree a = Leaf a | Node Tree a Tree

approx (n+1) (Leaf x) = Leaf x

approx (n+1) (Node l x r) = Node (approx n l) x (approx n r)

Two trees t1 and t2 are equal iff ∀n. approx n t1 = approx n t2. Hutton and

Gibbons (2001) proves the generic approximation lemma using the standard denotational

semantics of functional programming languages, where types are interpreted as cpo’s,

programs as continuous functions and recursive datatypes as least fixed points of functors.

That is, the correctness of the proof principle depends upon the semantic category chosen;

we have already seen the implicit use of ⊥ in the definition of approx.

We propose an alternative and, we believe, more natural derivation of the approximation

lemma that is independent of the particular denotational model chosen. The definition of

a polymorphic datatype is usually interpreted as the free monad TΣ over its signature Σ.

However, this does not capture laziness, since TΣ consists of only finite terms. Instead,

we model such a datatype by the monad T∞Σ . Since T∞Σ (X) is the final X + FΣ-coalgebra

and since FΣ is a polynomial endofunctor, T∞Σ (X) can be calculated as the limit of the

ωop-chain 1 ← (X + F)1 ← (X + F)21 ← · · ·. The universal property of the limit states

that two elements x and y of this limit will be equal iff for each n, πn(x) = πn(y) where πn
is the n-th projection. But these projections are precisely the approximation function for

the datatype. Notice how the categorical argument replaces the semantic dependency on

⊥ with use of a co-chain beginning with 1. This establishes the correctness of the generic

approximation lemma independently of any specific denotational model.
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5. Final coalgebras and comonads

We now turn to another possible dualisation of Section 3 based upon the idea of mapping

an object X to the carrier of the final X×F-coalgebra for some κ-accessible functor F . The

elegance of the monadic approach to algebraic theories suggests that we can apply these

techniques to the development of coalgebraic syntax by dualising them appropriately.

5.1. Cosignatures and their coalgebras

Recall that the heart of the categorical approach to universal algebra is adjunction (4).

The dualisation outlined in this section can be summed up as replacing the left adjoint

to U with a right adjoint, and the replacement of monads by comonads. As a result, the

definition of a cosignature turns out to be formally the same as that of a signature.

Definition 5.1 (Cosignature). Let A be an lκp-category with arities Nκ. Then a κ-cosig-

nature is a functor B :Nκ →A.

Recall that in Section 3 we constructed a κ-accessible endofunctor from a signature by

first taking a left Kan extension, and then used equivalence (2) to get a κ-accessible end-

ofunctor. Therefore, in this section we take the right Kan extension of a cosignature B

to obtain a functor RanJκB : Aκ → A, followed by the same equivalence to obtain a

κ-accessible endofunctor on A. However, recall that equivalence (2) is based on a left

Kan extension; this mixture of left and right Kan extension makes the situation delicate.

The standard formula for the right Kan extension gives us

(RanJκB)(X) =
∏

c∈Nκ

A(X, c) � Bc

where U � B is the U-fold product of B, or, more formally, the representing object for the

functor [U,A( , B)] : A → Set. When A = Set, this operation is simply exponentiation,

that is, U � B = [U,B]. Thus, although signatures and cosignatures are formally the

same, the endofunctors they generate are very different. For example, note that while

the default value for signatures is 0, if there is a single arity c such that B(c) = 0, then

(RanJκB)(X) = 0. In fact, the default value for cosignatures is 1 since U � 1 = 1, and

hence if c is an arity such that B(c) = 1, this arity will contribute nothing to the right

Kan extension. Here are two example cosignatures, which we will explore further below.

Example 5.2. Define the cosignature Bp by Bp(2) = 2 and Bp(c) = 1 for all other arities.

Then RanJκBp(X) = [Set(X, 2), 2] = [[X, 2], 2].

Define the cosignature Bpω (2) = ω and Bpω (c) = 1 for all other arities. Then, by a

similar calculation, (RanJκBpω )(X) = [Set(X, 2), ω] = [[X, 2], ω].

Recall that in order to turn a functor Aκ → A into a κ-accessible endofunctor, one

takes its left Kan extension. Given a cosignature B, we can thus consider coalgebras

of the endofunctor LanIκRanJκB. The following is an important result from Johnstone

et al. (1998).
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Lemma 5.3. Let F :A→A be an accessible endofunctor on an accessible category. Then

F−coalg is accessible.

Proof. The proof uses the fact that the category of all (small) accessible categories has

all weighted limits (Makkai and Paré 1989, Theorem 5.1.6). Then the category F−coalg

can be constructed as such a limit, namely the inserter (Kelly 1989) of the diagram

C
1�
F
� C

Given that F−coalg is accessible, we would like to know its degree of accessibility.

However, this depends upon a number of rather technical properties (Adamek and

Rosický 1994). What is true is that there is a cardinal κ such that F−coalg is κ-accessible

and that an F-coalgebra is κ-presentable iff its underlying object is κ-presentable. Perhaps

of more use is the result that if F and A have rank λ, then a coalgebra whose underlying

object is λ-presentable is itself λ-presentable. This result seems to be known, although we

could not find a reference.

The next step is to compare LanIκRanJκB-coalgebras with a notion of model for

the underlying cosignature. As remarked above, the interaction of left and right Kan

extensions makes a general comparison impossible – our solution is to consider only

those coalgebras that are small enough to negate the effect of the left Kan extension.

Lemma 5.4. Let B be a κ-cosignature. A LanIκRanJκB-coalgebra over a κ presentable

object X consists of, for every arity c, a function hc :A(X, c)→A(X,Bc).

Proof. Given any κ-accessible endofunctor F , and κ-presentable object X, we have

LanIκF(X) = F(X). We then have the following chain of isomorphisms:

A(X,LanIκ(RanJκB)(X)) ∼= A(X, (RanJκB)(X))
∼= A(X,

∏
c∈Nκ

A(X, c) � Bc)
∼=

∏
c∈Nκ

A(X,A(X, c) � Bc)
∼=

∏
c∈Nκ

[A(X, c),A(X,Bc)]

In the theory of monads, a crucial result states that the models of an algebraic

presentation are isomorphic to the category of algebras of the representing monad. In

order to emulate this result, we require a notion of model (or co-model if you like) for a

κ-cosignature B, and Lemma 5.4 suggests this is LanIκRanJκB-coalgebra.

Example 5.5. A model of the cosignature Bp is given by a finite set X together with a

function Set(X, 2) → Set(X, 2). If we regard a map f : X → 2 as a subset of X, or a

predicate over X, then such a model can be regarded as a map between predicates.

Similarly, a model for the cosignature Bpω consists of a finite set X and a function

Set(X, 2) → Set(X,ω). This is clearly related to the previous example if we think of it as

mapping binary partitions of X to ω-ary partitions.
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5.2. From coalgebras to predicate transformer semantics

Example 5.5 exhibited maps between predicates as coalgebras. A natural application

of our research on coalgebras would then seem to be the semantics of programming

languages based upon what are known as predicate transformers. However, to make this

idea precise, as we shall see, a bit more structure is required.

The basic idea of predicate transformer semantics, going back to Dijkstra (1976), is that

the meaning of a program is a map sending a postcondition to its weakest precondition.

One starts with a set of states (for example, a mapping from variable locations to integers)

and then considers pre- and post conditions as predicates over the set of states. Thus

the semantics of a program is a mapping from predicates to predicates, hence the term

predicate transformer. However, in order to account for recursion and iteration, predicate

transformers must be continuous, which in turn means that the set of predicates must

form some order, for example, an ω-cpo (see, for example, Winskel (1993, Section 7.5) for

details).

In order to cater for this order structure, we move from the category Set to the cate-

gory ωCPO of ω-complete partial orders (ω-cpo’s) and continuous maps. Unlike Set,

the category ωCPO is not locally finitely presentable, but locally ℵ1-presentable, as

the operation of taking the least upper bound of an ω-chain is an infinitary operation

(Adamek and Rosický 1994). This is another example of the necessity not to restrict

ourselves to Set, or even to locally finitely presentable categories.

We can now easily adapt Example 5.5 by changing the base category to ωCPO. Let the

ℵ1-cosignature Bpred :N→ωCPO be defined by Bpred (2) = 2 and Bpred (c) = 1 (where 1 is

the one-element ω-cpo) for all other arities. By Lemma 5.4, a coalgebra for this signature

over an ℵ1-presentable object consists of a countable ωCPO X (thought of as a set of

states) together with a map ωCPO(X, 2)→ωCPO(X, 2). The continuity of the predicate

transformers is therefore guaranteed, while the representation of predicates as continuous

maps X→ 2 agrees with the traditional approach where states are unordered or, in effect,

discretely ordered.

This is of course only a sketch of the use of coalgebras in predicate transformer

semantics, as any substantial treatment is beyond the scope of this paper.

5.3. The representing comonad of a cosignature

Recall that in the algebraic case one starts with a signature, constructs an endofunctor,

and then considers the free monad over the endofunctor. Having dualised the first part

of this construction, we now dualise the second, that is, consider the construction of

the cofree comonad over an endofunctor. The following pair of results from Johnstone

et al. (1998) provides the framework for this discussion.

Lemma 5.6. The following conditions on a functor F :A→A are equivalent:

1 There is a cofree comonad on F .

2 The forgetful functor F−coalg→A is comonadic.

3 The forgetful functor F−coalg→A has a right adjoint.

4 (If A has products) For every object X, the functor X × F has a final coalgebra.
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As in the monadic case, not all endofunctors have a cofree comonad. For example,

there is no final coalgebra for the powerset functor P : Set → Set, as such a coalgebra

would be an isomorphism X ∼= PX, which cannot exist by cardinality arguments. The

important result from Makkai and Paré (1989) and Johnstone et al. (1998) is the following

lemma.

Lemma 5.7. If A is locally presentable and F is accessible, then F−coalg is locally

presentable and there is a cofree comonad over F .

Proof. Recall from Lemma 5.3 that F−coalg is accessible. Cocompleteness of F−coalg

follows since the forgetful functor creates colimits and A is cocomplete. Since the

forgetful functor is a colimit-preserving functor between locally presentable categories,

it follows from the Special Adjoint Functor Theorem (Mac Lane 1971, Theorem V.8.2)

that the forgetful functor has a right adjoint. By Lemma 5.6, there is a cofree comonad

over F .

Let Comκ(A) be the category of κ-accessible comonads on A, and let ACom(A) be

the category of accessible comonads on A. For every κ, Comκ(A) is a full subcategory

of ACom(A). Recall that [A,A]κ is the category of endofunctors with rank κ, and let

AEnd(A) be the category of accessible endofunctors. Piecing together the above results

we have the following lemma.

Lemma 5.8. The forgetful functor V : ACom(A)→ AEnd(A) has a right adjoint R.

Proof. Given an accessible endofunctor F , let the right adjoint of the forgetful functor

UF : F−coalg → A be KF . Then choosing R(F) to be UFKF , we can deduce that R(F)

is accessible because UF is accessible (as a left adjoint, it preserves all colimits) and

KF is accessible by Adamek and Rosický (1994, Proposition 1.66 on page 52).

The action of the right adjoint on accessible endofunctors has already been given. Given

a natural transformation α : F1 ⇒ F2, this induces a functor α∗ : F1−coalg→ F2−coalg that

commutes with the respective forgetful functors. Using the dual of Barr and Wells (1985,

Theorem 3 on page 128) and the comonadicity of these categories of coalgebras, this

in turn induces a natural transformation R(α) : R(F1) ⇒ R(F2). This defines the functor

R : AEnd(A)→ACom(A). The fact that it is right adjoint to V is easily verified.

As opposed to the monadic case, the cofree comonad RM on an endofunctor M :A→A
of rank λ need not have rank λ; as a simple counterexample, consider the endofunctor

M : Set→ Set defined as MX
def
= A×X for a fixed set A, which is clearly finitary (has rank

ℵ0). We know that the value of RM for a set X is given by RM(X) = νY .X ×MY =

νY .X×A×Y , which is the set of all infinite streams of elements of X×A. Now consider

a countably infinite set Y . Then RM(Y ) contains a sequence with infinitely many different

elements from Y . This sequence cannot be given from any of the finite subsets Y0 ⊆ Y ,

which shows that RM has a rank larger than ℵ0. As we saw in Section 4, in general,

calculating coalgebras of accessible endofunctors increases their rank – see Worrell (1999)

for an investigation of this phenomenon.
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Using the equivalence between [Aκ,A] and [A,A]κ, we now have the following

functors, where ◦ Jκ is the precomposition with Jκ and V is the forgetful functor for

comonads of rank κ:

[Nκ,A]

RanJκ �
	�
◦ Jκ

[Aκ,A] ∼= [A,A]κ � V
Comκ(A)

AEnd(A)
�

∩

R �
	�
V

ACom(A)
�

∩

(8)

We further define the composite functors

Vκ : Comκ(A)→ [Nκ,A] Vκ
def
= ( ◦ Jκ) ·V

Rκ : [Nκ,A]→ ACom(A) Rκ
def
= R ·RanJκ

As we have seen, the rank of RκB may be greater than the rank of B, and hence the

codomain of Rκ is not necessarily the domain of Vκ, but rather ACom(A). So although

Rκ and Vκ cannot be adjoint, there is the following isomorphism.

Lemma 5.9. For any κ-accessible comonad G and κ-cosignature B :Nκ→A there is the

following isomorphism, which is natural in G and B:

[Nκ,A](VκG, B) ∼= ACom(A)(G,RκB). (9)

Proof. The isomorphism is shown by a chain of natural isomorphisms provided by the

two adjunctions in (8), and the full and faithful embedding of [A,A]κ into AEnd(A):

[Nκ,A](VκG, B) ∼= [Nκ,A]( ◦ JκVG, B)

∼= [Aκ, A](VG,RanJκB)

∼= AEnd(A)(VG,RanJκB)

∼= ACom(A)(G,RRanJκB)

∼= ACom(A)(G,RκB)

So, given a κ-cosignature B, we have constructed its representing comonad RκB. By

Lemma 5.6, the category RκB−Coalg is isomorphic to the category LanIκRanJκB−coalg.

Restricting ourselves to coalgebras over κ-presentable objects, the coalgebras over

κ-presentable objects of the representing comonad RκB are isomorphic to the κ-presentable

models of the cosignature B as defined earlier. This is our partial dualisation of the result

that the models of a signature are isomorphic to the Eilenberg–Moore category of the

representing monad. Recall that a more complete characterisation is not possible because

of the interplay of the left and right Kan extensions.

Unfortunately, the concrete construction of the representing comonad is rather involved,

in contrast to the dual, monadic case. There, the monad is constructed as a straightforward

colimit of a chain of terms of increasing depth; here, the representing comonad for a

κ-cosignature Σ is given in the proof of Lemma 5.7 by the Special Adjoint Functor

Theorem, which in turn constructs it as the quotient of the generating set in the category
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of coalgebras of the cofree endofunctor over Σ. However, for particular endofunctors, this

construction is well known (Barr 1993; Turi 1996).

Example 5.10. The representing comonad Rp
def
= Rℵ0

(Bp) for Bp is given by the cofree

comonad on Gp
def
= LanIκRanJκBp(X). Gp(X) is [[X, 2], 2] for X finite, and otherwise it

is the union of Gp(X0) for all finite subsets X0 ⊆ X. By Lemma 5.6, Rp(X) is the final

coalgebra of X × Gp.

Now, [X, 2] ∼= Pf (X) for X finite (where Pf is the finite powerset functor), and the final

coalgebra for X×Pf is well known (see, for example, Turi (1996, Chapter 13)): it is the set

of infinite finitely branching trees with nodes labelled with elements from X, quotiented

by the largest bisimulation. The same intuitions lead to the following characterisation of

Rp(X), which we owe to Dusko Pavlovic. We can consider the final X × GP coalgebra as

bipartite, rooted, acyclic graphs upto the appropriate notion of bisimulation. Concretely,

these are potentially infinite trees whose nodes can have two colours, black and white say,

the root is black, the black nodes are labelled with elements from X, and all children of

a black node are white nodes, and vice versa. Figure 1 shows three such bipartite trees.

y z y

x x

y z y

x

v y zu

Fig. 1. Elements of Rp(X), with u, v, x, y, z ∈ X.

A (coalgebraic) bisimulation on these bipartite trees is a relation such that two trees t1, t2
are bisimilar iff:

— the colours of the root node of t1 and the root node of t2 are the same;
— if both are coloured black, the labels of the root node of t1 and the root node of t2

are the same;
— if t′1 is a child of t1, there is a child t′2 of t2 such that t′1 and t′2 are bisimilar;
— and if t′2 is a child of t2, there is a child t′1 of t1 such that t′1 and t′2 are bisimilar.

For example, in Figure 1, the three trees cannot be bisimilar. Note the definition is

recursive, so the first condition is necessary even though the root of every element of the

final coalgebra is always black.

The final coalgebra of X × Gp, and hence the value of Bp(X), is the set of all bipartite

trees quotiented by the largest bisimulation R. With [[X, 2], 2] ∼= [Pf (X), 2] ∼= Pf(Pf (X)),

the coalgebra structure maps every such tree to a set of sets of successors (hence the

bipartite nature, that is, the additional white layer).

Crucial for the development we have just given is that for finite X, we have [X, 2] ∼=
Pf (X), and maps X→ [X, 2] can be considered as finitely branching graphs (or image-

finite transition systems). Unfortunately, the same cannot be said for [X,ω], so the devel-

opment of a similar syntax for the representing comonad of Bpω is still work in progress.
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5.4. Coequational presentations and their representing comonad

In this section, we continue the dualisation by defining coequational presentations, deriving

a representing comonad for such a coequational presentation, and relating the coalgebras

of the representing comonad to the models of the presentation. As we have seen above,

equations are given as a pair of monad morphisms between free monads; the representing

monad is defined to be the coequaliser of these. Dualising this gives a coequational

presentation as a pair of comonad morphisms between cofree comonads, and takes the

representing comonad as the equaliser of these comonad morphisms.

Definition 5.11 (Coequational presentations). A coequational presentation is given by two

cosignatures B :Nκ→A and E : nλ→A (where RκB is λ-accessible), and two comonad

morphisms σ, τ : RκB→RλE.

Under isomorphism (9), the maps σ, τ : RκB→RλE are given by maps σ′, τ′ : VλRκB→E,

which in turn are families σ′c, τ
′
c : RκBc→Ec of maps for every c ∈ Nλ. So, as opposed to

the monadic case where an equation is given by a pair of terms, a coequation consists of

two partitionings of the coterms; for example, in Set if E(n) = 2, each of σ and τ partition

RκB(n) into two subsets.

As mentioned above, given a coequational presentation, our intention is to define its

representing comonad to be the equaliser of the comonad morphisms:

G � RκB
σ �
τ

� RλE (10)

Proving that these equalisers exist is made easier by our abstract categorical setting, which

provides us with an alternative definition of the coalgebras of a comonad. Recall that

such coalgebras are given by an object x ∈ A and a map α : x→Gx, which commutes

with the unit and counit of G. First, observe that an object x of A is given by a map

X : 1→A (where 1 is the one-object category). Further, the functor category [1,A] is

isomorphic to A, and we have

A(x, Gx) ∼= [1,A](X,G ◦X) ∼= [A,A](LanXX,G), (11)

so to give a map x→Gx is equivalent to giving a natural transformation from LanXX ⇒ G.

In fact, LanXX is a comonad.

Lemma 5.12. LanXX is a comonad. If X is κ-presentable, LanXX is κ-accessible.

Proof. Using the standard formula for left Kan extensions, LanXX(a) = A(X, a) ⊗ X

(where ⊗ is the tensor; for example, in Set, it is given by the usual product). If X is

κ-presentable, thenA(X,−) preserves all κ-filtered colimits, as does −⊗X; hence LanXX

is κ-accessible.

To have a comonad structure, we need natural transformations LanXX ⇒ 1 and

LanXX ⇒ LanXX ◦ LanXX that satisfy the comonad laws. The first of these is given by

the image of the identity transformation on X under the isomorphism

[1,A](X,X) ∼= [A,A](LanXX, 1A).
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The second is given by the image of the transformation

X ===
ε
⇒ LanXX ◦X ====

LanXXε
⇒ LanXX ◦ LanXX ◦X

(where ε is the canonical transformation X ⇒ LanXX ◦X) under the isomorphism

[1,A](X,LanXX ◦ LanXX ◦X) ∼= [A,A](LanXX,LanXX ◦ LanXX).

That the counit and comultiplication obey the comonad laws is easily verified.

The fact that LanXX is a comonad allows us to strengthen equation (11) to obtain the

promised characterisation of the coalgebras of a comonad.

Proposition 5.13. A coalgebra for a comonad G has a carrier object x in A, given by

a map X : 1→A, and a structure map α : x→Gx, given by a comonad morphism

α′ : LanXX ⇒ G in ACom(A).

Proof. We have already seen above how under isomorphism (11) a structure map

α′ : x→Gx corresponds to a natural transformation α : LanXX ⇒ G. It is then routine to

verify that the properties of the structure map of a coalgebra correspond to the laws of a

comonad morphism.

Proposition 5.13 allows us to show the existence of equalisers.

Lemma 5.14. The category of accessible comonads ACom(A) has all equalisers.

Proof. Consider two comonad morphisms M
σ�
τ
� E. We define the category

(M,E)−Coalg to be given by coalgebras α : LanXX→M of M such that σ · α = τ · α.
Recall from the proof of Lemma 5.4 how we constructed the category of coalgebras as a

weighted limit; using a similar diagram called an equifier (Kelly 1989), we can construct

(M,E)−Coalg as a weighted limit as well, making it accessible. With (M,E)−Coalg, M

and E accessible, the forgetful functor from (M,E)−Coalg to A has a right adjoint; and

post-composition of this right adjoint with the forgetful functor gives the equaliser of M

and E.

We finish this section by relating the models of a coequational presentation to the co-

algebras of its representing comonad. If G is the representing comonad of the co-

equational presentation σ, τ : RκB→RλE, then a G-coalgebra is a map α : LanXX→G,

which by the universal property of equalisers is a map α′ : LanXX→RκB such that

σ · α′ = τ · α′, or, in other words, a coalgebra for B that equalises σ and τ. In this

case, we say that the coalgebra LanXX→RκB satisfies the coequational presentation

σ, τ : RκB→RλE. Following the calculations above, if X is κ-presentable, the map

α : LanXX→RκB, gives us two RλE-coalgebras, which by Lemma 5.4 are families

σ′′ : A(X, c)→A(X,Ec) and τ′′ : A(X, c)→A(X,Ec) of maps for all c∈Nλ, which

have to be equal if α : LanXX→RκB satisfies the presentation σ, τ : RκB→RλE.
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5.5. Examples of functorial coequational presentations

As we have seen in Example 5.10, the representing comonad even for a rather simple

example can be unwieldy. But in order to consider coequations, we can just use the ad-

junction R � V between accessible endofunctors and accessible comonads. That is, we can

define coequational presentations based on endofunctors.

Definition 5.15 (Functorial coequational presentations). A functorial coequational present-

ation is given by two accessible endofunctors B : A→A, E : A→A, and two comonad

morphisms σ, τ : RB→RE.

The comonad represented by a functorial coequational presentation (we will drop

the functorial in the following, relying on the context for the difference) is, of course,

the equaliser of σ and τ in ACom(A) (which exists by Lemma 5.14). Also note that due to

the adjunction R �V , σ and τ can be more conveniently given as natural transformations

σX, τX : VRBX → EX. Furthermore, rather than figuring out the actual comonad, it is

more instructive, following the last paragraph of Section 5.4, to consider its coalgebras.

A simple example of a functorial coequational presentation inA = Set is given by letting

BX = L×X for a fixed set L of labels, and EX = X. Obviously, RBX = νY .X ×L× Y ,

which are streams of pairs (〈li, xi〉)i∈� where li ∈ L and xi ∈ X. Now, define σX(s) = x0

and τX(s) = x2 for s ∈ VRBX (note that we map the whole stream to just a single result,

since the maps are defined on the underlying functor VRBX). Concretely, a coalgebra

α : A→BA is a carrier set A, the elements of which we can consider as states, and

a structure map α that for any state a ∈ A returns a pair 〈l, a′〉, where l ∈ L, and a′ is a

successor state. (A, α) also defines a RB-coalgebra by unfolding the stream generated by

each a ∈ A to a sequence Sa = 〈li, ai〉i∈�. This induced coalgebra is a coalgebra of the

comonad given by the coequational presentation only if τX and σX agree on S , which

concretely means that a2 = a, and hence for all i, ai = ai+2. In other words, the states must

be alternating, and hence so must the labels since they are determined by the states.

Note that all of these examples specify equations on streams. It is not possible to specify

inequalities (for example, ai �= ai+1) using coequational presentations.

Now consider the functors BX
def
= PfX and EX

def
= {tt, ff}. The elements of RBX are

(possibly infinite) finitely branching trees with nodes labelled in X, quotiented by the

largest bisimulation. The maps σX, τX : VRBX→EX can be given as maps on the trees,

which are well-defined with respect to the bisimulation. Let σX map every tree t to tt,

while τX map a tree to tt iff it has at least one child. Then we specify infinite trees upto

bisimulation.

Now let L be a set of labels, BX
def
= Pf(L×X) and EX

def
= PfL. Recall that a coalgebra

for B is a finitely branching transition system, or image-finite transition system. The final

coalgebra of X × B contains (equivalence classes of) trees with nodes labelled in X and

edges labelled in L (this is close to what Turi (1996) calls an observational comonad). Let

σX map a tree to the set of labels l ∈ L of the outgoing edges from the root, and τX to

a constant set of labels L0 = {l1, . . . , ln}. Then this specifies trees (upto bisimulation) such

that, at every node, the set of labels issuing from the node is exactly the set L0.
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A final example would be to set EX = {tt, ff}, with σX(t) is tt if there are no more than

n outgoing edges (upto bisimulation), and ff otherwise, and τX(t) returns always tt. This

would specify the comonad of n-ary transition systems, that is, transition systems with no

more than n outgoing branches from a given state.

5.6. Examples of coequational presentations

We can now combine the previous section with Example 5.10 to obtain a coequational

presentation. Recall from Example 5.10 that the representing comonad Rp of the signature

Bp maps a set X to equivalence classes of bipartite trees labelled with X. According to

Definition 5.11, a coequational presentation is given by another cosignature E : �→ Set

and two natural transformations σ, τ : Rp→RλE, which can be more conveniently given

as families σc, τc : VλRp(c)→E(c) for c ∈ �. The underlying co-signature VλRp : �→ Set

of Rp maps a natural number c to Rp(c).

The examples from the previous section can be rephrased in this setting, but, of course,

the corresponding endofunctor is the underlying endofunctor of Rp, the representing

comonad: we can set E(n) = {tt, ff} and define σn(t) = tt for all t and τn(t) = tt if t has

at least one node. This then specifies the infinite bipartite graphs. For another example,

set σn(t) = tt if the top of t is (upto bisimulation) the rightmost tree in Figure 1, and

σn(t) = ff for all other t. Set τn(t) = tt for all t. Then the represented comonad has all

coalgebras of Rp except those that as a transition system can reach four different states

after the second iteration, since for these σn(A) �= τn(A).

As we can see, functorial equational presentations allow us to specify coalgebraic struc-

tures in a very flexible way. Unfortunately, due to the unwieldy structure of the representing

comonad, coequational presentations based on signatures are not that flexible. Also, we

have made light of the fact that the elements of the cofree comonad on Bp are equivalence

classes up to bisimulation, which makes a precise syntactical description clumsy; we

assume this will not improve for cosignatures like Bpω (Example 5.2).

Finally, the precise connections of coequational presentations to the predicate trans-

former semantics sketched in Section 5.2 remains to be investigated, in particular, whether

we can give the semantics for a programming language in terms of coequations, or if we

can specify programs by means of coequations.

6. Conclusions, and related and further work

This paper set out to analyse the essence of the categorical approach to universal

algebra based upon the theory of accessible monads, and then to derive their coalgebraic

counterparts. While there is potential for further development, we feel we have made

a definite contribution that will be of interest to the general coalgebra community. In

particular, the derivation of the infinitary monad corresponding to the collection of final

X + F-coalgebras seems to have ready applications in lazy functional programming.

In addition, the derivation of the cofree comonad representing a cosignature and

the interpretation of a coequational presentation as an equaliser of cofree comonads

are dualisations of the corresponding results in the standard theory. We have also
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related the coalgebras of the representing comonad to the models of the coequational

presentations.

The major technical challenge was caused by the increase in rank when passing from a

cosignature to its representing comonad. For example, this meant that the characterisation

of coalgebras only holds for coalgebras up to a certain rank. In addition, this increase in

rank makes it unlikely that every accessible comonad can be given as a coequational pre-

sentation (that is, as an equaliser of cofree comonads), as is possible for finitary monads.

Of course there remains much to be done. Our approach has been very abstract, and

perhaps the most important next step is to make precise the relationship between our

approach and others pursued in the community.

For example, Cirstea (2000) defines an abstract cosignature as a functor F : C→C
where C has all finite limits and limits of ωop-chains, and F preserves pullbacks and such

limits. Then, an observer is given by a functor K : C→C and a natural transformation

c : U→K ·U, and a coequation by two observers (K, l) and (K, r). Note that the

transformation c gives a functor c∗ : F−coalg→K−coalg such that U = U · c∗. Let RF and

RK be the cofree comonads on F and K , respectively, then F−coalg ∼= RF−Coalg, and we

have a functor c# : RF−Coalg→RK−Coalg, which is equivalent to a comonad morphism

c† : RF→RK . Thus, her coequations give pairs of two such comonad morphisms, and

are captured in our framework.

Recent work on co-Birkhoff theorems (Awodey and Hughes 2000; Rosu 2000; Kurz

2000) uses stronger assumptions on the base category, and can thus prove stronger results

in a more limited setting. For example, Awodey and Hughes (2000) characterises co-

equational covarieties in categories that are regularly well-powered, cocomplete, have

epi-regular mono factorizations and enough injectives. Both coequational covarieties and

comonads characterise categories of coalgebras; the former more concretely, because of

the stronger assumptions on the base, the latter more abstractly. An interesting approach

has been taken in Adamek and Porst (2001): they dualise the construction of the free

algebra sequence by a transfinite cofree coalgebra construction, and define a covarietor

to be a functor for which the cofree coalgebra exists (that is, the coalgebra construction

converges at some point). Recall that in our case the dualisation of the free algebra

sequence fails because of the mixture of left and right Kan extensions, and hence we

are left with the less descriptive construction of the cofree coalgebra in Lemma 5.7. In

Awodey and Hughes (2000) and Adamek and Porst (2001), coequations are defined as

subobjects of, or monomorphisms into, the cofree coalgebra; a coalgebra satisfies the

coequation if the arrow into cofree coalgebra filters through the coequation. The relation

to a coequational presentation is obvious: the universal property of the equaliser says

exactly that it is a morphism into the cofree comonad (that is, the cofree coalgebra) such

that every other coalgebra equalising the two arrows filters through the equaliser, and

further, every equaliser is a monomorphism. Thus, the two approaches are in principle

equivalent, but the intent there was to characterise the dual of varieties, whereas our goal

was to characterise the dual of the equational presentation of monads.

We have not as yet developed the logical calculus underlying the categorical construc-

tions of the comonadic semantics. It seems this underlying logic will have a modal flavour,

and hence research in this area, for example, by Kurz (2000), seems relevant.
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